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De-Noising by Soft-Thresholding 
David L. Donoho 

Abstract- Donoho and Johnstone (1994) proposed a method 
for reconstructing an unknown function f on [O, I] from noisy 
data d, = f ( t z )  + oz,, i = 0 , .  . . , n  - 1, t ,  = i /n ,  where the 
z ,  are independent and identically distebuted standard Gaussian 
random variables. The reconstruction f: is defined in the wavelet 
domain by translating all the empirical wavelet coefficients of d 
toward 0 by an amount U .  d m .  We prove two results 
about this type of estimator. [Smooth]: With high probability f: 
is at least as smooth as f, in any of a wide variety of smoothness 
measures. [Adapt]: The estimator comes nearly as close in mean 
square to f as any measurable estimator can come, uniformly 
over balls in each of two broad scales of smoothness classes. 
These two properties are unprecedented in several ways. Our 
proof of these results develops new facts about abstract statistical 
inference and its connection with an optimal recovery model. 

Index Terms- Empirical wavelet transform. minimax estima- 
tion. adaptive estimation. optimal recovery. 

I. INTRODUCTION 

N THE recent wavelets literature one often encounters the I term de-noising, describing in an informal way various 
schemes which attempt to reject noise by damping or thresh- 
olding in the wavelet domain. For example, in the March 1992 
special issue of IEEE Trans. Information Theory, articles by 
Mallat and Hwang [32], and by Simoncelli, Freeman, Adelson, 
and Heeger [41] use this term; at the Toulouse Conference 
on Wavelets and Applications, June 1992, it was used in oral 
communications by Coifman, by Mallat, and by Wickerhauser. 
The more prosaic term “noise reduction” has been used by Lu 
et al. [31]. 

We propose here a formal interpretation of the term “de- 
noising” and show how wavelet transforms may be used to 
optimally “de-noise’’ in this interpretation. Moreover, this “de- 
noising” property signals success in a range of situations where 
many previous nonwavelets methods have met only partial 
success. 

Suppose we wish to recover an unknown function f on 
[0,1] from noisy data 

di = f(ti) + c z i ,  i = 0 , .  . . , n - 1 (1) 

where ti = i/n, zi is a standard Gaussian white noise 
(independent and identically distributed (i.i.d.); denoted by 
zi N N(0 ,  l)), and c is a noise level. Our interpretation of 
the term “de-noising’’ is that one’s goal is to optimize the 
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mean-squared error 

n-1 

n-lE1l.f - fll,”, = n-’ E(.f(i /n) - f(i/n))’ (2) 
i = O  

subject to the side condition that 

with high probability, f is at least as smooth as f .  (3) 

Our rationale for the side condition (3) is this: many 
statistical techniques simply optimize the mean-squared error. 
This demands a tradeoff between bias and variance which 
keeps the two terms of about the same order of magnitude. As 
a result, estimates which are optimal from a mean-squared- 
error point of view exhibit considerable, undesirable, noise- 
induced structures-“ripples,” “blips,” and oscillations. Such 
noise-induced oscillations may give rise to interpretational 
difficulties. In Geophysical and Astronomical settings one 
may be tempted to interpret blips and bumps in reconstructed 
functions as scientifically significant structure. Reconstruc- 
tion methods should therefore be carefully designed to avoid 
spurious oscillations. Demanding that the reconstruction not 
oscillate essentially more than the true underlying function 
leads directly to (3). 

Is it possible to satisfy the two criteria (2) and (3)? 
Donoho and Johnstone [12] have proposed a very simple 

thresholding procedure for recovering functions from noisy 
data. In the present context it has three steps: 

1) Apply the interval-adapted pyramidal filtering algorithm 
of Cohen, Daubechies, Jawerth, and Vial [4] ([CDJV]) to 
the measured data ( d i / f i ) ,  obtaining empirical wavelet 
coefficients ( e I ) .  

2) Apply the soft thresholding nonlinearity 

coordinatewise to the empirical wavelet coefficients with 
specially chosen threshold tn  = y1 c . ,/-, 
y1 a constant defined in Section VI-B below. 

3) Invert the pyramid filtering, recovering 

In [12] are examples showing that this approach provides 
better visual quality than procedures based on mean-squared 
error alone; they called the method VisuShrink in reference 
to the good visual quality of reconstruction obtained by the 
simple “shrinkage” of wavelet coefficients. It is proved in [ 131 
that, in addition to the good visual quality, the estimator has 
an optimality property with respect to mean-squared error for 
estimating functions of unknown smoothness at a point. 

0018-9448/95$04.00 0 1995 IEEE 
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In this paper, we will show that two phenomena hold in 

[Smooth]: With high probability, f: is at least as smooth 
as f ,  with smoothness measured by any of a wide range 
of smoothness measures. 
[Adapt]: f: achieves almost the minimax mean-square 
error over every one of a wide range of smoothness 
classes, including many classes where traditional linear 
estimators do not achieve the minimax rate. 

In short, we have a de-noising method, in a more precise 
interpretation of the term de-noising than we gave above. 

To state our results precisely, recall that the pyramidal 
filtering of [CDJV] corresponds to an orthogonal basis of 
L2[0, 11. Such a basis has elements which are in CR and 
have, at high resolutions, D vanishing moments. It acts as 
an unconditional basis for a very wide range of smoothness 
spaces: all the Besov classes B&,[O, 11 and Triebel classes 
F,S,,[O, 11 in a certain range 0 < s < min (R ,  D )  [19]-[21], 
[28], [33]. Each of these classes has a norm 1 1  . ~ I B ; , ~  or 
1 1  . I I F ; , ~  which measures smoothness. Special cases include 
the traditional Holder (-Zygmund) classes C" = 
and Sobolev classes W,S = F,",,. Full definitions of these 
smoothness spaces are given in the references above; a few 
intuitive cases can be observed. Roughly speaking, for 0 < 
s < 1, the norm for B;,,[O,l] bounds the ratio [ I f ( . )  - 

f ( .  + h)llp/lh/s; for s 2 1, the norm bounds a similar ratio 
involving higher order differences IIA;l"f(.)llp/lhls, m = [SI. 
For s = 1 , 2 , 3 , .  . ., the norm for FpS,2 measures the LP norm 
of the sth derivative. 

DeJinition: S is the scale of all spaces I?;,, and all spaces 
Fp",, which embed continuously in C[O, 11, so that s > l /p,  
and for which the wavelet basis is an unconditional basis, so 
that s < min(R,D) .  

considerable generality: 

We now give a precise result conceming [Smooth]. 
Theorem 1.1 (Smoothing): Let (f;(ti)):Z: be the vector of 

estimated function values produced by the algorithm 1)-3). 
There exists a special smooth interpolation of these values 
producing a function f:(t) on [0,1]. This function is, with 
probability tending to I ,  at least as smooth as f ,  in the 
following sense. There are universal constants (nn) with 
nn + 1 as n = 2J1 ---t M, and constants Cl(3, $) depending 
on the function space F[O, 11 E S and on the wavelet basis, 
but not on n or f ,  so that 

In words, f: is, with overwhelming probability, simultane- 
ously as smooth as f in every smoothness space F taken 
from the scale S. 

Property (4) is a strong way of saying that the reconstruction 
is noise-free. Indeed, as l l O l ] ~  = 0, the theorem requires that 
if f is the zero function f ( t )  = 0 Vt E [0,1] then, with 
probability at least nn, f: is also the zero function. In contrast, 
other methods of reconstruction have the character that if the 
true function is 0, the reconstruction is (however slightly) 
oscillating and bumpy as a consequence of the noise in the 
observations. de-noising, with high probability, rejects pure 
noise completely. 

This "noise-free'' property is not usual even for wavelet 
estimators. Our experience with wavelet estimators designed 
only for mean-squared-error optimality is that even when 
reconstructing a very smooth function they exhibit annoying 
"blips"; see figures in [15]. In fact no result like Theorem 
1.1 holds for those estimators; and we view Theorem !.l as 
a mathematical statement of the visual superiority of f;. To 
avoid the derision generally attached by scientists to zealous 
interpretation of wiggles ("bump hunting"), this freedom from 
artifacts may be important. 

