The index of symmetry and naturally reductive spaces

Carlos Olmos

The index of symmetry

Introduction

The index of
symmetry
The dimension bound

Examples

Carlos Olmos

FaMAF, Universidad Nacional de Córdoba

Rosario, 2 de agosto de 2012
(1) Introduction
(2) The index of symmetry
(3) The dimension bound

4 Examples
(5) Open questions

In this talk, based on joint work with Silvio Reggiani,

The index of symmetry and naturally reductive spaces

```
Carlos Olmos
```

Introduction
The index of symmetry

The dimension bound

Examples
Open questions

In this talk, based on joint work with Silvio Reggiani, we would like to draw the attention to some concept that we call

The index of symmetry and naturally reductive spaces

Carlos Olmos

Introduction

The index of symmetry

The dimension bound

Examples
Open questions

In this talk, based on joint work with Silvio Reggiani, we would like to draw the attention to some concept that we call index of symmetry $i_{\mathfrak{s}}(M)$ of a Riemannian manifold M^{n}

The index of symmetry and naturally reductive spaces

The index of symmetry

The dimension bound

Examples
Open questions

In this talk, based on joint work with Silvio Reggiani, we would like to draw the attention to some concept that we call index of symmetry $i_{\mathfrak{s}}(M)$ of a Riemannian manifold M^{n}

$$
0 \leq i_{\mathfrak{s}}(M) \leq n
$$

One has that M is symmetric if and only if $i_{s}(M)=n$ symmetry and

The index of
symmetry
The dimension bound

Examples
Open questions

In this talk, based on joint work with Silvio Reggiani, we would like to draw the attention to some concept that we call index of symmetry $i_{\mathfrak{s}}(M)$ of a Riemannian manifold M^{n}

$$
0 \leq i_{5}(M) \leq n
$$

One has that M is symmetric if and only if $i_{\mathfrak{s}}(M)=n$
We are, of course, interested on non-symmetric spaces with positive index of symmetry.

In this talk, based on joint work with Silvio Reggiani, we would like to draw the attention to some concept that we call index of symmetry $i_{\mathfrak{s}}(M)$ of a Riemannian manifold M^{n}

$$
0 \leq i_{\mathfrak{s}}(M) \leq n
$$

One has that M is symmetric if and only if $i_{\mathfrak{s}}(M)=n$
We are, of course, interested on non-symmetric spaces with positive index of symmetry. In this case one has that $i_{\mathfrak{s}}(M) \leq n-2$, as we will see later

In this talk, based on joint work with Silvio Reggiani, we would like to draw the attention to some concept that we call index of symmetry $i_{\mathfrak{s}}(M)$ of a Riemannian manifold M^{n}

$$
0 \leq i_{5}(M) \leq n
$$

One has that M is symmetric if and only if $i_{\mathfrak{s}}(M)=n$
We are, of course, interested on non-symmetric spaces with positive index of symmetry. In this case one has that $i_{\mathfrak{s}}(M) \leq n-2$, as we will see later (in other words the co-index of symmetry is at least 2).

In this talk, based on joint work with Silvio Reggiani, we would like to draw the attention to some concept that we call index of symmetry $i_{\mathfrak{s}}(M)$ of a Riemannian manifold M^{n}

$$
0 \leq i_{\mathfrak{s}}(M) \leq n
$$

One has that M is symmetric if and only if $i_{\mathfrak{s}}(M)=n$
We are, of course, interested on non-symmetric spaces with positive index of symmetry. In this case one has that $i_{\mathfrak{s}}(M) \leq n-2$, as we will see later (in other words the co-index of symmetry is at least 2).

These examples are known homogenous spaces but endowed with a very particular Riemannian metric.

In this talk, based on joint work with Silvio Reggiani, we would like to draw the attention to some concept that we call index of symmetry $i_{\mathfrak{s}}(M)$ of a Riemannian manifold M^{n}

$$
0 \leq i_{\mathfrak{s}}(M) \leq n
$$

One has that M is symmetric if and only if $i_{\mathfrak{s}}(M)=n$
We are, of course, interested on non-symmetric spaces with positive index of symmetry. In this case one has that $i_{\mathfrak{s}}(M) \leq n-2$, as we will see later (in other words the co-index of symmetry is at least 2).

These examples are known homogenous spaces but endowed with a very particular Riemannian metric.

We are able to classify the spaces with small co-index of symmetry,

The index of symmetry and naturally reductive spaces

Carlos Olmos

Introduction
The index of symmetry

The dimension bound

Examples
Open questions

We are able to classify the spaces with small co-index of symmetry, after proving a bound on the dimension n of the space,

The index of symmetry and naturally reductive spaces

Carlos Olmos

Introduction

The index of symmetry

The dimension bound

Examples
Open questions

We are able to classify the spaces with small co-index of symmetry, after proving a bound on the dimension n of the space, for a fixed positive co-index of symmetry k
symmetry and naturally reductive spaces

Carlos Olmos

Introduction

The index of symmetry

The dimension bound

Examples
Open questions

We are able to classify the spaces with small co-index of symmetry, after proving a bound on the dimension n of the space, for a fixed positive co-index of symmetry k (for irreducible spaces, since the product by a symmetric space does not change the co-index of symmetry,
symmetry and naturally reductive spaces

We are able to classify the spaces with small co-index of symmetry, after proving a bound on the dimension n of the space, for a fixed positive co-index of symmetry k (for irreducible spaces, since the product by a symmetric space does not change the co-index of symmetry, but increases the dimension).
symmetry and naturally reductive spaces

We are able to classify the spaces with small co-index of symmetry, after proving a bound on the dimension n of the space, for a fixed positive co-index of symmetry k (for irreducible spaces, since the product by a symmetric space does not change the co-index of symmetry, but increases the dimension).

The concept of index of symmetry came out from the study of compact naturally reductive spaces such that the isotropy has non-trivial fixed vectors

We are able to classify the spaces with small co-index of symmetry, after proving a bound on the dimension n of the space, for a fixed positive co-index of symmetry k (for irreducible spaces, since the product by a symmetric space does not change the co-index of symmetry, but increases the dimension).

The concept of index of symmetry came out from the study of compact naturally reductive spaces such that the isotropy has non-trivial fixed vectors (and so the full isometry group is bigger than the presentation group).

We are able to classify the spaces with small co-index of symmetry, after proving a bound on the dimension n of the space, for a fixed positive co-index of symmetry k (for irreducible spaces, since the product by a symmetric space does not change the co-index of symmetry, but increases the dimension).

The concept of index of symmetry came out from the study of compact naturally reductive spaces such that the isotropy has non-trivial fixed vectors (and so the full isometry group is bigger than the presentation group). For such spaces it is not hard to prove that

We are able to classify the spaces with small co-index of symmetry, after proving a bound on the dimension n of the space, for a fixed positive co-index of symmetry k (for irreducible spaces, since the product by a symmetric space does not change the co-index of symmetry, but increases the dimension).

The concept of index of symmetry came out from the study of compact naturally reductive spaces such that the isotropy has non-trivial fixed vectors (and so the full isometry group is bigger than the presentation group). For such spaces it is not hard to prove that the index of symmetry is al least the dimension of the fixed vectors of the isotropy representation.

We are able to classify the spaces with small co-index of symmetry, after proving a bound on the dimension n of the space, for a fixed positive co-index of symmetry k (for irreducible spaces, since the product by a symmetric space does not change the co-index of symmetry, but increases the dimension).

The concept of index of symmetry came out from the study of compact naturally reductive spaces such that the isotropy has non-trivial fixed vectors (and so the full isometry group is bigger than the presentation group). For such spaces it is not hard to prove that the index of symmetry is al least the dimension of the fixed vectors of the isotropy representation.

Recently, with Reggiani and Tamaru,

We are able to classify the spaces with small co-index of symmetry, after proving a bound on the dimension n of the space, for a fixed positive co-index of symmetry k (for irreducible spaces, since the product by a symmetric space does not change the co-index of symmetry, but increases the dimension).

The concept of index of symmetry came out from the study of compact naturally reductive spaces such that the isotropy has non-trivial fixed vectors (and so the full isometry group is bigger than the presentation group). For such spaces it is not hard to prove that the index of symmetry is al least the dimension of the fixed vectors of the isotropy representation.

Recently, with Reggiani and Tamaru, we could prove the equality,

We are able to classify the spaces with small co-index of symmetry, after proving a bound on the dimension n of the space, for a fixed positive co-index of symmetry k (for irreducible spaces, since the product by a symmetric space does not change the co-index of symmetry, but increases the dimension).

The concept of index of symmetry came out from the study of compact naturally reductive spaces such that the isotropy has non-trivial fixed vectors (and so the full isometry group is bigger than the presentation group). For such spaces it is not hard to prove that the index of symmetry is al least the dimension of the fixed vectors of the isotropy representation.

Recently, with Reggiani and Tamaru, we could prove the equality, if the space is (irreducible, non-symmetric) presented with the transvections.

We are able to classify the spaces with small co-index of symmetry, after proving a bound on the dimension n of the space, for a fixed positive co-index of symmetry k (for irreducible spaces, since the product by a symmetric space does not change the co-index of symmetry, but increases the dimension).

The concept of index of symmetry came out from the study of compact naturally reductive spaces such that the isotropy has non-trivial fixed vectors (and so the full isometry group is bigger than the presentation group). For such spaces it is not hard to prove that the index of symmetry is al least the dimension of the fixed vectors of the isotropy representation.

