The Ricci flow and its solitons for homogeneous manifolds

Jorge Lauret, Univ. Nac. de Córdoba

Rosario, August 2nd, 2012

Contents

1 The space of homogeneous manifolds

Contents

1 The space of homogeneous manifolds

Ricci flow of homogeneous manifolds

Contents

1 The space of homogeneous manifolds

Ricci flow of homogeneous manifolds

3 Homogeneous Ricci solitons

Fix g: real vector space.

Fix g: real vector space.

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: direct sum decomposition,

Fix \mathfrak{g} : real vector space.

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: direct sum decomposition, $\langle \cdot, \cdot \rangle$: inner product on \mathfrak{p} .

Fix \mathfrak{g} : real vector space.

 $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$: direct sum decomposition, $\langle\cdot,\cdot\rangle$: inner product on \mathfrak{p} .

Given $\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$,

Fix \mathfrak{g} : real vector space.

```
\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}: direct sum decomposition, \langle \cdot, \cdot \rangle: inner product on \mathfrak{p}.
```

Given $\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$, i.e. $\mu : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ bil. and skew-symm.,

Fix \mathfrak{g} : real vector space.

```
\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}: direct sum decomposition, \langle \cdot, \cdot \rangle: inner product on \mathfrak{p}.
```

Given
$$\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$$
, i.e. $\mu : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ bil. and skew-symm.,

Fix \mathfrak{g} : real vector space.

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: direct sum decomposition, $\langle \cdot, \cdot \rangle$: inner product on \mathfrak{p} .

Given $\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$, i.e. $\mu : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ bil. and skew-symm.,

(i)
$$\mu$$
 Jacobi \checkmark , $\mu(\mathfrak{k},\mathfrak{k}) \subset \mathfrak{k}$, $\mu(\mathfrak{k},\mathfrak{p}) \subset \mathfrak{p}$

Fix \mathfrak{g} : real vector space.

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: direct sum decomposition, $\langle \cdot, \cdot \rangle$: inner product on \mathfrak{p} .

Given $\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$, i.e. $\mu : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ bil. and skew-symm.,

(i)
$$\mu$$
 Jacobi \checkmark , $\mu(\mathfrak{k},\mathfrak{k}) \subset \mathfrak{k}$, $\mu(\mathfrak{k},\mathfrak{p}) \subset \mathfrak{p}$ ($\leadsto G_{\mu}, K_{\mu}$).

Fix \mathfrak{g} : real vector space.

 $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$: direct sum decomposition, $\langle\cdot,\cdot\rangle$: inner product on \mathfrak{p} .

Given $\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$, i.e. $\mu : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ bil. and skew-symm.,

- (i) μ Jacobi \checkmark , $\mu(\mathfrak{k},\mathfrak{k}) \subset \mathfrak{k}$, $\mu(\mathfrak{k},\mathfrak{p}) \subset \mathfrak{p}$ ($\leadsto G_{\mu}, K_{\mu}$).
- (ii) K_{μ} closed in G_{μ}

Fix \mathfrak{g} : real vector space.

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: direct sum decomposition, $\langle \cdot, \cdot \rangle$: inner product on \mathfrak{p} .

Given $\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$, i.e. $\mu : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ bil. and skew-symm.,

- (i) μ Jacobi \checkmark , $\mu(\mathfrak{k},\mathfrak{k}) \subset \mathfrak{k}$, $\mu(\mathfrak{k},\mathfrak{p}) \subset \mathfrak{p}$ ($\leadsto G_{\mu}, K_{\mu}$).
- (ii) K_{μ} closed in G_{μ} ($\leadsto G_{\mu}/K_{\mu}$ manifold).

Fix \mathfrak{g} : real vector space.

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: direct sum decomposition, $\langle \cdot, \cdot \rangle$: inner product on \mathfrak{p} .

Given $\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$, i.e. $\mu : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ bil. and skew-symm.,

- (i) μ Jacobi \checkmark , $\mu(\mathfrak{k},\mathfrak{k}) \subset \mathfrak{k}$, $\mu(\mathfrak{k},\mathfrak{p}) \subset \mathfrak{p}$ ($\leadsto G_{\mu}, K_{\mu}$).
- (ii) K_{μ} closed in G_{μ} ($\leadsto G_{\mu}/K_{\mu}$ manifold).
- (iii) $\{Z \in \mathfrak{k} : \mu(Z,\mathfrak{p}) = 0\} = 0$

Fix g: real vector space.

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: direct sum decomposition, $\langle \cdot, \cdot \rangle$: inner product on \mathfrak{p} .

Given $\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$, i.e. $\mu : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ bil. and skew-symm.,

- (i) μ Jacobi \checkmark , $\mu(\mathfrak{k},\mathfrak{k}) \subset \mathfrak{k}$, $\mu(\mathfrak{k},\mathfrak{p}) \subset \mathfrak{p}$ ($\leadsto G_{\mu}, K_{\mu}$).
- (ii) K_{μ} closed in G_{μ} ($\leadsto G_{\mu}/K_{\mu}$ manifold).
- (iii) $\{Z \in \mathfrak{k} : \mu(Z, \mathfrak{p}) = 0\} = 0 \quad (\rightsquigarrow G_{\mu}/K_{\mu} \text{ almost-effective}).$

Fix g: real vector space.

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: direct sum decomposition, $\langle \cdot, \cdot \rangle$: inner product on \mathfrak{p} .

Given $\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$, i.e. $\mu : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ bil. and skew-symm.,

- (i) μ Jacobi \checkmark , $\mu(\mathfrak{k},\mathfrak{k}) \subset \mathfrak{k}$, $\mu(\mathfrak{k},\mathfrak{p}) \subset \mathfrak{p}$ ($\leadsto G_{\mu}, K_{\mu}$).
- (ii) K_{μ} closed in G_{μ} ($\leadsto G_{\mu}/K_{\mu}$ manifold).
- (iii) $\{Z \in \mathfrak{k} : \mu(Z,\mathfrak{p}) = 0\} = 0 \quad (\leadsto G_{\mu}/K_{\mu} \text{ almost-effective}).$
- (iv) $\langle \cdot, \cdot \rangle$ is $\operatorname{ad}_{\mu} \mathfrak{k}|_{\mathfrak{p}}$ -invariant

Fix \mathfrak{g} : real vector space.

 $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$: direct sum decomposition, $\langle\cdot,\cdot\rangle$: inner product on \mathfrak{p} .

Given $\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$, i.e. $\mu : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ bil. and skew-symm.,

- (i) μ Jacobi \checkmark , $\mu(\mathfrak{k},\mathfrak{k}) \subset \mathfrak{k}$, $\mu(\mathfrak{k},\mathfrak{p}) \subset \mathfrak{p}$ ($\leadsto G_{\mu}, K_{\mu}$).
- (ii) K_{μ} closed in G_{μ} ($\leadsto G_{\mu}/K_{\mu}$ manifold).
- (iii) $\{Z \in \mathfrak{k} : \mu(Z,\mathfrak{p}) = 0\} = 0 \quad (\rightsquigarrow G_{\mu}/K_{\mu} \text{ almost-effective}).$
- (iv) $\langle \cdot, \cdot \rangle$ is $\operatorname{ad}_{\mu} \mathfrak{k}|_{\mathfrak{p}}$ -invariant ($\leadsto g_{\mu} G_{\mu}$ -invariant), $g_{\mu}(o) = \langle \cdot, \cdot \rangle$).

Fix \mathfrak{g} : real vector space.

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: direct sum decomposition, $\langle \cdot, \cdot \rangle$: inner product on \mathfrak{p} .

Given $\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$, i.e. $\mu : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ bil. and skew-symm.,

 $\mu \rightsquigarrow (G_{\mu}/K_{\mu},g_{\mu})$ homogeneous space provided:

- (i) μ Jacobi \checkmark , $\mu(\mathfrak{k},\mathfrak{k}) \subset \mathfrak{k}$, $\mu(\mathfrak{k},\mathfrak{p}) \subset \mathfrak{p}$ ($\leadsto G_{\mu}, K_{\mu}$).
- (ii) K_{μ} closed in G_{μ} ($\leadsto G_{\mu}/K_{\mu}$ manifold).
- (iii) $\{Z \in \mathfrak{k} : \mu(Z,\mathfrak{p}) = 0\} = 0 \quad (\rightsquigarrow G_{\mu}/K_{\mu} \text{ almost-effective}).$
- (iv) $\langle \cdot, \cdot \rangle$ is $\operatorname{ad}_{\mu} \mathfrak{k}|_{\mathfrak{p}}$ -invariant ($\leadsto g_{\mu} \ G_{\mu}$ -invariant), $g_{\mu}(o) = \langle \cdot, \cdot \rangle$).

 $q = \dim \mathfrak{k}, \quad n = \dim \mathfrak{p},$

Fix \mathfrak{g} : real vector space.

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: direct sum decomposition, $\langle \cdot, \cdot \rangle$: inner product on \mathfrak{p} .

Given $\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$, i.e. $\mu : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ bil. and skew-symm.,

 $\mu \rightsquigarrow (G_{\mu}/K_{\mu},g_{\mu})$ homogeneous space provided:

- (i) μ Jacobi \checkmark , $\mu(\mathfrak{k},\mathfrak{k}) \subset \mathfrak{k}$, $\mu(\mathfrak{k},\mathfrak{p}) \subset \mathfrak{p}$ ($\leadsto G_{\mu}, K_{\mu}$).
- (ii) K_{μ} closed in G_{μ} ($\leadsto G_{\mu}/K_{\mu}$ manifold).
- (iii) $\{Z \in \mathfrak{k} : \mu(Z,\mathfrak{p}) = 0\} = 0 \quad (\leadsto G_{\mu}/K_{\mu} \text{ almost-effective}).$
- (iv) $\langle \cdot, \cdot \rangle$ is $\mathrm{ad}_{\mu} \, \mathfrak{k}|_{\mathfrak{p}}$ -invariant ($\leadsto g_{\mu} \, G_{\mu}$ -invariant), $g_{\mu}(o) = \langle \cdot, \cdot \rangle$).

 $q = \dim \mathfrak{k}, \quad n = \dim \mathfrak{p},$

$$\mathcal{H}_{q,n} := \left\{ \mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g} : (i) - (iv) \checkmark \right\} \subset \mathcal{L}_{q+n}.$$

Fix g: real vector space.

