Topology of compact solvmanifolds

joint work with A. Fino, M. Macrì, G. Ovando, M. Subils

Rosario (Argentina) - July 2012

Sergio Console Dipartimento di Matematica Università di Torino Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface

The oscillator group

1 Aims

2 Nilpotent and solvable Lie groups Nilmanifolds

Solvmanifolds

3 de Rham Cohomology

de Rham cohomology of nilmanifolds de Rham cohomology of solvmanifolds

4 Main Theorem

Proof of the Main Theorem

5 Applications

Nakamura manifold Almost abelian 6-dimensional almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface

The oscillator group

 $M = G/\Gamma$: solvmanifold

G: real simply connected solvable Lie group

Γ: lattice (discrete cocompact subgroup)

Aims: find lattices, compute de Rham cohomology, study existence of symplectic structures, hard Lefschetz property, formality

We will explain:

- the difference with nilmanifolds
- known results on the computation of Rham cohomology in special cases (completely solvable, Mostow condition)
- a method to compute the de Rham cohomology in general (following results by Guan and Witte)
- applications: Nakamura manifold, almost abelian solvable Lie groups, hyperelliptic surface, three families of lattices on the oscillator group

Topology of compact solvmanifolds

Sergio Console

Aim

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

Nilpotent and solvable Lie groups

G is *k*-step nilpotent \iff the descending chain of normal subgroups

$$G_0 = G \supset G_1 = [G, G] \supset \cdots \supset G_{i+1} = [G_i, G] \supset \cdots$$

degenerates, i.e. $G_i = \{e\} \forall i \ge k$, (*e* is the identity element).

G is k-step solvable \iff the derived series of normal subgroups

$$G_{(0)} = G \supset G_{(1)} = [G, G] \supset \cdots \supset G_{(i+1)} = [G_{(i)}, G_{(i)}] \supset \cdots$$

degenerates.

In particular a solvable Lie group is completely solvable if every eigenvalue λ of every operator Ad $_g$, $g \in G$, is real.

Note that a nilpotent Lie group is completely solvable.

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds

Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

Nilmanifolds

G simply connected nilpotent Lie group

Recall: exp : $\mathfrak{g} \to G$ is a diffeomorphism

For nilpotent Lie groups there is a simple criterion for the existence of lattices:

Theorem (Malčev)

 $\begin{array}{l} G \mbox{ simply connected nilpotent Lie group} \\ \exists \ \Gamma \ lattice \ on \ G \ & \Longleftrightarrow \\ the \ Lie \ algebra \ {\mathfrak g} \ of \ G \ has \ a \ basis \ such \ that \ the \ structure \\ constants \ in \ this \ basis \ are \ rational \ & \Longleftrightarrow \\ \exists \ {\mathfrak g}_{\mathbb Q} \ \ such \ that \ {\mathfrak g} = \ {\mathfrak g}_{\mathbb Q} \otimes \mathbb R \end{array}$

If $\mathfrak{g}=\mathfrak{g}_\mathbb{Q}\otimes\mathbb{R},$ one also says that \mathfrak{g} has a rational structure

A nilmanifold is the a quotient $M = G/\Gamma$, where G is a real simply connected nilpotent Lie group and Γ is a lattice.

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface

The oscillator group

Solvmanifolds

There is no simple criterion for the existence of a lattice in a connected and simply-connected solvable Lie group *G*.

Here are some necessary criteria.

Proposition (Milnor)

If *G* admits a lattice then it is unimodular. [tr $ad_X = 0, \forall X \in \mathfrak{g}$]

The Mostow bundle

Let G/Γ be a solvmanifold that is not a nilmanifold. N =**nilradical** of G =largest connected nilpotent normal subgroup of G. Then $\Gamma_N := \Gamma \cap N$ is a lattice in N, $\Gamma N = N\Gamma$ is closed in G and $G/(N\Gamma) =: \mathbb{T}^k$ is a torus. \implies we have the fibration:

$$N/\Gamma_N = (N\Gamma)/\Gamma \hookrightarrow G/\Gamma \longrightarrow G/(N\Gamma) = \mathbb{T}^k$$

Much of the rich structure of solvmanifolds is encoded in this bundle. The nilradical has an important rôle in the study of solvmanifolds.

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds de Rham Cohomology Nilmanifolds

Main Theorem Proof of the Main Theorem

Applications

Solmanifolds

Nakamura manifold Almost abelian

```
6 dim almost abelian
Kähler and symplectic
structures on solvmanifolds
Hyperelliptic surface
The oscillator group
```


Solvmanifolds

G connected and simply connected solvable Lie group

 $\implies \qquad G \stackrel{\text{diffeo}}{\simeq} \mathbb{R}^n$

(BUT exp : $\mathfrak{g} \to G$ is not necessarily injective or surjective.)

 \implies solvmanifolds G/Γ are aspherical and $\pi_1(G/\Gamma) \cong \Gamma$.

The fundamental group plays an important rôle:

Diffeomorphism Theorem

 $\begin{array}{l} G_1/\Gamma_1 \text{ and } G_2/\Gamma_2 \text{ solvmanifolds and} \\ \varphi: \Gamma_1 \to \Gamma_2 \text{ isomorphism.} \\ \Longrightarrow \exists \text{ diffeomorphism } \Phi \ G_1 \to G_2 \text{ such that} \\ (i) \ \Phi|_{\Gamma_1} = \varphi, \\ (ii) \ \forall_{\gamma \in \Gamma_1} \forall_{p \in G_1} \Phi(p\gamma) = \Phi(p)\varphi(\gamma). \end{array}$

Corollary

Two solvmanifolds with isomorphic π_1 are diffeomorphic.