Recently, with Reggiani and Tamaru, we could prove the equality, if the space is (irreducible, non-symmetric) presented with the transvections.

The index of symmetry and naturally reductive spaces

Carlos Olmos

The subjects of this talk may be regarded as an effort to explore Riemannian manifolds that are symmetric up to some defect

Introduction
The index of
symmetry
The dimension
bound
Examples
Open questions

The index of symmetry and naturally reductive spaces

The subjects of this talk may be regarded as an effort to explore Riemannian manifolds that are symmetric up to some defect (in the hope of finding distinguished non-symmetric homogeneous manifolds).

Introduction
The index of
symmetry
The dimension
bound
Examples
Open questions

The subjects of this talk may be regarded as an effort to explore Riemannian manifolds that are symmetric up to some defect (in the hope of finding distinguished non-symmetric homogeneous manifolds).

In some sense, our philosophy is in the direction of the concept of co-polarity by Claudio Gorodski,

The subjects of this talk may be regarded as an effort to explore Riemannian manifolds that are symmetric up to some defect (in the hope of finding distinguished non-symmetric homogeneous manifolds).

In some sense, our philosophy is in the direction of the concept of co-polarity by Claudio Gorodski, that measures how a representation, orbit like, differ from a symmetric (isotropy) representation

The subjects of this talk may be regarded as an effort to explore Riemannian manifolds that are symmetric up to some defect (in the hope of finding distinguished non-symmetric homogeneous manifolds).

In some sense, our philosophy is in the direction of the concept of co-polarity by Claudio Gorodski, that measures how a representation, orbit like, differ from a symmetric (isotropy) representation (and also we try to classify those spaces when the defect is small).

The index of symmetry.

Let M^{n} be a Riemannian manifold and denote by $\mathfrak{K}(M)$ the algebra of global Killing fields on M.
For $q \in M$, let us define the Cartan subspace \mathfrak{p}^{q} at q, by

Introduction

The index of
symmetry
The dimension
bound
Examples
Open questions

$$
\mathfrak{p}^{q}:=\left\{X \in \mathfrak{K}(M):(\nabla X)_{q}=0\right\}
$$

The symmetric isotropy algebra at q is defined by

$$
\mathfrak{k}^{q}:=\left\{[X, Y]: X, Y \in \mathfrak{p}^{q}\right\}
$$

Introduction

The index of symmetry

The dimension bound

Examples
Open questions

The index of symmetry and naturally reductive spaces

The symmetric isotropy algebra at q is defined by

$$
\mathfrak{k}^{q}:=\left\{[X, Y]: X, Y \in \mathfrak{p}^{q}\right\}
$$

Introduction

The index of symmetry

The dimension bound
Observe that \mathfrak{k}^{q} is contained in the (full) isotropy subalgebra $\mathfrak{K}_{q}(M)$. In fact, if $X, Y \in \mathfrak{p}^{q}$,

Examples
$[X, Y]_{q}=(\nabla X Y)_{q}-(\nabla Y X)_{q}=0$

The symmetric isotropy algebra at q is defined by

$$
\mathfrak{k}^{q}:=\left\{[X, Y]: X, Y \in \mathfrak{p}^{q}\right\}
$$

Observe that \mathfrak{k}^{q} is contained in the (full) isotropy subalgebra $\mathfrak{K}_{q}(M)$. In fact, if $X, Y \in \mathfrak{p}^{q}$, $[X, Y]_{q}=\left(\nabla_{X} Y\right)_{q}-\left(\nabla_{Y} X\right)_{q}=0$. Moreover, since \mathfrak{p}^{q} is left invariant by the isotropy at q,

$$
\mathfrak{g}^{q}:=\mathfrak{k}^{q} \oplus \mathfrak{p}^{q}
$$

is an involutive Lie algebra.

The index of symmetry and naturally reductive spaces
The symmetric subspace at $q, \mathfrak{s}_{q} \subset T_{q} M$, is defined by

$$
\mathfrak{s}_{q}:=\left\{X . q: X \in \mathfrak{p}^{q}\right\}=\mathfrak{p}^{q} \cdot q
$$

Introduction

The index of symmetry

The dimension bound

Examples

Open questions

The symmetric subspace at $q, \mathfrak{s}_{q} \subset T_{q} M$, is defined by symmetry and naturally reductive spaces

$$
\mathfrak{s}_{q}:=\left\{X . q: X \in \mathfrak{p}^{q}\right\}=\mathfrak{p}^{q} . q
$$

Introduction

The index of symmetry

The dimension bound

The local version, involving local Killing fields, can be equivalently defined as follows (from a joint work with Sergio Console, PAMS 09)

The symmetric subspace at $q, \mathfrak{s}_{q} \subset T_{q} M$, is defined by symmetry and naturally reductive spaces

$$
\mathfrak{s}_{q}:=\left\{X . q: X \in \mathfrak{p}^{q}\right\}=\mathfrak{p}^{q} \cdot q
$$

Introduction

The index of symmetry

The dimension bound

The local version, involving local Killing fields, can be equivalently defined as follows (from a joint work with Sergio Console, PAMS 09)

$$
\mathfrak{s}_{q}^{\text {loc }}:=\left\{v \in T_{q} M: \nabla_{v}^{k} R=0, k=0, \ldots, n+\frac{1}{2} n(n-1)\right\},
$$

The symmetric subspace at $q, \mathfrak{s}_{q} \subset T_{q} M$, is defined by symmetry and naturally reductive spaces

$$
\mathfrak{s}_{q}:=\left\{X . q: X \in \mathfrak{p}^{q}\right\}=\mathfrak{p}^{q} \cdot q
$$

Introduction

The index of symmetry

The dimension bound

The local version, involving local Killing fields, can be equivalently defined as follows (from a joint work with Sergio Console, PAMS 09)

$$
\mathfrak{s}_{q}^{\text {loc }}:=\left\{v \in T_{q} M: \nabla_{v}^{k} R=0, k=0, \ldots, n+\frac{1}{2} n(n-1)\right\},
$$

For dealing with the distribution $q \mapsto \mathfrak{s}^{q}$ one needs to regard Killing fields

The index of symmetry and naturally reductive spaces

For dealing with the distribution $q \mapsto \mathfrak{s}^{q}$ one needs to regard Killing fields as parallel sections of the so called canonical (vector) bundle over M, symmetry and naturally reductive spaces

Carlos Olmos

Introduction

The index of symmetry

The dimension bound

Examples
Open questions

For dealing with the distribution $q \mapsto \mathfrak{s}^{q}$ one needs to regard Killing fields as parallel sections of the so called canonical (vector) bundle over M, symmetry and naturally reductive spaces

Carlos Olmos

$$
T M \oplus \Lambda^{2}(T M) \simeq T M \oplus \mathfrak{s o}(T M)
$$

Introduction
The index of symmetry

The dimension bound

Examples
Open questions

For dealing with the distribution $q \mapsto \mathfrak{s}^{q}$ one needs to regard Killing fields as parallel sections of the so called canonical (vector) bundle over M, symmetry and naturally reductive spaces

$$
T M \oplus \Lambda^{2}(T M) \simeq T M \oplus \mathfrak{s o}(T M)
$$

where the connection $\bar{\nabla}$ in $T M \oplus \mathfrak{s o}(T M)$ is given by

Introduction

The index of symmetry

The dimension bound

Examples
Open questions

For dealing with the distribution $q \mapsto \mathfrak{s}^{q}$ one needs to regard Killing fields as parallel sections of the so called canonical (vector) bundle over M, symmetry and naturally reductive spaces

$$
T M \oplus \Lambda^{2}(T M) \simeq T M \oplus \mathfrak{s o}(T M)
$$

where the connection $\bar{\nabla}$ in $T M \oplus \mathfrak{s o}(T M)$ is given by

$$
\bar{\nabla}_{Y}(Z, B)=\left(\nabla_{Y} Z-B Y, \nabla_{Y} B-R_{Y, Z}\right)
$$

For dealing with the distribution $q \mapsto \mathfrak{s}^{q}$ one needs to regard Killing fields as parallel sections of the so called canonical (vector) bundle over M, symmetry and naturally reductive spaces

$$
T M \oplus \Lambda^{2}(T M) \simeq T M \oplus \mathfrak{s o}(T M)
$$

where the connection $\bar{\nabla}$ in $T M \oplus \mathfrak{s o}(T M)$ is given by

$$
\bar{\nabla}_{Y}(Z, B)=\left(\nabla_{Y} Z-B Y, \nabla_{Y} B-R_{Y, Z}\right)
$$

The bijection is given by

$$
Z \leftrightarrow(Z, \nabla Z)
$$

For dealing with the distribution $q \mapsto \mathfrak{s}^{q}$ one needs to regard Killing fields as parallel sections of the so called canonical (vector) bundle over M,

$$
T M \oplus \Lambda^{2}(T M) \simeq T M \oplus \mathfrak{s o}(T M)
$$

where the connection $\bar{\nabla}$ in $T M \oplus \mathfrak{s o}(T M)$ is given by

$$
\bar{\nabla}_{Y}(Z, B)=\left(\nabla_{Y} Z-B Y, \nabla_{Y} B-R_{Y, Z}\right)
$$

