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Abstract— We present a new control design method which
guarantees any prespecified componentwise ultimate bound on
the state of multiple-input systems with matched perturbations.
The method is based on eigenstructure assignment by state
feedback and utilises a componentwise bound computation
procedure recently proposed by the authors. This procedure
exploits both the system and perturbation structures by per-
forming componentwise analysis, thus avoiding the need for
bounds on the norm of the perturbation. We present examples
which illustrate the simplicity and generality of the method.

I. INTRODUCTION

Control systems are invariably subject to the effect of
perturbations, which may arise from unknown disturbance
signals, model uncertainty, unknown time delays, component
aging, etc. Typically, the exact value of a perturbation vari-
able is unknown but assumed to be bounded. In the presence
of bounded perturbations that do not vanish as the state
approaches an equilibrium point, asymptotic stability is in
general not possible. However, under certain conditions, the
ultimate boundedness of the system state trajectories can be
guaranteed [1], [2]. A guaranteed ultimate bound on the sys-
tem trajectories can be regarded as a measure of performance
in steady state. Moreover, a small (in some sense) ultimate
bound can be associated with good perturbation attenuation,
which is a desirable feature of any controller.

When perturbations span the same subspace spanned by
the control input, commonly referred to as matched perturba-
tions, then any prespecified ultimate bound can be guaranteed
by designing a state feedback controller appropriately [3].
Several control design methods that can achieve an arbitrarily
small ultimate bound for linear uncertain systems have been
reported in the robust control literature (see, for example, [4],
[5], [6], [7]). These methods are based on Lyapunov analysis,
a typical tool for the computation of ultimate bounds [2].

The present paper proposes a new controller design
method whose aim is to ensure any prespecified componen-
twise ultimate bound on the system state trajectories. The
proposed method can be applied to multiple-input perturbed
linear continuous-time systems and its development involves
results on componentwise ultimate bound computation that
were presented in [8] and extended in [9] and [10]. The
mentioned results directly derive componentwise ultimate
bounds, exploiting the system geometry as well as the
perturbation structure requiring neither the computation of
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a Lyapunov function for the system nor bounding the norm
of the perturbation vector. In many cases, as is reported in
[8], [9], [10], these facts permit to obtain estimations of the
ultimate bounds that are less conservative than those obtained
using Lyapunov based approaches.

In this context, the first contribution of the current paper
is to further extend the componentwise approach of [8],
[9], [10] to linear systems with perturbations bounded by a
delayed function of the state. In addition, by specialising to
the case when the perturbation bound is an affine function of
the state, we are able to derive ultimate bounds that are valid
globally, as opposed to the results in [9] and [10], where the
corresponding ultimate bounds for perturbations bounded by
functions of the state are guaranteed only when the initial
state lies in a bounded set.

The main contribution of the paper consists in exploiting
the structural dependency of the derived componentwise
ultimate bound expressions on the system eigenstructure in
order to develop the aforementioned control design method
for systems with matched perturbations, using techniques
of eigenvalue and eigenvector assignment by state feedback
[11]. We show that a state feedback gain can be designed
such that the ultimate bound expression decreases to zero
as a “scaling” parameter, associated with the magnitude of
the closed-loop eigenvalues, increases. The proposed design
procedure is systematic in the sense that once a desired
(stable but otherwise arbitrary) normalised configuration is
chosen for the closed-loop eigenvalues, a suitably high value
of the scaling parameter can be selected to achieve the
desired ultimate bound.

The remainder of the paper proceeds as follows. Below we
introduce notation and definitions used throughout the paper.
In Section II we present the problem formulation. Section III
derives an ultimate bound expression that depends on the
system eigenstructure. In Section IV we present the proposed
controller design method. Section V presents examples of
application and Section VI concludes the paper.