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface

The oscillator group

de Rham Cohomology

G/Γ solvmanifold (nilmanifold)

General question: can one compute Dolbeault cohomology of *M* by invariant forms, i.e., using the Chevalley-Eilenberg complex:

$$\cdots \to \Lambda^{k-1}\mathfrak{g}^* \xrightarrow{d} \Lambda^k \mathfrak{g}^* \xrightarrow{d} \Lambda^{k+1}\mathfrak{g}^* \to \ldots$$

$$d\alpha(x_1,\ldots,x_{k+1})=\sum_{i< j}(-1)^{i+j}\alpha([x_i,x_j],x_1,\ldots,\hat{x}_i,\ldots,\hat{x}_j,\ldots,x_{k+1})$$

So, when is
$$H^*_{dR}(G/\Gamma) \cong H^*(\mathfrak{g})$$
?

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds

le Rham Cohomology

Nilmanifolds Solmanifolds

Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian

Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

de Rham Cohomology of nilmanifolds

 G/Γ nilmanifold

Theorem (Nomizu) $H^*_{dB}(G/\Gamma) \cong H^*(\mathfrak{g}).$

 $\bigwedge^* \mathfrak{g}$ is a minimal model of G/Γ (in the sense of Sullivan).

 $\bigwedge^* \mathfrak{g}$ is formal $\iff G$ is abelian and G/Γ is a torus.

If a nilmanifold is Kählerian, then it is a torus. [Benson & Gordon, Hasegawa]

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface

The oscillator group

q

Idea of the proof of Nomizu's Theorem

Suppose *G* is *k*-step nilpotent. \mathfrak{g}_{ℓ} Lie algebra of G_{ℓ} .

Let H := simply-connected Lie subgroup of G with Lie algebra $\mathfrak{h} = \mathfrak{g}_{k-1} \Longrightarrow H$ central and $H \cong \mathbb{R}^n$.

We have the fibration:

 $\mathbb{T}^n = H/H \cap \Gamma \hookrightarrow M = G/\Gamma \xrightarrow{\pi} \overline{M} = G/H\Gamma$

 $E_*^{p,q}$:= Leray-Serre spectral sequence associated with the fibration:

$$\begin{split} E_2^{p,q} &= H^p_{dR}(\overline{M}, H^q_{dR}(\mathbb{T}^n)) \cong H^p_{dR}(\overline{M}) \otimes \bigwedge^q \mathbb{R}^n, \\ & E_{\infty}^{p,q} \Rightarrow H^{p+q}_{dR}(M). \end{split}$$

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface

The oscillator group

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface

The oscillator group

Main idea: construct a second spectral sequence $\tilde{E}_*^{p,q}$ = Leray-Serre spectral sequence for the complex of *G*-invariant forms $\bigwedge^* \mathfrak{g}^*$

 $\dim \overline{M} < \dim M, \stackrel{\text{induction on dim}}{\Longrightarrow} H^p_{dR}(\overline{M}) \cong H^p(\mathfrak{g}/\mathfrak{h}) \text{ for any } p.$ $\Longrightarrow E_2 = \tilde{E}_2 \& E_{\infty} = \tilde{E}_{\infty}.$

i.e., $H^{\ell}_{dR}(M) \cong H^{\ell}(\mathfrak{g})$ for any ℓ .

de Rham Cohomology of solvmanifolds

 G/Γ solvmanifold

 $\operatorname{Ad}_{G}(G) = \{e^{\operatorname{ad}_{X}} \mid X \in \mathfrak{g}\}$ solvable and $\operatorname{Aut}(G) \cong \operatorname{Aut}(\mathfrak{g})$.

 $\mathcal{A}(\operatorname{Ad}_{G}(G))$ and $\mathcal{A}(\operatorname{Ad}_{G}(\Gamma))$: real algebraic closures of $\operatorname{Ad}_{G}(G)$ and $\operatorname{Ad}_{G}(\Gamma)$ (respectively)

Theorem (Borel density theorem)

Let Γ be a lattice of a simply connected solvable Lie group G, $\implies \exists$ a maximal compact torus $\mathbb{T}_{cpt} \subset \mathcal{A}(\operatorname{Ad}_G(G))$, such that

 $\mathcal{A}(\mathrm{Ad}_{G}(G)) = \mathbb{T}_{cpt}\mathcal{A}(\mathrm{Ad}_{G}(\Gamma)).$

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

When is the de Rham comology of a solvmanifold given by the Chevalley-Eilenberg complex?

There are 2 important cases:

- Hattori: If G is completely solvable, i.e., if the linear map ad_X : g → g has only real eigenvalues
- **2** Mostow condition: If $\mathcal{A}(\operatorname{Ad}_{G}(G)) = \mathcal{A}(\operatorname{Ad}_{G}(\Gamma))$

Remarks

- (1) is a particular case of (2). Indeed if all eigenvalues of Ad are real, then $\mathcal{A}(\operatorname{Ad}_G(G))$ has no non trivial conn. compact subgroups $\stackrel{\text{Borel density}}{\Longrightarrow} \mathcal{A}(\operatorname{Ad}_G(G)) = \mathcal{A}(\operatorname{Ad}_G(\Gamma))$
- Recall that a nilpotent Lie group is completely solvable ⇒

 (1) and (2) generalize Nomizu's Theorem.
- We will see that one can have the isomorphism $H^*(\mathfrak{g}) \cong H^*_{dR}(G/\Gamma)$ even if $\mathcal{A}(\operatorname{Ad}_G(\Gamma)) \neq \mathcal{A}(\operatorname{Ad}_G(G))$ (Example on hyperelliptic surface) • hyperelliptic surface

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds

Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian

Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

Idea of the proof of (2)

We prove that if the Mostow condition holds, we still have a fibration of $M = G/\Gamma$ over a smaller dimensional solvmanifold with a torus as fibre. Then one can proceed as in the proof of Nomizu's Theorem.

$$G_{(k)} = [G_{(k-1)}, G_{(k-1)}] \& \Gamma_{(k)} = [\Gamma_{(k-1)}, \Gamma_{(k-1)}]$$
: derived series

Remark that $G_{(k)}$ is nilpotent for any $k \ge 1$

Mostow condition + a gen. result on lattices in nilpotent Lie groups $\implies G_{(k)}/\Gamma_{(k)}$ is compact for any k. $\implies G_{(k)}/\Gamma \cap G_{(k)}$ is compact for any k.