We now consider phenomenon [Adapt]. In general, the error 
Ellf - f 1 1 $  depends on f .  It is traditional to summarize this 
by conside&g its maximum over various smoothness classes. 
Let 3[0 ,1]  be a function space (for example one of the Triebel 
or Besov spaces) and let 3~ denote the ball of functions 
{ f  : l l f l ] ~  5 C}. The worst behavior of our estimator is 

fllf: (5 

and for no measurable estimator can this be better than the 
minimax mse 

all measurable procedures being allowed in the infimum. 
Theorem 1.2 (Near-Minimaxity): For each ball Fc arising 

from an F E S, there is a constant C2(.Fc; $) which does not 
depend on n, such that for all R = 2J1, jl > j ,  

In words, f: is simultaneously within a logarithmic factor 
of minimax over every Besov, Holder, Sobolev, and Triebel 
class that is contained in C[O, 11 and satisfies l / p  < s < 
min (R ,  D) .  

Existing approaches to adaptive smoothing (besides wavelet 
thresholding) do not exhibit comparable adaptation proper- 
ties-at least not in terms of being nearly minimax over such 
a wide range of smoothness classes. In Section IX-B below, 
we describe the considerable efforts of many researchers, 
including Efromovich and Pinsker, Golubev, and Nemirovskii, 
to obtain adaptive minimaxity, and describe the limitations 
of these methods. In general, existing nonwavelet methods 
achieve success over a limited range of the balls .Fc arising 
in the scale S (the quadratically convex balls, such as L2 
Sobolev balls), by relatively complicated means. In contrast, 
f: is very simple to construct and to analyze, and is within 
logarithmic factors of optimal, for every ball FC aesing in the 
scale S.  At the same time, because of [Smooth], f; does not 
exhibit the annoying blips and ripples exhibited by existing 
attempts at adaptive minimaxity. 

This paper therefore gives strong theoretical support to 
the empirical claims for wavelet de-noising cited in the first 
paragraph. Moreover, the theoretical advantages are really due 
to the wavelet basis. No similarly broad adaptivity is possible 
by using thresholding or other nonlinearities in the Fourier 
basis [ 111. Hence we have a success story for wavelets. 
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The remainder of the paper proves the above results by 
an abstract approach in Sections 11-IV below. The abstract 
approach sets up a problem of estimating a sequence in 
white Gaussian noise and relates this to a problem of optimal 
recovery in deterministic noise. 

In the optimal recovery model, soft thmholding has a 
unique role to play vis-a-vis abstract versions of properties 

iii) (9) as a norm equivalent to 

n-l E(&) - f ( t i ) ) 2  

and 

f 
iv) as a condition guaranteeing that f is smoother than 

J .  
[Smooth] and [Adapt]. Theorems 3.2 and 3.3 show that 
soft thresholding has a special optimality enjoyed by no 
other nonlinearity. These simple, exact results in the optimal 

We will explain such identifications further in Sections V 
and VI below. 

recovery model furnish approximate results in the statistical 
estimation model in Section IV, because statistical estimation 
is in some sense approximately the same as an optimal 
recovery model, after a recalibration of noise levels (compare 
also [6], [7]). In establishing rigorous results, we make decisive 
use of the notions of Oracle in [ 121 and their oracle inequality. 

We use properties of wavelet expansions described in Sec- 
tions V and VI to transfer the solution to the abstract sequence 
problem to the problem of estimating functions on the interval. 

In Section VII, we describe a refinement of Theorem 1.2 
which shows that the logarithmic factor in (5) can be improved 
to log(n)' whenever the minimax risk is of order nWT,  
O < r < l .  

In Section VIII, we show how the abstract approach easily 
yields results for noisy observations obtained by schemes 
different than (1). For example, the approach adapts easily to 
higher dimensions and to sampling operators which compute 
area averages rather than point samples. 

In Section IX we describe other work on adaptive smooth- 
ing, and possible refinements of these results. A referee has 
pointed out that the most important refinement of these results 
for practical work is to obtain an algorithm where the noise 
level 0 does not have to be known. We describe a successful 
method for estimating 0 in that section. 

111. SOFT W S H O L D I N G  AND OPTIMAL RECOVERY 

Before tackling (8)-(10), we consider a simpler abstract 
model, in which noise is deterministic (Compare [35], [44]). 
Suppose we have an index set Z (not necessarily finite), an 
object (0,) of interest, and observations 

Here 6 > 0 is a known noise level and ( U I )  is a nuisance 
term known only to satisfy 5 1 VI  E Z. We suppose that 
the nuisance is chosen by a clever opponent to cause the most 
damage, and evaluate performance by the worst case error 

At the same time that we wish (12) to be small, we aim to 
ensure the uniform shrinkage condition: 

Consider a specific reconstruction formula based on the 
soft-threshold nonlinearity 

11. AN ABSTRACT DE-NOISING MODEL 

Our proof of Theorems 1.1 and 1.2 has two components, 
one dealing with statistical decision theory, the other dealing 
with wavelet bases and their properties. The statistical theory 
focuses on the following Abstract De-Noising Model. We start 

r l t (Y)  = sgn(y)(lyl - t)+. 

Setting the level = *' we define 

I E 2. (14) 

This pulls each noisy coefficient 91 toward 0 by an amount 

t = 6, and sets 01 - 0 if ly11 5 6. 
Theorem 3.1: The soft-thresholding estimator satisfies the 

(y) = 0, (13) holds 

dI (6) 
with an index set Z, of cardinality n, and we observe (Y) = 7lt (31I) ,  

(') 

where Z I  - N(0, l )  is a Gaussian white noise and t is the 
noise level. We wish to find an estimate with small mean- 
squared error uniform-shrinkage condition (13). 

YI = 01 + E . Z I ,  I E I n ,  
aid .. (6) - 

* (6) 
(9) Proofi In each coordinate where 01 

Ell8 - ell;: .. (6) automatically. In each coordinate where 181 (y)l # 0 and satisfying, with high probability 

AS we will explain later, results for model (')-(lo) will imply 
Theorems 1.1 and 1.2 by suitable identifications. Thus we will 
want ultimately to interpret 

As 191 - 5 6 ( l  l )  

.. (6) 
i) ( 0 1 )  as the empirical wavelet coefficients of (f(ti))yzt, l o l l  2 l Y l l  - 6 = 10, I. 
ii) (81)  as the empirical wavelet coefficients of an estimate 

f n  3 We now consider the performance of according to (12). 
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Observation: The same reasoning as at (16)-( 18) yields 

~ 6 ( 8 ( ' ) ,  e )  = min (03~4~~). (15) Iej-l)l 5 IBjl)l, I E 2. (24) 

y: = (OF) + ej-'9/2, I E 2. (25) 

I 
As 0 is solid and orthosymmetric, O(-') E 0. ,. (6) To see this, note that if 61 

(Il), and sgn(8I 
# 0, then l y ~ l  > 6, I O I (  # 0 by Now (yy) is the midpoint between e( ' )  and e(-') 

.. (6) ) = sgn(I9I) by (14). Hence 

o 5 sgn(oI)$I(') 5 loI l .  Hence (yy) equally well could have arisen from either e(') or 

It follows that under noise model (11) e(-') under noise model (1 1). Now suppose we are informed 
that I9 E 0 takes only the two possible values { r $ ' ) , O ( - ' ) } .  

- 011 5 le,]. 
In addition, the triangle inequality gives 

(16) Once we have this information, the observation of(yy) defined 
by (25) tells us nothing new, since by construction it is the 
midpoint of the two known values Q(l) and O(-'). Hence the 
problem of estimating fl reduces to picking a compromise ( t ~ )  
between e( ' )  and e(- ')  that is simultaneously close to both. 
Applying the midpoint property and the identity 

1$1(6) - 011 5 26. (17) 

Hence under (1 1) 

Squaring and summing across I ,E Z gives (15). 

following minimax sense. Let 0 be a set of possible 0's (an 
abstract smoothness class) and define the minimax error 

min .  max (OF) - t12 = (yI - 
The performance measure E6(O(6), 19) is near-optimal in the tER z € { - l J }  

= min((6'y))2;62). (26) 

Summing across coordinates 
E~+(o)  = iqfsupEg(8,O). (19) e o  min max C(t9F' - t ~ ) ~  = min ((OF))', S2). (27) 

I ( t r )  i€{l,-ll I This is the smallest the error can be for any estimator, 
uniformly over all 19 E 0. 

for a wide class of 0. 

