Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

Symplectic structures on nilmanifolds An obstruction for its existence

Viviana J. del Barco

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

> Encuentro de Geometría Rosario August 2012

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

A *nilmanifold* is an homogeneous manifold $\Gamma \setminus N$ where N is a connected and simply connected nilpotent Lie group and Γ is a cocompact discrete subgroup.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

A *nilmanifold* is an homogeneous manifold $\Gamma \setminus N$ where N is a connected and simply connected nilpotent Lie group and Γ is a cocompact discrete subgroup.

 $\longrightarrow In$ this work we study the problem of existence of symplectic structures on nilmanifolds.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

A *nilmanifold* is an homogeneous manifold $\Gamma \setminus N$ where N is a connected and simply connected nilpotent Lie group and Γ is a cocompact discrete subgroup.

 $\longrightarrow In$ this work we study the problem of existence of symplectic structures on nilmanifolds.

We support our study in an important property of nilmanifolds: its de Rham cohomology is isomorphic to the Lie algebra cohomology of the Lie algebra n of N ([Nom54])

$$H^p_{dR}(\Gamma \setminus N) \simeq H^p(\mathfrak{n}, \mathbb{R}), \qquad p \geq 0.$$

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

A consequence of this result is that any symplectic structure on $\Gamma \setminus N$ is cohomologous to an invariant one. Then

 $\exists \ \widetilde{\omega} \ \text{symplectic structure on } \Gamma \backslash N \ \iff \$

 $\exists \omega \text{ closed 2-form in } \mathfrak{n} \\ \text{such that } \omega^n \neq 0 \\ (\dim \mathfrak{n} = 2n). \end{cases}$

A consequence of this result is that any sympogous to an invariant one. Then	electic structure on $\Gamma \setminus N$ is cohomol-
	$\exists \omega$ closed 2-form in \mathfrak{n}
$\exists \tilde{\omega}$ symplectic structure on $\Gamma \setminus N \iff$	\Rightarrow such that $\omega^n \neq 0$

The obstruction

Intermediate cohomology

 $\longrightarrow\!We$ study the problem of existence of symplectic structures from the Lie algebra point of view.

Introduction

Classification of symplectic nilradicals

 $(\dim \mathfrak{n} = 2n).$

A consequence of this result is that any symplect ogous to an invariant one. Then	ic structure on $\Gamma \setminus N$ is cohomol-
$\exists \ \widetilde{\omega} \ symplectic \ structure \ on \ \Gamma ackslash N \ \iff$	$\exists \omega \text{ closed 2-form in } \mathfrak{n}$ such that $\omega^n \neq 0$ (dim $\mathfrak{n} = 2n$).

The obstruction

 $\longrightarrow \! We$ study the problem of existence of symplectic structures from the Lie algebra point of view.

In this talk we present:

Intermediate cohomology

Introduction

• A brief introduction to Intermediate Cohomology (I.C.). [dB12].

Classification of symplectic nilradicals

incroduction	internediate conomology	The obstruction	classification of symplectic initialicals
A consogous	sequence of this result is that any s to an invariant one. Then	symplectic str	ucture on $\Gamma \backslash N$ is cohomol-
		$\exists \omega$	closed 2-form in n
	$\exists \tilde{\omega}$ symplectic structure on $\Gamma \setminus N$	⇔ s	uch that $\omega^n \neq 0$

 \rightarrow We study the problem of existence of symplectic structures from the Lie

A necessary condition for a nilpotent Lie algebra n to admit symplectic

A brief introduction to Intermediate Cohomology (I.C.). [dB12].

The chetworkiew

Intermediate enhancies

Symplectic structures on nilmanifolds

algebra point of view. In this talk we present:

structures in terms of its LC.

Internation

•

Cleasification of summinatio silvadicals

 $(\dim \mathfrak{n} = 2n).$

introduction	Interneulate conomology	The obstruction	Classification of symplectic miradicals
A cons ogous	equence of this result is that any s to an invariant one. Then	symplectic str	ucture on $\Gamma \setminus N$ is cohomol-
		$\exists \omega$	closed 2-form in $\mathfrak n$
	$\exists \tilde{\omega} \text{ symplectic structure on } \Gamma \setminus N$	\iff s	such that $\omega^n \neq 0$

 $(\dim \mathfrak{n} = 2n).$ \longrightarrow We study the problem of existence of symplectic structures from the Lie algebra point of view.

In this talk we present:

- A brief introduction to Intermediate Cohomology (I.C.). [dB12].
- A necessary condition for a nilpotent Lie algebra n to admit symplectic structures in terms of its I.C.
- Classification of symplectic nilradicals

Introduction	Intermediate conomology	The obstruction	Classification of symplectic nilradicals
A consequer ogous to an	nce of this result is that a invariant one. Then	any symplectic struc	ture on $\Gamma \setminus N$ is cohomol-
		$\exists \ \omega \ c$	losed 2-form in $\mathfrak n$
_ ~ .	En la colta de la colta de la C	\ \ / / .	n + n + n = n = n

 $\exists \tilde{\omega} \text{ symplectic structure on } \Gamma \setminus N \iff \qquad \text{such that } \omega^n \neq 0 \\ (\dim \mathfrak{n} = 2n).$

 $\longrightarrow \! We$ study the problem of existence of symplectic structures from the Lie algebra point of view.

In this talk we present:

- A brief introduction to Intermediate Cohomology (I.C.). [dB12].
- A necessary condition for a nilpotent Lie algebra n to admit symplectic structures in terms of its I.C.
- Classification of symplectic nilradicals of Borel subalgebras of complex classical simple Lie algebras.