Let *r* be the last non-zero term in the derived series of *G*. Namely $G_{(r+1)} = (e)$ and $G_{(r)} =: A \neq (e)$.

A is abelian $\Longrightarrow A/A \cap \Gamma := \mathbb{T}^m$ is a compact torus.

Thus, $\overline{M} := G/A\Gamma$ is a compact solvmanifold with dimension smaller than $M := G/\Gamma$ and $\mathbb{T}^m \hookrightarrow M \xrightarrow{\pi} \overline{M}$ is a fibration.

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds

Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

If $\mathcal{A}(\operatorname{Ad}_{G}(G)) \neq \mathcal{A}(\operatorname{Ad}_{G}(\Gamma))$ it is more difficult to compute the de Rham cohomology.

We explain a method deriving from results of Guan and Witte

Main Theorem [– , A. Fino]

Let $M = G/\Gamma$ be a compact solvmanifold and let \mathbb{T}_{cpt} be a compact torus such that

 $\mathbb{T}_{cpt}\mathcal{A}(\mathrm{Ad}_{G}(\Gamma))=\mathcal{A}(\mathrm{Ad}_{G}(G)).$

Then there exists a subgroup $\tilde{\Gamma}$ of finite index in Γ and a simply connected normal subgroup \tilde{G} of $\mathbb{T}_{cpt} \ltimes G$ such that

$$\mathcal{A}(\operatorname{Ad}_{\tilde{G}}(\tilde{\Gamma})) = \mathcal{A}(\operatorname{Ad}_{\tilde{G}}(\tilde{G})).$$

 $\Longrightarrow \tilde{G}/\tilde{\Gamma}$ is diffeomorphic to $G/\tilde{\Gamma}$ and $H^*_{dR}(G/\tilde{\Gamma}) \cong H^*(\tilde{\mathfrak{g}})$.

Observe that $H^*_{dR}(G/\Gamma) \cong H^*_{dR}(G/\tilde{\Gamma})^{\Gamma/\tilde{\Gamma}}$ (the invariants by the action of the finite group $\Gamma/\tilde{\Gamma}$).

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem

Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

Proof of the Main Theorem

It is not restrictive to suppose that $\mathcal{A}(Ad_G(\Gamma))$ is connected. Otherwise we pass from Γ to a finite index subgroup $\tilde{\Gamma}$ [equivalently $M = G/\Gamma \rightsquigarrow G/\tilde{\Gamma}$ finite-sheeted covering of M]

Let \mathbb{T}_{cpt} be a maximal compact torus of $\mathcal{A}(\operatorname{Ad}_{G}G)$ which contains a maximal compact torus $\overline{\mathbb{S}}_{cpt}$ of $\mathcal{A}(\operatorname{Ad}_{G}(\widetilde{\Gamma}))$.

Let \mathbb{S}_{cpt} be a subtorus of \mathbb{T}_{cpt} complementary to $\overline{\mathbb{S}}_{cpt}$ so that $\mathbb{T}_{cpt} = \mathbb{S}_{cpt} \times \overline{\mathbb{S}}_{cpt}$.

Let σ be the composition of the homomorphisms:

$$\sigma: G \xrightarrow{\operatorname{Ad}} \mathcal{A}(\operatorname{Ad}_{G}(G)) \xrightarrow{\operatorname{proj}} \mathbb{T}_{cpt} \xrightarrow{\operatorname{proj}} \mathbb{S}_{cpt} \xrightarrow{x \to x^{-1}} \mathbb{S}_{cpt}.$$

The point now is to get rid of \mathbb{S}_{cpt}

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

√→ nilshadow map:

 $\Delta: G \to \mathbb{S}_{cpt} \ltimes G, g \mapsto (\sigma(g), g),$

[not a homomorphism (unless $\mathbb{S}_{cpt} = \{0\} \implies \sigma = 0$] One has:

 $\Delta(ab) = \Delta(\sigma(b^{-1})a\sigma(b))\Delta(b), \quad \forall a, b \in G$

and $\Delta(\gamma g) = \gamma \Delta(g)$, for every $\gamma \in \tilde{\Gamma}, g \in G$. Δ is a diffeomorphism onto it image $\implies \Delta(G)$ is simply connected The product in $\Delta(G)$ is given by:

$$\Delta(a)\Delta(b) = (\sigma(a), a) (\sigma(b), b) = (\sigma(a)\sigma(b), \sigma(b^{-1})a\sigma(b)b),$$

for any $a, b \in G$.

By construction , $\mathcal{A}(\operatorname{Ad}_{G}(\tilde{\Gamma}))$ projects trivially on \mathbb{S}_{cpt} and $\sigma(\tilde{\Gamma}) = \{e\}$. \Longrightarrow $\tilde{\Gamma} = \Delta(\tilde{\Gamma}) \subset \Delta(G)$.

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian 6 dim almost abelian

Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

Let $\hat{G} = \Delta(G)$. [Witte]: $\overline{\mathbb{S}}_{cpt}$ is a maximal compact subgroup of $\mathcal{A}(\operatorname{Ad}_{\tilde{G}}(\tilde{G}))$ and $\overline{\mathbb{S}}_{cpt} \subset \mathcal{A}(\operatorname{Ad}_{\tilde{G}}(\tilde{\Gamma})) \Longrightarrow \mathcal{A}(\operatorname{Ad}_{\tilde{G}}(\tilde{G})) = \mathcal{A}(\operatorname{Ad}_{\tilde{G}}(\tilde{\Gamma}))$

 $\stackrel{\text{Diffeomorphism Theorem}}{\Longrightarrow} G/\tilde{\Gamma} \text{ is diffeomorphic to } \tilde{G}/\tilde{\Gamma}.$

Mostow condition holds $\implies H^*(G/\tilde{\Gamma}) \cong H^*(\tilde{\mathfrak{g}}).$

By the diffeomorphism $\Delta : G \to \tilde{G}, \Delta^{-1}$ induces a finite sheeted covering map $\Delta^* : \tilde{G}/\tilde{\Gamma} \to G/\Gamma$.

