Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

The Ricci flow in a class of solvmanifolds

Romina M. Arroyo
FaMAF and CIEM, Cérdoba, Argentina

Encuentro de Geometria Diferencial
Rosario
August 2012



Contents

0 Preliminaries

(O < o«

it
v

Q>



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

Contents

@ Preliminaries

© The bracket flow in a class of solvmanifolds



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

Contents

@ Preliminaries

© The bracket flow in a class of solvmanifolds

e The normalized bracket flow



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

Contents

@ Preliminaries

© The bracket flow in a class of solvmanifolds

e The normalized bracket flow

e Negative curvature



The Ricci flow

(O @ (=»

«E»

Q>



s
The Ricci flow

(M., g),

(O @ (=»

«E»

Q>



Preliminaries

The bracket flow in a class of solvmanifolds

The normalized bracket flow
The Ricci flow

Negative curvature

(M, g), the Ricci flow is:




Preliminaries

The bracket flow in a class of solvmanifolds

The normalized bracket flow
The Ricci flow

Negative curvature

(M, g), the Ricci flow is:

2g(t) =

—2Re(g(t)),

g(0) =g.




Preliminaries

The bracket flow in a class of solvmanifolds

The normalized bracket flow
The Ricci flow

Negative curvature

(M, g), the Ricci flow is:

2g(t) =

—2Rc(g(t)), £(0) =g
M7




Preliminaries

The bracket flow in a class of solvmanifolds

The normalized bracket flow
The Ricci flow

Negative curvature

(M, g), the Ricci flow is:

2g(t) =

—2Re(g(t)),

g(0) =g
M, a complete g is a Ricci soliton if:




Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

The Ricci flow

(M, g), the Ricci flow is:

2g(t) = —2Rc(g(t). g(0) =g. (1)

M, a complete g is a Ricci soliton if:

Re(g) = cg + Lxg, c € R, X € x(M) complete.




Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

The Ricci flow

(M, g), the Ricci flow is:

2g(t) = —2Rc(g(t). g(0) =g. (1)

M, a complete g is a Ricci soliton if:

Re(g) = cg + Lxg, c € R, X € x(M) complete.

g Ricci soliton



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

The Ricci flow

(M, g), the Ricci flow is:

2g(t) = —2Rc(g(t). g(0) =g. (1)

M, a complete g is a Ricci soliton if:

Re(g) = cg + Lxg, c € R, X € x(M) complete.

g Ricci soliton <



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

The Ricci flow

(M, g), the Ricci flow is:

2g(t) = —2Rc(g(t). g(0) =g. (1)

M, a complete g is a Ricci soliton if:

Re(g) = cg + Lxg, c € R, X € x(M) complete.

g Ricci soliton < g(t) = (—2ct+1)¢;g is a solution of the Ricci flow.
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We fix (R", (-, -)),
Lp={p:R"XR" — R": p bilinear, skew-symmetric and Jacobi}.
GL,(R) actson £,: X, Y € R", g € GL,(R), 1 € £,,.

guX,Y)=gu(g ' X,g7'Y). (2)

€ Lo e (G (+50)) = (Gpiy 81)

g € GLy(R) ~ (Gg.p, (-,-)) = (Gpu, (g-,&-)) isometry.
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Varying Lie brackets
We fix (R", (-, -)),
Lp={p:R"XR" — R": p bilinear, skew-symmetric and Jacobi}.
GL,(R) actson £,: X, Y € R", g € GL,(R), 1 € £,,.

guX,Y)=gu(g ' X,g7'Y). (2)

pE Ln o (Gy, () = (Gp, 8u)
g € GLy(R) ~ (Gg.p, (-,-)) = (Gpu, (g-,&-)) isometry.

vary Lie brackets « vary inner products.
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Ricci flow on Lie groups: The bracket flow

G, (G, g) is isometric to (G, g.), with i € L,. The Ricci flow
equation (1) is equivalent to:

%<'? '>f =2 RC(<'> '>t)a <'7 ->O = <', '>, (3)

€ Ly, the bracket flow starting at p is:

Si1(t) = ) (Ricy(),  1(0) = p, (4)
where §,(A) = u(A-,-) + (-, A) — Au(-,-), A € GLa(R), o € V.
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Ricci flow on Lie groups: The bracket flow

G, (G, g) is isometric to (G, g.), with i € L,. The Ricci flow
equation (1) is equivalent to:

%<'? '>f =2 RC(<'> '>t)a <'7 '>O = <', '>, (3)

€ Ly, the bracket flow starting at p is:

%“(t) = du(t)(Ricy(r)),  w(0) = p, (4)
where 6,(A) = u(A-,-) + u(-, A) — Au(-,-), A € GLy(R), p € Vi, J

Theorem ([L3],2012)

There exist time-dependent diffeomorphisms
@(t) : G = Gy such that g(t) = @(t)* gy, Vt € (a, b).
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left invariant Riemannian metric. (S, (-,-)) J

@ Purpose: To study the Ricci flow.
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The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a
left invariant Riemannian metric. (S, (-,-)) J

@ Purpose: To study the Ricci flow.
@ How?: Using the bracket flow.
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The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a
left invariant Riemannian metric. (S, (-,-)) J

@ Purpose: To study the Ricci flow.
@ How?: Using the bracket flow.

