Abelian complex structures and related geometries

María Laura Barberis

Universidad Nacional de Córdoba, Argentina CIEM - CONICET

Encuentro de Geometría Diferencial Rosario 2012

Joint work with A. Andrada and I. Dotti

- Abelian complex structures.
- Relation to HKT geometry.
- Affine Lie algebras and abelian double products.
- Kähler Lie algebras with abelian complex structures.
- The first canonical connection.

A complex structure J on a real Lie algebra \mathfrak{g} is called *abelian* when it satisfies:

$$[Jx, Jy] = [x, y], \quad \forall x, y \in \mathfrak{g}.$$
(1)

Equivalently, $\mathfrak{g}^{1,0}$ is an abelian subalgebra of $\mathfrak{g}^{\mathbb{C}}$.

If G is a Lie group with Lie algebra \mathfrak{g} these conditions imply the vanishing of the Nijenhuis tensor on the invariant almost complex manifold (G, J), that is, J is integrable on G.

- A hyperhermitian structure on a smooth manifold M is $({J_{\alpha}}_{\alpha=1,2,3}, g)$, where
 - $\{J_{\alpha}\}_{\alpha=1,2,3}$ are complex structures such that

$$J_1J_2 = -J_2J_1 = J_3,$$

- 2 g is a Riemannian metric which is Hermitian with respect to $J_{\alpha}, \ \alpha = 1, 2, 3.$
- Given a hyperhermitian structure ({J_α}_{α=1,2,3}, g) on M, g is called hyper-Kähler with torsion (HKT) if there exists a connection ∇ on M satisfying

1
$$\nabla g = 0, \quad \nabla J_{\alpha} = 0, \alpha = 1, 2, 3,$$

the torsion tensor c(X, Y, Z) = g(X, T(Y, Z)) is skew-symmetric. This class of metrics has been introduced by P.S. Howe - G.Papadopoulos (1996).

- Dotti Fino (2002): If G is a 2-step nilpotent Lie group with a left invariant HKT structure ({J_α}_{α=1,2,3}, g), then the hypercomplex structure is abelian.
- B Dotti Verbitsky (2009): Let (N, {J_α}_{α=1,2,3}, g) be an HKT nilmanifold such that {J_α} is left invariant. Then the hypercomplex structure {J_α} is abelian.

Let J be an abelian complex structure on the Lie algebra \mathfrak{g} . Then:

(i) The center
$$\mathfrak{z}$$
 of \mathfrak{g} is *J*-stable.

(ii) For any
$$x \in \mathfrak{g}$$
, $\operatorname{ad}_{J_X} = -\operatorname{ad}_X J$.

(iii) $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$ is abelian, equivalently, \mathfrak{g} is 2-step solvable [Petravchuk, 1988].

(iv) $J\mathfrak{g}'$ is an abelian subalgebra.

(v) $\mathfrak{g}' \cap J\mathfrak{g}' \subseteq \mathfrak{z}(\mathfrak{g}'_J)$, where $\mathfrak{g}'_J := \mathfrak{g}' + J\mathfrak{g}'$.

Affine Lie algebras

Let (A, ·) be a finite dimensional associative, commutative algebra. Set aff(A) := A ⊕ A with Lie bracket:

$$[(a,a'),(b,b')]=(0,a\cdot b'-b\cdot a'), \qquad a,b,a',b'\in \mathcal{A},$$

In particular, when $\mathcal{A} = \mathbb{R}$ or $\mathcal{A} = \mathbb{C}$, we obtain the Lie algebra of the group of affine motions of either \mathbb{R} or \mathbb{C} .

• Let J be the endomorphism of $\mathfrak{aff}(\mathcal{A})$ defined by

$$J(a,a')=(a',-a), \qquad a,a'\in \mathcal{A}.$$

J defines an abelian complex structure on $\mathfrak{aff}(\mathcal{A})$, which we will call standard.