Introduction	Intermediate conomology	The obstruction	Classification of symplectic nilradicals
A conse ogous to	quence of this result is that any s o an invariant one. Then	symplectic st	ructure on $\Gamma \setminus N$ is cohomol-
		Ξu	v closed 2-form in \mathfrak{n}
Ξ	$\tilde{\omega}$ symplectic structure on $\Gamma \setminus N$	\iff	such that $\omega^n \neq 0$

 $(\dim \mathfrak{n} = 2n).$

 $\longrightarrow \! We$ study the problem of existence of symplectic structures from the Lie algebra point of view.

In this talk we present:

- A brief introduction to Intermediate Cohomology (I.C.). [dB12].
- A necessary condition for a nilpotent Lie algebra n to admit symplectic structures in terms of its I.C.
- Classification of symplectic nilradicals of Borel subalgebras of complex classical simple Lie algebras.

Lets start....

			2.8	

$$C^*: \qquad 0 \to \mathbb{R} \to \mathfrak{n}^* \xrightarrow{d} \Lambda^2 \mathfrak{n}^* \to \ldots \to \Lambda^m \mathfrak{n}^* \to 0.$$

Here $\Lambda^{\rho}\mathfrak{n}^*$ is space the skew-symmetric p-forms on \mathfrak{n} and the differential is the extension by derivation of $d:\mathfrak{n}^*\longrightarrow \Lambda^2\mathfrak{n}^*$, the dual mapping of the Lie bracket of \mathfrak{n} .

In	+ **	~	d	 ~	÷	-
				c		

$$C^*: \qquad 0 \to \mathbb{R} \to \mathfrak{n}^* \xrightarrow{d} \Lambda^2 \mathfrak{n}^* \to \ldots \to \Lambda^m \mathfrak{n}^* \to 0.$$

Here $\Lambda^{\rho}\mathfrak{n}^*$ is space the skew-symmetric p-forms on \mathfrak{n} and the differential is the extension by derivation of $d:\mathfrak{n}^*\longrightarrow \Lambda^2\mathfrak{n}^*$, the dual mapping of the Lie bracket of \mathfrak{n} .

 \longrightarrow We construct a *canonical filtration* of the cochain complex C^* .

			2.8	

$$C^*: \qquad 0 \to \mathbb{R} \to \mathfrak{n}^* \xrightarrow{d} \Lambda^2 \mathfrak{n}^* \to \ldots \to \Lambda^m \mathfrak{n}^* \to 0.$$

Here $\Lambda^{\rho}\mathfrak{n}^*$ is space the skew-symmetric p-forms on \mathfrak{n} and the differential is the extension by derivation of $d:\mathfrak{n}^*\longrightarrow \Lambda^2\mathfrak{n}^*$, the dual mapping of the Lie bracket of \mathfrak{n} .

 $\longrightarrow We$ construct a canonical filtration of the cochain complex $C^*.$ Consider the subspaces of \mathfrak{n}^*

$$V_0 = 0$$
 $V_i = \{ \alpha \in \mathfrak{n}^* : d\alpha \in \Lambda^2 V_{i-1} \}$ $i \ge 1.$

			•		

$$C^*: \qquad 0 \to \mathbb{R} \to \mathfrak{n}^* \xrightarrow{d} \Lambda^2 \mathfrak{n}^* \to \ldots \to \Lambda^m \mathfrak{n}^* \to 0.$$

Here $\Lambda^{\rho}\mathfrak{n}^*$ is space the skew-symmetric p-forms on \mathfrak{n} and the differential is the extension by derivation of $d:\mathfrak{n}^*\longrightarrow \Lambda^2\mathfrak{n}^*$, the dual mapping of the Lie bracket of \mathfrak{n} .

 $\longrightarrow We$ construct a canonical filtration of the cochain complex $C^*.$ Consider the subspaces of \mathfrak{n}^*

$$V_0 = 0$$
 $V_i = \{ \alpha \in \mathfrak{n}^* : d\alpha \in \Lambda^2 V_{i-1} \}$ $i \ge 1.$

They verify [Sal01]:

•
$$V_i = (\mathfrak{n}^i)^\circ$$
, for all $i \ge 0$,

			•		

$$C^*: \qquad 0 \to \mathbb{R} \to \mathfrak{n}^* \xrightarrow{d} \Lambda^2 \mathfrak{n}^* \to \ldots \to \Lambda^m \mathfrak{n}^* \to 0.$$

Here $\Lambda^{\rho}\mathfrak{n}^*$ is space the skew-symmetric p-forms on \mathfrak{n} and the differential is the extension by derivation of $d:\mathfrak{n}^*\longrightarrow \Lambda^2\mathfrak{n}^*$, the dual mapping of the Lie bracket of \mathfrak{n} .

 $\longrightarrow We$ construct a canonical filtration of the cochain complex $C^*.$ Consider the subspaces of \mathfrak{n}^*

$$V_0 = 0$$
 $V_i = \{ \alpha \in \mathfrak{n}^* : d\alpha \in \Lambda^2 V_{i-1} \}$ $i \ge 1.$

They verify [Sal01]:

•
$$V_i = (\mathfrak{n}^i)^\circ$$
, for all $i \ge 0$,

• \mathfrak{n} is k - step nilpotent if and only if $V_k = \mathfrak{n}^*$ and $V_{k-1} \neq \mathfrak{n}^*$,

			•		

$$C^*: \qquad 0 \to \mathbb{R} \to \mathfrak{n}^* \xrightarrow{d} \Lambda^2 \mathfrak{n}^* \to \ldots \to \Lambda^m \mathfrak{n}^* \to 0.$$

Here $\Lambda^{\rho}\mathfrak{n}^*$ is space the skew-symmetric p-forms on \mathfrak{n} and the differential is the extension by derivation of $d:\mathfrak{n}^*\longrightarrow \Lambda^2\mathfrak{n}^*$, the dual mapping of the Lie bracket of \mathfrak{n} .