 $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$: direct sum decomposition, $\langle\cdot,\cdot\rangle$: inner product on \mathfrak{p} .

Given $\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$, i.e. $\mu : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ bil. and skew-symm.,

 $\mu \rightsquigarrow (G_{\mu}/K_{\mu},g_{\mu})$ homogeneous space provided:

- (i) μ Jacobi \checkmark , $\mu(\mathfrak{k},\mathfrak{k}) \subset \mathfrak{k}$, $\mu(\mathfrak{k},\mathfrak{p}) \subset \mathfrak{p}$ ($\leadsto G_{\mu}, K_{\mu}$).
- (ii) K_{μ} closed in G_{μ} ($\leadsto G_{\mu}/K_{\mu}$ manifold).
- (iii) $\{Z \in \mathfrak{k} : \mu(Z,\mathfrak{p}) = 0\} = 0 \quad (\rightsquigarrow G_{\mu}/K_{\mu} \text{ almost-effective}).$
- (iv) $\langle \cdot, \cdot \rangle$ is $\operatorname{ad}_{\mu} \mathfrak{t}|_{\mathfrak{p}}$ -invariant ($\leadsto g_{\mu} G_{\mu}$ -invariant), $g_{\mu}(o) = \langle \cdot, \cdot \rangle$).

 $q = \dim \mathfrak{k}, \quad n = \dim \mathfrak{p},$

$$\mathcal{H}_{q,n} := \left\{ \mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g} : (i) - (iv) \checkmark \right\} \subset \mathcal{L}_{q+n}.$$

 $\mathcal{H}_{q,n} \leftrightarrow$ all simply connected Riemannian homogeneous space of dimension n with a q-dimensional isotropy (up to isometry).

Fix \mathfrak{g} : real vector space.

 $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$: direct sum decomposition, $\langle\cdot,\cdot\rangle$: inner product on \mathfrak{p} .

Given $\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$, i.e. $\mu : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ bil. and skew-symm.,

 $\mu \rightsquigarrow (G_{\mu}/K_{\mu},g_{\mu})$ homogeneous space provided:

- (i) μ Jacobi \checkmark , $\mu(\mathfrak{k},\mathfrak{k}) \subset \mathfrak{k}$, $\mu(\mathfrak{k},\mathfrak{p}) \subset \mathfrak{p}$ ($\leadsto G_{\mu}, K_{\mu}$).
- (ii) K_{μ} closed in G_{μ} ($\leadsto G_{\mu}/K_{\mu}$ manifold).
- (iii) $\{Z \in \mathfrak{k} : \mu(Z,\mathfrak{p}) = 0\} = 0 \quad (\rightsquigarrow G_{\mu}/K_{\mu} \text{ almost-effective}).$
- (iv) $\langle \cdot, \cdot \rangle$ is $\operatorname{ad}_{\mu} \mathfrak{k}|_{\mathfrak{p}}$ -invariant ($\leadsto g_{\mu} G_{\mu}$ -invariant), $g_{\mu}(o) = \langle \cdot, \cdot \rangle$).

 $q = \dim \mathfrak{k}, \quad n = \dim \mathfrak{p},$

$$\mathcal{H}_{q,n} := \left\{ \mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g} : (i)\text{-}(iv)\checkmark \right\} \subset \mathcal{L}_{q+n}.$$

 $\mathcal{H}_{q,n} \leftrightarrow$ all simply connected Riemannian homogeneous space of dimension n with a q-dimensional isotropy (up to isometry).

 $\mathcal{H}_{0,n} = \mathcal{L}_n$ variety of Lie algebras

Fix g: real vector space.

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: direct sum decomposition, $\langle \cdot, \cdot \rangle$: inner product on \mathfrak{p} .

Given $\mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$, i.e. $\mu : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ bil. and skew-symm.,

 $\mu \rightsquigarrow (G_{\mu}/K_{\mu}, g_{\mu})$ homogeneous space provided:

- (i) μ Jacobi \checkmark , $\mu(\mathfrak{k},\mathfrak{k}) \subset \mathfrak{k}$, $\mu(\mathfrak{k},\mathfrak{p}) \subset \mathfrak{p}$ ($\leadsto G_n, K_n$).
- (ii) K_{μ} closed in G_{μ} ($\rightsquigarrow G_{\mu}/K_{\mu}$ manifold).
- (iii) $\{Z \in \mathfrak{k} : \mu(Z,\mathfrak{p}) = 0\} = 0 \quad (\rightsquigarrow G_{\mu}/K_{\mu} \text{ almost-effective}).$
- (iv) $\langle \cdot, \cdot \rangle$ is $\operatorname{ad}_{\mu} \mathfrak{t}|_{\mathfrak{p}}$ -invariant ($\leadsto g_{\mu} G_{\mu}$ -invariant), $g_{\mu}(o) = \langle \cdot, \cdot \rangle$).

 $a = \dim \mathfrak{k}, \quad n = \dim \mathfrak{v}.$

$$\mathcal{H}_{q,n} := \left\{ \mu \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g} : (i)\text{-}(iv)\checkmark \right\} \subset \mathcal{L}_{q+n}.$$

 $\mathcal{H}_{q,n} \leftrightarrow \text{all simply connected Riemannian homogeneous space of}$ dimension n with a q-dimensional isotropy (up to isometry).

 $\mathcal{H}_{0,n} = \mathcal{L}_n$ variety of Lie algebras \leftrightarrow left-invariant metrics on all *n*-dimensional s.c. Lie groups.

Lie injectivity radius of $(G_{\mu}/K_{\mu},g_{\mu})$, $\mu\in\mathcal{H}_{q,n}$,

Lie injectivity radius of $(G_{\mu}/K_{\mu},g_{\mu})$, $\mu\in\mathcal{H}_{q,n}$,

$$r_{\mu} := \sup \left\{ r > 0 : \pi_{\mu} \circ \exp_{\mu} : B(0,r)
ightarrow \mathcal{G}_{\mu}/\mathcal{K}_{\mu} \quad \mathsf{diffeomorphism}
ight\}.$$

Lie injectivity radius of $(G_{\mu}/K_{\mu},g_{\mu})$, $\mu\in\mathcal{H}_{q,n}$,

$$r_{\mu} := \sup \left\{ r > 0 : \pi_{\mu} \circ \exp_{\mu} : B(0,r)
ightarrow \mathcal{G}_{\mu}/\mathcal{K}_{\mu} \quad \mathsf{diffeomorphism}
ight\}.$$

Theorem (JL 2010)

$$\mu_k$$
, $\lambda \in \mathcal{H}_{q,n}$.

Lie injectivity radius of $(G_{\mu}/K_{\mu},g_{\mu})$, $\mu\in\mathcal{H}_{q,n}$,

$$r_{\mu} := \sup \left\{ r > 0 : \pi_{\mu} \circ \exp_{\mu} : B(0,r)
ightarrow \mathcal{G}_{\mu}/\mathcal{K}_{\mu} \quad \mathsf{diffeomorphism}
ight\}.$$

Theorem (JL 2010)

$$\mu_k$$
, $\lambda \in \mathcal{H}_{q,n}$. If $\mu_k \to \lambda$ and $\inf_k r_{\mu_k} > 0$, then,

Lie injectivity radius of $(G_{\mu}/K_{\mu},g_{\mu})$, $\mu\in\mathcal{H}_{q,n}$,

$$r_{\mu} := \sup \left\{ r > 0 : \pi_{\mu} \circ \exp_{\mu} : B(0,r)
ightarrow \mathcal{G}_{\mu}/\mathcal{K}_{\mu} \quad \mathsf{diffeomorphism}
ight\}.$$

Theorem (JL 2010)

 μ_k , $\lambda \in \mathcal{H}_{q,n}$. If $\mu_k \to \lambda$ and $\inf_k r_{\mu_k} > 0$, then, $(G_{\mu_k}/K_{\mu_k}, g_{\mu_k}) \to (G_{\lambda}/K_{\lambda}, g_{\lambda})$ pointed (or Cheeger-Gromov), after passing to a subsequence.

Lie injectivity radius of $(G_{\mu}/K_{\mu},g_{\mu})$, $\mu\in\mathcal{H}_{q,n}$,

$$r_{\mu} := \sup \left\{ r > 0 : \pi_{\mu} \circ \exp_{\mu} : B(0,r)
ightarrow \mathcal{G}_{\mu}/\mathcal{K}_{\mu} \quad \mathsf{diffeomorphism}
ight\}.$$

Theorem (JL 2010)

 μ_k , $\lambda \in \mathcal{H}_{q,n}$. If $\mu_k \to \lambda$ and $\inf_k r_{\mu_k} > 0$, then, $(G_{\mu_k}/K_{\mu_k}, g_{\mu_k}) \to (G_{\lambda}/K_{\lambda}, g_{\lambda})$ pointed (or Cheeger-Gromov), after passing to a subsequence.

In the case $\mathfrak{k} = 0$,

Lie injectivity radius of $(G_{\mu}/K_{\mu},g_{\mu})$, $\mu\in\mathcal{H}_{q,n}$,

$$r_{\mu} := \sup \left\{ r > 0 : \pi_{\mu} \circ \exp_{\mu} : B(0,r)
ightarrow \mathcal{G}_{\mu}/\mathcal{K}_{\mu} \quad \mathsf{diffeomorphism}
ight\}.$$

Theorem (JL 2010)

 μ_k , $\lambda \in \mathcal{H}_{q,n}$. If $\mu_k \to \lambda$ and $\inf_k r_{\mu_k} > 0$, then, $(G_{\mu_k}/K_{\mu_k}, g_{\mu_k}) \to (G_{\lambda}/K_{\lambda}, g_{\lambda})$ pointed (or Cheeger-Gromov), after passing to a subsequence.

In the case $\mathfrak{k}=0$, condition $\inf_k r_{\mu_k}>0$ automatically holds,

Lie injectivity radius of $(G_{\mu}/K_{\mu},g_{\mu})$, $\mu\in\mathcal{H}_{q,n}$,

$$r_{\mu} := \sup \left\{ r > 0 : \pi_{\mu} \circ \exp_{\mu} : B(0,r) o G_{\mu}/\mathcal{K}_{\mu} \quad \mathsf{diffeomorphism}
ight\}.$$

Theorem (JL 2010)

 μ_k , $\lambda \in \mathcal{H}_{q,n}$. If $\mu_k \to \lambda$ and $\inf_k r_{\mu_k} > 0$, then, $(G_{\mu_k}/K_{\mu_k}, g_{\mu_k}) \to (G_{\lambda}/K_{\lambda}, g_{\lambda})$ pointed (or Cheeger-Gromov), after passing to a subsequence.

