Yamile Godoy

CIEM - FaMAF

Universidad Nacional de Córdoba, Argentina

Encuentro de Geometría Diferencial, Rosario 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2 The space of oriented null geodesics
- **3** The canonical contact distribution on $\mathcal{L}^0(N)$
- **4** The canonical contact structure on $\mathcal{L}^0(S^{k,m})$
- **5** The canonical contact structure on $\mathcal{L}^0(M_+ \times N_-)$

(日) (日) (日) (日) (日) (日) (日) (日)

Definition

Let *M* be a 2n + 1 dimensional manifold. A *contact structure* on *M* is a distribution $\mathcal{D} \subset TM$ of dimension 2n such that if locally $\mathcal{D} = \text{Ker } \alpha$, then the 1-form α satisfies

$$\alpha \wedge (d\alpha)^n \neq 0. \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 \mathcal{D} is called a *contact distribution* and (M, \mathcal{D}) a *contact manifold*.

Definition

Let *M* be a 2n + 1 dimensional manifold. A *contact structure* on *M* is a distribution $\mathcal{D} \subset TM$ of dimension 2n such that if locally $\mathcal{D} = \text{Ker } \alpha$, then the 1-form α satisfies

$$\alpha \wedge (d\alpha)^n \neq 0. \tag{1}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 \mathcal{D} is called a *contact distribution* and (M, \mathcal{D}) a *contact manifold*.

The distribution \mathcal{D} is maximally non-integrable.

Definition

Let *M* be a 2n + 1 dimensional manifold. A *contact structure* on *M* is a distribution $\mathcal{D} \subset TM$ of dimension 2n such that if locally $\mathcal{D} = \text{Ker } \alpha$, then the 1-form α satisfies

$$\alpha \wedge (\boldsymbol{d}\alpha)^n \neq 0. \tag{1}$$

 \mathcal{D} is called a *contact distribution* and (M, \mathcal{D}) a *contact manifold*.

The distribution \mathcal{D} is maximally non-integrable.

The condition (1) is independent of the choice of α and it is indeed a property of \mathcal{D} .

Definition

Let M be a 2n + 1 dimensional manifold. A *contact structure* on M is a distribution $\mathcal{D} \subset TM$ of dimension 2n such that if locally $\mathcal{D} = \text{Ker } \alpha$, then the 1-form α satisfies

$$\alpha \wedge (\boldsymbol{d}\alpha)^n \neq \mathbf{0}. \tag{1}$$

 \mathcal{D} is called a *contact distribution* and (M, \mathcal{D}) a *contact manifold*.

The distribution \mathcal{D} is maximally non-integrable.

The condition (1) is independent of the choice of α and it is indeed a property of \mathcal{D} .

If there exists a 1-form α defined on M such that $\mathcal{D} = \text{Ker } \alpha$, we call it *contact form*.

Example: On \mathbb{R}^{2n+1} with coordinates $(x_1, ..., x_n, y_1, ..., y_n, z)$, the 1-form $\alpha = dz - \sum_{i=1}^n y_i dx_i$ is a contact form.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example: On \mathbb{R}^{2n+1} with coordinates $(x_1, ..., x_n, y_1, ..., y_n, z)$, the 1-form $\alpha = dz - \sum_{i=1}^n y_i dx_i$ is a contact form.

Theorem (Darboux)

About of each point of a contact manifold (M^{2n+1}, D) there exists a coordinate system $(U, (x_1, ..., x_n, y_1, ..., y_n, z))$ such that $D = \text{Ker } \alpha$ on U, for

$$\alpha = dz - \sum_{i=1}^{n} y_i dx_i.$$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Example: On \mathbb{R}^{2n+1} with coordinates $(x_1, ..., x_n, y_1, ..., y_n, z)$, the 1-form $\alpha = dz - \sum_{i=1}^n y_i dx_i$ is a contact form.

Theorem (Darboux)

About of each point of a contact manifold (M^{2n+1}, D) there exists a coordinate system $(U, (x_1, ..., x_n, y_1, ..., y_n, z))$ such that $D = \text{Ker } \alpha$ on U, for

$$\alpha = dz - \sum_{i=1}^{n} y_i dx_i.$$

So, two contact manifolds are locally indistinguishable.

