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Rosario

August 2012



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

Contents

1 Preliminaries

2 The bracket flow in a class of solvmanifolds

3 The normalized bracket flow

4 Negative curvature



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

Contents

1 Preliminaries

2 The bracket flow in a class of solvmanifolds

3 The normalized bracket flow

4 Negative curvature



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

Contents

1 Preliminaries

2 The bracket flow in a class of solvmanifolds

3 The normalized bracket flow

4 Negative curvature



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

Contents

1 Preliminaries

2 The bracket flow in a class of solvmanifolds

3 The normalized bracket flow

4 Negative curvature



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

The Ricci flow

(M, g), the Ricci flow is:

∂
∂t g(t) = −2 Rc(g(t)), g(0) = g . (1)

M, a complete g is a Ricci soliton if:

Rc(g) = cg + LXg , c ∈ R, X ∈ χ(M) complete.

g Ricci soliton⇔ g(t) = (−2ct+1)φ∗t g is a solution of the Ricci flow.
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Varying Lie brackets

We fix (Rn, 〈·, ·〉),

Ln = {µ : Rn×Rn → Rn : µ bilinear, skew-symmetric and Jacobi}.

GLn(R) acts on Ln: X ,Y ∈ Rn, g ∈ GLn(R), µ ∈ Ln.

g .µ(X ,Y ) = gµ(g−1X , g−1Y ). (2)

µ ∈ Ln! (Gµ, 〈·, ·〉) = (Gµ, gµ)

g ∈ GLn(R) (Gg .µ, 〈·, ·〉)→ (Gµ, 〈g ., g .〉) isometry.

vary Lie brackets! vary inner products.
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Ricci flow on Lie groups: The bracket flow

G , (G , g) is isometric to (Gµ, gµ), with µ ∈ Ln. The Ricci flow
equation (1) is equivalent to:

d
dt 〈·, ·〉t = −2 Rc(〈·, ·〉t), 〈., .〉0 = 〈·, ·〉, (3)

µ ∈ Ln, the bracket flow starting at µ is:

d
dtµ(t) = δµ(t)(Ricµ(t)), µ(0) = µ, (4)

where δµ(A) = µ(A·, ·) + µ(·,A·)− Aµ(·, ·), A ∈ GLn(R), µ ∈ Vn.

Theorem ([L3],2012)

There exist time-dependent diffeomorphisms
ϕ(t) : G → Gµ(t) such that g(t) = ϕ(t)∗gµ(t), ∀t ∈ (a, b).
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The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a
left invariant Riemannian metric. (S , 〈·, ·〉)

Purpose: To study the Ricci flow.

How?: Using the bracket flow.

In which solvmanifolds?: Solvmanifolds whose Lie algebras
have an abelian ideal of codimension 1.
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The bracket flow in a class of solvmanifolds
We fix (Rn+1, 〈·, ·〉).

If (Rn+1, µ) is a Lie algebra with an abelian
ideal of codimension 1, then there exists an orthonormal basis
{e0, e1, . . . , en} such that:

µ(e0, ei ) = Aei , i = 1, . . . , n, A ∈ gln(R),
µ(ei , ej) = 0, ∀i , j ≥ 1.

From now on, (Rn+1, µA) or µA, and (GµA , 〈·, ·〉), or (GµA , gµA).
The Ricci operator of (GµA , gµA) w. r. t. {e0, e1, . . . , en} is:

RicµA =

(
− tr(S(A)2) 0

0 1
2 [A,At ]− tr(A)S(A)

)
. (5)

Then, using d
dtµ(t) = δµ(t)(Ricµ(t)) and proposing µA(t) as a

solution, we obtain that µ(t) = µA(t), with A(t) that satisfies:

d
dt A = − tr(S(A)2)A + 1

2 [A, [A,At ]]− 1
2 tr(A)[A,At ]. (6)
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The bracket flow in a class of solvmanifolds

Let A :=

(
0 x0

y0 0

)
∈ gl2(R), with x0y0 < 0.