Corollary

The Lie algebra $\tilde{\mathfrak{g}}$ of \tilde{G} can be identified by

$$ilde{\mathfrak{g}} = \{(X_{\mathfrak{s}}, X) \mid X \in \mathfrak{g}\}$$

with Lie bracket:

 $[(X_{\mathfrak{s}}, X), (Y_{\mathfrak{s}}, Y)] = (0, [X, Y] - \mathrm{ad}(X_{\mathfrak{s}})(Y) + \mathrm{ad}(Y_{\mathfrak{s}})(X)).$

where $X_{\mathfrak{s}}$ the image $\sigma_*(X)$, for $X \in \mathfrak{g}$

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian Kähler and symplectic

structures on solvmanifolds Hyperelliptic surface

The oscillator group

Applications

Now we obtain some applications of the Main Theorem, by computing explicitly the Lie group \tilde{G} .

Example (Nakamura manifold – description)

Consider the simply connected complex solvable Lie group G:

$$G = \left\{ \begin{pmatrix} e^{z} & 0 & 0 & w_{1} \\ 0 & e^{-z} & 0 & w_{2} \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{pmatrix}, w_{1}, w_{2}, z \in \mathbb{C} \right\}.$$

 $G\cong \mathbb{C}\ltimes_{arphi}\mathbb{C}^2,$ where

$$\varphi(z) = \left(egin{array}{cc} e^z & 0 \\ 0 & e^{-z} \end{array}
ight).$$

Let

$$L_{1,2\pi} = \mathbb{Z}[t_0, 2\pi i] = \{t_0 k + 2\pi h i, h, k \in \mathbb{Z}\}$$
$$L_2 = \left\{ P\left(\begin{array}{c} \mu \\ \alpha \end{array}\right), \mu, \alpha \in \mathbb{Z}[i] \right\}.$$

Then, by Yamada $\Gamma = L_{1,2\pi} \ltimes_{\varphi} L_2$ is a lattice of *G*. *G*/ Γ : Nakamura manifold

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold

Almost abelian

6 dim almost abelian

Kähler and symplectic structures on solvmanifolds

Hyperelliptic surface

The oscillator group

Example (Nakamura manifold – computation of cohomology)

G has trivial center \implies Ad $_G(G) \cong G \cong \mathbb{R}^2 \ltimes \mathbb{R}^4$. Moreover,

$$\mathcal{A}(\operatorname{Ad}_{G}G) = (\mathbb{R}^{\#} \times S^{1}) \ltimes \mathbb{R}^{4},$$
$$\mathcal{A}(\operatorname{Ad}_{G}\Gamma) = \mathbb{R}^{\#} \ltimes \mathbb{R}^{4},$$

where the split torus $\mathbb{R}^{\#}$ corresponds to the action of $e^{\frac{1}{2}(z+\overline{z})}$ and the compact torus S^1 to the one of $e^{\frac{1}{2}(z-\overline{z})}$.

$$\implies \mathcal{A}(\operatorname{Ad}_{G}(G)) = S^{1}\mathcal{A}(\operatorname{Ad}_{G}(\Gamma)) \text{ and } \mathcal{A}(\operatorname{Ad}_{G}(\Gamma)) \text{ is connected.}$$

Main Theorem \exists a simply connected normal subgroup $\tilde{G} = \Delta(G)$ of $S^1 \ltimes G$.

The new Lie group \tilde{G} is obtained by killing the action of $e^{\frac{1}{2}(z-\overline{z})}$:

$$\tilde{G} \cong \left\{ \begin{pmatrix} e^{\frac{1}{2}(z+\overline{z})} & 0 & 0 & w_1 \\ 0 & e^{-\frac{1}{2}(z+\overline{z})} & 0 & w_2 \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{pmatrix}, w_1, w_2, z \in \mathbb{C} \right\}.$$

 $G/\Gamma \stackrel{\text{diffeo}}{\simeq} \tilde{G}/\Gamma$ was already shown by Yamada. \Longrightarrow $H^*_{dR}(G/\Gamma) \cong H^*(\tilde{\mathfrak{g}}), (\tilde{\mathfrak{g}} \text{ Lie algebra of } \tilde{G}) \text{ and } H_{dR}(G/\Gamma) \ncong H^*(\mathfrak{g}).$

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold

Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface

The oscillator group

Topology of compact solvmanifolds

Example (A three dimensional example)

 $\begin{aligned} G = \mathbb{R} \ltimes \mathbb{R}^2 \text{ with structure equations} \begin{cases} de^1 = 0, \\ de^2 = 2\pi e^1 \wedge e^3 \\ de^3 = -2\pi e^1 \wedge e^2 \end{cases} \\ \text{non-completely solvable and admits a lattice } \Gamma = \mathbb{Z} \ltimes \mathbb{Z}^2. \\ \text{Indeed,} \end{aligned}$

$$\mathbb{R} \ltimes \mathbb{R}^2 = \left\{ \left(\begin{array}{ccc} \cos(2\pi t) & \sin(2\pi t) & 0 & x \\ -\sin(2\pi t) & \cos(2\pi t) & 0 & y \\ 0 & 0 & 1 & t \\ 0 & 0 & 0 & 1 \end{array} \right) \right\}$$

and Γ is generated by 1 in $\mathbb R$ and the standard lattice $\mathbb Z^2.$

$$\mathcal{A}(\operatorname{Ad}_{G}(G)) = S^{1} \ltimes \mathbb{R}^{2} \text{ and } \mathcal{A}(\operatorname{Ad}_{G}(\Gamma)) = \mathbb{R}^{2} \stackrel{\text{Main Theorem}}{\Longrightarrow} \widetilde{G} \cong \mathbb{R}^{3} \subset S^{1} \ltimes G.$$

Indeed, it is well known that G/Γ is diffeomorphic to a torus.

