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Einstein equations (vacuum)

The spacetime is a four dimensional manifold M with a Lorenzian
metric gµν . Signature −+ ++:

I “−” is time.

I “+ + +” is space.

The metric gµν satisfies the Einstein vacuum equations

Rµν = 0,

where Rµν is the Ricci tensor of the metric gµν .



I These equations describe the dynamics of the pure
gravitational field without matter.

I Although matter fields are of course necessary to describe the
astrophysical phenomena (i.e. starts, galaxies, etc.) most of
the fundamental properties of Einstein equations are already
present in the pure vacuum case. This case has also the
advantage that no phenomenological matter models are
needed, the vacuum equations are expected to be
fundamental equations.

I The two most spectacular predictions of Einstein equations
(gravitational waves and black holes) can be studied in the
vacuum case.



Einstein equations and Riemannian Geometry

nµ

S

I nµ unit normal vector to the 3-dimensional hypersurface S in
M.

I The vector nµ is timelike, i.e. nµnνgµν = −1.

I The hypersurface S is a 3-dimensional Riemannian manifold:
hij the induced Riemannian metric, Kij the extrinsic curvature
(second fundamental form).

I S is a “t = 0” slice of the spacetime.



The Einstein vacuum equations implies that the following
equations hold in S

R + K 2 − KijK
ij = 0, (1)

D iKij − DjK = 0. (2)

where K = hijKij and R is the scalar curvature. The covariant
derivatives are computed with respect to hij .

Definition
An initial data set for Einstein vacuum equations is a triple
(S , hij ,Kij) where S is a 3-manifold, hij is a Riemannian
metric, and Kij is a symmetric tensor such that vacuum
Einstein constraints equations (1)–(2) holds on S .



I Given an initial data the complete spacetime time is fixed:
initial value formulation.

I The constraint equations are simpler to solve than the full
Einstein equations.

I Many important questions about the Einstein equations can
be analyzed in terms of the constraint equations. Typically,
spacetime properties translate to statemets for arbitrary kind
of initial data.



There exists an important particular case of initial data called
maximal initial data:

K = 0

For these data the constraint equations reduce to

R − KijK
ij = 0, (3)

D iKij = 0. (4)

In particular, equation (3) implies

R ≥ 0.

Riemannian metrics with non-negative scalar curvature are good
initial data for Einstein equations.



Geometric inequalities

Geometric inequalities have an ancient history in Mathematics. A
classical example is the isoperimetric inequality for closed plane
curves given by

L2 ≥ 4πA,

where A is the area enclosed by a curve C of length L, and where
equality holds if and only if C is a circle.

AL

L2 > 4πA

AL

L2 = 4πA



Geometrical inequalities in General Relativity

I General Relativity is a geometric theory, hence it is not
surprising that geometric inequalities appear naturally in it.
Many of these inequalities are similar in spirit as the
isoperimetric inequality.

I However, General Relativity as a physical theory provides an
important extra ingredient. It is often the case that the
quantities involved have a clear physical interpretation and the
expected behavior of the gravitational and matter fields often
suggest geometric inequalities which can be highly non-trivial
from the mathematical point of view.

I The interplay between geometry and physics gives to
geometric inequalities in General Relativity their distinguished
character.

I Many geometrical inequalities in General Relativity can be
studied in Riemannian manifolds.



Example: Positive mass theorem

I The mass of the spacetime measures the total amount of
energy and hence it should be positive from the physical point
of view.

I The mass m in General Relativity is represented by a pure
geometrical quantity on a Riemannian manifold.

0 ≤ m,

with equality if and only if the spacetime is flat.
From the geometrical mass definition, without the physical picture,
it would be very hard to conjecture that this quantity should be
positive. In fact the proof turn out to be very subtle (Schoen-Yau
79, Witten 81).





Asymptotically flat Riemannian manifolds

The manifold S is called Euclidean at infinity, if there exists a
compact subset K of S such that S \ K is the disjoint union of a
finite number of open sets Uk , and each Uk is isometric to the
exterior of a ball in R3. Each open set Uk is called an end of S .

Consider one end U and the canonical coordinates x i in R3 which
contains the exterior of the ball to which U is diffeomorphic to.

Set r =
(∑

(x i )2
)1/2

. The metric hij is called asymptotically flat if
it tends to the euclidean metric

hij = δij + o(r−1/2)

as r →∞.



Examples of asymptotically flat manifolds

I (R3, δij) Euclidean space, trivial example. One asymptotic
end.

I (R3, ψ4δij), where ψ is any smooth functions on R3 such that
at infinity has the fall off behaviour

ψ = 1 +
m

2r
+ O(r−2),

where m is a constant. One asymptotic end.



Examples of asymptotically flat manifolds: Schwarzschild
black hole initial data

I (R3 \ {0}, ψ4δ), where ψ is given by

ψ = 1 +
m

2r
.