The bijection is given by

$$
Z \leftrightarrow(Z, \nabla Z)
$$

The curvature tensor \bar{R} of $\bar{\nabla}$ is given by

For dealing with the distribution $q \mapsto \mathfrak{s}^{q}$ one needs to regard Killing fields as parallel sections of the so called canonical (vector) bundle over M, symmetry and naturally reductive spaces

$$
T M \oplus \Lambda^{2}(T M) \simeq T M \oplus \mathfrak{s o}(T M)
$$

where the connection $\bar{\nabla}$ in $T M \oplus \mathfrak{s o}(T M)$ is given by

$$
\bar{\nabla}_{Y}(Z, B)=\left(\nabla_{Y} Z-B Y, \nabla_{Y} B-R_{Y, Z}\right)
$$

The bijection is given by

$$
Z \leftrightarrow(Z, \nabla Z)
$$

The curvature tensor \bar{R} of $\bar{\nabla}$ is given by

$$
\bar{R}_{X, Y}(Z, B)=\left(0,\left(\nabla_{Z} R\right)_{X, Y}-(B . R)_{X, Y}\right)
$$

For dealing with the distribution $q \mapsto \mathfrak{s}^{q}$ one needs to regard Killing fields as parallel sections of the so called canonical (vector) bundle over M,

$$
T M \oplus \Lambda^{2}(T M) \simeq T M \oplus \mathfrak{s o}(T M)
$$

where the connection $\bar{\nabla}$ in $T M \oplus \mathfrak{s o}(T M)$ is given by

$$
\bar{\nabla}_{Y}(Z, B)=\left(\nabla_{Y} Z-B Y, \nabla_{Y} B-R_{Y, Z}\right)
$$

The bijection is given by

$$
Z \leftrightarrow(Z, \nabla Z)
$$

The curvature tensor \bar{R} of $\bar{\nabla}$ is given by

$$
\bar{R}_{X, Y}(Z, B)=\left(0,\left(\nabla_{Z} R\right)_{X, Y}-(B . R)_{X, Y}\right)
$$

where B acts on a tensor as a derivation.

Lemma

Let $X, Y \in \mathfrak{p}^{q}$, regarded as Killing fields, and let Z be an arbitrary tangent field of M. Then symmetry and naturally reductive spaces

Carlos Olmos

$$
R_{X(q), Y(q)} Z(q)=-[[X, Y], Z](q)
$$

Introduction

The index of symmetry

The dimension bound

Examples

Open questions

Lemma

Let $X, Y \in \mathfrak{p}^{q}$, regarded as Killing fields, and let Z be an arbitrary tangent field of M. Then

$$
R_{X(q), Y(q)} Z(q)=-[[X, Y], Z](q)
$$

Let $q \in M$ and assume that the index of symmetry at q is positive, i.e. $\operatorname{dim} \mathfrak{s}_{q}>0$.

The index of symmetry and naturally reductive spaces

Carlos Olmos

Introduction

The index of symmetry

The dimension bound

Lemma

Let $X, Y \in \mathfrak{p}^{q}$, regarded as Killing fields, and let Z be an arbitrary tangent field of M. Then

$$
R_{X(q), Y(q)} Z(q)=-[[X, Y], Z](q)
$$

Let $q \in M$ and assume that the index of symmetry at q is positive, i.e. $\operatorname{dim} \mathfrak{s}_{q}>0$. Let us consider the Lie subalgebra \mathfrak{g}^{q} of the full isometry algebra. One has that

Lemma

Let $X, Y \in \mathfrak{p}^{q}$, regarded as Killing fields, and let Z be an arbitrary tangent field of M. Then

$$
R_{X(q), Y(q)} Z(q)=-[[X, Y], Z](q)
$$

Introduction
The index of symmetry

The dimension bound

Let $q \in M$ and assume that the index of symmetry at q is positive, i.e. $\operatorname{dim} \mathfrak{s}_{q}>0$. Let us consider the Lie subalgebra \mathfrak{g}^{q} of the full isometry algebra. One has that

$$
\mathfrak{g}^{q}=\mathfrak{k}^{q} \oplus \mathfrak{p}^{q}
$$

Lemma

Let $X, Y \in \mathfrak{p}^{q}$, regarded as Killing fields, and let Z be an arbitrary tangent field of M. Then

$$
R_{X(q), Y(q)} Z(q)=-[[X, Y], Z](q)
$$

Introduction
The index of symmetry

The dimension bound

Let $q \in M$ and assume that the index of symmetry at q is positive, i.e. $\operatorname{dim} \mathfrak{s}_{q}>0$. Let us consider the Lie subalgebra \mathfrak{g}^{q} of the full isometry algebra. One has that

$$
\mathfrak{g}^{q}=\mathfrak{k}^{q} \oplus \mathfrak{p}^{q}
$$

is an involutive Lie algebra.

Lemma

Let $X, Y \in \mathfrak{p}^{q}$, regarded as Killing fields, and let Z be an arbitrary tangent field of M. Then

$$
R_{X(q), Y(q)} Z(q)=-[[X, Y], Z](q)
$$

Introduction
The index of symmetry

The dimension bound

Let $q \in M$ and assume that the index of symmetry at q is positive, i.e. $\operatorname{dim} \mathfrak{s}_{q}>0$. Let us consider the Lie subalgebra \mathfrak{g}^{q} of the full isometry algebra. One has that

$$
\mathfrak{g}^{q}=\mathfrak{k}^{q} \oplus \mathfrak{p}^{q}
$$

is an involutive Lie algebra. Let G^{q} be its associated Lie subgroup of $I(M)$. One has that the orbit $G^{q} . q$ is a global symmetric space,

Lemma

Let $X, Y \in \mathfrak{p}^{q}$, regarded as Killing fields, and let Z be an arbitrary tangent field of M. Then

$$
R_{X(q), Y(q)} Z(q)=-[[X, Y], Z](q)
$$

Let $q \in M$ and assume that the index of symmetry at q is positive, i.e. $\operatorname{dim} \mathfrak{s}_{q}>0$. Let us consider the Lie subalgebra \mathfrak{g}^{q} of the full isometry algebra. One has that

$$
\mathfrak{g}^{q}=\mathfrak{k}^{q} \oplus \mathfrak{p}^{q}
$$

is an involutive Lie algebra. Let G^{q} be its associated Lie subgroup of $I(M)$. One has that the orbit $G^{q} . q$ is a global symmetric space, which is a totally geodesic immersed manifold of M.

Lemma

Let $X, Y \in \mathfrak{p}^{q}$, regarded as Killing fields, and let Z be an arbitrary tangent field of M. Then

$$
R_{X(q), Y(q)} Z(q)=-[[X, Y], Z](q)
$$

Let $q \in M$ and assume that the index of symmetry at q is positive, i.e. $\operatorname{dim} \mathfrak{s}_{q}>0$. Let us consider the Lie subalgebra \mathfrak{g}^{q} of the full isometry algebra. One has that

$$
\mathfrak{g}^{q}=\mathfrak{k}^{q} \oplus \mathfrak{p}^{q}
$$

is an involutive Lie algebra. Let G^{q} be its associated Lie subgroup of $I(M)$. One has that the orbit $G^{q} . q$ is a global symmetric space, which is a totally geodesic immersed manifold of M.

Proposition
 If M is compact, then G^{q} acts almost effectively on the orbit $G^{q} . q$.

The index of symmetry and naturally reductive spaces

The index of symmetry

The dimension bound

Examples

Open questions

Proposition
 If M is compact, then G^{q} acts almost effectively on the orbit $G^{q} . q$.

Identify $T_{q}\left(G^{q} . q\right)=\mathfrak{s}_{q} \simeq \mathfrak{p}^{q}$ and decompose

The index of symmetry and naturally reductive spaces

The index of symmetry

The dimension bound

Examples

Open questions

Proposition

If M is compact, then G^{q} acts almost effectively on the orbit $G^{q} . q$. symmetry and naturally reductive spaces

Carlos Olmos

Identify $T_{q}\left(G^{q} . q\right)=\mathfrak{s}_{q} \simeq \mathfrak{p}^{q}$ and decompose

$$
\mathfrak{p}^{q}=\mathfrak{p}_{0} \oplus \mathfrak{p}_{1} \oplus \ldots \oplus \mathfrak{p}_{r}
$$

Introduction
The index of symmetry

The dimension bound

Examples
Open questions

Proposition

If M is compact, then G^{q} acts almost effectively on the orbit $G^{q} . q$.

Identify $T_{q}\left(G^{q} . q\right)=\mathfrak{s}_{q} \simeq \mathfrak{p}^{q}$ and decompose

$$
\mathfrak{p}^{q}=\mathfrak{p}_{0} \oplus \mathfrak{p}_{1} \oplus \ldots \oplus \mathfrak{p}_{r}
$$

where \mathfrak{p}_{0} corresponds to the Euclidean factor and \mathfrak{p}_{i} corresponds to the irreducible factors, in the de Rham local decomposition of the orbit $G^{q} . q(i=1, \ldots, r)$.
Let, for $j=0, \ldots, r$,

$$
\mathfrak{k}_{j}:=\left[\mathfrak{p}_{j}, \mathfrak{p}_{j}\right] .
$$

Proposition

If M is compact, then G^{q} acts almost effectively on the orbit $G^{q} . q$.