 $\longrightarrow We$ construct a canonical filtration of the cochain complex $C^*.$ Consider the subspaces of \mathfrak{n}^*

$$V_0 = 0$$
 $V_i = \{ \alpha \in \mathfrak{n}^* : d\alpha \in \Lambda^2 V_{i-1} \}$ $i \ge 1.$

They verify [Sal01]:

•
$$V_i = (\mathfrak{n}^i)^\circ$$
, for all $i \ge 0$,

- \mathfrak{n} is k step nilpotent if and only if $V_k = \mathfrak{n}^*$ and $V_{k-1} \neq \mathfrak{n}^*$,
- and in that case: $0 = V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_{k-1} \subsetneq V_k = \mathfrak{n}^*$.

$$0 = \Lambda^q V_0 \subsetneq \Lambda^q V_1 \subsetneq \ldots \subsetneq \Lambda^q V_{k-1} \subsetneq \Lambda^q V_k = \Lambda^q \mathfrak{n}^*.$$
(1)

$$\mathbf{D} = \Lambda^q V_0 \subsetneq \Lambda^q V_1 \subsetneq \ldots \subsetneq \Lambda^q V_{k-1} \subsetneq \Lambda^q V_k = \Lambda^q \mathfrak{n}^*.$$
(1)

In addition, for each p, $d(\Lambda^q V_{k-p}) \subseteq \Lambda^{q+1} V_{k-p}$. Thus

$$F^{p}C^{*}: 0 \longrightarrow \mathbb{R} \longrightarrow V_{k-p} \longrightarrow \Lambda^{2}V_{k-p} \longrightarrow \cdots \longrightarrow \Lambda^{m}V_{k-p} \longrightarrow 0$$

is a subcomplex of the Chevalley-Eilenberg complex for each fixed p.

$$0 = \Lambda^q V_0 \subsetneq \Lambda^q V_1 \subsetneq \ldots \subsetneq \Lambda^q V_{k-1} \subsetneq \Lambda^q V_k = \Lambda^q \mathfrak{n}^*.$$
(1)

In addition, for each p, $d(\Lambda^q V_{k-p}) \subseteq \Lambda^{q+1} V_{k-p}$. Thus

$$F^{p}C^{*}: 0 \longrightarrow \mathbb{R} \longrightarrow V_{k-p} \longrightarrow \Lambda^{2}V_{k-p} \longrightarrow \cdots \longrightarrow \Lambda^{m}V_{k-p} \longrightarrow 0$$

is a subcomplex of the Chevalley-Eilenberg complex for each fixed p. From (1), $\{F^{p}C^{*}\}_{p\geq 0}$ constitutes a filtration of the complex C^{*} .

$$0 = \Lambda^q V_0 \subsetneq \Lambda^q V_1 \subsetneq \ldots \subsetneq \Lambda^q V_{k-1} \subsetneq \Lambda^q V_k = \Lambda^q \mathfrak{n}^*.$$
(1)

In addition, for each p, $d(\Lambda^q V_{k-p}) \subseteq \Lambda^{q+1} V_{k-p}$. Thus

$$F^{p}C^{*}: 0 \longrightarrow \mathbb{R} \longrightarrow V_{k-p} \longrightarrow \Lambda^{2}V_{k-p} \longrightarrow \cdots \longrightarrow \Lambda^{m}V_{k-p} \longrightarrow 0$$

is a subcomplex of the Chevalley-Eilenberg complex for each fixed p. From (1), $\{F^pC^*\}_{p>0}$ constitutes a filtration of the complex C^* .

 \longrightarrow { $F^{p}C^{*}$ }_{$p\geq 0$} induces a spectral sequence { $E_{r}^{p,q}(\mathfrak{n})$ }_{$r\geq 0$} (as any filtration of a cochain complex)

$$0 = \Lambda^q V_0 \subsetneq \Lambda^q V_1 \subsetneq \ldots \subsetneq \Lambda^q V_{k-1} \subsetneq \Lambda^q V_k = \Lambda^q \mathfrak{n}^*.$$
(1)

In addition, for each p, $d(\Lambda^q V_{k-p}) \subseteq \Lambda^{q+1} V_{k-p}$. Thus

$$F^{p}C^{*}: 0 \longrightarrow \mathbb{R} \longrightarrow V_{k-p} \longrightarrow \Lambda^{2}V_{k-p} \longrightarrow \cdots \longrightarrow \Lambda^{m}V_{k-p} \longrightarrow 0$$

is a subcomplex of the Chevalley-Eilenberg complex for each fixed p. From (1), $\{F^{p}C^{*}\}_{p>0}$ constitutes a filtration of the complex C^{*} .

 \longrightarrow { $F^{p}C^{*}$ }_{$p\geq 0$} induces a spectral sequence { $E_{r}^{p,q}(\mathfrak{n})$ }_{$r\geq 0$} (as any filtration of a cochain complex)

This particular one is called *the canonical spectral sequence of* n and it converges to the Lie algebra cohomology of n.

$$0 = \Lambda^q V_0 \subsetneq \Lambda^q V_1 \subsetneq \ldots \subsetneq \Lambda^q V_{k-1} \subsetneq \Lambda^q V_k = \Lambda^q \mathfrak{n}^*.$$
(1)

In addition, for each p, $d(\Lambda^q V_{k-p}) \subseteq \Lambda^{q+1} V_{k-p}$. Thus

$$F^{p}C^{*}: 0 \longrightarrow \mathbb{R} \longrightarrow V_{k-p} \longrightarrow \Lambda^{2}V_{k-p} \longrightarrow \cdots \longrightarrow \Lambda^{m}V_{k-p} \longrightarrow 0$$

is a subcomplex of the Chevalley-Eilenberg complex for each fixed p. From (1), $\{F^pC^*\}_{p\geq 0}$ constitutes a filtration of the complex C^* .