A. Notation and preliminaries

In the sequel, |M |, Re(M) and Im(M) denote the
elementwise magnitude, real part and imaginary part, respec-
tively, of a (possibly complex) matrix or vector M . Also,
x ≤ y (x < y) denotes the set of componentwise (strict)
inequalities between the components of the real vectors x
and y, and similarly for x ≥ y (x > y). According to these
definitions, it is easy to show that (see, for example [12, §8])

|x + y| ≤ |x| + |y|, |M x| ≤ |M | · |x|, (1)



whenever x, y ∈ C
n and M ∈ C

m×n. Z+,0 denotes the non-
negative integers. Similarly, R+ and R+,0 denote the positive
and nonnegative real numbers, respectively. Consequently, if
x ∈ R

n then x ∈ R
n
+ ⇔ x > 0 and x ∈ R

n
+,0 ⇔ x ≥ 0.

For c ∈ C, c denotes its complex conjugate.

II. PROBLEM FORMULATION

Consider the multiple-input linear perturbed system

ẋ(t) = Ax(t) + Bu(t) + Hw(t), (2)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the
control input, A ∈ Rn×n, B ∈ Rn×m, H ∈ Rn×k are
constant matrices, (A, B) is a controllable pair, B has full
column rank, and the perturbation variable w(t) ∈ R

k

satisfies the componentwise bound

|w(t)| ≤ Fθ(t) + w̄ for all t ≥ 0, (3)

with F ∈ R
k×n
+,0 , w̄ ∈ Rk

+,0, and

θ(t) � max
t−τ̄≤τ≤t

|x(τ)|, (4)

where the maximum is taken componentwise and τ̄ ≥ 0.
Given an arbitrary positive vector b∗ ∈ Rn

+, our goal
is to design a linear state-feedback control u(t) = Kx(t),
K ∈ R

m×n, such that the solutions to ẋ(t) = (A +
BK)x(t) + Hw(t), where w(t) is componentwise bounded
as in (3)–(4), are ultimately bounded with componentwise
ultimate bound b∗, that is, they satisfy

lim sup
t→∞

|x(t)| ≤ b∗. (5)

In the case of constant perturbation bounds [F = 0 in
(3)], and provided the perturbations are matched, that is,
provided H = BG for some G ∈ R

m×k, it is well-known
that the above goal is achievable [3]. However, additional
assumptions must be made when the perturbation bound
depends on either the current or a delayed version of the
system state, as is the case when F �= 0 in (3). In the current
paper, we will provide a sufficient condition for achieving
any desired componentwise ultimate bound and a method
for computing the corresponding feedback matrix K .

Remark 2.1: Notice that the setting (2)–(4) can accommo-
date various types of uncertainty:

• Uncertainty in the system evolution matrix, where

ẋ(t) = (A + ∆A(t))x(t) + Bu(t), and

|∆A(t)| ≤ ∆A for all t ≥ 0;

in this case, we can take H = I in (2), F = ∆A and
w̄ = 0 in (3), and τ̄ = 0 in (4).

• Uncertainty in the system input matrix [assuming that
u(t) = Kx(t) in (2)], where

ẋ(t) = Ax(t) + (B + ∆B(t))Kx(t), and

|∆B(t)| ≤ ∆B for all t ≥ 0;

in this case, we can take H = I in (2), F = ∆B|K|
and w̄ = 0 in (3), and τ̄ = 0 in (4).

• Uncertain time delay, where

w(t) = Adx(t − τ), and 0 ≤ τ ≤ τmax;

in this case, we can take F = |Ad| and w̄ = 0 in (3),
and τ̄ = τmax in (4).

• Bounded disturbances, where

w(t) = q(t), and |q(t)| ≤ q̄ for all t ≥ 0;

in this case, we can take F = 0 and w̄ = q̄ in (3).
Note that we can also accommodate for combinations of the
above cases. ◦

III. COMPONENTWISE ULTIMATE BOUNDS UNDER

PERTURBATIONS

In this section we present a theorem that extends results
of [8], [9] and [10]. The latter works proposed a new
framework to obtain closed-form ultimate bound formulae
based on the use of componentwise perturbation bounds and
componentwise analysis of the system in modal coordinates.
This componentwise framework allows the perturbation term
to be bounded by constants or by a non-delayed function
of the state. The following theorem extends the previous
works by providing ultimate bounds on the components of
the system state when the perturbations are bounded in the
form (3)–(4).