Identify $T_{q}\left(G^{q} . q\right)=\mathfrak{s}_{q} \simeq \mathfrak{p}^{q}$ and decompose

$$
\mathfrak{p}^{q}=\mathfrak{p}_{0} \oplus \mathfrak{p}_{1} \oplus \ldots \oplus \mathfrak{p}_{r}
$$

where \mathfrak{p}_{0} corresponds to the Euclidean factor and \mathfrak{p}_{i} corresponds to the irreducible factors, in the de Rham local decomposition of the orbit $G^{q} . q(i=1, \ldots, r)$.
Let, for $j=0, \ldots, r$,

$$
\mathfrak{k}_{j}:=\left[\mathfrak{p}_{j}, \mathfrak{p}_{j}\right] .
$$

Then

$$
\mathfrak{g}_{j}=\mathfrak{k}_{j} \oplus \mathfrak{p}_{j}
$$

is a subalgebra of \mathfrak{g}^{q}.

But, if the action of G^{q} is not almost effective on the orbit

The index of symmetry and naturally reductive spaces

Carlos Olmos

Introduction
The index of symmetry

The dimension bound

Examples
Open questions

But, if the action of G^{q} is not almost effective on the orbit $G^{q} . q$, we cannot conclude neither that \mathfrak{g}^{q} is spanned by

But, if the action of G^{q} is not almost effective on the orbit $G^{q} . q$, we cannot conclude neither that \mathfrak{g}^{q} is spanned by $\mathfrak{g}_{0}, \ldots, \mathfrak{g}_{r}$
nor that these subalgebras are in a direct sum

Introduction
The index of symmetry

The dimension bound

Examples
Open questions

But, if the action of G^{q} is not almost effective on the orbit
The index of symmetry and naturally reductive spaces

Carlos Olmos

nor that these subalgebras are in a direct sum (and not even that \mathfrak{k}_{0} is trivial or that \mathfrak{g}_{i} are ideals).

Introduction
The index of symmetry

The dimension bound

Examples
Open questions

But, if the action of G^{q} is not almost effective on the orbit
The index of symmetry and naturally reductive spaces

Carlos Olmos

nor that these subalgebras are in a direct sum (and not even that \mathfrak{k}_{0} is trivial or that \mathfrak{g}_{i} are ideals).

The main point is that we do not know, in the non-compact case, that

But, if the action of G^{q} is not almost effective on the orbit
The index of symmetry and naturally reductive spaces

Carlos Olmos

nor that these subalgebras are in a direct sum (and not even that \mathfrak{k}_{0} is trivial or that \mathfrak{g}_{i} are ideals).

The main point is that we do not know, in the non-compact case, that $R_{\mathfrak{p}_{i}, \mathfrak{p}_{j}}=0$,

Introduction
The index of symmetry

The dimension
bound
Examples
Open questions

But, if the action of G^{q} is not almost effective on the orbit
The index of symmetry and naturally reductive spaces
nor that these subalgebras are in a direct sum (and not even that \mathfrak{k}_{0} is trivial or that \mathfrak{g}_{i} are ideals).

The main point is that we do not know, in the non-compact case, that $R_{\mathfrak{p}_{i}, \mathfrak{p}_{j}}=0$, for $i \neq j$,

Introduction
The index of symmetry

The dimension
bound
Examples
Open questions

But, if the action of G^{q} is not almost effective on the orbit $G^{q} . q$, we cannot conclude neither that \mathfrak{g}^{q} is spanned by $\mathfrak{g}_{0}, \ldots, \mathfrak{g}_{r}$
nor that these subalgebras are in a direct sum (and not even that \mathfrak{k}_{0} is trivial or that \mathfrak{g}_{i} are ideals).

The main point is that we do not know, in the non-compact case, that $R_{\mathfrak{p}_{i}, \mathfrak{p}_{j}}=0$, for $i \neq j$, (only we know it is true for bound

Examples the restriction to the totally geodesic submanifold $G^{q} . q$).

But, if the action of G^{q} is not almost effective on the orbit $G^{q} . q$, we cannot conclude neither that \mathfrak{g}^{q} is spanned by $\mathfrak{g}_{0}, \ldots, \mathfrak{g}_{r}$
nor that these subalgebras are in a direct sum (and not even that \mathfrak{k}_{0} is trivial or that \mathfrak{g}_{i} are ideals).

The main point is that we do not know, in the non-compact case, that $R_{\mathfrak{p}_{i}, \mathfrak{p}_{j}}=0$, for $i \neq j$, (only we know it is true for

But, if the action of G^{q} is not almost effective on the orbit $G^{q} . q$, we cannot conclude neither that \mathfrak{g}^{q} is spanned by $\mathfrak{g}_{0}, \ldots, \mathfrak{g}_{r}$
nor that these subalgebras are in a direct sum (and not even that \mathfrak{k}_{0} is trivial or that \mathfrak{g}_{i} are ideals).

The main point is that we do not know, in the non-compact case, that $R_{\mathfrak{p}_{i}, \mathfrak{p}_{j}}=0$, for $i \neq j$, (only we know it is true for

But, if the action of G^{q} is not almost effective on the orbit $G^{q} . q$, we cannot conclude neither that \mathfrak{g}^{q} is spanned by $\mathfrak{g}_{0}, \ldots, \mathfrak{g}_{r}$
nor that these subalgebras are in a direct sum (and not even that \mathfrak{k}_{0} is trivial or that \mathfrak{g}_{i} are ideals).

The main point is that we do not know, in the non-compact case, that $R_{\mathfrak{p}_{i}, \mathfrak{p}_{j}}=0$, for $i \neq j$, (only we know it is true for

Corollary

If M is compact then $\mathfrak{k}_{0}=0,\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right]=0$, if $i \neq j$ and so \mathfrak{g}^{q} is the direct sum of the ideals $\mathfrak{g}_{1}, \ldots, \mathfrak{g}_{s}$.

But, if the action of G^{q} is not almost effective on the orbit $G^{q} . q$, we cannot conclude neither that \mathfrak{g}^{q} is spanned by $\mathfrak{g}_{0}, \ldots, \mathfrak{g}_{r}$
nor that these subalgebras are in a direct sum (and not even that \mathfrak{k}_{0} is trivial or that \mathfrak{g}_{i} are ideals).

The main point is that we do not know, in the non-compact case, that $R_{\mathfrak{p}_{i}, \mathfrak{p}_{j}}=0$, for $i \neq j$, (only we know it is true for the restriction to the totally geodesic submanifold $G^{q} . q$).

Corollary

If M is compact then $\mathfrak{k}_{0}=0,\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right]=0$, if $i \neq j$ and so \mathfrak{g}^{q} is the direct sum of the ideals $\mathfrak{g}_{1}, \ldots, \mathfrak{g}_{s}$. Then

$$
G^{q}=G_{0}^{q} \times \ldots \times G_{r}^{q} \quad \text { (almost direct product) }
$$

But, if the action of G^{q} is not almost effective on the orbit $G^{q} . q$, we cannot conclude neither that \mathfrak{g}^{q} is spanned by $\mathfrak{g}_{0}, \ldots, \mathfrak{g}_{r}$
nor that these subalgebras are in a direct sum (and not even that \mathfrak{k}_{0} is trivial or that \mathfrak{g}_{i} are ideals).

The main point is that we do not know, in the non-compact case, that $R_{\mathfrak{p}_{i}, \mathfrak{p}_{j}}=0$, for $i \neq j$, (only we know it is true for

Corollary

If M is compact then $\mathfrak{k}_{0}=0,\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right]=0$, if $i \neq j$ and so \mathfrak{g}^{q} is the direct sum of the ideals $\mathfrak{g}_{1}, \ldots, \mathfrak{g}_{s}$. Then

$$
G^{q}=G_{0}^{q} \times \ldots \times G_{r}^{q} \quad(\text { almost direct product) }
$$

where $\operatorname{Lie}\left(G_{i}^{q}\right)=\mathfrak{g}_{i}$.

The index of symmetry and naturally reductive spaces

Carlos Olmos

If M^{n} is compact then, if $i \geq 1, G_{i}^{q}$ is a compact Lie subgroup of $I(M)$.

The index of symmetry

The dimension bound

Examples

Open questions

If M^{n} is compact then, if $i \geq 1, G_{i}^{q}$ is a compact Lie subgroup of $I(M)$.

Introduction

The index of symmetry

The dimension bound

Facts: assume that M^{n} compact.

Examples

Open questions

The index of symmetry and naturally reductive spaces

Carlos Olmos

If M^{n} is compact then, if $i \geq 1, G_{i}^{q}$ is a compact Lie subgroup of $I(M)$.

The index of symmetry

The dimension bound

Facts: assume that M^{n} compact.
(a) G_{i}^{q} is a compact Lie subgroup of $I(M)$, if $i \geq 1$.
(b) If $R_{u, v} \mid \mathfrak{s}_{q}=0$, then $R_{u, v}=0$, for any $u, v \in \mathfrak{s}_{q}$.