Abelian double products

[Andrada-Salamon, 2005] Consider a finite dimensional real vector space \mathcal{A} with two structures of commutative associative algebra, (\mathcal{A}, \cdot) and $(\mathcal{A}, *)$, with the following compatibility conditions:

$$a*(b\cdot c) = b*(a\cdot c), \qquad a\cdot(b*c) = b\cdot(a*c),$$
 (2)

for every $a, b, c \in A$.

Then, $\mathcal{A} \oplus \mathcal{A}$ with the bracket:

$$[(a,a'),(b,b')]=(-(a*b'-b*a'),a\cdot b'-b\cdot a'), \qquad a,b,a',b'\in\mathcal{A},$$

is a Lie algebra denoted by $(\mathcal{A},\cdot) \bowtie (\mathcal{A},*)$ and the endomorphism J defined by

$$J(a,a') = (-a',a), \qquad a,a' \in \mathcal{A},$$
 (3)

is an abelian complex structure, called the *standard* complex structure on $(\mathcal{A}, \cdot) \bowtie (\mathcal{A}, *)$.

More examples

We show next that there is a large family of Lie algebras with abelian complex structure which are not abelian double products.

Let $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{v}$ where $\mathfrak{a} = \operatorname{span}\{f_1, f_2\}$ and \mathfrak{v} is a 2*n*-dimensional real vector space. We fix an endomorphism J of \mathfrak{g} such that $J^2 = -I$, $Jf_1 = f_2$ and \mathfrak{v} is J-stable. Given a linear isomorphism T of \mathfrak{v} commuting with $J|_{\mathfrak{v}}$, we define a Lie bracket on \mathfrak{g} such that a is an abelian subalgebra, \mathfrak{v} is an abelian ideal and the bracket between elements in \mathfrak{a} and \mathfrak{v} is given by:

$$[f_1, v] = TJ(v),$$
 $[f_2, v] = T(v),$ for every $v \in \mathfrak{v}.$

It turns out that J is an abelian complex structure on \mathfrak{g} .

The Lie algebra \mathfrak{g} is not an abelian double product, unless n = 1. In this case, $\mathfrak{g} = \mathfrak{aff}(\mathbb{C})$ with an abelian complex structure which is NOT the standard one.

Theorem (Andrada -B - Dotti, 2011)

Let g be a solvable Lie algebra with an abelian complex structure J such that g admits a vector space decomposition g = u + Ju. Then:

- (i) if u is an abelian subalgebra of g then $g = a \oplus Ja$ is an abelian double product with $a \subset u$;
- (ii) if u is an abelian ideal of g and, moreover, g' ∩ Jg' = {0}, then (g, J) is holomorphically isomorphic to aff(A) for some commutative associative algebra (A, ·).

Corollary

Let \mathfrak{g} be a solvable Lie algebra with an abelian complex structure J. Then:

 g'_J is an abelian double product and if g' ∩ Jg' = {0}, then (g'_J, J) is holomorphically isomorphic to aff(A) for some commutative associative algebra (A, ·);

② if $\mathfrak{g} = \mathfrak{g}' + J\mathfrak{g}'$, then $\mathfrak{g} = \mathfrak{u} \oplus J\mathfrak{u}$ is an abelian double product for some subalgebra $\mathfrak{u} \subset \mathfrak{g}'$.

Kähler Lie algebras with abelian complex structure

Let (\mathfrak{g}, J, g) be a Kähler Lie algebra with J abelian. It can be shown that:

(i) $\mathfrak{z} = (\mathfrak{g}'_J)^{\perp}$.

(ii) $(\mathfrak{g}')^{\perp}$ is abelian.

(iii) $\operatorname{ad}_{z}|_{\mathfrak{g}'}$ is symmetric for all $z \in \mathfrak{g}$.