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold

Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

The previous example $\mathbb{R} \ltimes \mathbb{R}^2$ is an *almost abelian* Lie group:

A Lie algebra \mathfrak{g} is called almost abelian if it has an abelian ideal of codimension 1,

i.e. $\mathfrak{g} \cong \mathbb{R} \ltimes \mathfrak{b}$, where $\mathfrak{b} \cong \mathbb{R}^n$ is an abelian ideal of \mathfrak{g} .

In this case the Mostow bundle is a torus bundle over S^1

The action φ of \mathbb{R} on \mathbb{R}^n is represented by a family of matrices $\varphi(t)$, which encode the monodromy or "twist" in the Mostow bundle.

A nice feature of almost abelian solvable groups is that there is a criterion on the existence of a lattice

Proposition (Bock)

Let $G = \mathbb{R} \ltimes_{\varphi} \mathbb{R}^n$ be almost abelian solvable Lie group. Then G admits a lattice if and only if there exists a $t_0 \neq 0$ for which $\varphi(t_0)$ can be conjugated to an integer matrix.

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold

Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold

Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

The Lie algebra \mathfrak{g} of G has form

$$\mathbb{R} \ltimes_{\mathrm{ad}_{X_{n+1}}} \mathbb{R}^n,$$

where we consider \mathbb{R}^n generated by $\{X_1, ..., X_n\}$ and \mathbb{R} by X_{n+1} , and $\varphi(t) = e^{tad_{X_{n+1}}}$.

Moreover, a lattice can be always represented as $\Gamma = \mathbb{Z} \ltimes \mathbb{Z}^n$

For almost abelian solvmanifolds, Gorbatsevich found a criterion to decide whether the Mostow condition holds:

Proposition (Gorbatsevich)

The Mostow condition is satisfied if and only if πi can not be written as linear combination in \mathbb{Q} of the eigenvalues of $t_0 \operatorname{ad}_{X_{n+1}}$, where Γ is generated by t_0 .

• If $i\pi$ is not representable as a \mathbb{Q} -linear combination of the numbers λ_k , $\stackrel{\text{Mostow condition}}{\Longrightarrow} H^*_{dR}(G/\Gamma) \cong H^*(\mathfrak{g}).$

• Otherwise the only known result on cohomology [Bock]

 $b_1(G/\Gamma) = n + 1 - \operatorname{rank}(\varphi(1) - \operatorname{id}).$

By applying the Main Theorem one obtains a method to compute the de Rham cohomology of G/Γ .

 $[\,-\,,\,$ M. Macrì] construct lattices on six dimensional not completely solvable almost abelian Lie groups, for which the Mostow condition does not hold. We compute

- cohomology (does not agree with the one of g)
- minimal model
- show that some of these solvmanifolds admit not invariant symplectic structures and we study formality and Lefschetz properties

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold

Almost abelian

6 dim almost abelian Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

Example (6-dimensional indecomposable almost abelian solvmanifolds not satisfying the Mostow condition)

G	$\Gamma_{\bar{t}}$	$H^*(\mathfrak{g})$	$H^*(G/\Gamma_{\overline{t}})$	F	IS	s	HL
$G_{6.8}^{p=0}$	$\bar{t} = 2\pi$	$b_1 = 1, b_2 = 1, b_3 = 2$	$b_1 = 3, b_2 = 3, b_3 = 2$	Yes	No	No	~
- 6.8	$\bar{t}=\pi, \tfrac{\pi}{2}, \tfrac{\pi}{3}$	-1 -,-2 -,-3 -	$b_1 = 1, b_2 = 1, b_3 = 2$	Yes	No	~	~
$G_{6.10}^{a=0}$	$\bar{t} = 2\pi$	$b_1 = 2, b_2 = 3, b_3 = 4$	$b_1 = 4, b_2 = 7, b_3 = 8$	No	Yes	Yes	No×
	$\bar{t}=\pi, \tfrac{\pi}{2}, \tfrac{\pi}{3}$		$b_1 = 2, b_2 = 3, b_3 = 4$	No	Yes	~	No*
$G_{6,11}^{p=0}$	$\bar{t} = 2\pi$	$b_1 = 1, b_2 = 1, b_3 = 1$	$b_1 = 3, b_2 = 4, b_3 = 4$	Yes	No	No	~
- 6.11	$\bar{t}=\pi, \tfrac{\pi}{2}, \tfrac{\pi}{3}$. , . , .	$b_1 = 1, b_2 = 1, b_3 = 1$	Yes	No	~	~

 $^{\times}$ = for both the invariant and not invariant symplectic structures considered.

* = for the invariant symplectic structures.