 \longrightarrow { $F^{p}C^{*}$ }_{$p\geq 0$} induces a spectral sequence { $E_{r}^{p,q}(\mathfrak{n})$ }_{$r\geq 0$} (as any filtration of a cochain complex)

This particular one is called *the canonical spectral sequence of* n and it converges to the Lie algebra cohomology of n.In particular this implies:

$$H^{i}(\mathfrak{n}) \cong \bigoplus_{p+q=i} E^{p,q}_{\infty}(\mathfrak{n}) \quad \text{for all } i = 0, \dots, m.$$
 (2)

$$0 = \Lambda^q V_0 \subsetneq \Lambda^q V_1 \subsetneq \ldots \subsetneq \Lambda^q V_{k-1} \subsetneq \Lambda^q V_k = \Lambda^q \mathfrak{n}^*.$$
(1)

In addition, for each p, $d(\Lambda^q V_{k-p}) \subseteq \Lambda^{q+1} V_{k-p}$. Thus

$$F^{p}C^{*}: 0 \longrightarrow \mathbb{R} \longrightarrow V_{k-p} \longrightarrow \Lambda^{2}V_{k-p} \longrightarrow \cdots \longrightarrow \Lambda^{m}V_{k-p} \longrightarrow 0$$

is a subcomplex of the Chevalley-Eilenberg complex for each fixed p. From (1), $\{F^{p}C^{*}\}_{p>0}$ constitutes a filtration of the complex C^{*} .

 \longrightarrow { $F^{p}C^{*}$ }_{$p\geq 0$} induces a spectral sequence { $E_{r}^{p,q}(\mathfrak{n})$ }_{$r\geq 0$} (as any filtration of a cochain complex)

This particular one is called *the canonical spectral sequence of* n and it converges to the Lie algebra cohomology of n.In particular this implies:

$$H^{i}(\mathfrak{n}) \cong \bigoplus_{p+q=i} E^{p,q}_{\infty}(\mathfrak{n}) \quad \text{for all } i = 0, \dots, m.$$
 (2)

The groups $E_{\infty}^{p,q}(\mathfrak{n})$ with p+q=i are the *intermediate cohomology groups of* \mathfrak{n} *of degree i*.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

In this talk we present:

- A brief introduction to Intermediate Cohomology (I.C.). [dB12].
- A necessary condition for a nilpotent Lie algebra n to admit symplectic structures in terms of its I.C.
- Classification of symplectic nilradicals of Borel subalgebras of complex classical simple Lie algebras.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

(*) M compact symplectic manifold $\Rightarrow H^2_{dR}(M) \neq 0$.

But its useless for nilmanifolds $\Gamma \setminus N$ since $H^2(\mathfrak{n}) \neq 0$ [Dix55]

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

(*) M compact symplectic manifold $\Rightarrow H^2_{dR}(M) \neq 0$.

But its useless for nilmanifolds $\Gamma \setminus N$ since $H^2(\mathfrak{n}) \neq 0$ [Dix55]

A similar obstruction to (*), written in terms of the I.C., is valid for nilmanifolds.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

(*)
$$M$$
 compact symplectic manifold $\Rightarrow H^2_{dR}(M) \neq 0$.

But its useless for nilmanifolds $\Gamma \setminus N$ since $H^2(\mathfrak{n}) \neq 0$ [Dix55]

A similar obstruction to (*), written in terms of the I.C., is valid for nilmanifolds. Recall:

$$H^2(\mathfrak{n}) = E^{0,2}_{\infty}(\mathfrak{n}) \oplus E^{1,1}_{\infty}(\mathfrak{n}) \oplus \cdots \oplus E^{k-1,3-k}_{\infty}(\mathfrak{n}).$$

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

(*)
$$M$$
 compact symplectic manifold $\Rightarrow H^2_{dR}(M) \neq 0$.

But its useless for nilmanifolds $\Gamma \setminus N$ since $H^2(\mathfrak{n}) \neq 0$ [Dix55]

A similar obstruction to (*), written in terms of the I.C., is valid for nilmanifolds. Recall:

$$H^2(\mathfrak{n}) = E^{0,2}_{\infty}(\mathfrak{n}) \oplus E^{1,1}_{\infty}(\mathfrak{n}) \oplus \cdots \oplus E^{k-1,3-k}_{\infty}(\mathfrak{n}).$$

Theorem

If $\Gamma \setminus N$ is a symplectic nilmanifold and $\mathfrak{n} = Lie(N)$ then $E^{0,2}_{\infty}(\mathfrak{n}) \neq 0$.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

Proof. Suppose there exists a symplectic form ω in the *k*-step nilpotent Lie algebra \mathfrak{n} . Consider the central extension $\tilde{\mathfrak{n}}$ of \mathfrak{n} throughout ω ; $\tilde{\mathfrak{n}}$ is a k + 1-step with center of dimension 1.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

Proof. Suppose there exists a symplectic form ω in the *k*-step nilpotent Lie algebra n. Consider the central extension \tilde{n} of n throughout ω ; \tilde{n} is a k + 1-step with center of dimension 1. The filtrations of n and \tilde{n} are related in the following way:

$$\widetilde{V}_i = V_i, \ i = 0, \dots, k, \qquad \widetilde{V}_{k+1} = \widetilde{\mathfrak{n}}^*.$$

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

Proof. Suppose there exists a symplectic form ω in the *k*-step nilpotent Lie algebra n. Consider the central extension \tilde{n} of n throughout ω ; \tilde{n} is a k + 1-step with center of dimension 1. The filtrations of n and \tilde{n} are related in the following way:

$$\widetilde{V}_i = V_i, \ i = 0, \dots, k, \qquad \widetilde{V}_{k+1} = \widetilde{\mathfrak{n}}^*.$$

Which leads into a close relation between the intermediate cohomology. For example

$$E^{1,1}_{\infty}(\tilde{\mathfrak{n}}) \cong \frac{\{x \in \Lambda^2 \mathfrak{n}^* : dx = 0\}}{\mathbb{R}\omega + \{x \in \Lambda^2 V_{k-1} : dx = 0\}} \quad E^{0,2}_{\infty}(\mathfrak{n}) \cong \frac{\{x \in \Lambda^2 \mathfrak{n}^* : dx = 0\}}{\{x \in \Lambda^2 V_{k-1} : dx = 0\}}.$$

Notice that $\omega \notin \Lambda^2 V_{k-1}$ since ω is non degenerate on \mathfrak{n} .