In the case $\mathfrak{k}=0$, condition inf $r_{\mu_k}>0$ automatically holds, and $g_{\mu_k}\to g_\lambda$ smoothly on $\mathbb{R}^n\equiv \mathfrak{g}$, provided all μ_k are completely solvable (e.g. nilpotent).

Examples of singular behavior

• A sequence $\mu_k \in \mathcal{H}_{1,7}$ of Aloff-Wallach spaces $(SU(3)/S_{p,q}^1)$

Examples of singular behavior

• A sequence $\mu_k \in \mathcal{H}_{1,7}$ of Aloff-Wallach spaces $(SU(3)/S_{p,q}^1)$ which converges to another Aloff-Wallach space λ , but such that it does not admit any pointed convergent subsequence.

Examples of singular behavior

- A sequence $\mu_k \in \mathcal{H}_{1,7}$ of Aloff-Wallach spaces $(SU(3)/S_{p,q}^1)$ which converges to another Aloff-Wallach space λ , but such that it does not admit any pointed convergent subsequence.
- A divergent sequence $\mu_k \in \mathcal{H}_{0,3}$ of left-invariant metrics on $\widetilde{\mathrm{SL}}_2(\mathbb{R})$

- A sequence $\mu_k \in \mathcal{H}_{1,7}$ of Aloff-Wallach spaces $(SU(3)/S_{p,q}^1)$ which converges to another Aloff-Wallach space λ , but such that it does not admit any pointed convergent subsequence.
- A divergent sequence $\mu_k \in \mathcal{H}_{0,3}$ of left-invariant metrics on $\widetilde{\mathrm{SL}}_2(\mathbb{R})$ which nevertheless pointed converges to $\mathbb{R} \times H^2$.

- A sequence $\mu_k \in \mathcal{H}_{1,7}$ of Aloff-Wallach spaces $(SU(3)/S_{p,q}^1)$ which converges to another Aloff-Wallach space λ , but such that it does not admit any pointed convergent subsequence.
- A divergent sequence $\mu_k \in \mathcal{H}_{0,3}$ of left-invariant metrics on $\widetilde{\mathrm{SL}}_2(\mathbb{R})$ which nevertheless pointed converges to $\mathbb{R} \times H^2$. μ_k is actually isometric to a convergent sequence in $\mathcal{H}_{1,3}$.

- A sequence $\mu_k \in \mathcal{H}_{1,7}$ of Aloff-Wallach spaces $(SU(3)/S_{p,q}^1)$ which converges to another Aloff-Wallach space λ , but such that it does not admit any pointed convergent subsequence.
- A divergent sequence $\mu_k \in \mathcal{H}_{0,3}$ of left-invariant metrics on $\widetilde{\mathrm{SL}}_2(\mathbb{R})$ which nevertheless pointed converges to $\mathbb{R} \times H^2$. μ_k is actually isometric to a convergent sequence in $\mathcal{H}_{1,3}$.
- A sequence $\mu_k \in \mathcal{H}_{1,5}$ of homogeneous metrics on $S^3 \times S^2$ converging to $\lambda \notin \mathcal{H}_{1,5}$ (K_{λ} noncompact).

- A sequence $\mu_k \in \mathcal{H}_{1,7}$ of Aloff-Wallach spaces $(SU(3)/S_{p,q}^1)$ which converges to another Aloff-Wallach space λ , but such that it does not admit any pointed convergent subsequence.
- A divergent sequence $\mu_k \in \mathcal{H}_{0,3}$ of left-invariant metrics on $\widetilde{\mathrm{SL}}_2(\mathbb{R})$ which nevertheless pointed converges to $\mathbb{R} \times H^2$. μ_k is actually isometric to a convergent sequence in $\mathcal{H}_{1,3}$.
- A sequence $\mu_k \in \mathcal{H}_{1,5}$ of homogeneous metrics on $S^3 \times S^2$ converging to $\lambda \notin \mathcal{H}_{1,5}$ (K_λ noncompact). However, λ can be viewed as an element of $\mathcal{H}_{2,4}$, giving rise to a collapsing of the μ_k with bounded curvature to a metric on $S^2 \times S^2$.

g(t) Ricci flow starting at the homogeneous manifold

$$(M, g_0) = (G_{\mu_0}/K_{\mu_0}, g_{\mu_0}), \qquad \mu_0 \in \mathcal{H}_{q,n},$$

g(t) Ricci flow starting at the homogeneous manifold

$$(M, g_0) = (G_{\mu_0}/K_{\mu_0}, g_{\mu_0}), \qquad \mu_0 \in \mathcal{H}_{q,n},$$

$$\left|rac{\partial}{\partial t}g(t)=-2\operatorname{\mathsf{Rc}}(g(t))
ight|, \qquad g(0)=g_{\mu_0},$$

g(t) Ricci flow starting at the homogeneous manifold

$$(M,g_0)=\left(\mathit{G}_{\mu_0}/\mathit{K}_{\mu_0},g_{\mu_0}
ight), \qquad \mu_0\in\mathcal{H}_{q,n},$$

$$rac{\partial}{\partial t}g(t) = -2\operatorname{\mathsf{Rc}}(g(t)), \qquad g(0) = g_{\mu_0},$$

 $\Rightarrow G_{\mu_0} \subset \operatorname{Isom}(M,g(t))$ for all t

g(t) Ricci flow starting at the homogeneous manifold

$$(M,g_0)=(G_{\mu_0}/K_{\mu_0},g_{\mu_0})\,,\qquad \mu_0\in \mathcal{H}_{q,n},$$

$$\left[rac{\partial}{\partial t} g(t) = -2 \operatorname{\mathsf{Rc}}(g(t))
ight], \qquad g(0) = g_{\mu_0},$$

- $\Rightarrow G_{\mu_0} \subset \operatorname{Isom}(M,g(t))$ for all t
- \Rightarrow $g(t) \leftrightarrow \langle \cdot, \cdot \rangle_t$: Ad (K_{μ_0}) -invariant inner product on $\mathfrak p$ solving the ODE:

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\cdot,\cdot\rangle_t = -2\,\mathsf{Rc}(\langle\cdot,\cdot\rangle_t), \qquad \langle\cdot,\cdot\rangle_0 = \langle\cdot,\cdot\rangle,$$

g(t) Ricci flow starting at the homogeneous manifold

$$(M,g_0)=\left(\mathit{G}_{\mu_0}/\mathit{K}_{\mu_0},g_{\mu_0}
ight), \qquad \mu_0\in\mathcal{H}_{q,n},$$

$$\left| rac{\partial}{\partial t} g(t) = -2 \operatorname{\mathsf{Rc}}(g(t))
ight|, \qquad g(0) = g_{\mu_0},$$

- $\Rightarrow G_{\mu_0} \subset \operatorname{Isom}(M,g(t))$ for all t
- \Rightarrow $g(t) \leftrightarrow \langle \cdot, \cdot \rangle_t$: Ad (K_{μ_0}) -invariant inner product on $\mathfrak p$ solving the ODE:

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\cdot,\cdot\rangle_t = -2\,\mathsf{Rc}(\langle\cdot,\cdot\rangle_t), \qquad \langle\cdot,\cdot\rangle_0 = \langle\cdot,\cdot\rangle,$$

$$t \in (T_-, T_+), \quad -\infty \le T_- < 0 < T_+ \le T_+.$$

g(t) Ricci flow starting at the homogeneous manifold

$$(M,g_0)=(G_{\mu_0}/K_{\mu_0},g_{\mu_0})\,,\qquad \mu_0\in \mathcal{H}_{q,n},$$

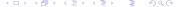
$$rac{\partial}{\partial t}g(t) = -2\operatorname{\mathsf{Rc}}(g(t))\,, \qquad g(0) = g_{\mu_0},$$

- $\Rightarrow G_{\mu_0} \subset \operatorname{Isom}(M,g(t))$ for all t
- \Rightarrow $g(t) \leftrightarrow \langle \cdot, \cdot \rangle_t$: Ad (K_{μ_0}) -invariant inner product on $\mathfrak p$ solving the ODE:

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\cdot,\cdot\rangle_t = -2\,\mathsf{Rc}(\langle\cdot,\cdot\rangle_t), \qquad \langle\cdot,\cdot\rangle_0 = \langle\cdot,\cdot\rangle,$$

$$t \in (T_-, T_+), \quad -\infty \le T_- < 0 < T_+ \le T_+.$$

Ricci flow on $\mathcal{H}_{q,n}$????



$$\boxed{\frac{\mathrm{d}}{\mathrm{d}t}\mu = -\pi \left(\begin{bmatrix} 0 & 0 \\ 0 & \mathrm{Ric}_{\mu} \end{bmatrix} \right) \mu},$$

$$\boxed{\frac{\mathrm{d}}{\mathrm{d}t}\mu = -\pi \left(\left[\begin{smallmatrix} 0 & 0 \\ 0 & \mathrm{Ric}_{\mu} \end{smallmatrix} \right] \right) \mu},$$

$$\pi: \mathfrak{gl}_{q+n} \longrightarrow \operatorname{End}(\Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}),$$

$$\boxed{\frac{\mathrm{d}}{\mathrm{d}t}\mu = -\pi \left(\left[\begin{smallmatrix} 0 & 0 \\ 0 & \mathrm{Ric}_{\mu} \end{smallmatrix} \right] \right) \mu},$$

$$\pi: \mathfrak{gl}_{q+n} \longrightarrow \operatorname{End}(\Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}),$$

$$\pi(A)\mu := A\mu(\cdot, \cdot) - \mu(A\cdot, \cdot) - \mu(\cdot, A\cdot), \quad \forall A \in \mathfrak{gl}_{q+n},$$

$$\boxed{\frac{\mathrm{d}}{\mathrm{d}t}\mu = -\pi \left(\left[\begin{smallmatrix} 0 & 0 \\ 0 & \mathrm{Ric}_{\mu} \end{smallmatrix} \right] \right) \mu},$$

$$\begin{split} \pi: \mathfrak{gl}_{q+n} &\longrightarrow \mathsf{End}(\mathsf{\Lambda}^2 \mathfrak{g}^* \otimes \mathfrak{g}), \\ \pi(A) \mu: &= A \mu(\cdot, \cdot) - \mu(A \cdot, \cdot) - \mu(\cdot, A \cdot), \quad \forall A \in \mathfrak{gl}_{q+n}, \\ \mathsf{Ric}_{\mu}: \mathfrak{p} &\to \mathfrak{p} \ \mathsf{Ricci} \ \mathsf{operator}, \end{split}$$