F: formality

IS: existence of invariant symplectic structures S: existence of symplectic structures

(induced by ones on the modified Lie alg)

HL: Hard Lefschetz property

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

Almost abeliam

6 dim almost abelian

Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

Example (6-dimensional decomposable almost abelian solvmanifolds not satisfying the Mostow condition)

 $H^*(\mathfrak{g})$

 $b_1 = 3, b_2 = 5, b_3 = 6$

G

 $G^0_{5,14} \times \mathbb{R}$

 $\Gamma_{\bar{t}}$

 $\bar{t} = 2\pi$

 $\bar{t} = \pi, \frac{\pi}{2}, \frac{\pi}{3}$

 $\bar{t} = 2\pi r_2$

Topology of compact solvmanifolds

Sergio Console

Aims

No*

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Theorem of the Main Theorem

cations

mura manifold st abelian

almost abelian

r and symplectic ures on solvmanifolds relliptic surface scillator group

		- / - / -	1 - / - / -					
	$\bar{t} = \pi,$		$p \neq 0: \ b_1 = 2, b_2 = 1, b_3 = 0$	Yes	Yes	~	Yes*	Main T Proof o
$G_{5,17}^{p,-p,r} \times \mathbb{R}$	r even	$\text{if }p=0,r\neq\pm1$	$p=0:\ b_1=4, b_2=7, b_3=8$					Applica
G5.17 × K	$ar{t}=\pi,$	or $p \neq 0, r = \pm 1$	$p \neq 0$: $b_1 = 2, b_2 = 5, b_3 = 8$	Yes	Yes	/	Yes*	Nakam Almost
	$r\mathrm{odd}$	$b_1 = 2, b_2 = 3, b_3 = 4$	$p=0:b_1=2,b_2=7,b_3=12$					6 dim a
$r=\frac{r_1}{r_2}\in\mathbb{Q}$	$ar{t}=rac{\pi}{2},r\equiv_4 0$		$p = 0: b_1 = 4, b_2 = 7, b_3 = 8$	Yes	Yes	~	Yes*	Kähler structu
	$\bar{t} = \frac{\pi}{2}$,	$\text{if }p=0,r=\pm 1 \\$	$p \neq 0: b_1 = 2, b_2 = 3, b_3 = 4$	Yes	Yes	~	Yes*	Hypere The os
	$r\equiv_4 1,3$	$b_1 = 2, b_2 = 5, b_3 = 8$	$p=0: b_1=2, b_2=5, b_3=8$					
	$ar{t}=rac{\pi}{2},r\equiv_4 2$		$p=0: b_1=2, b_2=3, b_3=4$	Yes	Yes	~	Yes*	
_	$\bar{t} = 2\pi$		$b_1 = 4, b_2 = 9, b_3 = 13$	No	Yes	Yes	No×	
$G^0_{5.18}\times \mathbb{R}$	$ar{t}=\pi,$	$b_1 = 2, b_2 = 3, b_3 = 4$	$b_1 = 2, b_2 = 5, b_3 = 8$	No	Yes	~	No*	
	$ar{t}=rac{\pi}{2},rac{\pi}{3}$		$b_1=2, b_2=3, b_3=4$	No	Yes	~	No*	
$G^0_{3.5} imes \mathbb{R}^3$	$ar{t}=2\pi$	$b_1 = 4, b_2 = 7, b_3 = 8$	$b_1 = 6, b_2 = 15, b_3 = 20$	Yes	Yes	Yes	$\mathrm{Yes}^{ imes}$	
0.0	$\bar{t}=\pi, \tfrac{\pi}{2}, \tfrac{\pi}{3}$		$b_1 = 4, b_2 = 7, b_3 = 8$	Yes	Yes	~	Yes*	
\times = for both the invariant and the not invariant symplectic structures considered.							×151	

 $H^*(G/\Gamma_{\bar{t}})$

 $b_1 = 5, b_2 = 11, b_3 = 14$

 $b_1 = 3, b_2 = 5, b_3 = 6$

 $\begin{array}{ll} \mbox{if } p \neq 0, r \neq \pm 1 & p \neq 0: \ b_1 = 6, b_2 = 15, b_3 = 20 \\ \\ \mbox{b}_1 = 2, b_2 = 1, b_3 = 0 & p = 0: \ b_1 = 2, b_2 = 5, b_3 = 8 \end{array}$

F IS \mathbf{S} HL

No Yes Yes No×

No Yes

Yes

Yes Yes Yes×

Example (6-dimensional decomposable almost abelian solvmanifolds not satisfying the Mostow condition)

 $H^*(\mathfrak{g})$

 $b_1 = 3, b_2 = 5, b_3 = 6$

if $p \neq 0, r \neq \pm 1$

 $b_1 = 2, b_2 = 1, b_3 = 0$

if $p = 0, r \neq \pm 1$

or $p \neq 0, r = \pm 1$

G

 $G^0_{5,14} \times \mathbb{R}$

 $G_{5,17}^{p,-p,r} \times \mathbb{R}$

 $r = \frac{r_1}{r_0} \in \mathbb{Q}$

 $G_{5,18}^0 \times \mathbb{R}$

 $G^0_{3.5} imes \mathbb{R}^3$

 $\Gamma_{\bar{t}}$

 $\bar{t} = 2\pi$

 $\bar{t} = \pi, \frac{\pi}{2}, \frac{\pi}{3}$

 $\bar{t} = 2\pi r_2$

 $\bar{t} = \pi$,

reven

 $\bar{t} = \pi$.