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

Proof. Suppose there exists a symplectic form ω in the *k*-step nilpotent Lie algebra n. Consider the central extension \tilde{n} of n throughout ω ; \tilde{n} is a k + 1-step with center of dimension 1. The filtrations of n and \tilde{n} are related in the following way:

$$\widetilde{V}_i = V_i, \ i = 0, \dots, k, \qquad \widetilde{V}_{k+1} = \widetilde{\mathfrak{n}}^*.$$

Which leads into a close relation between the intermediate cohomology. For example

$$E_{\infty}^{1,1}(\tilde{\mathfrak{n}}) \cong \frac{\{x \in \Lambda^2 \mathfrak{n}^* : dx = 0\}}{\mathbb{R}\omega + \{x \in \Lambda^2 V_{k-1} : dx = 0\}} \quad E_{\infty}^{0,2}(\mathfrak{n}) \cong \frac{\{x \in \Lambda^2 \mathfrak{n}^* : dx = 0\}}{\{x \in \Lambda^2 V_{k-1} : dx = 0\}}.$$

Notice that $\omega \notin \Lambda^2 V_{k-1}$ since ω is non degenerate on n.Comparing both terms one obtain

dim
$$E^{0,2}_{\infty}(\mathfrak{n}) = \dim E^{1,1}_{\infty}(\mathfrak{\tilde{n}}) + 1$$
,

which implies dim $E^{0,2}_{\infty}(\mathfrak{n}) \geq 1$.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

(**) Does $E^{0,2}_{\infty}(n) \neq 0$ imply the existence of symplectic structures on n?

Answer:

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

(**) Does $E^{0,2}_{\infty}(n) \neq 0$ imply the existence of symplectic structures on n?

Answer: No.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

(**) Does $E^{0,2}_{\infty}(\mathfrak{n}) \neq 0$ imply the existence of symplectic structures on \mathfrak{n} ?

Answer: No.

Example: Let $\mathfrak{n}_{m,3}$ be the free 3-step nilpotent Lie algebra on m generators and consider $\mathfrak{n}_m = \mathbb{R}^s \oplus \mathfrak{n}_{m,3}$ where s = 0 or s = 1 depending on whether dim $\mathfrak{n}_{m,3}$ is even or odd.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

(**) Does $E^{0,2}_{\infty}(\mathfrak{n}) \neq 0$ imply the existence of symplectic structures on \mathfrak{n} ?

Answer: No.

Example: Let $\mathfrak{n}_{m,3}$ be the free 3-step nilpotent Lie algebra on m generators and consider $\mathfrak{n}_m = \mathbb{R}^s \oplus \mathfrak{n}_{m,3}$ where s = 0 or s = 1 depending on whether dim $\mathfrak{n}_{m,3}$ is even or odd.

It is possible to show

• $E^{0,2}_{\infty}(\mathfrak{n}_m) \neq 0$ for all m

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

(**) Does $E^{0,2}_{\infty}(\mathfrak{n}) \neq 0$ imply the existence of symplectic structures on \mathfrak{n} ?

Answer: No.

Example: Let $\mathfrak{n}_{m,3}$ be the free 3-step nilpotent Lie algebra on m generators and consider $\mathfrak{n}_m = \mathbb{R}^s \oplus \mathfrak{n}_{m,3}$ where s = 0 or s = 1 depending on whether dim $\mathfrak{n}_{m,3}$ is even or odd.

It is possible to show

- $E^{0,2}_{\infty}(\mathfrak{n}_m) \neq 0$ for all m
- \mathfrak{n}_m is not symplectic if $m \ge 2$ [dB11].

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

(**) Does $E^{0,2}_{\infty}(\mathfrak{n}) \neq 0$ imply the existence of symplectic structures on \mathfrak{n} ?

Answer: No.

Example: Let $\mathfrak{n}_{m,3}$ be the free 3-step nilpotent Lie algebra on m generators and consider $\mathfrak{n}_m = \mathbb{R}^s \oplus \mathfrak{n}_{m,3}$ where s = 0 or s = 1 depending on whether dim $\mathfrak{n}_{m,3}$ is even or odd.

It is possible to show

- $E^{0,2}_{\infty}(\mathfrak{n}_m) \neq 0$ for all m
- \mathfrak{n}_m is not symplectic if $m \ge 2$ [dB11].

Nevertheless there are some subfamilies of nilpotent Lie algebras where the answer for (**) is positive...

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

In this talk we present:

- A brief introduction to Intermediate Cohomology (I.C.). [dB12].
- A necessary condition for a nilpotent Lie algebra n to admit symplectic structures in terms of its I.C.
- Classification of symplectic nilradicals of Borel subalgebras of complex classical simple Lie algebras.

Let \mathfrak{g} be a complex classical simple Lie algebra and let \triangle be a root system of \mathfrak{g} associated to the Cartan subalgebra \mathfrak{h} . Denote with \triangle^+ the set of positive roots.