Theorem 3.1: Consider the system

ẋ(t) = Āx(t) + Hw(t), (6)

where x(t) ∈ Rn, w(t) ∈ Rk, Ā ∈ Rn×n and H ∈ Rn×k.
Let Ā be a Hurwitz matrix with Jordan canonical form Λ =
V −1ĀV . Suppose that (3) and (4) hold with F ∈ R

k×n
+,0 ,

w̄ ∈ Rk
+,0 and τ̄ ∈ R+,0. Define the matrix

R � |V | ∣∣[Re(Λ)]−1V −1H
∣∣ , (7)

suppose that ρ(RF ) < 1 (where ρ(·) denotes the spectral
radius), and let

b � (I − RF )−1Rw̄. (8)

Then, lim supt→∞ |x(t)| ≤ b.
Proof: For any γ ∈ Rn

+,0 and � ∈ Z+,0 consider the
maps T : Rn

+,0 → Rn
+,0 and T �

γ : Rn
+,0 → Rn

+,0 defined by

T (x) � R(Fx + w̄),

T 0
γ (x) � T (x) + |V |γ, T �+1

γ (x) � T 0
γ (T �

γ(x)).
(9)

The proof requires the following claims, whose proofs are
given in the Appendix.

Claim 1: There exists x̄ ∈ Rn
+,0, which may depend on

θ(0) [see (4)], such that |x(t)| ≤ x̄ for all t ≥ −τ̄ .
Claim 2: Suppose that |x(t)| ≤ x̄ for all t ≥ −τ̄ . Then,

for any γ ∈ Rn
+ and � ∈ Z+,0, there exists t̄ = t̄(�, γ) ≥ 0

such that |x(t)| ≤ T �+1
γ (x̄), for all t ≥ t̄.

Claim 3: Suppose that |x(t)| ≤ x̄ for all t ≥ −τ̄ . Then,
for any ε ∈ Rn

+, there exist � = �(ε) ∈ Z+,0 and γ = γ(ε) ∈
Rn

+ such that T �+1
γ (x̄) < b + ε.

From Claims 1 and 3, it straightforwardly follows that for
any ε ∈ Rn

+, there exist � = �(ε) ∈ Z+,0 and γ = γ(ε) ∈ Rn
+



such that T �+1
γ (x̄) < b + ε. For these values of � and γ, we

have, from Claim 2, that there exists t̄ = t̄(�, γ) ≥ 0 such
that |x(t)| ≤ T �+1

γ (x̄) < b + ε, for all t ≥ t̄. This implies
that lim supt→∞ |x(t)| ≤ b, concluding the proof.

Remark 3.2: Theorem 3.1 can be directly employed to
compute an ultimate bound for system (2)–(4) under a
stabilising state feedback u(t) = Kx(t). ◦

IV. CONTROL DESIGN WITH GUARANTEED

COMPONENTWISE ULTIMATE BOUND

In the following theorem, which constitutes the main result
of the paper, we combine the use of Theorem 3.1 with
techniques of eigenstructure assignment by state feedback
[11] to derive a new control design procedure that guarantees
any desired componentwise ultimate bound for systems with
matched perturbations. Specifically, we consider system (2)–
(4), where H = BG for some G ∈ Rm×k and provide
a feedback matrix K ∈ Rm×n so that application of the
control u(t) = Kx(t) achieves any desired componentwise
ultimate bound b∗ ∈ R

n
+.