Consider for a curve $\mu(t) \in \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$ the bracket flow:

$$\boxed{\frac{\mathrm{d}}{\mathrm{d}t}\mu = -\pi \left(\begin{bmatrix} 0 & 0 \\ 0 & \mathrm{Ric}_{\mu} \end{bmatrix} \right) \mu},$$

$$\pi: \mathfrak{gl}_{q+n} \longrightarrow \operatorname{End}(\Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}),$$

$$\pi(A)\mu := A\mu(\cdot, \cdot) - \mu(A\cdot, \cdot) - \mu(\cdot, A\cdot), \quad \forall A \in \mathfrak{gl}_{q+n},$$
Plant the Property Plant Property Pr

 $\mathrm{Ric}_{\mu}:\mathfrak{p} o\mathfrak{p}$ Ricci operator, $\mathrm{Ric}_{\mu}=M_{\mu}-rac{1}{2}B_{\mu}-S(\mathrm{ad}_{\mu}\,H_{\mu}|_{\mathfrak{p}}).$

$$\boxed{\frac{\mathrm{d}}{\mathrm{d}t}\mu = -\pi \left(\left[\begin{smallmatrix} 0 & 0 \\ 0 & \mathrm{Ric}_{\mu} \end{smallmatrix} \right] \right) \mu},$$

$$\pi: \mathfrak{gl}_{q+n} \longrightarrow \operatorname{End}(\Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}),$$

$$\pi(A)\mu := A\mu(\cdot, \cdot) - \mu(A\cdot, \cdot) - \mu(\cdot, A\cdot), \quad \forall A \in \mathfrak{gl}_{q+n},$$

$$\operatorname{Ric}_{\mu}: \mathfrak{p} \to \mathfrak{p} \text{ Ricci operator, } \operatorname{Ric}_{\mu} = M_{\mu} - \frac{1}{2}B_{\mu} - S(\operatorname{ad}_{\mu} H_{\mu}|_{\mathfrak{p}}).$$

$$\mu_0 \in \mathcal{H}_{\sigma, \mathfrak{p}} \Rightarrow \mu(t) \in \mathcal{H}_{\sigma, \mathfrak{p}} \text{ for all } t$$

$$\mu_0 \in \mathcal{H}_{q,n} \Rightarrow \mu(t) \in \mathcal{H}_{q,n}$$
 for all t ,

$$\boxed{\frac{\mathrm{d}}{\mathrm{d}t}\mu = -\pi \left(\left[\begin{smallmatrix} 0 & 0 \\ 0 & \mathrm{Ric}_{\mu} \end{smallmatrix} \right] \right) \mu},$$

$$\begin{split} \pi: \mathfrak{gl}_{q+n} &\longrightarrow \mathsf{End}(\mathsf{\Lambda}^2 \mathfrak{g}^* \otimes \mathfrak{g}), \\ \pi(A)\mu &:= A\mu(\cdot, \cdot) - \mu(A\cdot, \cdot) - \mu(\cdot, A\cdot), \quad \forall A \in \mathfrak{gl}_{q+n}, \\ \mathsf{Ric}_{\mu}: \mathfrak{p} &\to \mathfrak{p} \; \mathsf{Ricci} \; \mathsf{operator}, \; \mathsf{Ric}_{\mu} &= M_{\mu} - \frac{1}{2}B_{\mu} - S(\mathsf{ad}_{\mu} \, H_{\mu}|_{\mathfrak{p}}). \end{split}$$

$$\mu_0 \in \mathcal{H}_{q,n} \Rightarrow \mu(t) \in \mathcal{H}_{q,n}$$
 for all t , $\mu(t) \rightsquigarrow (G_{\mu(t)}/K_{\mu(t)}, \langle \cdot, \cdot \rangle)$ curve of homogeneous spaces.

 $(M,g_0)=(G_{\mu_0}/K_{\mu_0},g_{\mu_0}), \quad \mu_0\in \mathcal{H}_{q,n}, \quad ext{(recall } \mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}),$

$$(M,g_0)=(G_{\mu_0}/K_{\mu_0},g_{\mu_0}), \quad \mu_0\in \mathcal{H}_{q,n}, \quad ext{(recall } \mathfrak{g}=\mathfrak{k}\oplus \mathfrak{p}),$$
 $(M,g(t)), \quad \left(G_{\mu_0}/K_{\mu_0},g_{\langle\cdot,\cdot
angle_t}
ight), \quad \left(G_{\mu(t)}/K_{\mu(t)},g_{\mu(t)}
ight),$

$$\begin{split} (M,g_0) &= (G_{\mu_0}/K_{\mu_0},g_{\mu_0}), \quad \mu_0 \in \mathcal{H}_{q,n}, \quad \text{(recall } \mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}), \\ (M,g(t)), \quad \left(G_{\mu_0}/K_{\mu_0},g_{\langle\cdot,\cdot\rangle_t}\right), \quad \left(G_{\mu(t)}/K_{\mu(t)},g_{\mu(t)}\right), \end{split}$$

$$\exists \ arphi(t): M = extstyle G_{\mu_0}/ extstyle K_{\mu_0} \longrightarrow extstyle G_{\mu(t)}/ extstyle K_{\mu(t)}$$
 such that

$$(M,g_0)=(G_{\mu_0}/K_{\mu_0},g_{\mu_0}), \quad \mu_0\in \mathcal{H}_{q,n}, \quad ext{(recall } \mathfrak{g}=\mathfrak{k}\oplus \mathfrak{p}),$$

$$(M,g(t)), \quad \left(G_{\mu_0}/K_{\mu_0},g_{\langle\cdot,\cdot
angle_t}
ight), \quad \left(G_{\mu(t)}/K_{\mu(t)},g_{\mu(t)}
ight),$$

$$\exists \varphi(t): M = G_{\mu_0}/K_{\mu_0} \longrightarrow G_{\mu(t)}/K_{\mu(t)}$$
 such that

$$|g(t) = \varphi(t)^* g_{\mu(t)}|, \qquad \forall t \in (T_-, T_+).$$

$$(M,g_0)=(G_{\mu_0}/K_{\mu_0},g_{\mu_0}), \quad \mu_0\in \mathcal{H}_{q,n}, \quad ext{(recall } \mathfrak{g}=\mathfrak{k}\oplus \mathfrak{p}),$$

$$(M,g(t)), \quad \left(G_{\mu_0}/K_{\mu_0},g_{\langle\cdot,\cdot
angle_t}
ight), \quad \left(G_{\mu(t)}/K_{\mu(t)},g_{\mu(t)}
ight),$$

$$\exists \ arphi(t): M = G_{\mu_0}/K_{\mu_0} \longrightarrow G_{\mu(t)}/K_{\mu(t)}$$
 such that

$$\boxed{ egin{aligned} egin{aligned\\ egin{aligned} egin{aligned}$$

Moreover, $\varphi(t): G_{\mu_0}/K_{\mu_0} \longrightarrow G_{\mu(t)}/K_{\mu(t)}$ equivariant diffeomorphism determined by the Lie group isomorphism between G_{μ_0} and $G_{\mu(t)}$

$$(M,g_0)=(G_{\mu_0}/K_{\mu_0},g_{\mu_0}), \quad \mu_0\in \mathcal{H}_{q,n}, \quad ext{(recall } \mathfrak{g}=\mathfrak{k}\oplus \mathfrak{p}),$$

$$(M,g(t)), \quad \left(G_{\mu_0}/K_{\mu_0},g_{\langle\cdot,\cdot
angle_t}
ight), \quad \left(G_{\mu(t)}/K_{\mu(t)},g_{\mu(t)}
ight),$$

$$\exists~arphi(t):M= extstyle G_{\mu_0}/ extstyle K_{\mu_0} \longrightarrow extstyle G_{\mu(t)}/ extstyle K_{\mu(t)}$$
 such that

$$g(t) = \varphi(t)^* g_{\mu(t)}, \qquad \forall t \in (T_-, T_+).$$

Moreover, $\varphi(t): G_{\mu_0}/K_{\mu_0} \longrightarrow G_{\mu(t)}/K_{\mu(t)}$ equivariant diffeomorphism determined by the Lie group isomorphism between G_{μ_0} and $G_{\mu(t)}$ with derivative $\tilde{h} := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} : \mathfrak{g} \longrightarrow \mathfrak{g}$, where $h(t) := d\varphi(t)|_{\mathcal{O}} : \mathfrak{p} \longrightarrow \mathfrak{p}$,

$$\begin{split} (M,g_0) &= (G_{\mu_0}/K_{\mu_0},g_{\mu_0}), \quad \mu_0 \in \mathcal{H}_{q,n}, \quad \text{(recall } \mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}), \\ (M,g(t)), \quad \left(G_{\mu_0}/K_{\mu_0},g_{\langle\cdot,\cdot\rangle_t}\right), \quad \left(G_{\mu(t)}/K_{\mu(t)},g_{\mu(t)}\right), \end{split}$$

$$\exists \ arphi(t): M = extstyle G_{\mu_0}/ extstyle K_{\mu_0} \longrightarrow extstyle G_{\mu(t)}/ extstyle K_{\mu(t)}$$
 such that

$$\boxed{g(t) = arphi(t)^* g_{\mu(t)}}, \qquad orall t \in (T_-, T_+).$$

Moreover, $\varphi(t): G_{\mu_0}/K_{\mu_0} \longrightarrow G_{\mu(t)}/K_{\mu(t)}$ equivariant diffeomorphism determined by the Lie group isomorphism between G_{μ_0} and $G_{\mu(t)}$ with derivative $\tilde{h}:=\left[\begin{smallmatrix} I & 0 \\ 0 & h\end{smallmatrix}\right]: \mathfrak{g} \longrightarrow \mathfrak{g}$, where $h(t):=d\varphi(t)|_o:\mathfrak{p}\longrightarrow\mathfrak{p}$,

- (i) $\frac{\mathrm{d}}{\mathrm{d}t}h = -h\operatorname{Ric}(\langle \cdot, \cdot \rangle_t), \quad h(0) = I.$
- (ii) $\frac{\mathrm{d}}{\mathrm{d}t}h = -\operatorname{Ric}_{\mu(t)}h$, h(0) = I.