Introduction Inte	rmediate cohomology	The obstruction	Classification of symplectic nilradicals
Let \mathfrak{g} be a complex	< classical simple L	ie algebra and let	\bigtriangleup be a root system of ${\mathfrak g}$

associated to the Cartan subalgebra \mathfrak{h} . Denote with \triangle^+ the set of positive roots. The Lie algebra $\mathfrak{b} = \mathfrak{h} \bigoplus_{\alpha \in \triangle^+} \mathfrak{g}_{\alpha}$ is called a *Borel* subalgebra of \mathfrak{g} and its nilradical is

$$\mathfrak{n} = \bigoplus_{lpha \in riangle^+} \mathfrak{g}_lpha.$$

Let \mathfrak{g} be a complex classical simple Lie algebra and let \triangle be a root system of \mathfrak{g} associated to the Cartan subalgebra \mathfrak{h} . Denote with \triangle^+ the set of positive roots. The Lie algebra $\mathfrak{b} = \mathfrak{h} \bigoplus_{\alpha \in \triangle^+} \mathfrak{g}_{\alpha}$ is called a *Borel* subalgebra of \mathfrak{g} and its nilradical is

$$\mathfrak{n} = \bigoplus_{lpha \in riangle^+} \mathfrak{g}_lpha.$$

This Lie algebra admits a basis $\{X_{\alpha}\}_{\alpha \in \Delta^+}$ for which the structure constants are real. Our object of study is the nilpotent real Lie algebra defined by those structure constants. For simplicity, we keep on calling it \mathfrak{n} .

Introduction Intermediate cohomology The obstruction Classification of symplectic nilradicals Let \mathfrak{g} be a complex classical simple Lie algebra and let \triangle be a root system of \mathfrak{g} associated to the Cartan subalgebra h. Denote with \triangle^+ the set of positive roots

Let \mathfrak{g} be a complex classical simple Lie algebra and let \triangle be a root system of \mathfrak{g} associated to the Cartan subalgebra \mathfrak{h} . Denote with \triangle^+ the set of positive roots. The Lie algebra $\mathfrak{b} = \mathfrak{h} \bigoplus_{\alpha \in \triangle^+} \mathfrak{g}_{\alpha}$ is called a *Borel* subalgebra of \mathfrak{g} and its nilradical is

$$\mathfrak{n} = \bigoplus_{lpha \in riangle^+} \mathfrak{g}_lpha.$$

This Lie algebra admits a basis $\{X_{\alpha}\}_{\alpha\in\Delta^+}$ for which the structure constants are real. Our object of study is the nilpotent real Lie algebra defined by those structure constants. For simplicity, we keep on calling it \mathfrak{n} .

THEOREM (CLASSIFICATION OF SYMPLECTIC NILRADICALS)

If n is as above, the Lie algebra of even dimension $\mathbb{R}^s \oplus n$, $s \ge 0$ admits symplectic structures if and only if \mathfrak{g} is one of the followings:

 $\mathfrak{sl}\,(2,\mathbb{C}),\quad \mathfrak{sl}\,(3,\mathbb{C}),\quad \mathfrak{so}\,(5,\mathbb{C}).$

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

Proof.

• The nilradical \mathfrak{n} corresponding to $\mathfrak{sl}(2,\mathbb{C})$ is $\mathfrak{n}=\mathbb{R}$.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals
Proof.			

- The nilradical \mathfrak{n} corresponding to $\mathfrak{sl}(2,\mathbb{C})$ is $\mathfrak{n}=\mathbb{R}$.
- When $\mathfrak{g}=\mathfrak{sl}(3,\mathbb{C}),$ then \mathfrak{n} is the Heisenberg Lie algebra of dimension 3.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals
Proof.			
 The nilra 	dical n corresponding	to $\mathfrak{sl}(2,\mathbb{C})$ is $\mathfrak{n}=\mathbb{R}$	

- When $\mathfrak{g} = \mathfrak{sl}(3, \mathbb{C})$, then \mathfrak{n} is the Heisenberg Lie algebra of dimension 3.
- The nilradical corresponding to $\mathfrak{so}(5,\mathbb{C})$ has dimension four.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals
Proof.			
I he nilrad	dical n corresponding	to $\mathfrak{sl}(2,\mathbb{C})$ is $\mathfrak{n}=\mathbb{R}$	£.
• When g =	$=\mathfrak{sl}(3,\mathbb{C}),$ then \mathfrak{n} is t	he Heisenberg Lie a	lgebra of dimension 3.

• The nilradical corresponding to $\mathfrak{so}(5,\mathbb{C})$ has dimension four.

When \mathfrak{g} is not one of the Lie algebras above, we study the I.C. group $E^{0,2}_{\infty}(\mathfrak{n})$ and use the obstruction described before. Actually we proved:

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals
Proof.			
The nilradi	cal n corresponding	to $\mathfrak{sl}(2,\mathbb{C})$ is $\mathfrak{n}=\mathbb{R}$	
 When g = 	$\mathfrak{sl}(3,\mathbb{C})$, then \mathfrak{n} is t	he Heisenberg Lie al	gebra of dimension 3.

• The nilradical corresponding to $\mathfrak{so}(5,\mathbb{C})$ has dimension four.

When \mathfrak{g} is not one of the Lie algebras above, we study the I.C. group $E^{0,2}_{\infty}(\mathfrak{n})$ and use the obstruction described before. Actually we proved:

Lemma

Let $\mathfrak n$ be the nilradical of the Borel subalgebra corresponding to the complex classical simple Lie algebra $\mathfrak g.$ Then

1. if
$$\mathfrak{g} = \mathfrak{sl}(n+1,\mathbb{C})$$
 for some $n \ge 3$ then $E^{0,2}_{\infty}(\mathfrak{n}) = 0$,
2. if $\mathfrak{g} = \mathfrak{so}(2n+1,\mathbb{C})$ for some $n \ge 3$ then $E^{0,2}_{\infty}(\mathfrak{n}) = 0$,
3. if $\mathfrak{g} = \mathfrak{sp}(2n,\mathbb{C})$ for some $n \ge 3$ then $E^{0,2}_{\infty}(\mathfrak{n}) = 0$,

4. if
$$\mathfrak{g} = \mathfrak{so}(2n,\mathbb{C})$$
 for some $n \ge 4$ then $E^{0,2}_{\infty}(\mathfrak{n}) = 0$.