@ In which solvmanifolds?:
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The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a
left invariant Riemannian metric. (S, (-,-)) J

@ Purpose: To study the Ricci flow.
@ How?: Using the bracket flow.

@ In which solvmanifolds?: Solvmanifolds whose Lie algebras
have an abelian ideal of codimension 1.
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p(ei,e) =0, Vi,j>1.
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The bracket flow in a class of solvmanifolds

We fix (R (-,-)). If (R, 1) is a Lie algebra with an abelian
ideal of codimension 1, then there exists an orthonormal basis
{eo,€1,...,en} such that:

w(eo, ej) = Aei, i=1,....n, Ae€gl,(R),
p(ei,e) =0, Vi,j>1.
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Then, using %u(t) = 0u(t)(Ricy(¢)) and proposing fia(;) as a
solution, we obtain that u(t) = a(y), with A(t) that satisfies:
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The bracket flow in a class of solvmanifolds

We fix (R (-,-)). If (R, 1) is a Lie algebra with an abelian
ideal of codimension 1, then there exists an orthonormal basis
{eo,€1,...,en} such that:

w(eo, ej) = Aei, i=1,....n, Ae€gl,(R),
p(ei,e) =0, Vi,j>1.

From now on, (R”H,MA) or pa, and (Gpy, (-, ), or (Gua, 8ua)-

The Ricci operator of (G, 8u,) W. r. t. {eg, e1,...,€p} is:
[ —tr(S(A)?) 0
Ricu, = < 0 1A A - tr(a)s(a) ) ®)

Then, using %,u(t) = 0u(t)(Ricy(¢)) and proposing fia(;) as a
solution, we obtain that u(t) = a(y), with A(t) that satisfies:

GA=—tr(S(A)D)A+ 3[A [A ATl — Jtr(A)[A AT (6)
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0 .
Let A := ( Y )8) ) € gly(R), with xoyo < 0.
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The bracket flow in a class of solvmanifolds
Let A := < }2) )8) ) € glr(R), with xoy0 < 0. Then, 1u(t) = pa)

with A(t) = ( y?t th) ) and x(t) = x, y(t) = y satisfy:
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The bracket flow in a class of solvmanifolds

Let A := < }2) )8) ) € glr(R), with xoy0 < 0. Then, 1u(t) = pa)

with A(t) = ( 0 th) ) and x(t) = x, y(t) = y satisfy:

'
()
L

Fluyjo de corchtes de p, con A=|
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Lemma

Let A € gl,(R) and consider the bracket flow jua(y) Starting at pa.
Then:
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The bracket flow in a class of solvmanifolds
Question: Limits of solutions?

Lemma

Let A € gl,(R) and consider the bracket flow jua(y) Starting at pa.
Then:

o Iftr(A) =0, then lim; o 48 = AL (~ A(t) = A),

o Iftr(A) # 0, then A(t) — 0.
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The bracket flow in a class of solvmanifolds
Question: Limits of solutions?

Lemma

Let A € gl,(R) and consider the bracket flow jua(y) Starting at pa.
Then:

o Iftr(A) =0, then lim; o 48 = AL (~ A(t) = A),

e Iftr(A) # 0, then A(t) — 0.

Sketch of proof.
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The bracket flow in a class of solvmanifolds
Question: Limits of solutions?

Lemma

Let A € gl,(R) and consider the bracket flow jua(y) Starting at pa.
Then:

o Iftr(A) =0, then lim; o 48 = AL (~ A(t) = A),

e Iftr(A) # 0, then A(t) — 0.

Sketch of proof.
o If tr(A) =0,
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The bracket flow in a class of solvmanifolds
Question: Limits of solutions?

Lemma

Let A € gl,(R) and consider the bracket flow jua(y) Starting at pa.
Then:

o Iftr(A) =0, then lim; o 48 = AL (~ A(t) = A),

e Iftr(A) # 0, then A(t) — 0.