Definition

Two contact manifolds (M_1, \mathcal{D}_1) and (M_2, \mathcal{D}_2) are said to be contactomorphic if there exists a diffeomorphism $F : M_1 \to M_2$ such that $dF(\mathcal{D}_1) = \mathcal{D}_2$.

Example:

Let M be a pseudo-Riemannian manifold and let

$$T^1M = \{ u \in TM \, | \, \langle u, u \rangle = 1 \}.$$

Notice that T^1M is not in general a round sphere.

Let $\pi: T^1M \to M$ be the canonical projection. For $u \in T^1M$ and $\xi \in T_uT^1M$, we consider

$$\alpha_u(\xi) = \langle u, d\pi_u \xi \rangle.$$

Then α is a contact form on T^1M .

Unit tangent bundles of pseudo-Riemannian manifolds are among the standard examples of contact manifolds.

The space of oriented null geodesics

The space of oriented null geodesics

- Let N be a complete pseudo-Riemannian manifold.
- For $u \in T_p N$ we denote $||u|| = \langle u, u \rangle$. Let $T^0 N = \{ u \in TN \mid ||u|| = 0, u \neq 0 \}.$
- Two null geodesics σ and γ are said to be equivalent if there exist $\lambda > 0$ and $b \in \mathbb{R}$ such $\sigma(s) = \gamma(\lambda s + b)$, for all $s \in \mathbb{R}$. That is, two null geodesics are equivalent if they have the same trajectory and orientation.
- We call $\mathcal{L}^0(N)$ the set of all equivalence classes of oriented null geodesics of N.
- Let γ_u denote the unique geodesic in N with initial velocity u.
- By abuse of notation, we say that $\mathcal{L}^0(N)$ is a manifold if it admits a differentiable structure such that the projection $\Pi : \mathcal{T}^0 N \to \mathcal{L}^0(N)$, $\Pi(u) = [\gamma_u]$, is a smooth submersion

L The canonical contact distribution on $\mathcal{L}^{0}(N)$

The canonical contact distribution on $\mathcal{L}^0(N)$

B. Khesin and S. Tabachnikov introduce a canonical contact structure on $\mathcal{L}^0(N)$, provided that it is a manifold (generalizing the definition given in the Lorentz case by R. Low), and study it for the pseudo-Euclidean space. We continue in that direction for other spaces such as pseudospheres and some products.

The canonical contact distribution on $\mathcal{L}^{0}(N)$

Let $\pi : T^0 N \to N$ be the canonical projection. Let θ be the canonical 1-form on $T^0 N$, that is, for $u \in T^0 N$ and $\xi \in T_u T^0 N$,

$$\theta_u(\xi) = \langle u, d\pi_u \xi \rangle.$$

Definition (Low, Khesin)

Let N be a pseudo-Riemannian manifold such that $\mathcal{L}^0(N)$ is a manifold. The canonical contact distribution \mathcal{D} on $\mathcal{L}^0(N)$ is well defined by

$$\mathcal{D}_{\Pi(u)} = d \,\Pi_u(\operatorname{Ker} \theta_u),$$

for each $u \in T^0 N$.

We observe that the form θ on T^0N does not descend to $\mathcal{L}^0(N)$, but the contact distribution Ker θ does.

The canonical contact distribution on $\mathcal{L}^{0}(N)$

Let $\pi : T^0 N \to N$ be the canonical projection. Let θ be the canonical 1-form on $T^0 N$, that is, for $u \in T^0 N$ and $\xi \in T_u T^0 N$,

$$\theta_u(\xi) = \langle u, d\pi_u \xi \rangle.$$

Definition (Low, Khesin)

Let N be a pseudo-Riemannian manifold such that $\mathcal{L}^0(N)$ is a manifold. The canonical contact distribution \mathcal{D} on $\mathcal{L}^0(N)$ is well defined by

$$\mathcal{D}_{\Pi(u)} = d \Pi_u(\operatorname{Ker} \theta_u),$$

for each $u \in T^0 N$.