Theorem 4.1: Consider the perturbed multiple-input sys-
tem (2)–(4), where (A, B) is a controllable pair and H =
BG for some G ∈ Rm×k. Let ck ∈ C, k = 1, . . . , n, satisfy
ci �= cj for i �= j, Re(ck) < 0, and if ci /∈ R, then either
ci−1 = ci or ci+1 = ci. Take µ > 0 and let λk � µck

for k = 1, . . . , n and Λ � diag(λ1, . . . , λn). Consider the
matrix

V �

⎡
⎢⎣

V1

...
Vm

⎤
⎥⎦ , where, for i = 1, . . . , m,

Vi �

⎡
⎢⎢⎢⎣
ei,1λ

−(di−1)
1 ei,2λ

−(di−1)
2 . . . ei,nλ

−(di−1)
n

...
...

. . .
...

ei,1λ
−1
1 ei,2λ

−1
2 . . . ei,nλ−1

n

ei,1 ei,2 . . . ei,n

⎤
⎥⎥⎥⎦ .

(10)

In (10), the integers di, i = 1, . . . , m, are the controllability
indices of the system1 and ei,j ∈ C, i = 1, . . . , m, j =
1, . . . , n are such that ei,j+1 = ei,j whenever cj+1 = cj and
the matrix V has linearly independent columns. Construct
matrices Ṽ and Λ̃ from V and Λ in the following way. For ev-
ery pair of columns vi and vi+1 of V such that vi+1 = vi, we
set the corresponding columns of Ṽ as Re(vi) and Im(vi).
Similarly, for every submatrix diag(λi, λi) of Λ we set the

corresponding submatrix of Λ̃ as

[
Re(λi) Im(λi)
−Im(λi) Re(λi)

]
. Let

x = Uxc be the state variable transformation that brings
system (2) into the controller canonical form2 with matrices
Ac � U−1AU and Bc � U−1B, and define

Rµ � |V | ∣∣[Re(Λ)]−1(UV )−1H
∣∣ . (11)

Then:

1The controllability indices satisfy di ≥ 1, for i = 1, . . . , m and∑m
i=1 di = n. See [13] for an algorithm to compute these indices.
2See, for example, [14] for an algorithm to compute the multivariable

controller canonical form.

a) The linear feedback

u = Kx, K = (BT
c Bc)−1BT

c (Ṽ Λ̃Ṽ −1 − Ac)U−1,
(12)

is such that the eigenvalue and eigenvector matrices of
(A + BK) are Λ and UV , respectively.

b) There exists µ̄ ∈ R+ such that ρ(RµF |U |) < 1 for all
µ > µ̄.

c) If µ > µ̄, then the state of the closed-loop system (2)–
(4) under the state feedback (12) satisfies lim supt→∞
|x(t)| ≤ bµ, where

bµ � |U |(I − RµF |U |)−1Rµw̄. (13)

d) For µ > µ̄, the ultimate bound bµ in (13) is a com-
ponentwise nonincreasing function of µ and satisfies
limµ→∞ bµ = 0.

Proof: See [15].
Theorem 4.1 requires the selection of a “normalised”

configuration ck, k = 1, . . . , n, for the closed-loop eigen-
values. Once this selection has been made, the choice of
the complex numbers ei,j , i = 1, . . . , m, j = 1, . . . , n in
(10) represents an additional degree of freedom that could be
exploited to yield different expressions for the ultimate bound
formula (13) as functions of µ, all with the properties stated
in Part d) of the theorem (see the example of Section V-B).
In the following algorithm we present a design procedure,
based on Theorem 4.1, that suggests a particular choice for
the complex numbers ei,j , i = 1, . . . , m, j = 1, . . . , n.

Algorithm 4.2: Given a desired componentwise ultimate
bound b�:

1) Find the matrix U that brings system (2) to the con-
troller canonical form and compute the transformed
matrices Ac � U−1AU and Bc � U−1B.

2) Choose a normalised configuration ck, k = 1, . . . , n, of
n distinct stable eigenvalues, where complex eigenval-
ues appear in complex conjugate pairs (that is, c i �= cj

for i �= j, Re(ck) < 0, and if ci /∈ R, then either
ci−1 = ci or ci+1 = ci).