Theorem

Let M^{n} be a symply connected compact locally irreducible homogeneous Riemannian manifold, which is not locally

The index of symmetry and naturally reductive spaces

Carlos Olmos

 symmetric, and let $k:=n-i_{5}(M)$ be its co-index of symmetry.
Introduction

The index of
symmetry
The dimension bound

Examples
Open questions

Theorem

Let M^{n} be a symply connected compact locally irreducible homogeneous Riemannian manifold, which is not locally

The index of symmetry and naturally reductive spaces

Carlos Olmos

 symmetric, and let $k:=n-i_{5}(M)$ be its co-index of symmetry. Then there is a subgroup of isometries $G \subset I(M)$, which acts transitively on M and such that $\operatorname{dim}(G) \leq \frac{1}{2} k(k+1)$.Introduction
The index of
symmetry
The dimension bound

Examples
Open questions

Theorem

Let M^{n} be a symply connected compact locally irreducible homogeneous Riemannian manifold, which is not locally symmetric, and let $k:=n-i_{\mathfrak{s}}(M)$ be its co-index of symmetry. Then there is a subgroup of isometries $G \subset I(M)$, which acts transitively on M and such that $\operatorname{dim}(G) \leq \frac{1}{2} k(k+1)$. Moreover, if the equality holds, then, up to a cover, $G=\operatorname{Spin}(k+1)$ and G has non-trivial isotropy, if $k \geq 3$.

Introduction
The index of

The dimension bound

Examples
Open questions

Theorem

Let M^{n} be a symply connected compact locally irreducible homogeneous Riemannian manifold, which is not locally , which acts transitively on M and such that $\operatorname{dim}(G) \leq \frac{1}{2} k(k+1)$. Moreover, if the equality holds, then, up to a cover, $G=\operatorname{Spin}(k+1)$ and G has non-trivial

Corollary

Let $M^{n}, n \geq 3$, be a symply connected compact locally irreducible homogeneous Riemannian manifold with co-index of $k=2$.

Theorem

Let M^{n} be a symply connected compact locally irreducible homogeneous Riemannian manifold, which is not locally , which acts transitively on M and such that $\operatorname{dim}(G) \leq \frac{1}{2} k(k+1)$. Moreover, if the equality holds, then, up to a cover, $G=\operatorname{Spin}(k+1)$ and G has non-trivial

Corollary

Let $M^{n}, n \geq 3$, be a symply connected compact locally irreducible homogeneous Riemannian manifold with co-index of $k=2$. Then $M=\operatorname{Spin}(3) \simeq S^{3}$

Theorem

Let M^{n} be a symply connected compact locally irreducible homogeneous Riemannian manifold, which is not locally symmetric, and let $k:=n-i_{5}(M)$ be its co-index of symmetry. Then there is a subgroup of isometries $G \subset I(M)$, which acts transitively on M and such that $\operatorname{dim}(G) \leq \frac{1}{2} k(k+1)$. Moreover, if the equality holds, then, up to a cover, $G=\operatorname{Spin}(k+1)$ and G has non-trivial

Corollary

Let $M^{n}, n \geq 3$, be a symply connected compact locally irreducible homogeneous Riemannian manifold with co-index of $k=2$. Then $M=\operatorname{Spin}(3) \simeq S^{3}$ with a left invariant metric that belongs to one of two families g_{s}^{1}, g_{t}^{2} described in the next.

Examples.

The index of
symmetry and naturally reductive spaces

Carlos Olmos

Introduction
The index of symmetry

The dimension bound

Examples

Open questions

Examples.

The index of
symmetry and naturally reductive spaces

- Left invariant metrics in Spin(3).

Introduction
The index of symmetry

The dimension bound

Examples
Open questions

Examples.

The index of symmetry and naturally reductive spaces

- Left invariant metrics in $\operatorname{Spin}(3)$.

Since $A d(\operatorname{Spin}(3))=S O(\mathfrak{s o}(3)) \simeq \operatorname{SO}(3)$,

Examples.

The index of symmetry and naturally reductive spaces

- Left invariant metrics in $\operatorname{Spin}(3)$.

Since $\operatorname{Ad}(\operatorname{Spin}(3))=\mathrm{SO}(\mathfrak{s o}(3)) \simeq \mathrm{SO}(3)$, with respect to the bi-invariant metric of curvature 1 .

Introduction
The index of
symmetry
The dimension
bound
Examples

Examples.

- Left invariant metrics in Spin(3).

Since $\operatorname{Ad}(\operatorname{Spin}(3))=S O(\mathfrak{s o}(3)) \simeq \operatorname{SO}(3)$, with respect to the bi-invariant metric of curvature 1 .
any left invariant metric, modulo isometries and rescaling, is determined by a triple of positive numbers

Examples.

- Left invariant metrics in Spin(3).

Since $\operatorname{Ad}(\operatorname{Spin}(3))=S O(\mathfrak{s o}(3)) \simeq \operatorname{SO}(3)$, with respect to the bi-invariant metric of curvature 1 .
any left invariant metric, modulo isometries and rescaling, is determined by a triple of positive numbers
$(1, \lambda, \beta)$

Examples.

- Left invariant metrics in Spin(3).

Since $\operatorname{Ad}(\operatorname{Spin}(3))=\operatorname{SO}(\mathfrak{s o}(3)) \simeq \operatorname{SO}(3)$, with respect to the bi-invariant metric of curvature 1 .

The index of
symmetry
The dimension bound

Examples
Open questions
any left invariant metric, modulo isometries and rescaling, is determined by a triple of positive numbers

$$
(1, \lambda, \beta)
$$

which corresponds to a diagonal endomorphism,

Examples.

- Left invariant metrics in Spin(3).

Since $\operatorname{Ad}(\operatorname{Spin}(3))=S O(\mathfrak{s o}(3)) \simeq \operatorname{SO}(3)$, with respect to the bi-invariant metric of curvature 1 .
any left invariant metric, modulo isometries and rescaling, is determined by a triple of positive numbers

$$
(1, \lambda, \beta)
$$

which corresponds to a diagonal endomorphism, with respect to the biinvariant metric,

Examples.

- Left invariant metrics in $\operatorname{Spin}(3)$.

Since $\operatorname{Ad}(\operatorname{Spin}(3))=\operatorname{SO}(\mathfrak{s o}(3)) \simeq \operatorname{SO}(3)$, with respect to the bi-invariant metric of curvature 1 .
any left invariant metric, modulo isometries and rescaling, is determined by a triple of positive numbers

$$
(1, \lambda, \beta)
$$

which corresponds to a diagonal endomorphism, with respect to the biinvariant metric, in a given orthonormal basis of $\mathfrak{s o}(3)$.

Examples.

- Left invariant metrics in $\operatorname{Spin}(3)$.

Since $\operatorname{Ad}(\operatorname{Spin}(3))=\operatorname{SO}(\mathfrak{s o}(3)) \simeq \operatorname{SO}(3)$, with respect to the bi-invariant metric of curvature 1 .
any left invariant metric, modulo isometries and rescaling, is determined by a triple of positive numbers

$$
(1, \lambda, \beta)
$$

which corresponds to a diagonal endomorphism, with respect to the biinvariant metric, in a given orthonormal basis of $\mathfrak{s o}(3)$.

The metrics with co-index of symmetry 2 are given exactly by the two families of metrics

The index of symmetry and naturally reductive spaces

Carlos Olmos

Introduction

The index of symmetry

The dimension bound

Examples

Open questions

The metrics with co-index of symmetry 2 are given exactly by the two families of metrics g_{s}^{1} and g_{t}^{2}

The index of symmetry and naturally reductive spaces

Carlos Olmos

Introduction

The index of symmetry

The dimension bound

Examples

Open questions

The metrics with co-index of symmetry 2 are given exactly by the two families of metrics g_{s}^{1} and g_{t}^{2} associated to the triples

$$
(1, s, 1-s), \quad 0<s<\frac{1}{2}
$$

The index of symmetry and naturally reductive spaces

The metrics with co-index of symmetry 2 are given exactly by the two families of metrics g_{s}^{1} and g_{t}^{2} associated to the triples

$$
(1, s, 1-s), \quad 0<s<\frac{1}{2}
$$

and

The index of symmetry and naturally reductive spaces

The metrics with co-index of symmetry 2 are given exactly by the two families of metrics g_{s}^{1} and g_{t}^{2} associated to the triples

$$
(1, s, 1-s), \quad 0<s<\frac{1}{2}
$$

The index of symmetry and naturally reductive spaces

Introduction

The index of symmetry
and

Examples

$$
(1, t, t), \quad 0<t \neq 1
$$

Open questions

The metrics with co-index of symmetry 2 are given exactly by the two families of metrics g_{s}^{1} and g_{t}^{2} associated to the triples

$$
(1, s, 1-s), \quad 0<s<\frac{1}{2}
$$

and

$$
(1, t, t), \quad 0<t \neq 1
$$

The isometry group for the first family is Spin(3)

The metrics with co-index of symmetry 2 are given exactly by the two families of metrics g_{s}^{1} and g_{t}^{2} associated to the triples

$$
(1, s, 1-s), \quad 0<s<\frac{1}{2}
$$

and

$$
(1, t, t), \quad 0<t \neq 1
$$

The isometry group for the first family is $\operatorname{Spin}(3)$ and for the second family is $\operatorname{Spin}(3) \times S^{1}$

The metrics with co-index of symmetry 2 are given exactly by the two families of metrics g_{s}^{1} and g_{t}^{2} associated to the triples

$$
(1, s, 1-s), \quad 0<s<\frac{1}{2}
$$

and

$$
(1, t, t), \quad 0<t \neq 1
$$

The isometry group for the first family is $\operatorname{Spin}(3)$ and for the second family is $\operatorname{Spin}(3) \times S^{1}$ (and the tranvections do not lie in $\operatorname{Spin}(3)$),

The metrics with co-index of symmetry 2 are given exactly by the two families of metrics g_{s}^{1} and g_{t}^{2} associated to the triples

$$
(1, s, 1-s), \quad 0<s<\frac{1}{2}
$$

and

$$
(1, t, t), \quad 0<t \neq 1
$$

The isometry group for the first family is $\operatorname{Spin}(3)$ and for the second family is $\operatorname{Spin}(3) \times S^{1}$ (and the tranvections do not lie in $\operatorname{Spin}(3))$, if $t \neq \frac{1}{2}$.