( ~ 1 0 1 )  E 0 for all sequences ( S I )  with Is11 5 1 V I .  

is near-minimax 

To apply this, note that the problem of recovering B when it 

is no easier that the special problem of recovering B when it 
is surely either O ( i )  or ~ ( - 1 )  and the data are surely go 

minsupE&(B,O) 2 min max ~ l e ( y ~ )  - di)1l$ 

It Out that the Of 8(6) approaches this minimum could be any element of 0 and ( y I )  any vector satisfying (1 1) 

Dejinition: 0 is solid and orthosymmetric if B E 0 implies 

Theorem 3.2: Let 0 be solid and orthosymmetric. Then 8(6) 

E&(@) ,  0) 5 4E6+(0), vo E 0. (20) 

e o  e G - l J l  

( t r )  i€{-1,11 
= min max ~lt  - ~ ( ~ ) l l f ~  

= min((oj1))2, s2). 
Proofi In a moment we will establish the lower bound 

I 

E;(@) 2 sup min (e;, s2) (21) 

valid for any solid, orthosymmetric set 0. Applying this, we 
get 

As this is true for every vector e( ' )  E 0, we have (21). 

satisfying the uniform shrinkage property (13). 

W 
o /  The soft threshold rule is uniquely optimal among rules 

Theorem 3.3: If I9 is any rule satisfying the uniform shrink- 
age condition (13), then 

E& 8) 2 E6(8(6), e )  ve. 
5 4 .  min (e;, s2) If equality holds for all 8, then e = &&). 

I Proofi Equation (28) is only possible if 
5 4 .  E;(@),  vo E 0 

I$/l 5 ISy'l V I ,  ve (29) which is (20). 
To establish (21), we first consider a special problem, let for every observed (yI) which could possibly arise from (1 1). 

Indeed, if 18/,(yo))l > 18g)(y0)lfor some specific choice of IO 
and yo, then the sequence (e?') defined by 

O ( l )  E 0 and consider the data vector 

y: = sgn (0;))(10?)1- SI+, I E z (22) 

which could arise under model ( 1  1). Define the parameter e?) = sgn (Y,")(lY:l - 61, V I  
e(-') by 

could possibly have generated the data under (1 l),  because 
Iy: - 8?)1 5 S. Now e(6)(y0) = e('). Hence le~,(yO)I > o y  = y: - (OF) - y,"), I E 2. (23) 
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J6g)(yo)limplies 161~(y')[ > 1Bg)land so the uniform shrink- 
age property (13) is violated. 

On theAother hand: for a rule satisfying (29), we must 
have E6(0,6)  2 E6(0(6), 0) for some combination of y and 
0 possible under the observation model (11). Indeed, select 
nuisance 

Proof: Let A,  denote the event {l/zl/tr I: d m } .  
Note that on the event A,, (8) is an instance of (11) with 
6 = 6,, and U I  = ZI. I E 1,. Hence by Theorem 3.1 

A ,  + { $ I ( ~ ) I  L [BI/VI E I,} 

for all B E R", and by (20) 

I so that y~ . 01 2 0 V I ,  and 
By definition P ( A , )  = T,. w 

The optimal recovery model therefore has implications for 
statistical estimation; and as we shall see, these implications 
are nearly best possible, so that the optimality of Soft Thresh- 
olding in Theorems 3.2 and 3.3 has near-parallels in statistical 

1 i I ( 6 )  - 011 = min(leI1, 26). 

Thus (as in (16)--(18))~ . ' I  2 '* and so 
sgn(&)61(6) I 1011. But 1611 5 101 I implies estimation. 

5 
A (6)  

0 I sgn ( @ I ) &  I: sgn (0I)OI .. (6) I lQI l  (30) A. Near-Optimal Mean Squared Error 

i.e. 
With (9) in mind, we study the size of the mean squared 

error M , ( ~ , o )  = ~ 1 1 0  - 0 1 1 ; ~ ,  from a minimax point of view. 

. -  

Summing over coordinates gives the inequality (28). 
Carefully reviewing the argument leading to (31), we have 

that when the strict inequality 1611 < 101 I holds then (31) is 
strict. If strict inequality never holds, then by (30) and (31), 

w 

The following lower bound says that statistical estimation at 
noise level E is at least as hard as optimal recovery at that 
Same noise level. 

A (6) 

bmma 4.1: Let 0 be solid and orthosymmetric then 
(6) 

(36) 
&(y) = 01 (y) for all y, all I ,  and all 0; that is, 6 = 1 

M;(@) L &(@I. 
Iv. m E S H O L D I N G  AND STATISTICAL ESTIMATION 

We now retum to the random-noise abstract model of 
@)-(lo). We will use the following fact [27]: Let ( 2 1 )  be i.i.d. 
N(0,l) .  Then 

This motivates us to act as if (8) were an instance of the 
deterministic model (1 l), with noise level 6, = d- . E .  

Accordingly, we define 

where t ,  = 6,. If the noise in (8) really were deterministic and 
of size bounded by t,, the optimal recovery theory of Section 
I11 would be the natural estimator to apply. We now show that 
the rule is also a solution for the problem of Section 11. 

Theorem 4.1: With r, defined by (32) 

Pr { 1 b i r ( l L ) l  I 1011 VI E I,} 2 r,  (34) 

Proof: Let O ( T )  denote the hyperrectangle (13 : 1011 I: 
1711 VI}, if O ( T )  c 0 then M z ( 0 )  2 M ~ ( @ ( T ) ) .  Hence 

M;(O) 2 sup{M;(O(T)) : 0 ( T )  c O}. 

Now if 0 is solid and orthosymmetric, 7 c 0 
Finally, Donoho, Liu, and MacGibbon [17] show that 

@ ( T )  C 0. 

Combining the last two displays gives (36). 
The following upper bound refines (35) to say that statistical 

estimation at noise level E is not harder than optimal recovery 
at noise level 6,. 

Theorem 4.2: Let 0 be solid and orthosymmetric. Then 
8.1 is nearly minimax 

iu,(6(n),e) I: ( 2 1 0 g ( ~ )  + i)(2 + 2 . 2 2 ~ 3 3 ) ) ~  e E O. 
(37) 

Hence e(") is uniformly within the same factor 4.44 log (n )  

The proof depends on an oracle inequality of [ 121. 
Consider the following "ideal" procedure (for more on the 

concept of idea! procedures, see [ 121). We consider the family 
of estimators { O S  : S c I,} indexed by subsets S of I, and 
defined by 

of minimax for every solid orthosymmetric set. 

for all B E 0. 
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We suppose available to us an oracle which selects from 
among these estimators the one with the smallest mean- 
squared error 

E(6) = argminElleS - ell$ 
S 

T(y, q e ) )  8 . y y ) .  

Note that T is not a statistic, because it depends on side 
information E(0) provided by the oracle. Nevertheless, it 
is interesting to measure its performance for comparative 
purposes. Now 

El leS  - 811$ = c2 + e;. 
I E S  res 

Hence, if we set 1 - (1 - a)” = T,, an estimator results which 
obeys a shrinkage result like that for soft thresholding (34). 

One might suspect that some specially designed nonlinearity 
would outperform soft thresholding, obeying (34) and yet ob- 
tain much smaller mean-squared error. In fact, there is a special 
nonlinearity which outperforms all other odd monotone rules 
satisfying the probabilistic shrinkage properties-including 
soft thresholding. However, the result also shows that soft 
thresholding is near-optimal. 

Theorem 4.4: For each Q < 1/2 there is a nonlinearity 
v,which is odd, monotone, and satisfies 

This nonlinearity is unique. Among all nonlinearities in U,, 
\ U ,  is “largest” 

Hence 

Evidently, a statistician, equipped with an oracle, faces a 
risk isometric to that in the optimal recovery model. We 
interpret (36), with the aid of (38), to say that no estimator 

where P ( Q )  4 0 as Q + 0. Soft thresholding is close to 
optimal 

can significantly outpegorm the ideal, nonrealizable proce- U,/2(9) I 77t(a)(Y) 5 ‘1La(Y), 4.l > 0. 
dure T(y,  E(0)) uniformly over any solid orthosymmetric set. 
Hence, it is a good idea to try to do as well as T(y, E(e)). 