Theorem (Andrada - B -Dotti, 2011)

Let (\mathfrak{g}, J, g) be a Kähler Lie algebra with J an abelian complex structure. Then \mathfrak{g} is isomorphic to

 $\mathfrak{aff}(\mathbb{R}) \times \cdots \times \mathfrak{aff}(\mathbb{R}) \times \mathbb{R}^{2s},$

and this decomposition is orthogonal and J-stable.

Corollary

Let G be a simply connected Lie group equipped with a left-invariant Kähler structure (J,g) such that J is abelian. If the commutator subgroup is n-dimensional and the center is 2s-dimensional, then

$$G = H^2(-c_1) \times \cdots \times H^2(-c_n) \times \mathbb{R}^{2s},$$

where $c_i > 0$, i = 1, ..., n, and $H^2(-c_i)$ denotes the 2-dimensional hyperbolic space of constant curvature $-c_i$.

Corollary

Let $M = \Gamma \setminus G$ be a compact quotient with a left invariant Kähler structure (J, g) such that J is abelian. Then M is diffeomorphic to a torus.

Given a Hermitian Lie algebra (\mathfrak{g}, J, g) , consider the connection ∇^1 on \mathfrak{g} defined by

$$g\left(\nabla_{x}^{1}y,z\right)=g\left(\nabla_{x}^{g}y,z\right)+\frac{1}{4}\left(d\omega(x,Jy,z)+d\omega(x,y,Jz)\right),$$

where ω is the Kähler form. This connection satisfies

$$abla^1 g = 0, \quad
abla^1 J = 0, \quad T^1 ext{ is of type } (1,1).$$

 ∇^1 is known as the first canonical Hermitian connection associated to (\mathfrak{g}, J, g) [Lichnerowicz, 1962].

Another expression for ∇^1 [Agricola, 2005]:

$$\nabla_x^1 y := \nabla_x^g y + \frac{1}{2} (\nabla_x^g J) Jy = \frac{1}{2} (\nabla_x^g J) Jy =$$

for $x, y \in \mathfrak{g}$. We write the above equation with any affine connection ∇ and define

$$\overline{\nabla}_{x}y := \nabla_{x}y + \frac{1}{2} (\nabla_{x}J) Jy = \frac{1}{2} (\nabla_{x}y - J\nabla_{x}Jy), \qquad (4)$$

for $x, y \in \mathfrak{g}$.

 $\overline{\nabla}$ satisfies:

- $\overline{\nabla}J = 0$
- if ∇ is torsion-free, then T
 (x, y) = T
 (Jx, Jy), i.e. T
 is of type (1, 1) with respect to J.

Lemma

Let ∇ be a torsion-free connection and J a complex structure on g. Assume that $\overline{\nabla} = 0$, that is, $\nabla_x J = -J\nabla_x$ for every $x \in \mathfrak{g}$. Then J is abelian.

Theorem (Andrada - B - Dotti, 2011)

Let (\mathfrak{g}, J, g) be a Hermitian Lie algebra such that its associated first canonical connection ∇^1 satisfies $\nabla^1_x y = 0$ for every $x, y \in \mathfrak{g}$, that is, ∇^1 coincides with the (-)-connection. Then \mathfrak{g} is abelian.

Corollary

Let $M = \Gamma \setminus G$ be a compact quotient of a simply connected Lie group G by a discrete subgroup Γ . If (J,g) is a left invariant Hermitian structure on M such that its first canonical connection ∇^1 coincides with the connection ∇^0 , then M is diffeomorphic to a torus.

Lemma

Let (\mathfrak{g}, J, g) be a Hermitian Lie algebra with J abelian. If the associated first canonical connection ∇^1 is flat, then $\mathfrak{z} \cap \mathfrak{g}' = \{0\}$.

Theorem

Let $(\mathfrak{g}, J, \mathfrak{g})$ be a Hermitian Lie algebra with J abelian. If the associated first canonical connection ∇^1 is flat, then \mathfrak{g} is abelian.