Then, µ(t) = µA(t)

with A(t) =

(
0 x(t)

y(t) 0

)
and x(t) = x , y(t) = y satisfy:

x ′ = x(x + y)(−3
2 x + 1

2 y), x(0) = x0,
y ′ = y(x + y)(−3

2 y + 1
2 x), y(0) = y0.

(7)
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The bracket flow in a class of solvmanifolds
Question:

Limits of solutions?

Lemma

Let A ∈ gln(R) and consider the bracket flow µA(t) starting at µA.
Then:

If tr(A) = 0, then limt→∞
A(t)
‖A(t)‖ = A1

∞( A(t)→ A∞),

If tr(A) 6= 0, then A(t)→ 0.

Sketch of proof.

If tr(A) = 0, we consider F (A) = ‖[A,At ]‖2

‖A‖4 for A = A(t), and

the negative gradient flow of F , Ā(t). Then if A is not

nilpotent limt→∞
Ā(t)

‖Ā(t)‖ = limt→∞
A(t)
‖A(t)‖ .

If tr(A) 6= 0, it is easy to see that A(t)→ 0 using the spectra
of A and A(t).
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Ā(t)
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The bracket flow in a class of solvmanifolds

Lemma

Let A ∈ gln(R) and consider the bracket flow µA(t) starting at µA.
Then:

A(t) = a(t)ϕtAϕ
−1
t , a(t) is a real valued function, and

ϕt ∈ GLn(R). ( Spec(A∞) = a∞ Spec(A).)

A(t) is defined ∀t ∈ [0,∞).

tr(S(A(t))2) is strictly decreasing if A is not skew-symmetric.
Moreover, tr(S(A(t))2)→ 0 as t →∞.
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Corollary

There exists a sequence (GµA(tk )
, gµA(tk )

) which converges in the

pointed (Cheeger - Gromov) sense to a manifold locally isometric
to (GµA∞ , gµA∞ ), which is flat.

Proposition

If Spec(A) * iR then gµA(t)
→ gµA∞ smoothly on Rn.
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For every µA with tr(A2) ≥ 0, the Ricci flow g(t) with g(0) = gµA
is a Type - III solution

(it is defined ∀t ∈ [0,∞) and there exists
C ∈ R such that ‖Rm(g(t))‖ ≤ C

t , ∀t ∈ (0,∞)), for some
constant Cn that only depends on the dimension n.
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Norm-normalized bracket flow

Lemma

Let A be with ‖A‖ = 1 and consider µA(t) the norm-normalized
bracket flow starting at µA. Then the following are equivalent:

(i) µA is not an algebraic soliton. (algebraic soliton:
Ricµ = cI + D, c ∈ R, D ∈ Der(µ))

(ii) d
dt ‖[A,A

t ]‖2 < 0.

Theorem

Assume that A(tk)→ A∞. Then, A∞ is an algebraic soliton.
Moreover, the following are equivalent:

(i) Spec(A) ⊆ iR.
(ii) (GµA∞ , gµA∞ ) is flat.
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Negative curvature

Question: How does the curvature evolve along the Ricci flow?

(M,g), we will say that it has negative curvature, and denote it by
K < 0, if all sectional curvatures are strictly negative.

If (g, 〈·, ·〉) is a Lie algebra with an inner product, we will think
about sectional curvatures of (G , g).
In the case of µA, we will denote it by KA.
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Negative curvature

Theorem

Let µA be a solvable Lie algebra that admits an inner product with
negative curvature.

If µA(t) is the bracket flow starting at µA, then
there exists S ∈ N such that KA(t) < 0, ∀t ≥ S .

Sketch of proof.

We consider the norm-normalized bracket flow.

If A(tk)→ A∞, then Spec(A∞) = α∞ Spec(A), con α∞ > 0.

As µA admits an inner product with K < 0, the
Re(Spec(A)) > 0 or Re(Spec(A)) < 0 ([H]).

Then Re(Spec(A∞)) > 0 or Re(Spec(A∞)) < 0, and A∞ is
normal because it is an algebraic soliton. Then KA∞ < 0.