Donoho and Johnstone [12] have shown that e(”) = 
( v t , ( y I ) )  comes surprisingly close to the performance of 
T(y,  E(6)) equipped with an oracle. They give the following 
bound: Suppose that the ( y ~ )  are jointly normally distributed, 
with mean (01) and noise variance V a r ( y r )  5 c2, V I  E 2,. 
Then 

~ l l e ( ~ )  - ell;, 5 (210g (n)  + 1)(c2 + C min(e?, c 2 ) ) .  (39) 

Taking the supremum of the right-hand side in 0 E 0 we 
recognize, by (36), a quantity not larger than 

I 

(2log(n)  + 1)(c2 +E:(@))  

which establishes Theorem 4.2. w 

B. Near-Minimal Shrinkage 

The result of the last subsection is an analog of Theorem 
3.2. Now we establish an analog of Theorem 3.3. 

Let Y be a scalar random variable with normal distribution 
N ( p ,  1). Consider the class U, of all monotone odd nonlin- 
earities u ( y )  which satisfy the probabilistic shrinkage property 
with probability at least 1 - CY. 

Soft thresholding qt(,) is a member of this class with the 
threshold t ( a )  = @-‘(l - a/2), where @(y) is the standard 
normal distribution. 

If one applies an element U E U? coordinate-by-coordinate, 
then the resulting vector estimate 6 = ( U ( Y I ) ) I  satisfies 

In view of the last display, and the fact that a = o( l /n)  
is the interesting case for us, soft thresholding is not far from 
optimal; so we have a near analog, in statistical estimation, 
of Theorem 3.3. A sketch of the proof is presented in the 
Appendix. (Note: the idea of optimal estimation under con- 
straints seems underdeveloped; somewhat related is the work 
of Lepskii [29].) 

v. FROM ABSTRACT TO CONCRETE 

We now connect the abstract results just developed to the 
smoothing problem of the introduction 

A. Empirical Transform Methodology 

Empirical wavelet transform methodology has four compo- 
nents. 

a )  Pyramid Algorithm for the Interval: CDJV [4] developed 
a pyramid filtering algorithm for obtaining theoretical wavelet 
coefficients of functions in L2[0, 1). Starting from n = 231 
integrals 

P J ~  , I C  = 1’ 931 ,IC(t).f(t)dt, = 0, ’ ‘ ’ , 211 - 

“sampling” f near 2-,11c, one iteratively applies a sequence 
of downsampling high-pass and low-pass operators H 3 ,  L, : 
~ 2 ’  4 ~ 2 ’ ~ ’  via 

(B3-1,) = L, O ( P 3 ,  1 
(a,-1, ) = H, O (BA 1 

for j = j1,  jl - 1, . . . , j ,  + 1, producing a sequence of n = 23’ 
coefficients 
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The transformation U j o , j l  mapping ( P j , , . )  into this sequence 
is a real orthogonal transformation. 

In [4], this transformation is spelled out in complete detail 
for the case where the underlying $ j , k  are "Daubechies Nearly 
Symmetric Wavelets with D vanishing moments." These are 
the wavelets we use in what follows. 

b)  Empirical Wavelet Transform: For empirical work, one 
does not have access to integrals ( @ j l , k ) ,  and so one cannot 
actually calculate the theoretical wavelet transform. Inspired 
by the theoretical wavelet transform, one can develop an em- 
pirical wavelet transform, using the same pyramidal operator, 
but starting from samples rather than integrals. 

The details behind this replacement of integrals by samples 
are as follows. Define the normalized samples: 

b j l , k  = n- ' I2 f ( k /n ) ,  k = 0, .  . . , n  - 1. 

For k away from the boundary ' p j l , k  has integral 2 - j 1 I 2  = 
n-1/2, hence this normalization yields samples which behave 
dimensionally like the integrals Ji ' p j , , k ( t ) f ( t ) d t .  For k near 
the boundary, the integral of c p j , , k  depends on k .  To correct 
for this boundary effect,- CDJV developed a preconditioning 
transformation PDb = (Pjl,.), affecting only the D+ 1 values 
at each end of the segment ( b j l , k ) ~ ~ ~ l  [41. 

To these preconditioned, sampled data we apply the pyra- 
midal algorithm of CDJV, producing not theoretical wavelet 
coefficients but what we call empirical wavelet coeficients 

e(") = ( ( P j o , . ) ,  ( G j o , . ) ,  ( ~ j O + l J '  .. , (Gj1-1,.)). 

Let W;f stand for the empirical wavelet transformation; then 

ecn) = W:f = (ujo,jl 0 PD 0 s,)(f). 
Here (S,f) = (n-1/2f(k/n)):z:  denotes the normalized 
sampling operator, and U j o , j l  and PO are the pyramid and 
preconditioning operators defined in [4]. The computational 
complexity of this transform is 0 (n) .  

c )  Inverse Empirical Wavelet Transform:. To go back from 
coefficients to samples, we invert the component operations 

( W y f  = ( P i 1  0 UJ;;Jl)e(n). 

The component inversions are easily done; for example Ujitj l  
results from applying a sequence of upsampling operations 
inverse to the downsampling operations Hj and Lj.  Owing 
to the orthogonality of the downsampling operations, the 
upsampling operations are just the transposes H j ,  Lf, and 
can be computed in order 2 j  operations. The computational 
complexity of the inverse transform is 0 (n) .  

d) Interpolation between samples: The inverse empirical 
transform reconstructs, not f ,  but the normalized samples S,f 

( W p f  = S,f. 

When we desire a reconstruction of a curve rather than a set 
of samples, we employ a special method for interpolating 
between the sampled data to obtain a continuous curve. 
Suppose that our empirical wavelet transform is based on 
a pyramid algorithm for nearly symmetric wavelets having 
D vanishing moments. Then we use the Deslauriers-Dubuc 

[5] interpolation of order 2 0 ,  which goes as follows. To 
interpolate to a point ( t , + t , + 1 ) / 2  halfway between two sample 
points t ,  and tz+l, we fit a polynomial of degree 2 0  to the 
sample points in a symmetric neighborhood of size 2 0  + 1 
about this point. We then evaluate the polynomial at that point 
(with obvious modification for asymmetric neighborhoods 
arising near the edges). Having filled in the data at all midway 
points, we can then fill in data at points quarterway from 
original sample points by repeating the interpolation on the 
combined (sampled and interpolated data), and so on. This 
procedure implicitly defines an interpolation operator J,,D. 

Synthesis: We now finish the description of the algorithm 
given in the Introduction. Given noisy data y,, a = 1, . . . , n = 
231, we apply (U,, ,31 o P D ) ~ ,  getting empirical wavelet coeffi- 
cients, to which we then apply soft-thresholding, according 
to the prescription in the Introduction. (The constant y1 
required by that prescription is the largest singular value of 
the preconditioning operator Po .) We then invert the empirical 
wavelet transform, obtaining the estimate (f;(t,)) at the n 
points t,. If we need an estimate at other points t E [0,1], we 
apply interpolation J,,D to these samples. 

Software to perform the required calculations is now avail- 
able frlom several sources, including the author. Examples of 
the method in operation are available in [lo], [12], [15], [16]. 

B. Theory Behind the Empirical Transform 

The empirical methodology described above has been care- 
fully formulated. The replacement of integrals by samples 
may seem ad hoc and unmotivated, but can be justified by 
the following result, developed in [9 ] .  The result develops a 
connection between the empirical wavelet coefficients W: f 
of a function f and the theoretical coefficients with respect to 
a certain theoretical transform W,f. 

Theorem 5.1: Let the pyramid transformation U,, ,J1 derive 
from an orthonormal wavelet basis of Daubechies Nearly 
Symmetric Wavelets having compact support, D vanishing 
moments, and regularity R. For-each n = 23, there exists 
a system of functions ( @ , , , k ) ,  ( $ J , k ) ,  0 5 IC < 2 J ,  3 L 30 
with the following character. 