$$\begin{split} (M,g_0) &= (G_{\mu_0}/K_{\mu_0},g_{\mu_0}), \quad \mu_0 \in \mathcal{H}_{q,n}, \quad \text{(recall } \mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}), \\ (M,g(t)), \quad \left(G_{\mu_0}/K_{\mu_0},g_{\langle\cdot,\cdot\rangle_t}\right), \quad \left(G_{\mu(t)}/K_{\mu(t)},g_{\mu(t)}\right), \end{split}$$

$$\exists \varphi(t): M = G_{\mu_0}/K_{\mu_0} \longrightarrow G_{\mu(t)}/K_{\mu(t)}$$
 such that

$$\boxed{g(t) = arphi(t)^* g_{\mu(t)}}, \qquad orall t \in (T_-, T_+).$$

Moreover, $\varphi(t): G_{\mu_0}/K_{\mu_0} \longrightarrow G_{\mu(t)}/K_{\mu(t)}$ equivariant diffeomorphism determined by the Lie group isomorphism between G_{μ_0} and $G_{\mu(t)}$ with derivative $\tilde{h}:=\left[\begin{smallmatrix} I & 0 & h \\ 0 & h \end{smallmatrix}\right]: \mathfrak{g} \longrightarrow \mathfrak{g}$, where $h(t):=d\varphi(t)|_{\mathcal{O}}: \mathfrak{p} \longrightarrow \mathfrak{p}$,

- (i) $\frac{\mathrm{d}}{\mathrm{d}t}h = -h\operatorname{Ric}(\langle \cdot, \cdot \rangle_t), \quad h(0) = I.$
- (ii) $\frac{\mathrm{d}}{\mathrm{d}t}h = -\operatorname{Ric}_{\mu(t)}h$, h(0) = I.
- (iii) $\langle \cdot, \cdot \rangle_t = \langle h \cdot, h \cdot \rangle$.
- (iv) $\mu(t) = \tilde{h}\mu_0(\tilde{h}^{-1}\cdot, \tilde{h}^{-1}\cdot).$

$$(M,g(t)), \quad \left(G_{\mu_0}/K_{\mu_0},g_{\langle\cdot,\cdot\rangle_t}\right), \quad \left(G_{\mu(t)}/K_{\mu(t)},g_{\mu(t)}\right),$$

$$(M,g(t)), \quad \left(G_{\mu_0}/K_{\mu_0},g_{\langle\cdot,\cdot
angle_t}
ight), \quad \left(G_{\mu(t)}/K_{\mu(t)},g_{\mu(t)}
ight),$$
 $g(t)=arphi(t)^*g_{\mu(t)}$

$$(M,g(t)), \quad \left(G_{\mu_0}/K_{\mu_0},g_{\langle\cdot,\cdot
angle_t}
ight), \quad \left(G_{\mu(t)}/K_{\mu(t)},g_{\mu(t)}
ight),$$
 $g(t)=arphi(t)^*g_{\mu(t)}$

Same behavior of the curvature and of any other Riemannian invariant.

$$(M,g(t)), \quad \left(G_{\mu_0}/K_{\mu_0},g_{\langle\cdot,\cdot
angle_t}
ight), \quad \left(G_{\mu(t)}/K_{\mu(t)},g_{\mu(t)}
ight),$$
 $g(t)=arphi(t)^*g_{\mu(t)}$

- Same behavior of the curvature and of any other Riemannian invariant.
- Maximal interval of time where a solution exists is the same.

$$(M,g(t)), \quad \left(G_{\mu_0}/K_{\mu_0},g_{\langle\cdot,\cdot
angle_t}
ight), \quad \left(G_{\mu(t)}/K_{\mu(t)},g_{\mu(t)}
ight),$$
 $g(t)=arphi(t)^*g_{\mu(t)}$

- Same behavior of the curvature and of any other Riemannian invariant.
- Maximal interval of time where a solution exists is the same.
- $\mu(t_k) \to \lambda \in \mathcal{H}_{q,n}$ (or a suitable normalization)

$$(M,g(t)), \quad \left(G_{\mu_0}/K_{\mu_0},g_{\langle\cdot,\cdot
angle_t}
ight), \quad \left(G_{\mu(t)}/K_{\mu(t)},g_{\mu(t)}
ight),$$
 $g(t)=arphi(t)^*g_{\mu(t)}$

- Same behavior of the curvature and of any other Riemannian invariant.
- Maximal interval of time where a solution exists is the same.
- $\mu(t_k) \to \lambda \in \mathcal{H}_{q,n}$ (or a suitable normalization) \Rightarrow convergence or subconvergence $g_{\mu_k} \to g_{\lambda}$ (infinitesimal, local or pointed).

$$(M,g(t)), \quad \left(G_{\mu_0}/K_{\mu_0},g_{\langle\cdot,\cdot
angle_t}
ight), \quad \left(G_{\mu(t)}/K_{\mu(t)},g_{\mu(t)}
ight),$$
 $g(t)=arphi(t)^*g_{\mu(t)}$

- Same behavior of the curvature and of any other Riemannian invariant.
- Maximal interval of time where a solution exists is the same.
- $\mu(t_k) \to \lambda \in \mathcal{H}_{q,n}$ (or a suitable normalization) \Rightarrow convergence or subconvergence $g_{\mu_k} \to g_{\lambda}$ (infinitesimal, local or pointed).
- $\bullet \ \mu(t)|_{\mathfrak{k}\times\mathfrak{g}}\equiv \mu_0|_{\mathfrak{k}\times\mathfrak{g}}.$

Application to nilmanifolds

G nilpotent and s.c., $K = \{e\}$,

G nilpotent and s.c., $K = \{e\}$, $\mathfrak{g} = \mathfrak{p} = \mathbb{R}^n = G$,

G nilpotent and s.c., $K=\{e\}$, $\mathfrak{g}=\mathfrak{p}=\mathbb{R}^n=G$, μ nilpotent Lie bracket on \mathfrak{g} ,

G nilpotent and s.c., $K = \{e\}$, $\mathfrak{g} = \mathfrak{p} = \mathbb{R}^n = G$, μ nilpotent Lie bracket on \mathfrak{g} , $\mathsf{Ric}_{\mu} = M_{\mu}$,

G nilpotent and s.c., $K = \{e\}$, $\mathfrak{g} = \mathfrak{p} = \mathbb{R}^n = G$, μ nilpotent Lie bracket on \mathfrak{g} , $\mathsf{Ric}_{\mu} = M_{\mu}$, $\mathsf{R}(g_{\mu}) = -\frac{1}{4} \|\mu\|^2$,

$$G$$
 nilpotent and s.c., $K=\{e\}$, $\mathfrak{g}=\mathfrak{p}=\mathbb{R}^n=G$, μ nilpotent Lie bracket on \mathfrak{g} , $\boxed{\mathrm{Ric}_\mu=M_\mu}$, $\mathrm{R}(g_\mu)=-\frac{1}{4}\|\mu\|^2$, $\frac{\mathrm{d}}{\mathrm{d}t}\mu=-\pi(\mathrm{Ric}_\mu)\mu$

$$G$$
 nilpotent and s.c., $K=\{e\}, \ \mathfrak{g}=\mathfrak{p}=\mathbb{R}^n=G, \ \mu$ nilpotent Lie bracket on $\mathfrak{g}, \ \overline{\mathrm{Ric}_\mu=M_\mu}, \ \mathrm{R}(g_\mu)=-\frac{1}{4}\|\mu\|^2,$
$$\frac{\mathrm{d}}{\mathrm{dt}}\mu=-\pi(\mathrm{Ric}_\mu)\mu=-\operatorname{grad}(\operatorname{tr}\mathrm{Ric}_\mu^2)_\mu$$

$$G$$
 nilpotent and s.c., $K=\{e\}$, $\mathfrak{g}=\mathfrak{p}=\mathbb{R}^n=G$, μ nilpotent Lie bracket on \mathfrak{g} , $\boxed{\mathrm{Ric}_\mu=M_\mu}$, $\mathrm{R}(g_\mu)=-\frac{1}{4}\|\mu\|^2$,

$$rac{\mathrm{d}}{\mathrm{d}t}\mu = -\pi(\mathsf{Ric}_\mu)\mu = -\operatorname{\mathsf{grad}}(\operatorname{\mathsf{tr}}\operatorname{\mathsf{Ric}}_\mu^2)_\mu$$

negative gradient flow of the square norm of the moment map for the action $GL_n \circlearrowleft \Lambda^2 \mathfrak{q}^* \otimes \mathfrak{q}$.

G nilpotent and s.c., $K = \{e\}$, $\mathfrak{g} = \mathfrak{p} = \mathbb{R}^n = G$, μ nilpotent Lie bracket on \mathfrak{g} , Ric $_{\mu} = M_{\mu}$, R(g_{μ}) = $-\frac{1}{4} \|\mu\|^2$,

$$rac{\mathrm{d}}{\mathrm{d}t}\mu = -\pi(\mathsf{Ric}_\mu)\mu = -\operatorname{\mathsf{grad}}(\operatorname{\mathsf{tr}}\operatorname{\mathsf{Ric}}_\mu^2)_\mu$$

negative gradient flow of the square norm of the moment map for the action $GL_n \circlearrowleft \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$.

[JL 2001] g_{μ} Ricci soliton $\Leftrightarrow \mu$ critical point of $\mu \mapsto \operatorname{tr} \operatorname{Ric}_{\mu}^{2}$ on the sphere.

G nilpotent and s.c., $K = \{e\}$, $\mathfrak{g} = \mathfrak{p} = \mathbb{R}^n = G$, μ nilpotent Lie bracket on \mathfrak{g} , $|\operatorname{Ric}_{\mu} = M_{\mu}|$, $\operatorname{R}(g_{\mu}) = -\frac{1}{4} \|\mu\|^2$,

$$rac{\mathrm{d}}{\mathrm{d}t}\mu = -\pi(\mathsf{Ric}_\mu)\mu = -\operatorname{\mathsf{grad}}(\operatorname{\mathsf{tr}}\operatorname{\mathsf{Ric}}_\mu^2)_\mu$$

negative gradient flow of the square norm of the moment map for the action $GL_n \circlearrowleft \Lambda^2 \mathfrak{q}^* \otimes \mathfrak{q}$.