r odd

Topology of compact solvmanifolds

Sergio Console

Aims

No*

Yes*

Yes*

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian

and symplectic ires on solvmanifolds elliptic surface scillator group

	- / - / -	1 - 7 - 7 -					
$ar{t}=rac{\pi}{2},r\equiv_4 0$		$p = 0: b_1 = 4, b_2 = 7, b_3 = 8$	Yes	Yes	1	Yes*	Kähler : structur
$\bar{t} = \frac{\pi}{2}$,	$\text{if }p=0,r=\pm 1$	$p \neq 0: b_1 = 2, b_2 = 3, b_3 = 4$	Yes	Yes	1	Yes*	Hypere The osc
$r\equiv_4 1,3$	$b_1 = 2, b_2 = 5, b_3 = 8$	$p=0: b_1=2, b_2=5, b_3=8$					
$ar{t}=rac{\pi}{2},r\equiv_4 2$		$p = 0: b_1 = 2, b_2 = 3, b_3 = 4$	Yes	Yes	1	Yes*	
$\bar{t} = 2\pi$		$b_1 = 4, b_2 = 9, b_3 = 13$	No	Yes	Yes	No×	
$\bar{t} = \pi,$	$b_1 = 2, b_2 = 3, b_3 = 4$	$b_1 = 2, b_2 = 5, b_3 = 8$	No	Yes	1	No*	
$\bar{t}=rac{\pi}{2},rac{\pi}{3}$		$b_1 = 2, b_2 = 3, b_3 = 4$	No	Yes	1	No*	
$\bar{t} = 2\pi$	$b_1 = 4, b_2 = 7, b_3 = 8$	$b_1 = 6, b_2 = 15, b_3 = 20$	Yes	Yes	Yes	$\mathrm{Yes}^{ imes}$	
$\bar{t}=\pi, \tfrac{\pi}{2}, \tfrac{\pi}{3}$	- , - , 0	$b_1 = 4, b_2 = 7, b_3 = 8$	Yes	Yes	1	Yes*	
$^{\times}$ = for both the invariant and the not invariant symplectic structures considered.						Cash.	

 $H^*(G/\Gamma_{\bar{t}})$

 $b_1 = 5, b_2 = 11, b_3 = 14$

 $b_1 = 3, b_2 = 5, b_3 = 6$

 $p \neq 0$; $b_1 = 6, b_2 = 15, b_3 = 20$

p = 0: $b_1 = 2, b_2 = 5, b_3 = 8$

 $p \neq 0$: $b_1 = 2, b_2 = 1, b_3 = 0$

p = 0; $b_1 = 4, b_2 = 7, b_3 = 8$

 $p \neq 0$: $b_1 = 2, b_2 = 5, b_3 = 8$

 $b_1 = 2, b_2 = 3, b_3 = 4$ $p = 0 : b_1 = 2, b_2 = 7, b_3 = 12$

F IS \mathbf{S} HL

No Yes Yes No×

No Yes

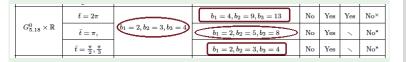
Ves

Yes Yes

Yes Yes

Yes Yes Yes×

Example (6-dimensional decomposable almost abelian solvmanifolds not satisfying the Mostow condition)



 \exists examples where the cohomology depends strongly on the lattice:

 $H^*_{dR}(G/\Gamma_\pi) \ncong H^*_{dR}(G/\Gamma_{2\pi}) \ncong H^*(\mathfrak{g}), \qquad G = G^0_{5.18} imes \mathbb{R} \,.$

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian

Kähler and symplectic structures on solvmanifolds Hyperelliptic surface The oscillator group

Benson-Gordon conjecture: a compact solvmanifold has a Kähler structure if and only if it is a complex torus

Hasegawa (2006):

A solvmanifold carries a Kähler metric if and only if it is covered by a finite quotient of a complex torus, which has the structure of a complex torus bundle over a complex torus.

An example is provided by the hyperelliptic surface

hyperelliptic surface

in particular,

a compact solvmanifold of completely solvable type has a Kähler structure if and only if it is a complex torus

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian

Kähler and symplectic structures on solvmanifolds

Hyperelliptic surface The oscillator group

Half-flat symplectic structures on solvmanifolds

Six dimensional almost abelian solvmanifolds were consider in string backgrounds where the internal compactification manifold is a solvmanifold (see e.g. [Andriot, Goi, Minasian and Petrini]).

They are related to solutions of the supersymmetry (SUSY) equations.

By [Fino-Ugarte], solution of the SUSY equations IIA possess a symplectic half-flat structure, whereas solutions of the SUSY equations IIB admit a half-flat structure

An SU(3) structure on a six-dimensional manifold M (i.e., an SU(3) reduction of the frame bundle of M)

- a non-degenerate 2-form Ω,
- an almost-complex structure J,
- a complex volume form Ψ .

The SU(3) structure is called half-flat if $\Omega \wedge \Omega$ and the real part of Ψ are closed [Chiossi-Salamon].

If in addition Ω is closed, the half-flat structure is called symplectic.

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

 \rightarrow

Nakamura manifold Almost abelian

6 dim almost abelian

Kähler and symplectic structures on solvmanifolds

Hyperelliptic surface

The oscillator group

Half-flat symplectic structures on solvmanifolds

Proposition (– , M. Macrì)

We have the following behavior concerning half flatness of (invariant) symplectic structures for the above solvmanifolds:

- $G_{6.10}^{a=0}/\Gamma_{2\pi}$ and $G_{5.14}^{0} \times \mathbb{R}/\Gamma_{2\pi}$ admit (not) invariant symplectic forms which are not half flat.
- $G_{5.17}^{p,-p,r} \times \mathbb{R}/\Gamma_{2\pi r_2}$ $(r = \frac{r_1}{r_2} \in \mathbb{Q})$ admits an invariant symplectic form which is half flat only for $p \ge 0$ and r = 1 and it admits a not invariant symplectic form which is half flat.
- $G_{5.18}^0 \times \mathbb{R}/\Gamma_{2\pi}$ and $G_{3.5}^0 \times \mathbb{R}^3/\Gamma_{2\pi}$ admit (not) invariant symplectic forms which are half flat.

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold Almost abelian

6 dim almost abelian

Kähler and symplectic structures on solvmanifolds

Hyperelliptic surface The oscillator group

Example (Hyperelliptic surface)

 $G = \mathbb{R} \ltimes_{\varphi} (\mathbb{C} imes \mathbb{R})$, with $\varphi : \mathbb{R} o \operatorname{Aut} (\mathbb{C} imes \mathbb{R})$ defined by

$$\varphi(t)(z,s) = (e^{i\eta t}z,s), \qquad ext{where } \eta = \pi, \frac{2}{3}\pi, \frac{1}{2}\pi ext{ or } \frac{1}{3}\pi$$

Hasegawa: *G* has 7 isomorphism classes of lattices $\Gamma = \mathbb{Z} \ltimes_{\varphi} \mathbb{Z}^3$, where $\varphi : \mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}^3)$ has matrix $\varphi(1)$ with eigenvalues 1, $e^{i\eta}$, $e^{-i\eta}$.