Elvery function f E C[O, I] has an expansion 

The expansion is conditionally convergent over C[O, 11 
(i.e., we have a Schauder basis of C[O, 11). The expan- 
sion is unconditionally convergent over various spaces 
contained in C[O, 11, such as Ca[O, 11 (see (5)). 
The first n coefficients 

result from the preconditioned pyramid algorithm 
U j , , j o  0 PD applied to the samples b j , k  = K1/'f(k/n). 
The basis functions $j,$ $ j , k  are CR functions of 
compact support: lsupp ( $ j , k ) l  I c . 2 - j .  
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4) The first n basis functions are nearly orthogonal with 
respect to the sampling measure: with 

n-I 

and I l f  - glln the corresponding seminorm 

^loIl~(")Ile: I llflln 5 Y1118(n)lle: 

the constants of equivalence do not depend on n or f .  
5) Each Besov space B;,q[O, 11 with l / p  < s < min (R ,  D )  

and 0 < p,q 5 cm is characterized by the coefficients 
in the sense that 

is an equivalent norm to the norm of B;,q[O, 11 if 
s' = s + 1/2 - I/p, with constants of equivalence 
that do not depend on n, but which may depend on 
p ,  q, j~ and the wavelet basis. Parallel statements hold 
for Triebel-Lizorkin spaces Fp",q with l / p  < s < 
min(R, D) .  

Let Wn denote the transform operator of Theorem 5.1, 
so that 8 = Wnfis a vector of countable length containing 
( p j o , k ) ,  ( a j o + l , . ) ,  and so on 

8 = ((6jo,.), (& jo , . ) ,  @jO+l, .)>.  . . l  ( h , . L .  . .). 
Let 7,8 denote the truncation operator, which generates a 

vector 8(") with the first n entries of 8. Theorem 5.1 claims 
that 

In short, the empirical coefficients are in fact the first n 
coefficients of f in a special expansion. The expFsion is not 
the classic wavelet expansion, as the functions $ j , k  are not 
all dilates and translates of a finite list of special functions. 
However, the functions have compact support and Mth-order 
smoothness and so borrowing terminology of Frazier and 
Jawerth they are "smooth molecules." 

Theorem 5.1 contains many assertions, with a variety of 
consequences. The full development of the Theorem is given 
in [SI; we describe here two significant consequences. 

C. Interpolation and Zero-Extension 

= Wzf of the n empirical wavelet 
coefficients of f ,  we have two ways of producing a function 
f on [0,1]. 

Interpolation: Invert the empirical wavelet transform and 
obtain the samples ( f ( t i ) ) ; .  Then interpolate to a function 
on all of [0,1] using the Deslauriers-Dubuc scheme Jn,o 
mentioned in Section V-A. 

Given a vector 

Extension: Let &,e(") denote the extension operator 
out to a vector with count- which pads an n-vector 

ably many entries by appending zeros 

@j0J (&ja,.), (&+l,.)> ' .  ' 1 (41,-),. ' .), . . 1 

& j , k  = 0 , j  2 j 1 .  

Apply the inverse transform of Theorem 5.1, WC1, to the 
extended array, getting fn = W;' o I ,  o 8(") . 

Actually, these two methods are the same. The transform 
W;l is expressly constructed to make them the same. The first 
way of looking at the interpolation problem is more convenient 
for practice; the other way is more convenient for theoretical 
analysis. 

For example, using the second point of view, we can easily 
show that W z  is a contraction of smoothness classes. Let 
&,6(") denote the extension operator which pads an n-vector 

out to a vector with countably many entries by appending 
zeros. We have, trivially, that 

l l & n ~ ( n ) l l b ; , q  5 l l ~ l l b ; , q  (40) 

II~n~('")lIf;., 5 ll~llf;,, . (41) 

and, with f&,, the Triebel sequence space norm 

More generally, let e'"' be an n-vector which is elementwise 
smaller in absolute value than = W:f. Then 

l i b ; , ,  5 ~ ~ f ~ ~ ( n ) ~ ~ b ; , q  I l lel lb;,q (42) -(n) 
IIEnB 

and 

lIEn8""'Ilf;,* 5 IlEnWf;,, 5 Ilellf;,,. (43) 

This simple observation has the following consequence. 
Given 8'"' which is elementwise smaller in absolute value 
than 8("), construct a function on [0,1] by zero extension and 
inversion of the transform: 

-(n) - 
f, = w,l 0 En 0 e . 

In words, Tn is that object whose first n coefficients agree 
with e'"', and all other coefficients are zero. 

The function 7, is in a natural sense at least as smooth as 
f .  Indeed, for s > l /p,  and for sufficiently regular wavelet 
bases, 1 1  . and 1 1  . I I f ; , ,  are equivalent to the appropriate 
Triebel and Besov norms. Hence the trivial inequalities (42) 
and (43) imply the nontrivial 

llfnIIB;,, 5 C(%P1 4 )  . Ilf IIB;& 

llfnllF,.., L C ( S > P ,  4 )  ' IlfllF,.,, 

and 

where C does not depend on n or f .  Hence any method of 
shrinking the coefficients of f ,  producing a vector 

le11 I IQI l ,  I E I n ,  

produces a function Tn possessing whatever smoothness the 
original object f possessed. 
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D. Quasi-Orthogonality 

immediately the quasi-Parseval relation 

We may also go in the other direction: from abstract 
The o~ogona l i ty  of the pyramid operator U,,,,, gives us obxmations (8) we can generate concrete observations (1) 

by adding noise. Simply set t = yoa/fi and define 

l l (P~ 0 S,)(f - Y ) l l e i  = IlW;f - WZglle; (44) 

relating the sampling norm to an empirical wavelet coefficient 
norm. The preconditioning operator PD is block-diagonal with 
three blocks. The main block is an identity operator acting on 
samples D < k < 2, - D - 1. The upper left comer block is 
a (D + 1) x ( D  + 1) invertible matrix which does not depend 
on n; the same is true for the lower right comer block. Let yo 
andyl denote the smallest and largest singular values of these 

e/ = y~ + V I ,  I E 2,. 

Then the concrete data 

(d,) = P,-l 0 U,;,',, 0 ( e l )  

satisfy 

d, = f ( t L )  + gzz 

where ( z l )  N ,,dN(O. 1). 

comer blocks. Then VI. PROOF OF MAIN RESULTS 

Hence, with constants of equivalence that do not depend on n, 

IlSnf - Sngllq =c IIW,nf - W,nglles,. 

This has the following stochastic counterpart. If (zi);:; 
is a standard Gaussian white noise (i.i.d. N ( 0 ,  I)), then 21 = 
(U,,,31 o P ~ ) ( z i )  is a quasi-white noise, a zero-mean Gaussian 
sequence with covariance satisfying 

(46) $1 I n .  r I $I  

A. Proof of Theorem 1.1 

Let ( y l z ~ )  be the white noise gotten by inflating (21) as 
described in Section V-D above. Let A ,  denote the subset of 
R" defined by 

{x : IIW;xlle,- < 71. t . &L&q}. 
By (32) the event 

En = { ( P I  - (W,nf)I)/ E An} 

has probability P(E,) 2 T,. Then because ( y l z ~ )  arises by 
inflating ( ? I ) ,  we have 

P((y1zr) E A, )  = P ( ( &  + W I )  E An). in the usual matrix ordering. It follows that there is a random 
vector ( w ~ ) ,  independent of (21) ,  which inflates (21)  to a white 
noise 

( Z I  + W I )  = D  (ylz/). (47) 

Similarly, there are a white noise (21 )  - i id  N (0 ,  I), and 
a random Gaussian vector ( V I ) ,  independent of ( z I ) ,  which 
inflates (yozr) to 21 

(yOz/ + V I )  = D  (z/). (48) 

Now 21 is a Gaussian random vector. A,  is a centrosymmetric 
convex set. Hence by Anderson's Theorem ([l, Theorem 21) 

P ( ( ~ I  + W I ) I  E A , )  I P ( ( ~ I ) I  E An) 

We conclude that the event 

E, = { ( e /  - (W,nf)/)/  E A, )  

has probability 

P ( E n )  = P ( ( ~ I ) I  E An) 2 Tn. 