We observe that the form θ on T^0N does not descend to $\mathcal{L}^0(N)$, but the contact distribution Ker θ does.

B. Khesin and S. Tabachnikov, Pseudo-Riemannian geodesics and billiards. Adv. Math. 221 (2009), 1364–1396.
R. Low, The space of null geodesics. Nonlinear Anal. 47 (2001), 3005–3017.

In order to give $\mathcal{L}^0(N)$ a differentiable structure, we identify it with a quotient of $\mathcal{T}^0 N$.

Given two null geodesics γ and σ on N,

 $\gamma \sim \sigma$ if and only if there exist $\lambda > 0$ and $b \in \mathbb{R}$ such that $\dot{\sigma}(0) = \lambda \dot{\gamma}(b)$.

On the other hand, let $\mathcal{A} = \operatorname{Aff}_+(\mathbb{R})$ be the Lie group of orientation preserving affine transformations of \mathbb{R} and consider the right action from \mathcal{A} on $\mathcal{T}^0 N$ given as follows: if $u \in \mathcal{T}^0 N$ and $g \in \mathcal{A}$,

$$u \cdot g := \left. \frac{d}{dt} \right|_0 \gamma_u(g(t)).$$

Then, $\mathcal{L}^0(N) \simeq T^0 N / \mathcal{A}$.

In addition, if this action is free and proper, $\mathcal{L}^0(N)$ is a Hausdorff differentiable manifold such that the canonical projection $\Pi : \mathcal{T}^0 N \to \mathcal{L}^0(N)$ is a submersion.

L The canonical contact structure on $\mathcal{L}^{0}(S^{k,m})$

The canonical contact structure on $\mathcal{L}^0(S^{k,m})$

Let ℝ^{k+1,m} be the pseudo-Euclidean space of signature (k + 1, m), that is, ℝ^{k+1} × ℝ^m endowed with the inner product whose norm is given by ||(u, v)|| = |u|² - |v|²

• The pseudosphere of radius 1 in $\mathbb{R}^{k+1,m}$ is the hyperquadric

$$S^{k,m} = \{(u,v) \in \mathbb{R}^{k+1,m} | ||(u,v)|| = 1\},\$$

which is a hypersurface of $\mathbb{R}^{k+1,m}$ with induced metric of signature (k, m) and diffeomorphic to $S^k \times \mathbb{R}^m$.

• The null geodesics of $S^{k,m}$ are straight lines in $\mathbb{R}^{k+1,m}$.

The canonical contact structure on $\mathcal{L}^{0}(S^{k,m})$

- Given two Riemannian manifolds M and N, let $M_+ \times N_-$ be the manifold $M \times N$ with the pseudo-Riemannian metric whose norm is defined by $||(u, v)|| = |u|_M^2 |v|_N^2$, for each $(u, v) \in T_{(p,q)}(M \times N)$ and $(p,q) \in M \times N$.
- Let S^n denote the sphere in \mathbb{R}^{n+1} .

Theorem

The set $\mathcal{L}^0(S^{k,m})$ is a manifold, and if one considers on $\mathcal{L}^0(S^{k,m})$ and $T^1(S^k_+ \times S^{m-1}_-)$ the canonical contact structures, then the map

$$F: T^{1}(S^{k}_{+} \times S^{m-1}_{-}) \to \mathcal{L}^{0}(S^{k,m}), \ F((u,v),(x,y)) = [\gamma],$$

with $\gamma(t) = (x, y) + t(u, v)$, is a contactomorphism.

L The canonical contact structure on $\mathcal{L}^{0}(S^{k,m})$

Billards

- Let N be a complete pseudo-Riemannian manifold.
- Let R be a region in N with smooth nondegenerate boundary M.
- We require that any null geodesic γ intersecting the interior of R satisfies that $\gamma(\mathbb{R}) \cap R = \gamma([t_0, t_1])$.
- We call $\mathfrak{L} \subset \mathcal{L}^0(N)$ the set of all oriented null geodesics intersecting the interior of R.
- Let γ be a null geodesic of N such that $[\gamma] \in \mathfrak{L}$. Decompose $\dot{\gamma}(t_1) = u^T + u^{\perp}$ with $u^T \in T_{\gamma(t_1)}M$ and $u^{\perp} \in (T_{\gamma(t_1)}M)^{\perp}$.
- The null billiard operator *B* is well defined in the following way:

$$B: \mathfrak{L} \to \mathfrak{L}, \quad B([\gamma]) = [\gamma_w], \text{ with } w = u^T - u^{\perp}.$$

• The null billiard operator preserves the contact structure on $\mathcal{L}^0(N)$.