3) Find the controllability indices di, i = 1, . . . , m, of
system (2) and define σi �

∑i
j=1 dj for i = 1, . . . , m.

Set ei,j = cσi−n
j , i = 1, . . . , m, j = 1, . . . , n.3

4) Select µ ∈ R+.
5) Compute V in (10) using the values of e i,j , i =

1, . . . , m, j = 1, . . . , n, chosen in step 3 and λk = µck

for k = 1, . . . , n. Set Λ � diag(λ1, . . . , λn).
6) Compute Rµ in (11) and check the condition

ρ(RµF |U |) < 1. If this condition is not satisfied,
increase µ and go to step 5.

7) Compute bµ in (13) and check the condition bµ ≤ b�.
If not satisfied, increase µ and go to step 5.

8) Form matrices Ṽ and Λ̃ from V and Λ as described in
the statement of Theorem 4.1.

9) Compute K using the formula (12).

3It is easy to check that this choice makes the columns of V in (10)
linearly independent for all values of µ ∈ R+.



In the following section we illustrate the use of Theo-
rem 4.1 and Algorithm 4.2 by means of two examples taken
from the literature.

V. EXAMPLES

A. Application to robust tracking

This example was presented in [7], where a Lyapunov
based method for robust tracking in uncertain linear time-
delayed systems was developed. The system has the form

ẋ(t) = [A + ∆A(r(t))]x(t) + Ad(s(t))x(t − τ) + Bu(t),
y(t) = Cx(t),
x(t) = Φ(t), t ∈ [−τ, 0],

where A, B, C are known matrices, ∆A(r(t)) and Ad(s(t))
are matrices depending on bounded time-varying uncertain
parameters r(t) and s(t), Φ(t) is the initial condition and τ
is a time delay. The goal is that y(t) follow the output of a
reference model

ẋm(t) = Amxm(t), (14)

ym(t) = Cmxm(t),

within a predefined ultimately bounded error. The parameters
for the example are

A =

⎡
⎣ 0 1 0

0 1 2
−1 −2 0

⎤
⎦ , B =

⎡
⎣ 0

0.1
1

⎤
⎦ , C =

⎡
⎣1
1
0

⎤
⎦

T

,

Am =
[

0 1
−1 0

]
, Cm =

[
1
1

]T

,

(15)

with matched uncertainties

∆A(r(t)) = BD(r(t)), D(r(t)) = [r1(t) 0 r2(t)], (16)

|r1(t)| ≤ 0.15, |r2(t)| ≤ 0.2, (17)

Ad(s(t)) = BE(s(t)), E(s(t)) = [0 s1(t) s2(t)], (18)

|s1(t)| ≤ 0.1, |s2(t)| ≤ 0.15. (19)

The time delay is τ = 0.1 and the reference model initial
condition is xm(0) = [1 0]T . The goal is to assign an
ultimate bound b∗ = 0.15 to the tracking error e(t) � y(t)−
ym(t), so that lim supt→∞ |e(t)| ≤ 0.15.

To solve the tracking problem, the method of [7] requires
the existence of matrices G and H satisfying[

A B
C 0

] [G
H

]
=

[GAm

Cm

]
.

Solving the above equation using the data in (15) yields

G =

⎡
⎣ 1 0

0 1
−0.5786 −0.5711

⎤
⎦ , H =

[
1.5711 1.4214

]
.