The metrics with co-index of symmetry 2 are given exactly by the two families of metrics g_{s}^{1} and g_{t}^{2} associated to the triples

$$
(1, s, 1-s), \quad 0<s<\frac{1}{2}
$$

and

$$
(1, t, t), \quad 0<t \neq 1
$$

The isometry group for the first family is $\operatorname{Spin}(3)$ and for the second family is $\operatorname{Spin}(3) \times S^{1}$ (and the tranvections do not lie in Spin(3)), if $t \neq \frac{1}{2}$.

Observe that $\left(\operatorname{Spin}(3), g_{t}^{2}\right)$

The metrics with co-index of symmetry 2 are given exactly by the two families of metrics g_{s}^{1} and g_{t}^{2} associated to the triples

$$
(1, s, 1-s), \quad 0<s<\frac{1}{2}
$$

and

$$
(1, t, t), \quad 0<t \neq 1
$$

The isometry group for the first family is $\operatorname{Spin}(3)$ and for the second family is $\operatorname{Spin}(3) \times S^{1}$ (and the tranvections do not lie in $\operatorname{Spin}(3))$, if $t \neq \frac{1}{2}$.

Observe that ($\left.\operatorname{Spin}(3), g_{t}^{2}\right)$ is a Berger sphere. Or equivalently, up to a cover, it is the unit tangent bundle over the 2 -sphere of constant curvature different from 1

The metrics with co-index of symmetry 2 are given exactly by the two families of metrics g_{s}^{1} and g_{t}^{2} associated to the triples

$$
(1, s, 1-s), \quad 0<s<\frac{1}{2}
$$

and

$$
(1, t, t), \quad 0<t \neq 1
$$

Examples
Open questions

The isometry group for the first family is $\operatorname{Spin}(3)$ and for the second family is $\operatorname{Spin}(3) \times S^{1}$ (and the tranvections do not lie in $\operatorname{Spin}(3))$, if $t \neq \frac{1}{2}$.

Observe that $\left(\operatorname{Spin}(3), g_{t}^{2}\right)$ is a Berger sphere. Or equivalently, up to a cover, it is the unit tangent bundle over the 2 -sphere of constant curvature different from 1 (in which case the metric would be bi-invariant and the space symmetric).

- The unit tangent bundle over the sphere of curvature 2 .

Introduction
The index of symmetry

The dimension bound

Examples

- The unit tangent bundle over the sphere of curvature 2 .

The distribution of symmetry \mathfrak{s}, of the unit tangent bundle

- The unit tangent bundle over the sphere of curvature 2 .

The distribution of symmetry \mathfrak{s}, of the unit tangent bundle

- The unit tangent bundle over the sphere of curvature 2 .

The distribution of symmetry \mathfrak{s}, of the unit tangent bundle
$i_{\mathfrak{s}}=\operatorname{dim}(\mathfrak{s})$ is the index of symmetry

- The unit tangent bundle over the sphere of curvature 2 .

The distribution of symmetry \mathfrak{s}, of the unit tangent bundle $M^{2 n-1}$ of the sphere S_{2}^{n} of curvature 2, coincides with the vertical distribution ν. In particular, $i_{\mathfrak{s}}=n-1$, where

- The unit tangent bundle over the sphere of curvature 2.

The distribution of symmetry \mathfrak{s}, of the unit tangent bundle $M^{2 n-1}$ of the sphere S_{2}^{n} of curvature 2, coincides with the vertical distribution ν. In particular, $i_{\mathfrak{s}}=n-1$, where $i_{\mathfrak{s}}=\operatorname{dim}(\mathfrak{s})$ is the index of symmetry (or equivalently, the co-index of symmetry is equals to n).

- The unit tangent bundle over the sphere of curvature 2.

The distribution of symmetry \mathfrak{s}, of the unit tangent bundle $M^{2 n-1}$ of the sphere S_{2}^{n} of curvature 2, coincides with the vertical distribution ν. In particular, $i_{\mathfrak{s}}=n-1$, where $i_{\mathfrak{s}}=\operatorname{dim}(\mathfrak{s})$ is the index of symmetry (or equivalently, the co-index of symmetry is equals to n).

- Naturally reductive spaces whose isotropy has fixed vectors

Let $M=G / H$ be a homogeneous compact Riemannian manifold with a G-invariant metric \langle,$\rangle .$

The index of symmetry and naturally reductive spaces

- Naturally reductive spaces whose isotropy has fixed vectors

Let $M=G / H$ be a homogeneous compact Riemannian manifold with a G-invariant metric \langle,$\rangle .$
The space M is said to be naturally reductive if there exists a reductive decomposition

The index of symmetry and naturally reductive spaces

$$
\mathcal{G}=\mathfrak{h} \oplus \mathfrak{m},
$$

- Naturally reductive spaces whose isotropy has fixed vectors

Let $M=G / H$ be a homogeneous compact Riemannian manifold with a G-invariant metric \langle,$\rangle .$
The space M is said to be naturally reductive if there exists a reductive decomposition

$$
\mathcal{G}=\mathfrak{h} \oplus \mathfrak{m}
$$

where $\mathcal{G}=\operatorname{Lie}(G), \mathfrak{h}=\operatorname{Lie}(H), \operatorname{Ad}(H) \mathfrak{m} \subset \mathfrak{m}$, such that the geodesics by $p=[e]$ are given by

$$
\gamma_{X . p}=\operatorname{Exp}(t X) \cdot p
$$

for al $X \in \mathfrak{m}$.

- Naturally reductive spaces whose isotropy has fixed vectors

Let $M=G / H$ be a homogeneous compact Riemannian manifold with a G-invariant metric \langle,$\rangle .$
The space M is said to be naturally reductive if there exists a reductive decomposition

$$
\mathcal{G}=\mathfrak{h} \oplus \mathfrak{m}
$$

where $\mathcal{G}=\operatorname{Lie}(G), \mathfrak{h}=\operatorname{Lie}(H), \operatorname{Ad}(H) \mathfrak{m} \subset \mathfrak{m}$, such that the geodesics by $p=[e]$ are given by

$$
\gamma_{X . p}=\operatorname{Exp}(t X) \cdot p
$$

for al $X \in \mathfrak{m}$. In other words, the Riemannian geodesics coincide with the ∇^{c}-geodesics,

- Naturally reductive spaces whose isotropy has fixed vectors

Let $M=G / H$ be a homogeneous compact Riemannian manifold with a G-invariant metric \langle,$\rangle .$
The space M is said to be naturally reductive if there exists a reductive decomposition

$$
\mathcal{G}=\mathfrak{h} \oplus \mathfrak{m}
$$

where $\mathcal{G}=\operatorname{Lie}(G), \mathfrak{h}=\operatorname{Lie}(H), \operatorname{Ad}(H) \mathfrak{m} \subset \mathfrak{m}$, such that the geodesics by $p=[e]$ are given by

$$
\gamma_{X . p}=\operatorname{Exp}(t X) \cdot p
$$

for al $X \in \mathfrak{m}$. In other words, the Riemannian geodesics coincide with the ∇^{c}-geodesics, where ∇^{c} is the canonical connection, which is a metric connection, of M associated to the reductive decomposition.

- Naturally reductive spaces whose isotropy has fixed vectors

Let $M=G / H$ be a homogeneous compact Riemannian manifold with a G-invariant metric \langle,$\rangle .$
The space M is said to be naturally reductive if there exists a reductive decomposition

$$
\mathcal{G}=\mathfrak{h} \oplus \mathfrak{m}
$$

where $\mathcal{G}=\operatorname{Lie}(G), \mathfrak{h}=\operatorname{Lie}(H), \operatorname{Ad}(H) \mathfrak{m} \subset \mathfrak{m}$, such that the geodesics by $p=[e]$ are given by

$$
\gamma_{X . p}=\operatorname{Exp}(t X) \cdot p
$$

for al $X \in \mathfrak{m}$. In other words, the Riemannian geodesics coincide with the ∇^{c}-geodesics, where ∇^{c} is the canonical connection, which is a metric connection, of M associated to the reductive decomposition. This is in fact equivalent to the property that $[X, \cdot]_{\mathfrak{m}}: \mathfrak{m} \rightarrow \mathfrak{m}$ is skew-symmetric, for all $X \in \mathfrak{m}\left(\mathfrak{m} \simeq T_{p} M\right)$.