$$\mathfrak{n} = \bigoplus_{\alpha \in \Delta^+} \mathfrak{g}_{\alpha}.$$

- define the *length* of a positive root α as $\ell(\alpha) = \sum_{i=1}^{r} n_i$ if $\alpha = \sum_{i=1}^{r} n_i \alpha_i$, with α_i , i = 1, ..., r the simple roots.
- there exists a unique positive root of maximal length $\alpha_{\max}.$

$$\mathfrak{n} = \bigoplus_{lpha \in \Delta^+} \mathfrak{g}_lpha.$$

- define the *length* of a positive root α as $\ell(\alpha) = \sum_{i=1}^{r} n_i$ if $\alpha = \sum_{i=1}^{r} n_i \alpha_i$, with α_i , i = 1, ..., r the simple roots.
- there exists a unique positive root of maximal length $\alpha_{\rm max}.$

Define for each $i \in \mathbb{N}$, $L_i = \bigoplus_{\alpha: \ell(\alpha)=i} \mathbb{R} X_{\alpha}$. Thus \mathfrak{n} is graded:

$$\mathfrak{n} = \bigoplus_{j \ge 1} L_j$$
 and $[L_j, L_i] = L_{i+j}$.

$$\mathfrak{n} = \bigoplus_{lpha \in \Delta^+} \mathfrak{g}_lpha.$$

- define the *length* of a positive root α as $\ell(\alpha) = \sum_{i=1}^{r} n_i$ if $\alpha = \sum_{i=1}^{r} n_i \alpha_i$, with α_i , i = 1, ..., r the simple roots.
- there exists a unique positive root of maximal length $\alpha_{\max}.$

Define for each $i \in \mathbb{N}$, $L_i = \bigoplus_{\alpha: \ell(\alpha)=i} \mathbb{R} X_{\alpha}$. Thus \mathfrak{n} is graded:

$$\mathfrak{n} = \bigoplus_{j \ge 1} L_j$$
 and $[L_j, L_i] = L_{i+j}$.

The canonical filtration of n can be described in terms of this grading.

$$\mathfrak{n} = \bigoplus_{lpha \in \Delta^+} \mathfrak{g}_{lpha}.$$

- define the *length* of a positive root α as $\ell(\alpha) = \sum_{i=1}^{r} n_i$ if $\alpha = \sum_{i=1}^{r} n_i \alpha_i$, with α_i , i = 1, ..., r the simple roots.
- there exists a unique positive root of maximal length $\alpha_{\max}.$

Define for each $i \in \mathbb{N}$, $L_i = \bigoplus_{\alpha: \ell(\alpha)=i} \mathbb{R} X_{\alpha}$. Thus \mathfrak{n} is graded:

$$\mathfrak{n} = \bigoplus_{j \ge 1} L_j$$
 and $[L_j, L_i] = L_{i+j}.$

The canonical filtration of $\mathfrak n$ can be described in terms of this grading. Indeed for each $j=1,\ldots,k$

$$V_j = \operatorname{span}\{\gamma_\beta : \ell(\beta) \le j\} = L_1^* \oplus \cdots \oplus L_j^*.$$

Here γ_{β} denotes a generator of \mathfrak{g}_{β}^* .

$$\mathfrak{n} = \bigoplus_{\alpha \in \triangle^+} \mathfrak{g}_{\alpha}.$$

- define the *length* of a positive root α as $\ell(\alpha) = \sum_{i=1}^{r} n_i$ if $\alpha = \sum_{i=1}^{r} n_i \alpha_i$, with α_i , i = 1, ..., r the simple roots.
- there exists a unique positive root of maximal length α_{\max} .

Define for each $i \in \mathbb{N}$, $L_i = \bigoplus_{\alpha: \ell(\alpha)=i} \mathbb{R} X_{\alpha}$. Thus \mathfrak{n} is graded:

$$\mathfrak{n} = \bigoplus_{j \ge 1} L_j$$
 and $[L_j, L_i] = L_{i+j}$.

The canonical filtration of $\mathfrak n$ can be described in terms of this grading. Indeed for each $j=1,\ldots,k$

$$V_j = \operatorname{span}\{\gamma_\beta : \ell(\beta) \leq j\} = L_1^* \oplus \cdots \oplus L_j^*.$$

Here γ_{β} denotes a generator of \mathfrak{g}_{β}^* . In particular \mathfrak{n} is k-step nilpotent with $k = \ell(\alpha_{\max})$.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

$$\omega \in L_1^* \wedge L_k^* \oplus \bigoplus_{1 \le i < j \le k-1} L_i^* \wedge L_j^* \quad \text{therefore} \quad \omega = \sigma + \tilde{\omega}.$$

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

$$\omega \in L_1^* \wedge L_k^* \oplus \bigoplus_{1 \le i < j \le k-1} L_i^* \wedge L_j^* \quad \text{therefore} \quad \omega = \sigma + \tilde{\omega}.$$

One easily shows that

$$d\sigma \in L_{k-1}^* \wedge L_1^* \wedge L_1^* \oplus \bigoplus_{\substack{i+j=k\\1 \le i < j \le k-2}} L_i^* \wedge L_j^* \wedge L_1^*.$$
(3)

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

$$\omega \in L_1^* \wedge L_k^* \oplus \bigoplus_{1 \le i < j \le k-1} L_i^* \wedge L_j^* \quad \text{therefore} \quad \omega = \sigma + \tilde{\omega}.$$

One easily shows that

$$d\sigma \in L_{k-1}^* \wedge L_1^* \wedge L_1^* \oplus \bigoplus_{\substack{i+j=k\\1 \le i < j \le k-2}} L_i^* \wedge L_j^* \wedge L_1^*.$$
(3)

and

$$d\tilde{\omega} \in \Lambda^3(L_{k-1}^* \oplus L_{k-2}^* \oplus \dots \oplus L_1^*).$$
(4)