Finally, it is easy to see that the theorem is true for the
norm-normalized bracket flow and then for the bracket flow.
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Negative curvature
Question:

Is the same true in the general case?
We consider (µλ,α, 〈·, ·〉) defined as follows:

µλ,α(e0, ei ) = α

 λ
1− λ

1

 ei , µλ,α(e1, e2) = e3.

(µλ,α, 〈·, ·〉) is an algebraic soliton ⇔ α =
√

3√
2(λ2+(1−λ)2+1)

.

K (e1, e3) = 1
4 −

3λ
λ2+(1−λ)2+1

.

K (e1, e3) ≥ 0 ⇔ λ ≤ 2−
√

3 ó λ ≥ 2 +
√

3.

If 0 < λ ≤ 2−
√

3, then 0 < 1− λ and so Re(Spec(ad(e0))) > 0.
Then µλ,α admits an inner product with negative curvature ([H]).
Hence, as (µλ,α, 〈·, ·〉) is an algebraic soliton, if µ(t) is the bracket
flow starting at µλ,α then (Gµ(t), gµ(t)) has planes with curvature
bigger than or equal to zero.
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3 ó λ ≥ 2 +
√

3.

If 0 < λ ≤ 2−
√

3, then 0 < 1− λ and so Re(Spec(ad(e0))) > 0.
Then µλ,α admits an inner product with negative curvature ([H]).
Hence, as (µλ,α, 〈·, ·〉) is an algebraic soliton, if µ(t) is the bracket
flow starting at µλ,α then (Gµ(t), gµ(t)) has planes with curvature
bigger than or equal to zero.



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

Negative curvature
Question: Is the same true in the general case?
We consider (µλ,α, 〈·, ·〉) defined as follows:

µλ,α(e0, ei ) = α

 λ
1− λ

1

 ei , µλ,α(e1, e2) = e3.

(µλ,α, 〈·, ·〉) is an algebraic soliton ⇔ α =
√

3√
2(λ2+(1−λ)2+1)

.

K (e1, e3) = 1
4 −

3λ
λ2+(1−λ)2+1

.

K (e1, e3) ≥ 0 ⇔ λ ≤ 2−
√
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3 ó λ ≥ 2 +
√

3.

If 0 < λ ≤ 2−
√

3, then 0 < 1− λ and so Re(Spec(ad(e0))) > 0.
Then µλ,α admits an inner product with negative curvature ([H]).

Hence, as (µλ,α, 〈·, ·〉) is an algebraic soliton, if µ(t) is the bracket
flow starting at µλ,α then (Gµ(t), gµ(t)) has planes with curvature
bigger than or equal to zero.



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

Negative curvature
Question: Is the same true in the general case?
We consider (µλ,α, 〈·, ·〉) defined as follows:

µλ,α(e0, ei ) = α

 λ
1− λ

1

 ei , µλ,α(e1, e2) = e3.

(µλ,α, 〈·, ·〉) is an algebraic soliton ⇔ α =
√

3√
2(λ2+(1−λ)2+1)

.

K (e1, e3) = 1
4 −

3λ
λ2+(1−λ)2+1

.

K (e1, e3) ≥ 0 ⇔ λ ≤ 2−
√
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Question:

What happens with the Ricci flow when we start with a
metric whose sectional curvatures are all negative? Let λ be fixed
and we consider µ(t) starting at µα,λ.

µ(t)(e0, ei ) = α(t)

 λ
1− λ

1

 ei , µ(t) = h(t)e3,

with α(t) = 1√
2cλt+α−2

and h(t) = 1√
3t+1

. For each t, we have

that
K (e1, e3) = h2

4 − λα
2 = 1

4(3t+1) −
λ

2cλt+α−2
0

K (e1, e3) ≥ 0 ⇔ (2cλ − 12λ)t ≥ 4λ− α−2
0 .

For sufficiently large α, µα,λ has a negative curvature ([H]) but if
0 < λ ≤ 2−

√
3 then from some t0, K (e1, e3) ≥ 0,∀t ≥ t0.
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