Sketch of proof.

o If tr(A) =0, we consider F(A) = % for A= A(t), and
the negative gradient flow of F, A(t).
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The bracket flow in a class of solvmanifolds
Question: Limits of solutions?

Lemma

Let A € gl,(R) and consider the bracket flow jua(y) Starting at pa.
Then:
A(t)

o Iftr(A) =0, then lim; o 48 = AL (~ A(t) = A),

o Iftr(A) # 0, then A(t) — 0.

Sketch of proof.
o If tr(A) =0, we consider F(A) = LI for A= A(t), and
the negative gradient flow of F, A(t). Then if A is not

nilpotent lim; o % = lim¢—00 %'
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The bracket flow in a class of solvmanifolds
Question: Limits of solutions?
Lemma

Let A € gl,(R) and consider the bracket flow jua(y) Starting at pa.
Then:
A(t)

o Iftr(A) =0, then lim; o 48 = AL (~ A(t) = A),

o Iftr(A) # 0, then A(t) — 0.

Sketch of proof.
o If tr(A) = 0, we consider F(A) = IAAUE for A = A(t), and

G
the negative gradient flow of F, A(t). Then if A is not
: : Alt) s A(t)
nilpotent lim;_, AT = limi—oo AT

o If tr(A) #0,
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The bracket flow in a class of solvmanifolds
Question: Limits of solutions?
Lemma

Let A € gl,(R) and consider the bracket flow jua(y) Starting at pa.
Then:

o Iftr(A) =0, then lim; o 48 = AL (~ A(t) = A),

o Iftr(A) # 0, then A(t) — 0.

Sketch of proof.

o If tr(A) =0, we consider F(A) = LI for A= A(t), and
the negative gradient flow of F, A(t). Then if A is not
: ; Al) _ A(t)
nilpotent lim;_, AL = limi—oo A
o If tr(A) # 0, it is easy to see that A(t) — 0 using the spectra
of A and A(t).

O

v
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The bracket flow in a class of solvmanifolds

Lemma

Let A € gl,(R) and consider the bracket flow jua(y) Starting at pa.
Then:
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The bracket flow in a class of solvmanifolds

Lemma
Let A € gl,(R) and consider the bracket flow jua(y) Starting at pa.
Then:

o A(t) = a(t)piAp; b, a(t) is a real valued function, and
¢r € GL,(R).
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The bracket flow in a class of solvmanifolds

Lemma
Let A € gl,(R) and consider the bracket flow jua(y) Starting at pa.
Then:

o A(t) = a(t)piAp; b, a(t) is a real valued function, and
ot € GLp(R). (~ Spec(Ax) = as Spec(A).)
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The bracket flow in a class of solvmanifolds

Lemma
Let A € gl,(R) and consider the bracket flow jua(y) Starting at pa.
Then:
o A(t) = a(t)piAp; b, a(t) is a real valued function, and
vt € GLp(R). (v Spec(Ax) = aoc Spec(A).)
e A(t) is defined V't € [0, c0).
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The bracket flow in a class of solvmanifolds

Lemma
Let A € gl,(R) and consider the bracket flow jua(y) Starting at pa.
Then:
o A(t) = a(t)piAp; b, a(t) is a real valued function, and
vt € GLp(R). (~ Spec(Ax) = ac Spec(A).)
e A(t) is defined V't € [0, c0).
o tr(S(A(t))?) is strictly decreasing if A is not skew-symmetric.
Moreover, tr(S(A(t))?) — 0 as t — oo.
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The bracket flow in a class of solvmanifolds

Corollary

There exists a sequence (G, 8,)) Which converges in the
pointed (Cheeger - Gromov) sense to a manifold locally isometric
to (Gpa_»8ua., ), which is flat.
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The bracket flow in a class of solvmanifolds

Corollary

There exists a sequence (G, 8,)) Which converges in the
pointed (Cheeger - Gromov) sense to a manifold locally isometric
to (Gpa_»8ua., ), which is flat.

Proposition

If Spec(A) € iR then gy, — &u,., Smoothly on R".
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The bracket flow in a class of solvmanifolds

Proposition

For every jia with tr(A%) > 0, the Ricci flow g(t) with g(0) = g,
is a Type - Il solution
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The bracket flow in a class of solvmanifolds

Proposition

For every jia with tr(A%) > 0, the Ricci flow g(t) with g(0) = gy,
is a Type - Il solution (it is defined V't € [0, 00) and there exists
C € R such that || Rm(g(t))| < %, vt € (0,00)),
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The bracket flow in a class of solvmanifolds

Proposition

For every jia with tr(A%) > 0, the Ricci flow g(t) with g(0) = gy,
is a Type - Il solution (it is defined Vt € [0,00) and there exists
C € R such that || Rm(g(t))| < t, Vt € (0,00)), for some
constant C, that only depends on the dimension n.
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The bracket flow in a class of solvmanifolds

Theorem

Let A € gl,(R). Consider i) the bracket flow starting at jia and
g(t) the Ricci flow starting at g,,,. Then:

(i) g(t) is defined Vt € [0, c0).
(i) A(t) = A.

i) There exists a sequence (G, At 81 A(tk)) which converges in
the pointed sense to a manifold locally isometric to
(Gua_.+8ua., ), which is flat.