Note that this function is singular at the origin. Two
asymptotic ends.



The total mass m defined at each end U by

m =
1

16π
lim
r→∞

∮
∂Br

(∂jhij − ∂ihjj) ni ds, (5)

where ∂ denotes partial derivatives with respect to x i , Br is the
euclidean sphere r = constant in U, ni is its exterior unit normal
and ds is the surface element with respect to the euclidean metric.

Theorem (Riemannian positive mass)

Let (S , h) be any asymptotically flat, complete Riemannian
manifold with nonnegative scalar curvature. Then the total mass
defined by (5) satisfies m ≥ 0, with equality if and only if (S , h) is
isometric to (R3, δ).



Black holes

I Black holes represent a unique class of macroscopic object
that plays, in some sense, the role of ‘elementary particle’ in
the theory.

I The black hole uniqueness theorem ensures that stationary
black holes in vacuum are characterized by two parameters:
the area A of the black hole, the angular momentum J.

I Black holes are the most simple macroscopic objects: they are
build out of pure geometry.

I They are ideal candidates for geometrical inequalities



Black hole and minimal surfaces

I A black hole is a region in (M, g) of ’no escape’. The
boundary of this region is called the event horizon.

I In order to compute the event horizon we need to know the
complete spacetime (M, g).

I However, for initial data with Kij = 0 it can be proved that a
minimal surface on the data is always inside the black hole.

I Minimal surfaces on Riemannian manifolds with non-negative
scalar curvature represent black holes boundaries.



Example: Schwarzschild black hole

I (R3 \ {0}, ψ4δij), where ψ is given by

ψ = 1 +
m

2r
.

The surface r = m/2 is a minimal surface.



Riemannian Penrose inequality

Theorem (Huisken-Ilmanen 01, Bray 01)

Let (S , h) be a complete, asymptotically flat 3-manifold with
nonnegative scalar curvature, with total mass m, and with an
outermost minimal surface of area A. Then

m ≥
√

A

16π
,

and equality holds if and only if (S , h) is isometric to the

Schwarzschild metric (R3 \ {0},
(
1 + m

2r

)4
δ) outside the respective

outermost minimal surfaces.



Axially symmetric initial data

I The initial data are axially symmetric if there exists a vector
field ηi with complete periodic orbits such that

Lηhij = 0 (Killing equation), LηKij = 0,

where L denotes the Lie derivative.

I The Cauchy development of such initial data will be an
axially symmetric spacetime.

I The axis is the set where the norm η = ηiηi vanished.



Angular momentum in axial symmetry
Define the vector field J i by

J i = (K ij − Khij)ηj .

By the Killing equation and the momentum constraint we have that

D iJi = 0.

Consider a closed 2-dimensional surface Σ. The angular
momentum of Σ is defined by

J(Σ) =

∮
Σ

J ini dS ,

where ni is the unit normal of Σ.
If Σ is the boundary of some compact domain Ω ⊂ S , by the
Gauss theorem, we have J(Σ) = 0.
To have non-zero angular momentum in vacuum the manifold
S should have a non-trivial topology. For example, multiples
asymptotic ends. That signals the presence of a black hole.



Angular momentum–mass inequality

Theorem (Dain 06)

Consider an axially symmetric, vacuum asymptotically flat,
maximal initial data set with two asymptotic ends. Then, the
inequality √

|J| ≤ m

holds, where m and J are the total mass and angular momentum
at any asymptotic end. Moreover, the equality implies that the
initial data set is the extreme Kerr initial data set.



Rigidity

Two asymptotic flat ends Extreme Kerr initial data



Area– angular momentum inequality

Theorem (Dain-Reiris 11)

Consider an axisymmetric, vacuum and maximal initial data.
Assume that the initial data contain an orientable closed stable
minimal axially symmetric surface Σ. Then

A ≥ 8π|J|, (6)

where A is the area and J the angular momentum of Σ. Moreover,
if the equality in (6) holds then the local geometry of the surface
Σ is an extreme Kerr throat sphere.



I A minimal surface is stable if it is a local minimum of the area.

I This inequality is a purely local inequality. There is global
asumption on the manifold. In particular the manifold is not
required to be asymptotically flat.



Rigidity

Generic minimal surface Extreme Kerr throat



Extreme Kerr throat
This geometry is characterized by the concept of an extreme Kerr
throat sphere, with angular momentum J, defined as follows. The
sphere is embedded in an initial data with intrinsic metric given by

γ0 = 4J2e−σ0dθ2 + eσ0 sin2 θdφ2,

where
σ0 = ln(4|J|)− ln(1 + cos2 θ).

Moreover, the sphere must be totally geodesic, the twist potential
evaluated at the surface must be given by

ω0 = − 8J cos θ

1 + cos2 θ
,

and the components of the second fundamental

Kijξ
i = Kijn

jni = Kijη
jηi = 0,

must vanish at the surface.



For more details see the review article:
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