By these remarks, we can now show how to generate data 
(8) from data (l), establishing the link between the abstract 
model and the concrete model. Take data (di);:;, calculate 

independent noise (w~). Define 

Let f ;  be the smooth interpolant f ;  = W G ~ & , ~ ( " )  de- 
scribed in Section V-C. BY Theorem 5.1, part 5 ) ,  ~ ~ f ~ ~ ~ B g , q  
is equivalent to the sequence-space norm I l&n8(") l lb; ,q ,  with 

the = ( U 3 a . j ~  P D ) ( d i ) ;  add constants of equivalence which do not depend on n; similarly 
for IlfllB;,, and Ilellb;,,. Formally 

yI  = e /  + w/, I E 1, (49) C o ( S , P ,  ~ ) ~ ~ f ~ ~ B ; , ,  I IIOllb; ,q  5 cl(s,plq)llfIIB;,,. (50) 

As in v e o r e m  4.1, when the event E,  occurs the coeffi- so that 
cients of 8(") are all smaller than those of e(,), SO Y I  = ((Uj0,jl O PD)(Snf))I 

+ ((Ujo,jl PD)(TL-1'2(zi)))/ f w/ l l & n 8 ( n ) l l b ; , q  5 IIEn~(") l lb; , , ,  on En.  (51) 

= (W,nf)/ + .i/ + w/ Hence, on the event E, we have 

= (w:f)/ $. z I ,  z /  iidN(0, 1). 11.f:1lB;,, 5 (1/cO(s:2), (I)) ' ~ ~ ~ n ~ ( n ) ~ ~ b ; , q ,  by (50) 

Here 6 = y,a/fi. Hence I ( l / C O ( S , P , ( I ) ) .  llEn~(n)llb;,q, by (51) 

y/ = 81 + E .  21; I E I,. ( l / c O ( S : P .  4 ) )  ' ~ ~ ~ n f ~ ~ b ; , ,  > 

5 C l ( S , P ,  ( I ) / C O ( s , 1 ) ,  (I) . lIf\lB;,,,  

by (40) 

by (50). Hence, from the concrete observations (1) we can produce 
abstract observations (8) by adding noise to the empirical So Theorem 1.1 holds, with T ,  = P(E,) as in Theorem 4.1; 
wavelet transform. and with Cl(F,$) = cl(s.p,q)/co(s,p,q). 
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B. Proof of Theorem 1.2 

invert the wavelet transform, giving (f:(i/n)):zi. By the 
quasi-orthogonality (45) 

Combining these facts 

Apply qt,(.) to the empirical wavelet coefficients ( e r )  and M;(@,, ( Y I ) )  2 M;(@~, (yr))  by (55)  
by (54) 2 M;(170@0,n; ( G I ) ) .  

1 2 - sup zmin(B; , t ; ) ,  by (36) 
n-lE1l.f; - flip'; I r:Jqs("' - ell,",. 2.22 Q E ~ O O O , ,  I 

With t = r l a / f i ,  we have that the marginal variance 
Var ( e l )  5 t2, V I  E I,. Using (39) we have the upper bound 

( 5 2 )  
Now we turn to a lower bound. Let 3c be a given functional 

ball taken from the scale of spaces S.  Let 0, denote the 
collection of all e(") = ~ ; f  arising from an f E FC. BY 
Theorem 5.1, there is a solid orthosymmetric set eo,,, and 
qo,q1 independent of n so that 

AS o~ , ,  contains a nonzero element 

sup Cmin(0 ; .  f2)  2 ct2 

with a constant c independent of ri. Comparing the last display 
with the upper bound (52) therefore gives the desired result (7). 

0EOo.n I 

q000 .n  c 0, c Vl@O.n. (53) 
VII. REFINEMENT OF THE LOG-TERM 

(To see this, suppose that 3~ is the collection of all f with 
l l f l l ~ ; , ,  5 C. Let 0 be the collection of all wavelet transforms 
0 = Wnf arising from an f E Fc. From the norm equivalence 

Under additional conditions, we can improve the inequality 
(5) asymptotically, replacing the log (n )  factor by a factor of 
order log (nIT, for some T E (0; 1). 

Theorem 7.1: Let F E S be a Besov space Bp",[0, l]or a 
Triebel space F&[O, 11 and let r = (2s)/(2s + 1). There is a 
constant C 2 ( 3 c ,  $) which does not depend on n, so that for 
all n = 2'1, jl > j ,  

sup Ellf,*-fll$ 5 C2.log (71)T.infsupEllf^-fll::. (56)  
f E 3 r  f F r 

C O I I S l l b ; , q  5 IlfllB; , I c l l le l lb ;  , 

with coefficients c,(p, q ,  s) > 0 independent of ri and f ,  it 
follows that if 00 = (0 : ( I0l lb; 5 C} then 

r@o c 0 c 7100 

with q, independent of n. Now recall the operator 7 ,  of 
Section V-B, which discards terms after the nth one in the 
wavelet expansion. Then 

The proof is based on a refinement of the oracle inequality 

The optimal recovery-statistical estimation connection can 
(39); it is explained in [13]. 

q o 7 , 0 0  c I,@ c 7 1 7 , @ 0 .  

Set eo,, = 7,00; this is orthosymmetric. Also, the set we 
called earlier 0, is precisely I,@, so (53) holds.) 

Let Ad,*(@, (y l ) )  stand for the minimax risk in estimating 
B with squared .ti loss when 0 is known to lie in a set 0 
and the observations are ( y ~ ) .  We remark that this is setwise 
monotone, so that 0 0  c 0 1  implies 

J C ( 0 0 ,  ( Y I ) )  I M;(01. ( Y I ) ) .  (54) 

make this result plausible. Equation (35) shows that the loss Ile(") - Bl l iL,  seldom exceeds Eh,,(B*,Q). Over a set 0, 
this does not exceed E,*,(@,). On the other hand, over an 
orthosymmetric set On,  the worst mean-squared error (MSE) 
is not essentially smaller than E E ( O n ) .  Now suppose that 0, 
is such that Eh(@,) - CS2' for small 5 .  Then the MSE is not 
smaller than C ' E ~ ,  while the loss is seldom bigger than C"6:. 
These two bounds differ by a factor b : / t z  =: (log (n)).. (For 
a much more careful discussion see [16]). 

It is also monotone under increase in noise level, so that if (yl) 
are produced from (YI) by adding a noise ( W I )  independent 
of ( G I ) ,  then 

VIII. OTHER SETTINGS 

The abstract approach easily gives results in other settings. 
One simply constructs an appropriate W, and shows that it has 
the properties required of it in Section VI, and then repeats the 
abstract logic of Sections VI and VII. 

begin with a sampling operator S,, defined for all functions in 
a domain 23 (a function space). We assume we have n noisy 
observations of the form (perhaps after normalization) 

M;(@,  ( G I ) )  I M;(@, ( Y I ) ) .  (55)  

As we have seen the empirical wavelet coefficients have the we make this To set the abstract approach, we 

form ( e l )  = ( 0 1 )  + a / f i ( Z ~ ) ,  where the noise 

ZI = Yoz I  + V I  

with (VI) independent of (ZI) and (ZI) i.i.d. N(0,l) .  Hence 
(55)  shows the problem of recovering (01 )  from data ( e l )  to 
be no easier than recovering it from data y~ = 01 + to . 21, 
6 0  = roa/fi. 

U 
b j . k  = ( S n f ) k  + - z k  fi 

where k runs through an index set K ,  and ( z k )  is a white 
noise, We have an empirical transform of these data, based on 
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an orthogonal pyramid operator and a preconditioning operator 

( e ~ )  = U o P O  b. 

This corresponds to a transform of noiseless data 

W,nf = (U 0 P 0 S n ) f .  

Finally, there is a theoretical transform W, such that the 
coefficients 0 = Wnf allow a reconstruction of f 

the sense in which equality holds depending on V. 
(In the paper so far, we have considered the above frame- 

work with point sampling on the interval of continuous func- 
tions, so that 

and V = C[O, 11. S is the segment of the Besov and Triebel 
scales belong to C[O, I]. Further below we will mention 
somewhat different examples.) 

To turn these abstract ingredients into a result about de- 
noising, we need to establish three crucial facts about W: and 
W,. First, that the two transforms agree in the first n places 

( 7 , o  W,)f = WEf:  f E v. (57) 

Second, that with yo and y1 independent of n 

YollW,n(f - 9)Ile: 5 IlSn(f - L l I l t ;  L nllW,"(f - g)Ile:, 

f ; g  E 23. (58)  

Third, we set up a scale S of function spaces F, with each 
3 a subset of 2). Each 3 must have a norm equivalent to a 
sequence space norm 

Here the corresponding sequence space norm ll0llf must de- 
pend only on the absolute values of the coefficients in the 
argument (orthosymmetry), and the constants of equivalence 
must be independent of n,. 