Defining z(t) � x(t)−G xm(t), the tracking error dynamics
can be described as

ż(t) = Az(t) + Bu(t) − BHxm(t) + ∆A(r(t))x(t)
+ Ad(s(t))x(t − τ),

e(t) = Cmz(t).
(20)

Using (16)–(19), the perturbation terms in (20) can be
rewritten as

∆A(r(t))x(t) + Ad(s(t))x(t − τ) = Bw(t), (21)

where

w(t) � D(r(t))z(t) + E(s(t))z(t − τ) + D(r(t))Gxm(t)
+ E(s(t))Gxm(t − τ) (22)

can be bounded as in (3)–(4) with

F � sup
t

(D(r(t))) + sup
t

(E(s(t))) =
[
0.15 0.1 0.35

]

and

w̄ � [sup
t

(D(r(t))G)+sup
t

(E(s(t))G)] sup
t

(xm(t))=0.2496.

In computing the value for w̄ above we have used |xm(t)| ≤
[1 1]T for all t, which follows from (14), (15) and the initial
condition xm(0) = [1 0]T .

We use the structure of the control law proposed in [7],
namely

u(t) = Kx(t) + (H− KG)xm(t) = Kz(t) + Hxm(t),

where the gain K will be computed here via the procedure
proposed in Section IV. Substituting the above control law
in (20)–(22) results in the closed-loop equation

ż(t) = Az(t) + Bu(t) − BHxm(t) + Bw(t)
= (A + BK)z(t) + Bw(t).

Following Algorithm 4.2, we calculate matrix U =⎡
⎣ 2 0.1 0

0 2 0.1
−0.1 −1.2 1

⎤
⎦, and we choose the complex numbers

ci with a Butterworth configuration c1 = −1, c2,3 = −1/2±
j
√

3/2.
Being a controllable system with m = 1, step 3 of

Algorithm 4.2 gives the coefficients e1,j = 1 for j =
1, . . . , n. Since the assigned eigenvalues are all different, this
choice ensures that matrix V in (10) has linearly independent
columns.

Selecting µ > 2.31, the closed-loop system satisfies the
stability condition ρ(RµF |U |) < 1, where Rµ is defined
in (11), and when µ = 4.978 we obtain an ultimate
bound bµ =

[
0.0251 0.1249 0.3098

]T
for z(t) [see (13)].

Therefore, an ultimate bound for the tracking error e(t) =
Cz(t) is |C|bµ ≈ 0.15, and the tracking goal is ensured. The
controller gain for this last configuration, given by (12), is
K =

[−61.1024 −24.8103 −8.4750
]
. The direct appli-

cation of Theorem 3.1 on the resulting closed-loop system
gives, in this case, a less conservative estimation of the
ultimate bound. For the controller gain K calculated before,
we have b̃ =

[
0.0164 0.0818 0.2782

]T
which ensures

that the tracking error is ultimately bounded by 0.0982.



B. Application to axisymmetric spacecraft rotational motion

We consider an example presented in [1], which analyses
the rotational motion of a rigid spacecraft subject to bounded
disturbances. Under the assumption that the spacecraft is
axisymmetric about the third body-fixed axis and there are
no torques about the symmetry axis, the system can be
described by (2), where x(t) =

[
ω1(t) ω2(t)

]T ∈ R2

are the components of the inertial angular velocity of the
spacecraft with respect to the first two axes and u(t) ∈ R2,
w(t) ∈ R2 are, respectively, control input and unknown
bounded disturbance torques about the first two axes. The
matrices in (2) take the form

A =

⎡
⎢⎣ 0

(J11 − J33) ∗ ω3

J11

− (J11 − J33) ∗ ω3

J11
0

⎤
⎥⎦ ,

B =

⎡
⎢⎣

1
J11

0

0
1

J11

⎤
⎥⎦ , H = B,

(23)

where J11 and J33 are the inertia coefficients with respect
to the first and third axes, respectively, and ω3 is the com-
ponent of the inertial angular velocity of the spacecraft with
respect to the third axis, which is constant under the above
assumptions. The values for the parameters are J11 = 100,
J33 = 150 and ω3 = 0.1. The disturbance torques are
assumed bounded as |w(t)| ≤ [1 1]T for all t ≥ 0.