Examples

Open questions

The index of symmetry and naturally reductive spaces

The Levi-Civita connection is given by

Introduction
The index of symmetry

The dimension bound

Examples

The index of symmetry and naturally reductive spaces

The Levi-Civita connection is given by

$$
\nabla_{\nu} \tilde{w}=\frac{1}{2}[\tilde{v}, \tilde{w}]_{\rho},
$$

The index of symmetry

The dimension bound

Examples

Open questions

The index of symmetry and naturally reductive spaces

The Levi-Civita connection is given by

$$
\nabla_{V} \tilde{w}=\frac{1}{2}[\tilde{v}, \tilde{w}]_{\rho},
$$

and

Introduction
The index of symmetry

The dimension bound

Examples

Open questions

The index of symmetry and naturally reductive spaces

The Levi-Civita connection is given by

$$
\nabla_{V} \tilde{w}=\frac{1}{2}[\tilde{v}, \tilde{w}]_{\rho},
$$

and

$$
\nabla_{v}^{c} \tilde{w}=[\tilde{v}, \tilde{w}]_{\rho},
$$

The index of symmetry and naturally reductive spaces
The Levi-Civita connection is given by

$$
\nabla_{v} \tilde{w}=\frac{1}{2}[\tilde{v}, \tilde{w}]_{p}
$$

and

$$
\nabla_{v}^{c} \tilde{w}=[\tilde{v}, \tilde{w}]_{p}
$$

where, for $u \in T_{p} M, \tilde{u}$ is the Killing field on M induced by the unique $X \in \mathfrak{m}$ such that $X . p=u$ (i.e. $\tilde{u}(q)=X . q$).

The index of symmetry and naturally reductive spaces
The Levi-Civita connection is given by

$$
\nabla_{v} \tilde{w}=\frac{1}{2}[\tilde{v}, \tilde{w}]_{p}
$$

and

$$
\nabla_{v}^{c} \tilde{w}=[\tilde{v}, \tilde{w}]_{p}
$$

where, for $u \in T_{p} M, \tilde{u}$ is the Killing field on M induced by the unique $X \in \mathfrak{m}$ such that $X . p=u$ (i.e. $\tilde{u}(q)=X . q$).

The difference tensor between both connections is given by

The index of symmetry and naturally reductive spaces

The difference tensor between both connections is given by

$$
D_{v} w=\nabla_{v} \tilde{w}-\nabla_{v}^{c} \tilde{w}=-\frac{1}{2}[\tilde{v}, \tilde{w}]_{p}=-\nabla_{\nu} \tilde{w} .
$$

Introduction

The index of symmetry

The dimension bound

Examples

Open questions

The difference tensor between both connections is given by

$$
D_{v} w=\nabla_{v} \tilde{w}-\nabla_{v}^{c} \tilde{w}=-\frac{1}{2}[\tilde{v}, \tilde{w}]_{p}=-\nabla_{v} \tilde{w} .
$$

The tensor D is totally skew,

Introduction

The index of
symmetry
The dimension
bound

Examples

Open questions

The difference tensor between both connections is given by

$$
D_{v} w=\nabla_{v} \tilde{w}-\nabla_{v}^{c} \tilde{w}=-\frac{1}{2}[\tilde{v}, \tilde{w}]_{p}=-\nabla_{v} \tilde{w} .
$$

Introduction

The index of symmetry

The tensor D is totally skew, i.e. $\left\langle D_{v} w, z\right\rangle$ is a 3-form.

The difference tensor between both connections is given by

$$
D_{v} w=\nabla_{v} \tilde{w}-\nabla_{v}^{c} \tilde{w}=-\frac{1}{2}[\tilde{v}, \tilde{w}]_{p}=-\nabla_{v} \tilde{w} .
$$

The tensor D is totally skew, i.e. $\left\langle D_{v} w, z\right\rangle$ is a 3-form.

Let M be a compact locally irreducible (non-symmetric) naturally reductive space. Let now, keeping the previous notation,

The difference tensor between both connections is given by

$$
D_{v} w=\nabla_{v} \tilde{w}-\nabla_{v}^{c} \tilde{w}=-\frac{1}{2}[\tilde{v}, \tilde{w}]_{p}=-\nabla_{v} \tilde{w} .
$$

The tensor D is totally skew, i.e. $\left\langle D_{v} w, z\right\rangle$ is a 3-form.

Let M be a compact locally irreducible (non-symmetric) naturally reductive space. Let now, keeping the previous notation,

$$
\mathfrak{m}_{0} \subset \mathfrak{m} \simeq T_{p} M
$$

The difference tensor between both connections is given by

$$
D_{v} w=\nabla_{v} \tilde{w}-\nabla_{v}^{c} \tilde{w}=-\frac{1}{2}[\tilde{v}, \tilde{w}]_{p}=-\nabla_{v} \tilde{w} .
$$

The tensor D is totally skew, i.e. $\left\langle D_{v} w, z\right\rangle$ is a 3-form.

Let M be a compact locally irreducible (non-symmetric) naturally reductive space. Let now, keeping the previous notation,

$$
\mathfrak{m}_{0} \subset \mathfrak{m} \simeq T_{p} M
$$

be the set of fixed vectors of the isotropy at q.

Let \hat{w} denote the G-invariant vector with $\hat{w}(q)=w \in \mathfrak{m}_{0}$.

The index of symmetry and naturally reductive spaces

Carlos Olmos

Introduction
The index of symmetry

The dimension bound

Examples
Open questions

Let \hat{w} denote the G-invariant vector with $\hat{w}(q)=w \in \mathfrak{m}_{0}$. Such a field is parallel with respect to the canonical

Let \hat{w} denote the G-invariant vector with $\hat{w}(q)=w \in \mathfrak{m}_{0}$. Such a field is parallel with respect to the canonical connection. In fact, any G-invariant tensor is ∇^{c}-parallel.

Let \hat{w} denote the G-invariant vector with $\hat{w}(q)=w \in \mathfrak{m}_{0}$.
The index of symmetry and naturally reductive spaces

Then, for any $v \in \mathfrak{m} \simeq T_{p} M, w \in \mathfrak{m}_{0}$,

Introduction

The index of symmetry

The dimension bound

Examples

Open questions

Let \hat{w} denote the G-invariant vector with $\hat{w}(q)=w \in \mathfrak{m}_{0}$. Such a field is parallel with respect to the canonical connection. In fact, any G-invariant tensor is ∇^{c}-parallel.

The index of symmetry and naturally reductive spaces

Carlos Olmos
Then, for any $v \in \mathfrak{m} \simeq T_{p} M, w \in \mathfrak{m}_{0}$,

$$
\left(\nabla_{v} \hat{w}\right)_{q}=D_{v} w
$$

Introduction

The index of symmetry

The dimension bound

Examples

Open questions

Let \hat{w} denote the G-invariant vector with $\hat{w}(q)=w \in \mathfrak{m}_{0}$. Such a field is parallel with respect to the canonical connection. In fact, any G-invariant tensor is ∇^{c}-parallel. symmetry and naturally reductive spaces

Then, for any $v \in \mathfrak{m} \simeq T_{p} M, w \in \mathfrak{m}_{0}$,

$$
\left(\nabla_{v} \hat{w}\right)_{q}=D_{v} w
$$

Observe, since D is totally skew, that

Introduction

The index of symmetry

The dimension
bound
Examples
Open questions

Let \hat{w} denote the G-invariant vector with $\hat{w}(q)=w \in \mathfrak{m}_{0}$. Such a field is parallel with respect to the canonical connection. In fact, any G-invariant tensor is ∇^{c}-parallel. Then, for any $v \in \mathfrak{m} \simeq T_{p} M, w \in \mathfrak{m}_{0}$,

$$
\left(\nabla_{v} \hat{w}\right)_{q}=D_{v} w
$$

Observe, since D is totally skew, that \hat{w} satisfies the Killing equation and hence it is a Killing field.

Introduction

The index of symmetry

The dimension
bound
Examples
Open questions

Let \hat{w} denote the G-invariant vector with $\hat{w}(q)=w \in \mathfrak{m}_{0}$. Such a field is parallel with respect to the canonical connection. In fact, any G-invariant tensor is ∇^{c}-parallel. Then, for any $v \in \mathfrak{m} \simeq T_{p} M, w \in \mathfrak{m}_{0}$,

$$
\left(\nabla_{v} \hat{w}\right)_{q}=D_{v} w
$$

Observe, since D is totally skew, that \hat{w} satisfies the Killing equation and hence it is a Killing field.

Remark. There are no more new Killing fields in M, since the canonical connection is unique (unless M is round sphere, or a Lie group, with a bi-invariant metric).

Let \hat{w} denote the G-invariant vector with $\hat{w}(q)=w \in \mathfrak{m}_{0}$. Such a field is parallel with respect to the canonical connection. In fact, any G-invariant tensor is ∇^{c}-parallel. Then, for any $v \in \mathfrak{m} \simeq T_{p} M, w \in \mathfrak{m}_{0}$,

$$
\left(\nabla_{v} \hat{w}\right)_{q}=D_{v} w
$$

Observe, since D is totally skew, that \hat{w} satisfies the Killing equation and hence it is a Killing field.

Remark. There are no more new Killing fields in M, since the canonical connection is unique (unless M is round sphere, or a Lie group, with a bi-invariant metric). This is by making use of the so-called

Let \hat{w} denote the G-invariant vector with $\hat{w}(q)=w \in \mathfrak{m}_{0}$. Such a field is parallel with respect to the canonical connection. In fact, any G-invariant tensor is ∇^{c}-parallel.
Then, for any $v \in \mathfrak{m} \simeq T_{p} M, w \in \mathfrak{m}_{0}$,

$$
\left(\nabla_{v} \hat{w}\right)_{q}=D_{v} w
$$

Observe, since D is totally skew, that \hat{w} satisfies the Killing equation and hence it is a Killing field.