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

$$\omega \in L_1^* \wedge L_k^* \oplus \bigoplus_{1 \le i < j \le k-1} L_i^* \wedge L_j^* \quad \text{therefore} \quad \omega = \sigma + \tilde{\omega}.$$

One easily shows that

$$d\sigma \in L_{k-1}^* \wedge L_1^* \wedge L_1^* \oplus \bigoplus_{\substack{i+j=k\\1 \le i < j \le k-2}} L_i^* \wedge L_j^* \wedge L_1^*.$$
(3)

and

$$d\tilde{\omega} \in \Lambda^3(L_{k-1}^* \oplus L_{k-2}^* \oplus \dots \oplus L_1^*).$$
(4)

Since $d\omega = 0$, $d\sigma = -d\tilde{\omega}$.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

$$\omega \in L_1^* \wedge L_k^* \oplus \bigoplus_{1 \le i < j \le k-1} L_i^* \wedge L_j^* \quad \text{therefore} \quad \omega = \sigma + \tilde{\omega}.$$

One easily shows that

$$d\sigma \in L_{k-1}^* \wedge L_1^* \wedge L_1^* \oplus \bigoplus_{\substack{i+j=k\\1 \le i < j \le k-2}} L_i^* \wedge L_j^* \wedge L_1^*.$$
(3)

and

$$d\tilde{\omega} \in \Lambda^3(L_{k-1}^* \oplus L_{k-2}^* \oplus \dots \oplus L_1^*).$$
(4)

Since $d\omega = 0$, $d\sigma = -d\tilde{\omega}$. Root system of $\mathfrak{g} \longrightarrow$ computation of $d\sigma$ and $-d\tilde{\omega}$,

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

$$\omega \in L_1^* \wedge L_k^* \oplus \bigoplus_{1 \le i < j \le k-1} L_i^* \wedge L_j^* \quad \text{therefore} \quad \omega = \sigma + \tilde{\omega}.$$

One easily shows that

$$d\sigma \in L_{k-1}^* \wedge L_1^* \wedge L_1^* \oplus \bigoplus_{\substack{i+j=k\\1 \le i < j \le k-2}} L_i^* \wedge L_j^* \wedge L_1^*.$$
(3)

and

$$d\tilde{\omega} \in \Lambda^3(L_{k-1}^* \oplus L_{k-2}^* \oplus \cdots \oplus L_1^*).$$
(4)

Since $d\omega = 0$, $d\sigma = -d\tilde{\omega}$. Root system of $\mathfrak{g} \longrightarrow$ computation of $d\sigma$ and $-d\tilde{\omega}$, In any case (family A,B,C,D) $\longrightarrow \sigma = 0$

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

$$\omega \in L_1^* \wedge L_k^* \oplus \bigoplus_{1 \le i < j \le k-1} L_i^* \wedge L_j^* \quad \text{therefore} \quad \omega = \sigma + \tilde{\omega}.$$

One easily shows that

$$d\sigma \in L_{k-1}^* \wedge L_1^* \wedge L_1^* \oplus \bigoplus_{\substack{i+j=k\\1 \le i < j \le k-2}} L_i^* \wedge L_j^* \wedge L_1^*.$$
(3)

and

$$d\tilde{\omega} \in \Lambda^3(L_{k-1}^* \oplus L_{k-2}^* \oplus \dots \oplus L_1^*).$$
(4)

Since $d\omega = 0$, $d\sigma = -d\tilde{\omega}$. Root system of $\mathfrak{g} \longrightarrow$ computation of $d\sigma$ and $-d\tilde{\omega}$, In any case (family A,B,C,D) $\longrightarrow \sigma = 0 \longrightarrow E_{\infty}^{0,2}(\mathfrak{n}) = 0$.

And the Lemma follows.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

THEOREM (CLASSIFICATION OF SYMPLECTIC NILRADICALS)

If \mathfrak{n} is as above, the Lie algebra of even dimension $\mathbb{R}^s \oplus \mathfrak{n}$, $s \ge 0$ admits symplectic structures if and only if \mathfrak{g} is one of the followings:

 $\mathfrak{sl}(2,\mathbb{C}), \quad \mathfrak{sl}(3,\mathbb{C}), \quad \mathfrak{so}(5,\mathbb{C}).$

COROLLARY

Let \mathfrak{n} be the Lie nilradical of a Borel subalgebra of a complex classical simple Lie algebra \mathfrak{g} and let $s \in \mathbb{N}_0$ be such that $\mathbb{R}^s \oplus \mathfrak{n}$ has even dimension. If dim $\mathfrak{n} \ge 2$ the following statements are equivalent.

- $\mathbb{R}^{s} \oplus \mathfrak{n}$ is symplectic,
- $E^{0,2}_{\infty}(\mathfrak{n}) \neq 0$,

•
$$\mathfrak{g} = \mathfrak{sl}(3,\mathbb{C})$$
 or $\mathfrak{g} = \mathfrak{so}(5,\mathbb{C})$.

Introduction	Intermediate cohomology	The obstruction	Classification of symplectic nilradicals

Thanks for your attention.

muou	iction	intermediate conomology	The obstruction	Classification of symplectic mitaulcals
BIE	LIOGRAPHY			
	V. del Barco Symplectic 2011arXiv1	o. structures on free nilpo 111.3280D, 2011.	otent Lie algebras.	

V.

V. del Barco.

Canonical decomposition of the cohomology groups of nilpotent lie algebras. arXiv:1204.4123v2, 2012.

J. Dixmier.

Sur les algèbres dérivées des algèbres de Lie. *Proc. Cambridge Phil. Soc.*, 51:541–544, 1955.

K. Nomizu.

On the cohomology of compact homogeneous spaces of nilpotent Lie groups. *Annals of Mathematics*, 59:531–538, 1954.

S.

S.M. Salamon.

Complex structures on nilpotent Lie algebras.

J. of Pure Appl. Algebra, 157:311–333, 2001.