[JL 2001] g_{μ} Ricci soliton $\Leftrightarrow \mu$ critical point of $\mu \mapsto \operatorname{tr} \operatorname{Ric}_{u}^{2}$ on the sphere.

Theorem (JL 2009)

• The Ricci flow g(t) is a type-III solution

G nilpotent and s.c., $K = \{e\}$, $\mathfrak{g} = \mathfrak{p} = \mathbb{R}^n = G$, μ nilpotent Lie bracket on \mathfrak{g} , Ric $_{\mu} = M_{\mu}$, R(g_{μ}) = $-\frac{1}{4} \|\mu\|^2$,

$$rac{\mathrm{d}}{\mathrm{d}t}\mu = -\pi(\mathsf{Ric}_\mu)\mu = -\operatorname{\mathsf{grad}}(\operatorname{\mathsf{tr}}\operatorname{\mathsf{Ric}}_\mu^2)_\mu$$

negative gradient flow of the square norm of the moment map for the action $GL_n \circlearrowleft \Lambda^2 \mathfrak{a}^* \otimes \mathfrak{a}$.

[JL 2001] g_{μ} Ricci soliton $\Leftrightarrow \mu$ critical point of $\mu \mapsto \operatorname{tr} \operatorname{Ric}_{u}^{2}$ on the sphere.

Theorem (JL 2009)

• The Ricci flow g(t) is a type-III solution (i.e. $t \in [0, \infty)$ and $\|\operatorname{Rm}(g(t))\| < \frac{C}{t}$).

G nilpotent and s.c., $K = \{e\}$, $\mathfrak{g} = \mathfrak{p} = \mathbb{R}^n = G$, μ nilpotent Lie bracket on \mathfrak{g} , $|\operatorname{Ric}_{\mu} = M_{\mu}|$, $\operatorname{R}(g_{\mu}) = -\frac{1}{4} \|\mu\|^2$,

$$rac{\mathrm{d}}{\mathrm{d}t}\mu = -\pi(\mathsf{Ric}_\mu)\mu = -\operatorname{\mathsf{grad}}(\operatorname{\mathsf{tr}}\operatorname{\mathsf{Ric}}_\mu^2)_\mu$$

negative gradient flow of the square norm of the moment map for the action $GL_n \circlearrowleft \Lambda^2 \mathfrak{q}^* \otimes \mathfrak{q}$.

[JL 2001] g_{μ} Ricci soliton $\Leftrightarrow \mu$ critical point of $\mu \mapsto \operatorname{tr} \operatorname{Ric}_{\mu}^{2}$ on the sphere.

- The Ricci flow g(t) is a type-III solution (i.e. $t \in [0, \infty)$ and $\|\operatorname{Rm}(g(t))\| \leq \frac{C}{t}$).
- g(t) converges in C^{∞} to a flat metric uniformly on compact sets in \mathbb{R}^n .

G nilpotent and s.c., $K = \{e\}$, $\mathfrak{g} = \mathfrak{p} = \mathbb{R}^n = G$, μ nilpotent Lie bracket on \mathfrak{g} , $|\operatorname{Ric}_{\mu} = M_{\mu}|$, $\operatorname{R}(g_{\mu}) = -\frac{1}{4} \|\mu\|^2$,

$$rac{\mathrm{d}}{\mathrm{d}t}\mu = -\pi(\mathsf{Ric}_\mu)\mu = -\operatorname{\mathsf{grad}}(\operatorname{\mathsf{tr}}\operatorname{\mathsf{Ric}}_\mu^2)_\mu$$

negative gradient flow of the square norm of the moment map for the action $GL_n \circlearrowleft \Lambda^2 \mathfrak{q}^* \otimes \mathfrak{q}$.

[JL 2001] g_{μ} Ricci soliton $\Leftrightarrow \mu$ critical point of $\mu \mapsto \operatorname{tr} \operatorname{Ric}_{\mu}^{2}$ on the sphere.

- The Ricci flow g(t) is a type-III solution (i.e. $t \in [0, \infty)$ and $\|\operatorname{Rm}(g(t))\| < \frac{C}{t}$).
- g(t) converges in C^{∞} to a flat metric uniformly on compact sets in \mathbb{R}^n
- After rescaling ($R \equiv -1$),

G nilpotent and s.c., $K = \{e\}$, $\mathfrak{g} = \mathfrak{p} = \mathbb{R}^n = G$, μ nilpotent Lie bracket on \mathfrak{g} , Ric $_{\mu} = M_{\mu}$, R(g_{μ}) = $-\frac{1}{4} \|\mu\|^2$,

$$rac{\mathrm{d}}{\mathrm{d}t}\mu = -\pi(\mathsf{Ric}_\mu)\mu = -\operatorname{\mathsf{grad}}(\operatorname{\mathsf{tr}}\operatorname{\mathsf{Ric}}_\mu^2)_\mu$$

negative gradient flow of the square norm of the moment map for the action $GL_n \circlearrowleft \Lambda^2 \mathfrak{q}^* \otimes \mathfrak{q}$.

[JL 2001] g_{μ} Ricci soliton $\Leftrightarrow \mu$ critical point of $\mu \mapsto \operatorname{tr} \operatorname{Ric}_{u}^{2}$ on the sphere.

- The Ricci flow g(t) is a type-III solution (i.e. $t \in [0, \infty)$ and $\|\operatorname{Rm}(g(t))\| \leq \frac{C}{t}$).
- g(t) converges in C^{∞} to a flat metric uniformly on compact sets in \mathbb{R}^n .
- After rescaling (R $\equiv -1$), g(t) converges to a Ricci soliton metric g_{∞} ,

G nilpotent and s.c., $K = \{e\}$, $\mathfrak{g} = \mathfrak{p} = \mathbb{R}^n = G$, μ nilpotent Lie bracket on \mathfrak{g} , $\left|\operatorname{\mathsf{Ric}}_{\mu}=M_{\mu}\right|$, $\operatorname{\mathsf{R}}(g_{\mu})=-rac{1}{4}\|\mu\|^{2}$,

$$rac{\mathrm{d}}{\mathrm{d}t}\mu = -\pi(\mathsf{Ric}_\mu)\mu = -\operatorname{\mathsf{grad}}(\operatorname{\mathsf{tr}}\operatorname{\mathsf{Ric}}_\mu^2)_\mu$$

negative gradient flow of the square norm of the moment map for the action $GL_n \circlearrowleft \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$.

[JL 2001] g_{μ} Ricci soliton $\Leftrightarrow \mu$ critical point of $\mu \mapsto \operatorname{tr} \operatorname{Ric}_{\mu}^{2}$ on the sphere.

- The Ricci flow g(t) is a type-III solution (i.e. $t \in [0, \infty)$ and $\|\operatorname{Rm}(g(t))\| \leq \frac{C}{t}$).
- g(t) converges in C^{∞} to a flat metric uniformly on compact sets in \mathbb{R}^n .
- After rescaling (R $\equiv -1$), g(t) converges to a Ricci soliton metric g_{∞} , which is also invariant under a transitive nilpotent Lie group, though possibly non-isomorphic to G.

[Guzhvina 2008] Bracket flow for nilmanifolds with applications to almost-flat manifolds.

[Guzhvina 2008] Bracket flow for nilmanifolds with applications to almost-flat manifolds.

[Payne 2010] Qualitative behavior of bracket flow solutions for nilmanifolds.

[Guzhvina 2008] Bracket flow for nilmanifolds with applications to almost-flat manifolds.

[Payne 2010] Qualitative behavior of bracket flow solutions for nilmanifolds.

[Glickenstein-Payne 2010] Ricci flow of 3-dim unimodular Lie groups.

[Guzhvina 2008] Bracket flow for nilmanifolds with applications to almost-flat manifolds.

[Payne 2010] Qualitative behavior of bracket flow solutions for nilmanifolds.

[Glickenstein-Payne 2010] Ricci flow of 3-dim unimodular Lie groups.

[Arroyo 2012] Application to Ricci flow of 4-dim homogeneous manifolds and to Ricci flow of solvmanifolds.

Example in dim = 3 $\mu = \mu_{a,b} \in \mathcal{H}_{1,3}$ defined by

$$\mu=\mu_{\mathsf{a},\mathsf{b}}\in\mathcal{H}_{1,3} \text{ defined by}$$

$$\left\{ \begin{array}{l} \mu(X_3,Z_1)=X_2,\\ \mu(Z_1,X_2)=X_3,\\ \mu(X_2,X_3)=aX_1+bZ_1. \end{array} \right.$$

$$\mu=\mu_{a,b}\in\mathcal{H}_{1,3}$$
 defined by
$$\left(\begin{array}{c}\mu(X_3,Z_1)=X_2,\end{array}\right.$$

$$\begin{cases} \mu(X_3, Z_1) = X_2, \\ \mu(Z_1, X_2) = X_3, \\ \mu(X_2, X_3) = aX_1 + bZ_1. \end{cases}$$

Bracket flow:
$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}a = \left(-\frac{3}{2}a^2 + 2b\right)a, \\ \frac{\mathrm{d}}{\mathrm{d}t}b = \left(-a^2 + 2b\right)b. \end{cases}$$

$$\mu=\mu_{\mathbf{a},\mathbf{b}}\in\mathcal{H}_{1,3}$$
 defined by

$$\begin{cases} \mu(X_3, Z_1) = X_2, \\ \mu(Z_1, X_2) = X_3, \\ \mu(X_2, X_3) = aX_1 + bZ_1. \end{cases}$$

Bracket flow:
$$\begin{cases} \frac{d}{dt}a = (-\frac{3}{2}a^2 + 2b)a, \\ \frac{d}{dt}b = (-a^2 + 2b)b. \end{cases}$$

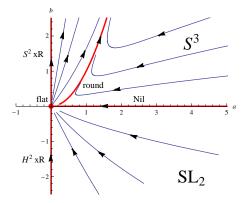


Figure: Phase plane for the ODE system

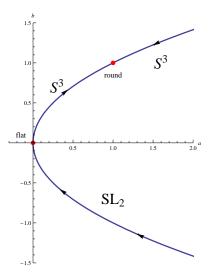


Figure: Volume-normalized bracket flow

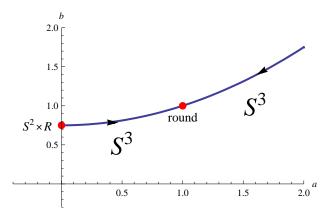


Figure: *R*-normalized bracket flows: $R \equiv \frac{3}{2}$.