 $\varphi(1)$ has a pair of cx conj roots $\stackrel{\text{Gorbatsevich}}{\Longrightarrow} \mathcal{A}(\operatorname{Ad}_{G}(G)) \neq \mathcal{A}(\operatorname{Ad}_{G}(\Gamma)).$

In this case $\mathcal{A}(\operatorname{Ad}_G(\Gamma))$ is not connected, but Γ contains as a finite index subgroup $\tilde{\Gamma} \cong \mathbb{Z}^4$ $\implies G/\Gamma$ is a finite covering of a torus

Note: $H^1_{dR}(G/\Gamma) \cong H^1(\mathfrak{g})$ even if $\mathcal{A}(\operatorname{Ad}_G(G)) \neq \mathcal{A}(\operatorname{Ad}_G(\Gamma))$ Indeed, *G* has structure equations:

$$\left\{ egin{array}{ll} de^1 = e^2 \wedge e^4 \ de^2 = -e^1 \wedge e^4 \ de^3 = 0 \ de^4 = 0 \end{array}
ight.$$

and
$$H^1(\mathfrak{g}) = \operatorname{span} < e^3, e^4 > .$$

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold

6 dim almost abelian

Kähler and symplectic structures on solvmanifolds

Hyperelliptic surface

The oscillator group

Example (Three families of lattices in the oscillator group [-, G. Ovando, M. Subils])

Oscillator group: $G = \mathbb{R} \ltimes_{\alpha} H_3(\mathbb{R})$ $H_3(\mathbb{R})$ (real) three dimensional Heisenberg group

$$\alpha: \mathbb{R} \to \operatorname{Aut}(\mathfrak{h}_3), \qquad t \mapsto \begin{pmatrix} \cos(t) & \sin(t) & 0\\ -\sin(t) & \cos(t) & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

The oscillator group is an almost nilpotent solvable Lie group If we regard $H_3(\mathbb{R})$ as \mathbb{R}^3 endowed with the operation

$$(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + \frac{1}{2}(xy' - x'y))$$

 \implies H₃(\mathbb{R}) admists the co-compact subgroups $\Gamma_k \subset$ H₃(\mathbb{R}) given by

$$\Gamma_k = \mathbb{Z} \times \mathbb{Z} \times \frac{1}{2k} \mathbb{Z}$$

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold

6 dim almost abelian

Kähler and symplectic structures on solvmanifolds

Hyperelliptic surface

The oscillator group

Example (The oscillator group)

The lattice Γ_k (for any k) is invariant under the subgroups generated by $\alpha(0) = \alpha(2\pi)$, $\alpha(\pi)$ and $\alpha(\frac{\pi}{2}) \Longrightarrow$ we have three families of lattices in $G = \mathbb{R} \ltimes_{\alpha} H_3(\mathbb{R})$:

$$\begin{array}{l} \Lambda_{k,0} = 2\pi\mathbb{Z} \ltimes \mathsf{\Gamma}_k \subset G, \\ \Lambda_{k,\pi} = \pi\mathbb{Z} \ltimes \mathsf{\Gamma}_k \subset G, \\ \Lambda_{k,\pi/2} = \frac{\pi}{2}\mathbb{Z} \ltimes \mathsf{\Gamma}_k \subset G \end{array}$$

 $\implies \Lambda_{k,0} \triangleright \Lambda_{k,\pi} \triangleright \Lambda_{k,\pi/2} \text{ (b: "contains as a normal subgroup"),} \\ \rightsquigarrow \text{ we have the solvmanifolds}$

$$egin{aligned} M_{k,0} &= G/\Lambda_{k,0}\,, \ M_{k,\pi} &= G/\Lambda_{k,\pi}\,, \ M_{k,\pi/2} &= G/\Lambda_{k,\pi/2} \end{aligned}$$

All subgroups of the families $\Lambda_{k,i}$ are not pairwise isomorphic \implies determine non-diffeomorphic solvmanifolds.

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold

6 dim almost abelian

Kähler and symplectic structures on solvmanifolds

Hyperelliptic surface

The oscillator group

Example (The oscillator group)

The action of $\alpha(0)$ is trivial, so $\Lambda_{k,0} = 2\pi\mathbb{Z} \times \Gamma_k$ Diffeomorphism Theorem $\longrightarrow M_{k,0} = G/\Lambda_{k,0} \cong S^1 \times H_3(\mathbb{R})/\Gamma_k$, a *Kodaira–Thurston manifold*. Moreover, for any fixed *k*, we have the finite coverings

$$p_{\pi}: M_{k,0} \to M_{k,\pi}, \qquad p_{\pi/2}: M_{k,0} \to M_{k,\pi/2},$$

[-, G. Ovando, M. Subils]

The Betti numbers b_i of the solvmanifolds $M_{k,*}$ are given by

	b_0	b_1	b ₂	
$M_{k,0}$	1	3	4	
$M_{k,\pi}$	1	1	0	
$M_{k,\pi/2}$	1	1	0	

(clearly $b_3 = b_1$ and $b_4 = b_0$, by Poincaré duality).

There are many symplectic structures on $M_{k,0}$ which are invariant by the group $\mathbb{R} \times H_3(\mathbb{R})$ but not under the oscillator group *G*.

Topology of compact solvmanifolds

Sergio Console

Aims

Nilpotent and solvable Nilmanifolds Solvmanifolds

de Rham Cohomology Nilmanifolds Solmanifolds

Main Theorem Proof of the Main Theorem

Applications

Nakamura manifold

6 dim almost abelian

Kähler and symplectic structures on solvmanifolds

Hyperelliptic surface

The oscillator group