In [1] the control law u(t) = K0x(t), with K0 = −5 I2,
where I2 is the 2 × 2 identity matrix, was used in closed
loop with (2), (23). Ultimate bounds were then computed
on the states of the closed-loop system via a method based
on parameterised quadratic Lyapunov functions, yielding the
value of 0.2 for the second state ω2(t). We note that the
method proposed in [1] can be used to compute ultimate
bounds once a linear controller is given but it is not evident
how the method can be employed in a controller design
procedure to assign a desired ultimate bound. Our goal here
is to design a state feedback gain such that an ultimate
bound of 0.01 can be guaranteed for ω2(t). We use the
procedure proposed in Section IV. The matrix that transforms
the system to the canonical controller form is U = 0.01 I2.
The closed-loop eigenvalues are chosen as λ1,2 = µc1,2

with c1,2 = −1/
√

2 ± j1/
√

2 and where µ will be selected
to achieve the desired ultimate bound. For this example,
the matrix V in (10) is independent of λ1,2 and all its
entries can be freely chosen provided its columns are linearly
independent. An ultimate bound on the closed-loop states is
bµ given in (13), computed with F = 0, w̄ = [1 1]T and
Rµ defined in (11). Note that Rµ changes with different
choices of V , a degree of freedom that will be exploited
next in the design. Figure 1 shows the ultimate bound on
the second state ω2(t) as a function of µ for three different
values of the matrix V , denoted as Va, Vb and Vc. The choice
V = Va corresponds to the one suggested in Algorithm 4.2.
Using this choice, the desired ultimate bound 0.01 for ω2(t)
can be achieved with µ = 4. However, choosing V =

Vc =
[
0.0439 + j0.3127 0.0439− j0.3127
0.0272 + j0.0129 0.0272− j0.0129

]
, Figure 1

shows that the desired ultimate bound can be achieved with a
lower value of µ, namely µ = 2. The controller gain for this

case, computed using (12), is K =
[−48.29 −1771.13

11.14 −234.55

]
.
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Fig. 1. Ultimate bound on ω2(t) as a function of µ for three different
closed-loop eigenvector matrices.

VI. CONCLUSIONS

We have presented a new control design method for
perturbed multiple-input systems, which guarantees a pre-
specified componentwise ultimate bound on the closed-
loop system’s trajectories. The method uses techniques of
eigenstructure assignment by state feedback, can be applied
to systems where the perturbation is bounded by a delayed
function of the state, and employs a componentwise bound
computation procedure. The latter procedure exploits the
system geometry as well as the perturbation structure, and
requires neither Lyapunov analysis nor bounds on the norm
of the perturbation vector. We have illustrated the utility of
the method by means of examples taken from the literature.

APPENDIX

The proofs require the following additional claim and
lemma.

Claim 4: For any θ0 ∈ Rn
+,0, there exists β > θ0 such

that R(Fβ + w̄) < β.
Proof: The proof follows from the fact that RF ≥ 0,

ρ(RF ) < 1, and θ0 ≥ 0 (see, for example [12, §8]).
Lemma 1.1: Consider system (6), where x(t) ∈ R

n,
w(t) ∈ Rk, Ā ∈ Rn×n and H ∈ Rn×k. Let Ā be a
Hurwitz matrix with Jordan canonical form Λ = V −1ĀV
and consider the matrix R defined in (7). Let w̄ ∈ Rk

+,0 and
tc ∈ R+,0.
a) Suppose that |w(t)| ≤ w̄ for 0 ≤ t ≤ tc and |x(0)| ≤ Rw̄.

Then, |x(t)| ≤ Rw̄ for 0 ≤ t ≤ tc.
b) Suppose that |w(t)| ≤ w̄ for all t ≥ 0. Then, for any

ε ∈ Rn
+, there exists a continuous function t̄f (ε, ·) : Rn →

R+,0 such that |x(t)| ≤ Rw̄+|V |ε for all t ≥ t̄f (ε, x(0)).