(iv) If Spec(A) € iR, then 8iuney — Bua,, SmMoothly on R".
(v) Iftr(A2%) >0, then g(t) is a type - Ill solution for some
constant C, that only depends on the dimension of V,,.
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Norm-normalized bracket flow

Lemma

Let A be with ||Al| = 1 and consider ji4() the norm-normalized
bracket flow starting at ua. Then the following are equivalent:
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Norm-normalized bracket flow

Lemma

Let A be with ||Al| = 1 and consider ;) the norm-normalized
bracket flow starting at ua. Then the following are equivalent:

(i) pa is not an algebraic soliton. (algebraic soliton:
Ricy =c/+D, ceR, DeDer(u))

(i) A A2 <o.




Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

Norm-normalized bracket flow

Lemma

Let A be with ||Al| = 1 and consider ji4() the norm-normalized
bracket flow starting at ua. Then the following are equivalent:

(i) pa is not an algebraic soliton. (algebraic soliton:
Ric,=c/ +D, ceR, D eDer(u))

(i) &I1A A2 <o.

Theorem
Assume that A(tx) = Aco-
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Norm-normalized bracket flow

Lemma

Let A be with ||Al| = 1 and consider ji4() the norm-normalized
bracket flow starting at ua. Then the following are equivalent:

(i) pa is not an algebraic soliton. (algebraic soliton:
Ric,=c/ +D, ceR, D eDer(u))

(i) &I1A A2 <o.

Theorem
Assume that A(tx) — Aco. Then, A is an algebraic soliton.
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Norm-normalized bracket flow

Lemma

Let A be with ||Al| = 1 and consider ;) the norm-normalized
bracket flow starting at ua. Then the following are equivalent:

(i) pa is not an algebraic soliton. (algebraic soliton:
Ricy =c/+D, ceR, DeDer(u))

(i) A A2 <o.

Theorem

Assume that A(tyx) — Asc. Then, A is an algebraic soliton.
Moreover, the following are equivalent:
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Norm-normalized bracket flow

Lemma

Let A be with ||Al| = 1 and consider ;) the norm-normalized
bracket flow starting at ua. Then the following are equivalent:

(i) pa is not an algebraic soliton. (algebraic soliton:
Ricy =c/+D, ceR, DeDer(u))

(i) A A2 <o.

Theorem
Assume that A(tyx) — Asc. Then, A is an algebraic soliton.
Moreover, the following are equivalent:

(i) Spec(A) C iR.
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Norm-normalized bracket flow

Lemma

Let A be with ||Al| = 1 and consider ;) the norm-normalized
bracket flow starting at ua. Then the following are equivalent:

(i) pa is not an algebraic soliton. (algebraic soliton:
Ricy =c/+D, ceR, DeDer(u))

(i) A A2 <o.

Theorem

Assume that A(tyx) — Asc. Then, A is an algebraic soliton.
Moreover, the following are equivalent:

(i) Spec(A) C iR.
(i) (Gua »8&ua. ) is flat.
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Negative curvature

Question: How does the curvature evolve along the Ricci flow?

(M,g), we will say that it has negative curvature, and denote it by J
K <0,
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Negative curvature

Question: How does the curvature evolve along the Ricci flow?

(M,g), we will say that it has negative curvature, and denote it by
K < 0, if all sectional curvatures are strictly negative.
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Negative curvature

Question: How does the curvature evolve along the Ricci flow?

(M,g), we will say that it has negative curvature, and denote it by
K < 0, if all sectional curvatures are strictly negative.

If (g, (-,-)) is a Lie algebra with an inner product, we will think
about sectional curvatures of (G, g).
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Negative curvature

Question: How does the curvature evolve along the Ricci flow?

(M,g), we will say that it has negative curvature, and denote it by
K < 0, if all sectional curvatures are strictly negative.