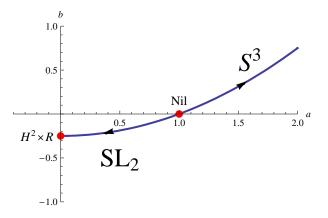


Figure: *R*-normalized bracket flows: $R \equiv -\frac{1}{2}$.

G/H irreducible compact symmetric space,

G/H irreducible compact symmetric space, $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$.

G/H irreducible compact symmetric space, $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$.

$$\text{Bracket flow:} \left\{ \begin{array}{l} \frac{\mathrm{d}}{\mathrm{d}t} a = \frac{1}{4}(\alpha a^2 + (1-\alpha)b^2)a, \\ \\ \frac{\mathrm{d}}{\mathrm{d}t} b = -\frac{1}{4}(\alpha a^2 + (3-\alpha)b^2 - 4ab)b. \end{array} \right.$$

G/H irreducible compact symmetric space, $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$.

$$\text{Bracket flow:} \left\{ \begin{array}{l} \frac{\mathrm{d}}{\mathrm{d}t} a = \frac{1}{4}(\alpha a^2 + (1-\alpha)b^2)a, \\ \\ \frac{\mathrm{d}}{\mathrm{d}t} b = -\frac{1}{4}(\alpha a^2 + (3-\alpha)b^2 - 4ab)b. \end{array} \right.$$

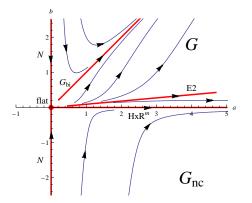


Figure: Phase plane for the ODE system > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > <

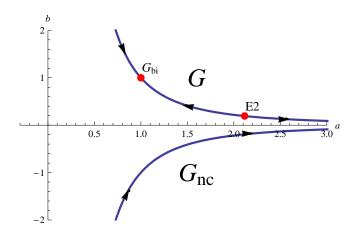


Figure: Volume-normalized bracket flow

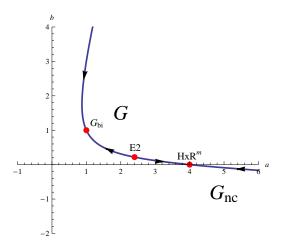


Figure: R-normalized bracket flow: $R \equiv 2$

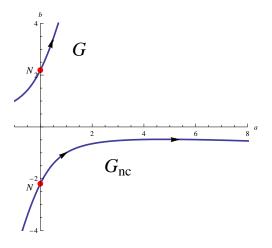


Figure: *R*-normalized bracket flow: $R \equiv -3$

(M,g) complete Riemannian manifold,

(M,g) complete Riemannian manifold, Ricci soliton:

(M,g) complete Riemannian manifold, Ricci soliton:

$$Rc(g) = cg + \mathcal{L}_X(g), \qquad c \in \mathbb{R}, \qquad X \in \chi(M) \text{ (complete)}$$

(M,g) complete Riemannian manifold, Ricci soliton:

$$\mathsf{Rc}(g) = cg + \mathcal{L}_X(g), \qquad c \in \mathbb{R}, \qquad X \in \chi(M) \text{ (complete)}$$

$$\Leftrightarrow \qquad g(t) = (-2ct+1)\varphi(t)^*g, \qquad \varphi(t) \in \mathsf{Diff}(M),$$

solution to Ricci flow with g(0) = g.

(M,g) complete Riemannian manifold, Ricci soliton:

$$Rc(g) = cg + \mathcal{L}_X(g), \qquad c \in \mathbb{R}, \qquad X \in \chi(M) \text{ (complete)}$$

$$\Leftrightarrow \qquad g(t) = (-2ct+1)\varphi(t)^*g, \qquad \varphi(t) \in \mathrm{Diff}(M),$$

solution to Ricci flow with g(0) = g.

[Ivey, Naber, Perelman, Petersen-Wylie]

(M,g) complete Riemannian manifold, Ricci soliton:

$$\operatorname{\mathsf{Rc}}(g) = cg + \mathcal{L}_X(g), \qquad c \in \mathbb{R}, \qquad X \in \chi(M) \text{ (complete)}$$

$$\Leftrightarrow \qquad g(t) = (-2ct+1)\varphi(t)^*g, \qquad \varphi(t) \in \mathrm{Diff}(M),$$

solution to Ricci flow with g(0) = g.

[Ivey, Naber, Perelman, Petersen-Wylie] \rightsquigarrow Any nontrivial (i.e. non-Einstein and not the product of an Einstein homogeneous manifold with a euclidean space)

(M,g) complete Riemannian manifold, Ricci soliton:

$$\operatorname{\mathsf{Rc}}(g) = cg + \mathcal{L}_X(g), \qquad c \in \mathbb{R}, \qquad X \in \chi(M) \text{ (complete)}$$

$$\Leftrightarrow \qquad g(t) = (-2ct+1)\varphi(t)^*g, \qquad \varphi(t) \in \mathrm{Diff}(M),$$

solution to Ricci flow with g(0) = g.

[Ivey, Naber, Perelman, Petersen-Wylie] \leadsto Any nontrivial (i.e. non-Einstein and not the product of an Einstein homogeneous manifold with a euclidean space) homogeneous Ricci soliton must be noncompact,

(M,g) complete Riemannian manifold, Ricci soliton:

$$Rc(g) = cg + \mathcal{L}_X(g), \qquad c \in \mathbb{R}, \qquad X \in \chi(M) \text{ (complete)}$$

$$\Leftrightarrow \qquad g(t) = (-2ct+1)\varphi(t)^*g, \qquad \varphi(t) \in \mathrm{Diff}(M),$$

solution to Ricci flow with g(0) = g.

[Ivey, Naber, Perelman, Petersen-Wylie] \rightsquigarrow Any nontrivial (i.e. non-Einstein and not the product of an Einstein homogeneous manifold with a euclidean space) homogeneous Ricci soliton must be noncompact, expanding (c < 0),

(M,g) complete Riemannian manifold, Ricci soliton:

$$\mathrm{Rc}(g) = cg + \mathcal{L}_X(g), \qquad c \in \mathbb{R}, \qquad X \in \chi(M) \text{ (complete)}$$

$$\Leftrightarrow \qquad g(t) = (-2ct+1)\varphi(t)^*g, \qquad \varphi(t) \in \mathrm{Diff}(M),$$

solution to Ricci flow with g(0) = g.

[Ivey, Naber, Perelman, Petersen-Wylie] \rightsquigarrow Any nontrivial (i.e. non-Einstein and not the product of an Einstein homogeneous manifold with a euclidean space) homogeneous Ricci soliton must be noncompact, expanding (c < 0), non-gradient.

(G/K, g): connected homogeneous space.

(G/K, g): connected homogeneous space.

semi-algebraic soliton: $\exists \varphi_t \in Aut(G)$ with $\varphi_t(K) = K$ such that

$$g(t) = c(t)\varphi_t^*g_{\langle\cdot,\cdot\rangle}, \qquad g(0) = g_{\langle\cdot,\cdot\rangle}.$$

(G/K,g): connected homogeneous space. semi-algebraic soliton: $\exists \varphi_t \in Aut(G)$ with $\varphi_t(K) = K$ such that

$$g(t) = c(t)\varphi_t^* g_{\langle \cdot, \cdot \rangle}, \qquad g(0) = g_{\langle \cdot, \cdot \rangle}.$$

 \Rightarrow for any reductive decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$, $\exists c \in \mathbb{R}$ and $D \in \mathsf{Der}(\mathfrak{g})$ such that $D\mathfrak{k} \subset \mathfrak{k}$

(G/K,g): connected homogeneous space. semi-algebraic soliton: $\exists \varphi_t \in \operatorname{Aut}(G)$ with $\varphi_t(K) = K$ such that

$$g(t) = c(t)\varphi_t^*g_{\langle\cdot,\cdot\rangle}, \qquad g(0) = g_{\langle\cdot,\cdot\rangle}.$$

 \Rightarrow for any reductive decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$, $\exists \ c \in \mathbb{R}$ and $D \in \mathsf{Der}(\mathfrak{g})$ such that $D\mathfrak{k} \subset \mathfrak{k}$ and

$$\operatorname{Ric} = cI + \frac{1}{2}(D_{\mathfrak{p}} + D_{\mathfrak{p}}^{t}).$$

(G/K,g): connected homogeneous space. semi-algebraic soliton: $\exists \varphi_t \in \operatorname{Aut}(G)$ with $\varphi_t(K) = K$ such that

$$g(t) = c(t)\varphi_t^*g_{\langle\cdot,\cdot\rangle}, \qquad g(0) = g_{\langle\cdot,\cdot\rangle}.$$

 \Rightarrow for any reductive decomposition $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p},\ \exists\ c\in\mathbb{R}$ and $D\in\mathsf{Der}(\mathfrak{g})$ such that $D\mathfrak{k}\subset\mathfrak{k}$ and

$$Ric = cI + \frac{1}{2}(D_{\mathfrak{p}} + D_{\mathfrak{p}}^t).$$
 Conversely, if G/K s.c. ...

(G/K,g): connected homogeneous space. semi-algebraic soliton: $\exists \varphi_t \in Aut(G)$ with $\varphi_t(K) = K$ such that

$$g(t) = c(t)\varphi_t^* g_{\langle \cdot, \cdot \rangle}, \qquad g(0) = g_{\langle \cdot, \cdot \rangle}.$$

 \Rightarrow for any reductive decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}, \exists c \in \mathbb{R}$ and $D \in \mathsf{Der}(\mathfrak{g})$ such that $D\mathfrak{k} \subset \mathfrak{k}$ and

$$Ric = cI + \frac{1}{2}(D_{\mathfrak{p}} + D_{\mathfrak{p}}^{t}).$$
 Conversely, if G/K s.c. ...

 $(G/K, g_{\langle \cdot, \cdot \rangle})$ with reductive decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$.

(G/K,g): connected homogeneous space. semi-algebraic soliton: $\exists \varphi_t \in Aut(G)$ with $\varphi_t(K) = K$ such that

$$g(t) = c(t)\varphi_t^* g_{\langle \cdot, \cdot \rangle}, \qquad g(0) = g_{\langle \cdot, \cdot \rangle}.$$

 \Rightarrow for any reductive decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}, \exists c \in \mathbb{R}$ and $D \in \mathsf{Der}(\mathfrak{g})$ such that $D\mathfrak{k} \subset \mathfrak{k}$ and

$$\mathrm{Ric} = cI + \frac{1}{2}(D_{\mathfrak{p}} + D_{\mathfrak{p}}^{t}).$$
 Conversely, if G/K s.c. ...