Proof: The proof combines minor modifications to
the proofs of Theorem 3 of [8], Theorem 3.3 of [9], and
Theorem 7.3 of [10], and is therefore omitted.
Proof of Claim 1. For a contradiction, suppose that |x(t)|
becomes unbounded. Note that |x(t)| ≤ θ0 � θ(0) for −τ̄ ≤
t ≤ 0 by (4). Also, note that if |x(t)| becomes unbounded,
then θ(t) in (4) must also become unbounded. Let β be given
by Claim 4. Define

tc � inf t, subject to t ≥ 0 and |θ(t)| �≤ β. (24)

Note that, since x(t) is continuous, then θ(t) also is, and
since θ(0) = θ0 < β, we have 0 < tc < ∞. By (24), θ(t) ≤
β for all 0 ≤ t ≤ tc. From (3), then |w(t)| ≤ Fβ + w̄ for all
0 ≤ t ≤ tc. Applying Lemma 1.1 a) and using Claim 4, then
|x(t)| ≤ R(Fβ + w̄) < β, for 0 ≤ t ≤ tc. Combining this
with the fact that θ(0) = θ0 < β, it follows that θ(t) < β for
0 ≤ t ≤ tc. From the continuity of θ(t), it then follows that
there exists α ∈ R+ such that θ(t) ≤ β for 0 ≤ t ≤ tc + α.
This contradicts (24), concluding the proof. �
Proof of Claim 2. By induction on �. By assumption, we
have |x(t)| ≤ x̄ for all t ≥ −τ̄ . From (3) and (4), then
|w(t)| ≤ F x̄+w̄, for all t ≥ 0. Applying Lemma 1.1 b), then
given γ ∈ Rn

+, there exists t̄f such that |x(t)| ≤ R(F x̄+w̄)+
|V |γ = T 0

γ (x̄) for all t ≥ t̄f . The claim is then established
for � = 0 by setting t̄(0, γ) = t̄f .

Suppose next that the claim holds for some � ∈ Z+,0, that
is for any γ ∈ Rn

+, there exists t̄(�, γ) such that |x(t)| ≤
T �+1

γ (x̄) for all t ≥ t̄(�, γ). Then, by (3), θ(t) ≤ T �+1
γ (x̄)

and hence, by (4), |w(t)| ≤ FT �+1
γ (x̄)+ w̄, for t ≥ t̄(�, γ)+

τ̄ . Applying Lemma 1.1 b) and considering the fact that the
system is time-invariant, then given γ ∈ Rn

+, there exists t̃f
such that |x(t)| ≤ R(FT �+1

γ (x̄)+ w̄)+ |V |γ = T �+2
γ (x̄), for

t ≥ t̄(�, γ) + τ̄ + t̃f . The claim is then established for � + 1
by setting t̄(� + 1, γ) = t̄(�, γ) + τ̄ + t̃f .

This concludes the proof of the claim. �
Proof of Claim 3. Note that |T �+1

γ (x̄) − b| ≤ |T �+1
γ (x̄) −

T �+1(x̄)| + |T �+1(x̄) − b|. By (8), (9), and since ρ(RF ) <
1, then lim�→∞ T �(x̄) = b. Also, since x̄ ≥ 0 and T :
Rn

+,0 → Rn
+,0, then b ≥ 0. Therefore, given ε ∈ Rn

+, we
can select � = �(ε) such that |T �+1(x̄) − b| < ε/2. From
(9), it follows straightforwardly that, for the selected value
of �, we may select γ = γ(ε) ∈ Rn

+ small enough so that
|T �+1

γ (x̄)−T �+1(x̄)| < ε/2. Then, |T �+1
γ (x̄)− b| < ε. Since

b ≥ 0 and T 0
γ : Rn

+,0 → Rn
+,0 for any γ ∈ Rn

+,0, then
T �+1

γ (x̄) = |T �+1
γ (x̄) − b + b| ≤ |T �+1

γ (x̄) − b| + b < b + ε,
establishing the claim. �
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