Remark. There are no more new Killing fields in M, since the canonical connection is unique (unless M is round sphere, or a Lie group, with a bi-invariant metric). This is by making use of the so-called skew-torsion holonomy theorem (O.- Reggiani, Crelle's 2011)

Let \hat{w} denote the G-invariant vector with $\hat{w}(q)=w \in \mathfrak{m}_{0}$. Such a field is parallel with respect to the canonical connection. In fact, any G-invariant tensor is ∇^{c}-parallel.
Then, for any $v \in \mathfrak{m} \simeq T_{p} M, w \in \mathfrak{m}_{0}$,

$$
\left(\nabla_{v} \hat{w}\right)_{q}=D_{v} w
$$

Observe, since D is totally skew, that \hat{w} satisfies the Killing equation and hence it is a Killing field.

Remark. There are no more new Killing fields in M, since the canonical connection is unique (unless M is round sphere, or a Lie group, with a bi-invariant metric). This is by making use of the so-called skew-torsion holonomy theorem (O.- Reggiani, Crelle's 2011)

Let \hat{w} denote the G-invariant vector with $\hat{w}(q)=w \in \mathfrak{m}_{0}$. Such a field is parallel with respect to the canonical connection. In fact, any G-invariant tensor is ∇^{c}-parallel.
Then, for any $v \in \mathfrak{m} \simeq T_{p} M, w \in \mathfrak{m}_{0}$,

$$
\left(\nabla_{v} \hat{w}\right)_{q}=D_{v} w
$$

Observe, since D is totally skew, that \hat{w} satisfies the Killing equation and hence it is a Killing field.

Remark. There are no more new Killing fields in M, since the canonical connection is unique (unless M is round sphere, or a Lie group, with a bi-invariant metric). This is by making use of the so-called skew-torsion holonomy theorem (O.- Reggiani, Crelle's 2011)

$$
\operatorname{Lie}(I(M))=\mathfrak{g} \oplus \hat{\mathfrak{m}}_{0}
$$

(direct sum of ideals).

Let \hat{w} denote the G-invariant vector with $\hat{w}(q)=w \in \mathfrak{m}_{0}$. Such a field is parallel with respect to the canonical connection. In fact, any G-invariant tensor is ∇^{c}-parallel.
Then, for any $v \in \mathfrak{m} \simeq T_{p} M, w \in \mathfrak{m}_{0}$,

$$
\left(\nabla_{v} \hat{w}\right)_{q}=D_{v} w
$$

Observe, since D is totally skew, that \hat{w} satisfies the Killing equation and hence it is a Killing field.

Remark. There are no more new Killing fields in M, since the canonical connection is unique (unless M is round sphere, or a Lie group, with a bi-invariant metric). This is by making use of the so-called skew-torsion holonomy theorem (O.- Reggiani, Crelle's 2011)

$$
\operatorname{Lie}(I(M))=\mathfrak{g} \oplus \hat{\mathfrak{m}}_{0}
$$

(direct sum of ideals).

On the other hand, from the previous formulae,

The index of symmetry and naturally reductive spaces

Carlos Olmos

Introduction
The index of symmetry

The dimension bound

Examples

Open questions

On the other hand, from the previous formulae,

The index of symmetry and naturally reductive spaces

Carlos Olmos

$$
\left(\nabla_{\nu} \tilde{w}\right)_{q}=-D_{v} w
$$

On the other hand, from the previous formulae,
The index of symmetry and naturally reductive spaces

$$
\left(\nabla_{\imath} \tilde{w}\right)_{q}=-D_{\imath} w
$$

Introduction

The index of
Hence the Killing field
symmetry
The dimension bound

Examples

Open questions

On the other hand, from the previous formulae,
The index of symmetry and naturally reductive spaces

Carlos Olmos

$$
\left(\nabla_{\imath} \tilde{w}\right)_{q}=-D_{\imath} w
$$

Introduction

The index of
Hence the Killing field

$$
\bar{v}=\frac{1}{2} \tilde{v}+\frac{1}{2} \hat{v}
$$

Examples

The dimension bound

On the other hand, from the previous formulae,
The index of symmetry and naturally reductive spaces

Carlos Olmos

$$
\left(\nabla_{v} \tilde{w}\right)_{q}=-D_{v} w
$$

Introduction

The index of
Hence the Killing field

$$
\bar{v}=\frac{1}{2} \tilde{v}+\frac{1}{2} \hat{v}
$$

satisfies

On the other hand, from the previous formulae,
The index of symmetry and naturally reductive spaces

Carlos Olmos

$$
\left(\nabla_{\nu} \tilde{w}\right)_{q}=-D_{\imath} w
$$

Introduction

The index of
Hence the Killing field

$$
\bar{v}=\frac{1}{2} \tilde{v}+\frac{1}{2} \hat{v}
$$

satisfies

$$
(\nabla \bar{v})_{q}=0, \quad \bar{v}(q)=v
$$

On the other hand, from the previous formulae,
The index of symmetry and naturally reductive spaces

$$
\left(\nabla_{\nu} \tilde{w}\right)_{q}=-D_{\imath} w
$$

Hence the Killing field

$$
\bar{v}=\frac{1}{2} \tilde{v}+\frac{1}{2} \hat{v}
$$

satisfies

$$
(\nabla \bar{v})_{q}=0, \quad \bar{v}(q)=v
$$

Therefore, $\mathfrak{m}_{0} \subset \mathfrak{s}_{q}$,

On the other hand, from the previous formulae,

$$
\left(\nabla_{\nu} \tilde{w}\right)_{q}=-D_{v} w
$$

Hence the Killing field

$$
\bar{v}=\frac{1}{2} \tilde{v}+\frac{1}{2} \hat{v}
$$

satisfies

$$
(\nabla \bar{v})_{q}=0, \quad \bar{v}(q)=v
$$

Therefore, $\mathfrak{m}_{0} \subset \mathfrak{s}_{q}$, and thus the distribution of symmetry is non-trivial.

Theorem (O.-Reggiani-Tamaru). Let M be a simply connected compact homogeneous naturally reductive space. Then the index of symmetry of M coincides with the dimension of the fixed vectors of the isotropy of the group of transvections.

Introduction

The index of
symmetry
The dimension
bound
Examples
Open questions

Theorem (O.-Reggiani-Tamaru). Let M be a simply connected compact homogeneous naturally reductive space. Then the index of symmetry of M coincides with the dimension of the fixed vectors of the isotropy of the group of transvections.

Corollary (O.-Reggiani-Tamaru) Let $M=G / H$ be a simply connected compact normal homogeneous space. Then the index of symmetry of M coincides with the dimension of the fixed vectors of the isotropy H.

Open questions.

Carlos Olmos

Introduction

The index of
symmetry
The dimension
bound
Examples
Open questions

The index of symmetry and naturally reductive spaces

Open questions.

Introduction

The index of symmetry

Assume that M^{n} is a compact simply connected irreducible The dimension bound Riemannian manifold with a positive index of symmetry.

The index of symmetry and naturally reductive spaces

Open questions.

Introduction

The index of symmetry

Assume that M^{n} is a compact simply connected irreducible The dimension bound Riemannian manifold with a positive index of symmetry.

Introduction

The index of symmetry

The dimension bound

- Are the leaves of the distribution of symmetry compact

The index of symmetry and naturally reductive spaces

Carlos Olmos

Introduction

The index of symmetry

The dimension bound

- Are the leaves of the distribution of symmetry compact (or equivalently, is the flat factor compact?).

The index of symmetry and naturally reductive spaces

Carlos Olmos

Introduction

The index of symmetry

The dimension bound

- Are the leaves of the distribution of symmetry compact (or equivalently, is the flat factor compact?).
- If $n>3$, does the metric on M projects down to the quotient by the symmetric foliation? (if the space is locally irreducible)

The index of symmetry and naturally reductive spaces

Carlos Olmos

Introduction

The index of symmetry

The dimension bound

Examples
Open questions

- If $n>3$, does the metric on M projects down to the quotient by the symmetric foliation? (if the space is locally irreducible) The situation, for $n>3$, seems to be very rigid.

The index of symmetry and naturally reductive spaces

Carlos Olmos

Introduction

The index of symmetry

The dimension
bound
Examples
Open questions

- If $n>3$, does the metric on M projects down to the quotient by the symmetric foliation? (if the space is locally irreducible) The situation, for $n>3$, seems to be very rigid.
- Find new examples.

The index of symmetry and naturally reductive spaces

Carlos Olmos

Introduction

The index of symmetry

The dimension
bound
Examples
Open questions

- If $n>3$, does the metric on M projects down to the quotient by the symmetric foliation? (if the space is locally irreducible) The situation, for $n>3$, seems to be very rigid.
- Find new examples.

The index of
symmetry
The dimension
bound
Examples
Open questions

- Classify the case of co-index of symmetry equals to 3 and 4
- If $n>3$, does the metric on M projects down to the quotient by the symmetric foliation? (if the space is locally irreducible) The situation, for $n>3$, seems to be very rigid.
- Find new examples.
- Classify the case of co-index of symmetry equals to 3 and 4 (in which case de dimension is at most 6 or 10).
- If $n>3$, does the metric on M projects down to the quotient by the symmetric foliation? (if the space is locally irreducible) The situation, for $n>3$, seems to be very rigid.
- Find new examples.
- Classify the case of co-index of symmetry equals to 3 and 4 (in which case de dimension is at most 6 or 10).

Or, more generally, classify the compact simply connected, irreducible, Riemannian homogeneous manifolds with a positive index of symmetry.