Whenever this abstract framework is established, we can 
abstractly de-noise, as follows: 

Apply the pyramid operator to preconditioned, nor- 
malized samples ( b k )  giving n empirical wavelet 
coefficients. 
Using the constant y1 from the (58) ,  define 

F 1  = y1 . O / f i .  

Apply a soft-threshold with threshold level 

getting shrunken coefficients e(,). 
Extend these coefficients by zeros, getting, 8; = &,e(,) and invert the wavelet transform, producing 
f; = w,-1e;. 

The net result is a de-noising method. Indeed, (57)-(59) 
allow us to prove, by the logic of Sections VI and VII, 
theorems paralleling Theorems 1.1 and 1.2. In these parallel 
theorems the text is changed to refer to the appropriate 
sampling operator S,, the appropriate domain V: function 
scale S ,  and the measure of performance is EllS,(f - f ) l l , " ,  . 

In some instances, setting up the abstract framework and 
the detailed properties (57)-(59) is very straightforward, or at 
least not very different from the interval case we have already 
discussed. In other cases, setting up the abstract framework 
requires honest work. We mention briefly two examples where 
there is little work to be done, and, at greater length, a third 
example, where work is required. 

Data Observed on the Circle: Suppose that we have data 
at points equispaced on the circle T, at t ,  = 27r(i/n), i = 
0 . .  . . . 7 ~ - 1 .  The sampling operator is snf = n - 1 / 2 ( f ( t , ) ) ~ ~ ~  
with domain V = C(T), and the function space scale S 
is a collection of Besov and Triebel spaces Bp",,(T) and 
Fp",,(T) with s > l/p The pyramid operator is obtained 
by circular convolution with appropriate wavelet filters; the 
preconditioning operator is just the identity; and, because the 
pyramid operator is orthogonal, yo = y1 = 1. The key iden- 
tities (57)-(59) all follow for this setup by arguments entirely 
parallel to those behind Theorem 5.1. Hence simple soft- 
thresholding of periodic wavelet coefficients is both smoothing 
and nearly minimax. 

Data Observed in [0, lid: For a higher dimensional set- 
ting, consider d-dimensional observations indexed by i = 
(21. . . . . id) according to 

d, = f ( t z )  + o . z ,  . 0 5 il . . . . . i d  < m (60) 

where t ,  = ( z I / m , . . . , i d / m )  and the z ,  are a Gaussian 
white noise. Suppose that m = 23l  and set n = md. Define 
KJ1  = {i : 0 5 il . . . .  ,id < m}. The corresponding 
sampling operator is S, = ( f ( t z ) / f i ) z E ~ 3 1 ,  with domain 
V = C( [O. lid). The function space scale S is the collection 
of Besov and Triebel spaces Bg,,([O, lid) and F;,,(([O, lid), 
with s > d / p .  We consider the d-dimensional pyramid filtering 
operator U,, based on a tensor product construction, which 
requires only the repeated application, in various directions, 
of the one-dimensional filters developed by CDJV 141. The 
d-dimensional preconditioning operator is built by a tensor 
product construction starting from one-dimensional precon- 
ditioners. This yields our operator W:. There is a result 
paralleling Theorem 5.1, which furnishes the operator W, and 
the key identities (57)-(59). 

Now process noisy multidimensional data (60) by the ab- 
stract prescription [Al]-[A3]. Applying the abstract reasoning 
0: Sections VI and VII, we immediately get results for 
f; exactly like Theorems 1.1 and 1.2, only adapted to the 
multidimensional case. For example, the function space scales 
El;,,( [O. lid) start at s > d/p rather than l/p. Conclusion: f; 
is a de-noiser. 

Sampling by Area Averages: The present author was asked 
by some researchers in this field as to why statisticians 
consider models like (1) and (60) that use point samples. 
Indeed, for some problems, like the restoration of noisy two- 
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dimensional images based on CCD digital camera imagery, 
area sampling is a better model than point sampling. 

From the abstract point of view, area sampling can be 
handled in an entirely parallel fashion once we are equipped 
with the right analog of Theorem 5.1. So suppose we have 
two-dimensional observations 

d, = A,ue{f \&(i)}  + g .  zi. 0 5 i l , i 2  < m (61) 

where Q ( i )  is the square 

Q( i )  ={t : i l /m 5 ti < ( i l  + 1)/m,  
ia/m 5 t 2  < (22 + l) /m} 

and the (2,) are i i d .  N ( 0 , l ) .  Set m = 2J1, n = m2, and 
K3 = { k  : 0 5 k1,k2 < a-'}. 

The sampling operator is 

with domain V = L1 [O; 11. The two-dimensional pyramid 
filtering operator Ujo,jl is again based on a tensor prod- 
uct scheme, which requires only the repeated application, 
in various directions, of the one-dimwnaionl filters devel- 
oped by CDJV. The two-dimensional preconditioner is also 
based on a tensor product scheme built out of the CDJV 
one-dimensional preconditioner. The operator Wz results 
from applying preconditioned two-dimensional pyramid fil- 
tering to area averages (Ave { f lQ ( i ) } /& ) i .  

The crucial facts (57)-(59) are established for area sampling 
in 181. For these facts, the scale of Besov spaces is somewhat 
broader than for point samples: it consists of the segment of 
the Besov and Triebel scales belonging to L'[O, 11-i.e., all 
Besov spaces for which 

2(l/p - 1/2) 5 s < min(R, D )  

and all Triebel spaces 

2(l/p - l /2) < s < min(R, D) 

and 1 < p , q , <  a. 
With this scale there are immediate analogs of Theorems 1.1 

and 1.2. Indeed, once the three key conclusions (57)-(59) have 
been given, everything that is said in the proofs of Sections 
VI and VI1 carries through line-by-line. 

IX. DISCUSSION 

A. Generalizations 

For practical situations where the noise level is unknown, 
one can apply soft-thresholding with threshold 

in = y16d2 log (n ) /n  

where the scale estimate 6 = MAD/0.6745, with M A D  the 
median absolute value of the appropriately normalized fine- 
scale wavelet coefficients (& . wj, - 1 , k ) k .  One can establish 
results for this noise-level adaptive estimator paralleling those 
results developed in this paper. For example, bounds on 
squared error loss can be obtained using the optimal recovery 
inequality (35) of this paper rather than the oracle inequality 

(39); to apply (33 ,  one only needs to establish that the wavelet 
transform of white noise satisfies P{Il(wr)~llm < in} + 1 
as n + x, which follows easily by standard extreme-value 
arguments. We prefer in this paper to illustrate the use of the 
oracle inequality (39) and allied ideas. Examples on real data, 
discussion from many points of view, and further elaboration 
on proposals of this kind are given in [16]. 

The articles [8], [16] use an algorithm like the present one, 
only with the simpler threshold formula t = d w .  
Theorems 1.1 and 1.2 hold for this algorithm also; but to prove 
this would prolong the paper. The benefit of the approach 
developed here is that we do not actually require an orthogonal 
wavelet transform. Biorthogonal systems were designed by 
Cohen, Daubechies, and Feauveau [3], with pyramid filtering 
operators obeying 

the constants yi independent of jl > j o .  The interval-adapted 
versions of these operators will work just as well as orthogonal 
bases for everything discussed in Sections VI and VI1 above; 
hence we have shown here that Theorems 1.1 and 1.2 hold 
even with biorthogonal wavelet systems, when y1 is the top 
singular value of the resulting W:, and, in proofs, yo is the 
bottom singular value. 

For solving inverse problems such as numerical differen- 
tiation and circular deconvolution, biorthogonal decomposi- 
tion of the forward operator as in [8] puts us exactly in 
the setting for thresholding with biorthogonal systems--only 
with heteroscedastic noise. For such settings, one employs 
a level-dependent threshold and gets minimaxity to within a 
logarithmic term simultaneously over a broad scale of spaces. 

Much of what we have said concerning the optimality of 
soft-thresholding with repect to loss carries over to other 
loss functions, such as LP, Besov, and Triebel losses. All that 
is required is that wavelets provide unconditional bases for the 
normed linear space associated with the norm. The treatment 
is, however, more involved. A general theory is described in 

Much of what we have said concerning the mean-squared- 
error optimality of soft-thresholding carries over to "hard"- 
thresholding 

1161. 