Khesin and Tabachnikov deal with the dynamics of the null billiard operator for the pseudo-Euclidean space. We study the null billiard operator for some simple regions in pseudospheres.

For c > 0, let

$$R_{c} = \{(u, v) \in S^{k,m} | |v| \leq c\},\$$

with boundary $M_c = \{(u, v) \in S^{k,m} | |v| = c\}$, which is nondegenerate since $V(u, v) = (c^2u, (1 + c^2)v)$ is an outside pointing normal time-like vector field.

We have the diagram

$$\begin{array}{ccccc} L & \subset & T^{1}(S_{+}^{k} \times S_{-}^{m-1}) & \stackrel{F}{\to} & \mathcal{L}^{0}(S^{k,m}) & \supset & \mathfrak{L} \\ \\ \bar{B} \downarrow & & & \downarrow B \\ L & \subset & T^{1}(S_{+}^{k} \times S_{-}^{m-1}) & \stackrel{F}{\to} & \mathcal{L}^{0}(S^{k,m}) & \supset & \mathfrak{L} \end{array}$$

We express the null billiard operator B via F of the Theorem in terms of the geodesic flows of spheres.

L The canonical contact structure on $\mathcal{L}^0(M_+ \times N_-)$

The canonical contact structure on $\mathcal{L}^0(M_+ \times N_-)$

- Let *M* and *N* be complete Riemannian manifolds.
- Let $\mathcal{L}(M)$ be the space of oriented geodesics of M, that is, the quotient of T^1M by the action of \mathbb{R} on it determined by the geodesic flow of M.
- We call p₁, p₂ the projections of L(M) × T¹N onto the first and second factors, respectively, and let α₁ and α₂ be the canonical 1-forms on T¹M and T¹N.

Next, we find conditions on M and N for $\mathcal{L}^0(M_+ \times N_-)$ to be a manifold and contactomorphic to a more concrete contact manifold.

(日) (同) (三) (三) (三) (○) (○)

The canonical contact structure on $\mathcal{L}^0(M_+ \times N_-)$

Theorem

Let M and N be complete Riemannian manifolds such that the geodesic flow of M is free and proper. Then, $\mathcal{L}^0(M_+ \times N_-)$ is a manifold.

Suppose additionally that there exists a smooth global section $S : \mathcal{L}(M) \to T^1 M$. Then $\theta_S = p_1^* S^* \alpha_1 - p_2^* \alpha_2$ is a contact form on $\mathcal{L}(M) \times T^1 N$ and the map

 $G: \mathcal{L}(M) \times T^1N \to \mathcal{L}^0(M_+ \times N_-), \quad G(\ell, \nu) = [(\gamma_{S(\ell)}, \gamma_{\nu})]$

is a contactomorphism, where $\mathcal{L}^0(M_+ \times N_-)$ is endowed with its canonical contact structure.

L The canonical contact structure on $\mathcal{L}^0(M_+ \times N_-)$

Examples

1) If M is a Hadamard manifold, then M satisfies the hypotheses of the Theorem: The geodesic flow of M is proper and free. And, fixing $p \in M$, there exists a global section $S : \mathcal{L}(M) \to T^1M$ which assigns to each class of an oriented unit speed geodesic of M its velocity at the closest point to p.

2) The same for the paraboloid $M = \{(x, y, x^2 + y^2) | x, y \in \mathbb{R}\}$. (Notice that most geodesics of M have self-intersections.) The existence of a smooth global section is proved as above taking p the origin in \mathbb{R}^3 .

3) For $M = S^2$, such sections do not exist (otherwise, there would be a nowhere zero vector field on S^2).

(日) (同) (三) (三) (三) (○) (○)