 $(G/K, g_{\langle \cdot, \cdot \rangle})$ with reductive decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. algebraic soliton: $\exists c \in \mathbb{R}$ and $D \in \mathsf{Der}(\mathfrak{g})$ such that $D\mathfrak{k} \subset \mathfrak{k}$

(G/K,g): connected homogeneous space. semi-algebraic soliton: $\exists \varphi_t \in Aut(G)$ with $\varphi_t(K) = K$ such that

$$g(t) = c(t)\varphi_t^* g_{\langle \cdot, \cdot \rangle}, \qquad g(0) = g_{\langle \cdot, \cdot \rangle}.$$

 \Rightarrow for any reductive decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}, \exists c \in \mathbb{R}$ and $D \in \mathsf{Der}(\mathfrak{g})$ such that $D\mathfrak{k} \subset \mathfrak{k}$ and

$$Ric = cI + \frac{1}{2}(D_{\mathfrak{p}} + D_{\mathfrak{p}}^t).$$
 Conversely, if G/K s.c. ...

 $(G/K, g_{\langle \cdot, \cdot \rangle})$ with reductive decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. algebraic soliton: $\exists c \in \mathbb{R}$ and $D \in \text{Der}(\mathfrak{g})$ such that $D\mathfrak{k} \subset \mathfrak{k}$ and

$$Ric = cI + D_{\mathfrak{p}}$$

(G/K,g): connected homogeneous space. semi-algebraic soliton: $\exists \varphi_t \in \operatorname{Aut}(G)$ with $\varphi_t(K) = K$ such that

$$g(t) = c(t)\varphi_t^* g_{\langle \cdot, \cdot \rangle}, \qquad g(0) = g_{\langle \cdot, \cdot \rangle}.$$

 \Rightarrow for any reductive decomposition $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p},\ \exists\ c\in\mathbb{R}$ and $D\in\mathsf{Der}(\mathfrak{g})$ such that $D\mathfrak{k}\subset\mathfrak{k}$ and

$$Ric = cI + \frac{1}{2}(D_{\mathfrak{p}} + D_{\mathfrak{p}}^t).$$
 Conversely, if G/K s.c. ...

 $(G/K, g_{\langle \cdot, \cdot \rangle})$ with reductive decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. algebraic soliton: $\exists c \in \mathbb{R}$ and $D \in \text{Der}(\mathfrak{g})$ such that $D\mathfrak{k} \subset \mathfrak{k}$ and

$$\mathrm{Ric} = cI + D_{\mathfrak{p}} \Leftrightarrow \mathrm{bracket} \ \mathrm{flow} \ \mu(t) = c_t \cdot [\cdot, \cdot], \quad c_t > 0.$$

(G/K,g): connected homogeneous space. semi-algebraic soliton: $\exists \varphi_t \in \operatorname{Aut}(G)$ with $\varphi_t(K) = K$ such that

$$g(t) = c(t)\varphi_t^*g_{\langle\cdot,\cdot\rangle}, \qquad g(0) = g_{\langle\cdot,\cdot\rangle}.$$

 \Rightarrow for any reductive decomposition $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p},\ \exists\ c\in\mathbb{R}$ and $D\in\mathsf{Der}(\mathfrak{g})$ such that $D\mathfrak{k}\subset\mathfrak{k}$ and

$$Ric = cI + \frac{1}{2}(D_{\mathfrak{p}} + D_{\mathfrak{p}}^t).$$
 Conversely, if G/K s.c. ...

 $(G/K, g_{\langle \cdot, \cdot \rangle})$ with reductive decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. algebraic soliton: $\exists c \in \mathbb{R}$ and $D \in \text{Der}(\mathfrak{g})$ such that $D\mathfrak{k} \subset \mathfrak{k}$ and

$$\mathrm{Ric} = cI + D_{\mathfrak{p}} \Leftrightarrow \mathrm{bracket} \ \mathrm{flow} \ \mu(t) = c_t \cdot [\cdot, \cdot], \quad c_t > 0.$$

[Lafuente-JL, 2012] Bracket flow evolution of semi-algebraic solitons:

(G/K,g): connected homogeneous space. semi-algebraic soliton: $\exists \varphi_t \in \operatorname{Aut}(G)$ with $\varphi_t(K) = K$ such that

$$g(t) = c(t)\varphi_t^*g_{\langle\cdot,\cdot\rangle}, \qquad g(0) = g_{\langle\cdot,\cdot\rangle}.$$

 \Rightarrow for any reductive decomposition $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p},\ \exists\ c\in\mathbb{R}$ and $D\in\mathsf{Der}(\mathfrak{g})$ such that $D\mathfrak{k}\subset\mathfrak{k}$ and

$$Ric = cI + \frac{1}{2}(D_{\mathfrak{p}} + D_{\mathfrak{p}}^t).$$
 Conversely, if G/K s.c. ...

 $(G/K, g_{\langle \cdot, \cdot \rangle})$ with reductive decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. algebraic soliton: $\exists c \in \mathbb{R}$ and $D \in \text{Der}(\mathfrak{g})$ such that $D\mathfrak{k} \subset \mathfrak{k}$ and

$$\mathrm{Ric} = cI + D_{\mathfrak{p}} \Leftrightarrow \mathrm{bracket} \ \mathrm{flow} \ \mu(t) = c_t \cdot [\cdot, \cdot], \quad c_t > 0.$$

[Lafuente-JL, 2012] Bracket flow evolution of semi-algebraic solitons: $A := \frac{1}{2}(D_{\mathfrak{p}} - D_{\mathfrak{p}}^t)$,

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 900

(G/K,g): connected homogeneous space. semi-algebraic soliton: $\exists \varphi_t \in \operatorname{Aut}(G)$ with $\varphi_t(K) = K$ such that

$$g(t) = c(t)\varphi_t^*g_{\langle\cdot,\cdot\rangle}, \qquad g(0) = g_{\langle\cdot,\cdot\rangle}.$$

 \Rightarrow for any reductive decomposition $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p},\ \exists\ c\in\mathbb{R}$ and $D\in\mathsf{Der}(\mathfrak{g})$ such that $D\mathfrak{k}\subset\mathfrak{k}$ and

$$Ric = cI + \frac{1}{2}(D_{\mathfrak{p}} + D_{\mathfrak{p}}^{t}).$$
 Conversely, if G/K s.c. ...

 $(G/K, g_{\langle \cdot, \cdot \rangle})$ with reductive decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. algebraic soliton: $\exists c \in \mathbb{R}$ and $D \in \text{Der}(\mathfrak{g})$ such that $D\mathfrak{k} \subset \mathfrak{k}$ and

$$\mathrm{Ric} = cI + D_{\mathfrak{p}} \Leftrightarrow \mathrm{bracket} \ \mathrm{flow} \ \mu(t) = c_t \cdot [\cdot, \cdot], \quad c_t > 0.$$

[Lafuente-JL, 2012] Bracket flow evolution of semi-algebraic solitons: $A := \frac{1}{2}(D_{\mathfrak{p}} - D_{\mathfrak{p}}^t), \qquad \mu(t) = \begin{bmatrix} I & 0 \\ 0 & e^{tA} \end{bmatrix} \cdot \mu_0 \in \mathrm{O}(q+n) \cdot \mu_0.$

Example in dim = 3

$$\mu = \mu_{\mathsf{a},\mathsf{b}} \in \mathcal{H}_{\mathsf{1},\mathsf{3}}$$

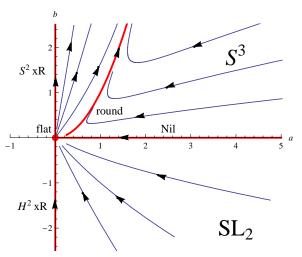


Figure: Phase plane for the ODE system

Example in simple Lie groups.

G/H irreducible compact symmetric space, $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$.

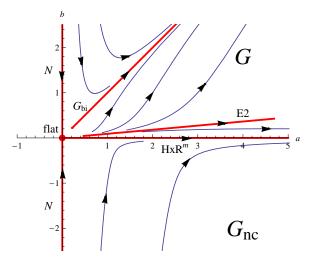


Figure: Phase plane for the ODE system

solvsoliton: algebraic soliton with K = e and G solvable.

solvsoliton: algebraic soliton with K = e and G solvable.

nilsoliton: algebraic soliton with K = e and G nilpotent.

solvsoliton: algebraic soliton with K = e and G solvable.

nilsoliton: algebraic soliton with K = e and G nilpotent.

Classification and structure of nilsolitons (\leftrightarrow GIT): [Arroyo, Fernández

Culma, Jablonski, Nikolayevsky, Oscari, Payne, Will, JL, ...]

solvsoliton: algebraic soliton with K = e and G solvable.

nilsoliton: algebraic soliton with K = e and G nilpotent.

Classification and structure of nilsolitons (← GIT): [Arroyo, Fernández

Culma, Jablonski, Nikolayevsky, Oscari, Payne, Will, JL, ...]

Classification and structure of solvsolitons: [Lafuente, Will, Williams, JL]

Open questions:

Open questions:

• Is any homogeneous Ricci soliton (or semi-algebraic soliton) isometric to an algebraic soliton ??

Open questions:

- Is any homogeneous Ricci soliton (or semi-algebraic soliton) isometric to an algebraic soliton ??
- Is any algebraic soliton isometric to a solvsoliton ??

Open questions:

- Is any homogeneous Ricci soliton (or semi-algebraic soliton) isometric to an algebraic soliton ??
- Is any algebraic soliton isometric to a solvsoliton ??

Theorem (Lafuente-JL 2012)

A homogeneous Ricci soliton is Ricci flow diagonal if and only if it is isometric to an algebraic soliton.

Open questions:

- Is any homogeneous Ricci soliton (or semi-algebraic soliton) isometric to an algebraic soliton ??
- Is any algebraic soliton isometric to a solvsoliton ??

Theorem (Lafuente-JL 2012)

A homogeneous Ricci soliton is Ricci flow diagonal if and only if it is isometric to an algebraic soliton.

(M,g) Ricci flow diagonal: \exists o.b. β of T_pM such that the Ricci flow solution g(t) starting at g is diagonal with respect to β for all t.