71:lard(Y) = Yl{lyl>t}. 

For example, 1121 gives an oracle inequality for hard- 
thresholding. However, the links with optimal recovery are 
weaker, and the property [Smooth] is less evident. 

For situations with non-Gaussian errors, the behavior of 
thresholding depends in a delicate way on the tails of the distri- 
bution. Hong-Ye Gao, in a U.C. Berkeley Ph.D. dissertation, 
has investigated the case where the errors have exponential 
tails, with applications to spectral density estimation. 

B. Previous Adaptive Smoothing Work 

A considerable literature has arisen in the last two decades 
describing procedures which are nearly minimax, in the sense 
that the ratio of the worst case risk like (5) to minimax risk 
(6) is not large. If all that we care about is attaining the 



DONOHO: DE-NOISING BY SOFT-THRESHOLDING 625 

minimax bound for a single specific ball Fc, a great deal 
is known. For example, over certain L2 Sobolev balls, special 
spline smoothen, with appropriate smoothness penalty terms 
chosen based on FC are asymptotically minimax 1401, 1391; 
over certain Holder balls, kernel methods with appropriate 
bandwidth, chosen with knowledge of Fc are nearly minimax 
1431; and it is known that no such linear methods can be nearly 
minimax over certain LP Sobolev balls, p < 2 1371, 1141. All 
of these results may be subsumed under the following pair of 
results. First, that for FC a Besov ball B;,,[0, 11 or Triebel 
ball F,”,,[O, 11 

(62) 

is the Minimax Rate of Convergence among all measurable 
estimators. Secondly, that the minimax rate among linear 
estimators is 

T = 2n/(2a + 1) 

(63) 
o + (1/ max ( p .  2 )  - l / p )  

n + 1/2 + (1/ max ( p .  2 )  - l / p )  
T’ = 

these optimal rates were derived in 1141. Hence, if p < 2 ,  
nonlinear estimators outperform linear ones in a minimax 
sense. As an example 1141, over the class of bounded variation, 
the minimax rate among linear estimators is nW1l2; while the 
minimax rate among nonlinear estimators is np2I3. 

Nonlinear methods, such as the nonparametric method of 
maximum likelihood, are able to behave in a near-minimax 
way for quite general settings, such as LP Sobolev balls 1361, 
[22], but they require solution of a general n-dimensional 
nonlinear programming problem in general. Fortunately for 
general Besov or Triebel balls, wavelet shrinkage estimators 
which are nearly minimax may be constructed using thresh- 
olding of wavelet coefficients with resolution-level-dependent 
thresholds [ 141. 

If we want a single method which is nearly minimax over 
all balls in a broad scale, the situation seems more difficult. 
In all the results about individual balls, the exact fashion 
in which kernels, bandwidths, spline penalizations, nonlinear 
programs, thresholds, etc., depend on the assumed function 
space ball Fc is rather complicated. There exists a literature 
in which these parameters are adjusted based on principles 
like cross-validation [45], 1461, 1241, 1301. Such adjustment 
allows to attain near-minimax behavior across restricted scales 
of functions. For example, special orthogonal series procedures 
with adaptively chosen windows attain minimax behavior over 
a scale of L2 Sobolev balls automatically [18], 1231, [381. 
Unfortunately, such methods, based ultimately on selecting 
tuning constants of linear procedures, are not always able to 
attain near-minimax behavior over LP Sobolev balls; owing 
to the discrepancy between (62) and (63), they exceed the 
minimax risk by factors growing like n6(’J’), where S ( s , p )  = 
r’/r > 0 whenever p < 2 (1151). 

Donoho and Johnstone have developed a wavelet-based 
method (SUREShrink [15]) which offers minimax rates of 
convergence over all spaces F E S.  SUREShrink is based 
on adaptively chosen thresholds, selected based on the use of 
Stein’s Unbiased Risk Estimate (SURE). SUREShrink attains 
performance within a constant factor of minimax over every 
space F E S ;  see 1151. From a purely mean-squared-error 

point of view, this is better than f; by logarithmic factors. 
However, the method lacks the smoothing property (1) and 
the method of adaptation and the method of proof are both 
more technical than what we have discussed here. 

C. Thresholding in Density Estimation 

Gerard Kerkyacharian and Dominique Picard of Universitk 
de Paris VII, have used wavelet thresholding in the estimation 
of a probability density f from observations XI, . . . , X,i.i.d. 
f .  There are many parallels with regression estimation; see 
1261, V5I. 

In a presentation at the Institute of Mathematical Statistics 
Annual Meeting in Boston, MA, in August 1992, Kerky- 
acharian and Picard discussed the use in density estimation 
of a “hard”-thresholding criterion based on thresholding the 
coefficients at level j by const . A, and reported that this 
procedure was near minimax for a wide range of density 
estimation problems. Owing to the connection of density 
estimation with the white noise model of our Sections I1 and 
IV, our results may be viewed as a separate instance of a 
common phenomenon. 

C. Which Bumps are “True Bumps” ? 

Silverman 1421 found that if one uses a kemel method for 
estimating a density and smooths a “little more” than one 
would smooth for the purposes of optimizing mean-squared 
error (here “little more” means with a bandwidth inflated 
by a factor logarithmic in sample size), then the bumps one 
sees are all “true” bumps rather than “noise-induced’ bumps. 
Our approach may be viewed as an abstraction of this type 
of question. We find that in order to avoid the presence of 
“false bumps” in the wavelet transform, which could spoil the 
smoothness properties of the reconstructed object, one must 
smooth a “little more” than what would be optimal from the 
point of view of mean-squared error. 

APPENDIX 
PROOF OF THEOREM 4.4 

The Nonlinearity U,: For a given odd, monotone nonlinear- 
ity U the probabilistic shrinkage condition can be written 

U-’(PL) 

- U - I ( P )  
.I’ cp(Y-P)dY 2 1 - a  

with p the standard normal density. For each CL > 0, set 
g(p )  = u- ’ (p) - p.  The odd, monotone nonlineadties are in 
1-to-1 correspondence with such functions 9. Exact equality 
in the shrinkage condition is obtained when g solves 

Assuming that g is smooth, this is the same as solving the 
differential equation, 
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with initial condition g ( 0 )  =  CY). We can rewrite this as a 
normal first-order initial value problem [2, p. 21 

d ( P )  = - t ( P ’ g ( P ) ) ’  P 2 0; d o )  = @-v - 4 9 .  
Here 

is smooth, Lipschitz, bounded, etc. Hence by standard results 
on existence and uniqueness for initial value problems [2, pp. 
23, 1621, there exists a unique solution g,, say. Inverting the 
relation g, ( p )  = U;’ (p )  - p, p > 0, we get the odd, monotone 
nonlinearity U,. 

Maximality of U,: If U is an odd, monotone rule in U,, then 

Now 

and if U < u;’(p) then 

Pp{lYl > , U }  > cy. 

It follows that if U E U,, u- ’ (p) 2 u;’(p) for all p > 0, 
and hence that u ( y )  < u,(y). 

Near-Dominance: Note that for y < u;’(p), u(y) 5 
Ua(Y) L p. Setting A ,  = {IYI < lG1(P)l} 

Now P,(A,) 5 cr. Also, for each small S > 0, the mass of 
the conditional distribution P,(.JA,) concentrates, as a + 0, 
on the interval [U;’ ( p ) ,  U;’ ( p )  + 61. Moreover, throughout 
this interval, (ua (Y)  - is smaller than 2S2. Spelling this 
out patiently yields 

E(u,(Y) - d2L4; 5 P ( a )  

where p(n) -+ 0 as a + 0. Near-dominance follows from the 
last two displays. 

Comparison with So@-Thresholding: For soft thresholding 
qt(,), the g-function gotc,,(p) = V1(1 - a/2)  identically. 
On the other hand, the solution g,(p) of the initial value 
problem is monotone decreasing with g a ( 0 )  = W ’ ( 1  - a /2 )  
and go(+=) = @-‘(l - a ) .  Hence 

YVt(2,) ( P I  I Sa(CL) I QVt (a , )  (CL) 

for all p. Inverting this relation gives the result. 
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