If (g, (-,-)) is a Lie algebra with an inner product, we will think
about sectional curvatures of (G, g).
In the case of 14, we will denote it by Ka.
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Negative curvature

Theorem

Let ua be a solvable Lie algebra that admits an inner product with
negative curvature.
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Negative curvature
Theorem

Let ua be a solvable Lie algebra that admits an inner product with
negative curvature. If pay) is the bracket flow starting at pa, then
there exists S € N such that Ka) < 0,Vt > S.
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Negative curvature
Theorem

Let ua be a solvable Lie algebra that admits an inner product with
negative curvature. If pay) is the bracket flow starting at pa, then
there exists S € N such that Ka) < 0,Vt > S.

v

Sketch of proof.

@ We consider the norm-normalized bracket flow.
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negative curvature. If pay) is the bracket flow starting at pa, then
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@ We consider the norm-normalized bracket flow.

o If A(tx) = Ao, then Spec(Ax) = ao Spec(A), con a > 0.
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Negative curvature
Theorem

Let ua be a solvable Lie algebra that admits an inner product with
negative curvature. If pay) is the bracket flow starting at pa, then
there exists S € N such that Ka) < 0,Vt > S.

Sketch of proof.
o We consider the norm-normalized bracket flow.
o If A(tx) = Ao, then Spec(Ax) = ao Spec(A), con a > 0.

@ As a4 admits an inner product with K < 0, the
Re(Spec(A)) > 0 or Re(Spec(A)) < 0 ([H]).
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Negative curvature

Theorem

Let ua be a solvable Lie algebra that admits an inner product with
negative curvature. If pay) is the bracket flow starting at pa, then
there exists S € N such that Ka) < 0,Vt > S.

v

Sketch of proof.
o We consider the norm-normalized bracket flow.
o If A(tx) = Ao, then Spec(Ax) = ao Spec(A), con a > 0.

@ As a4 admits an inner product with K < 0, the
Re(Spec(A)) > 0 or Re(Spec(A)) < 0 ([H]).

@ Then Re(Spec(Ax)) > 0 or Re(Spec(Ax)) < 0, and A is
normal because it is an algebraic soliton.
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Negative curvature

Theorem

Let ua be a solvable Lie algebra that admits an inner product with
negative curvature. If pay) is the bracket flow starting at pa, then
there exists S € N such that Ka) < 0,Vt > S.

v

Sketch of proof.
@ We consider the norm-normalized bracket flow.
o If A(tx) = Ao, then Spec(Ax) = ao Spec(A), con a > 0.
@ As a4 admits an inner product with K < 0, the
Re(Spec(A)) > 0 or Re(Spec(A)) < 0 ([H]).
@ Then Re(Spec(Ax)) > 0 or Re(Spec(Ax)) < 0, and A is
normal because it is an algebraic soliton. Then K4 < 0.
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Negative curvature

Theorem

Let ua be a solvable Lie algebra that admits an inner product with
negative curvature. If pay) is the bracket flow starting at pa, then
there exists S € N such that Ka) < 0,Vt > S.

v

Sketch of proof.
@ We consider the norm-normalized bracket flow.
o If A(tx) = Ao, then Spec(Ax) = ao Spec(A), con a > 0.
@ As a4 admits an inner product with K < 0, the
Re(Spec(A)) > 0 or Re(Spec(A)) < 0 ([H]).

@ Then Re(Spec(Ax)) > 0 or Re(Spec(Ax)) < 0, and A is
normal because it is an algebraic soliton. Then K4 < 0.

@ Finally, it is easy to see that the theorem is true for the
norm-normalized bracket flow and then for the bracket flow.
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Question: Is the same true in the general case?
We consider (fx o, (-, -)) defined as follows:

A
fra(eo, €) = 1—=A e, finaler €)= es.
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(tr,a, (-, -)) is an algebraic soliton < o =
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Question: Is the same true in the general case?
We consider (fx o, (-, -)) defined as follows:

A
M)x,a(eOa &) =« 1-A €i, Nk,a(ela &) = es.

(a0, (-, -)) is an algebraic soliton < « T A

K(er,e3) =% —

3\
A2+ (1-N)241"
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Question: Is the same true in the general case?
We consider (fx o, (-, -)) defined as follows:

A
,u)\’a(E(), &) =« 1-A €, N)\,a(ela &) = es.
1

V3
2(A2+(1-2)241) "

(tr,a, (-, -)) is an algebraic soliton < o =

1 3\
K(ela 63) 4 2F(a-N)41

K(e,e3) >0 & A<2—-V3 6 A>2+43.
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We consider (fx o, (-, -)) defined as follows:

A
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(tr,a, (-, -)) is an algebraic soliton < o =
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If0 <\ <2—+/3,then 0 < 1— X and so Re(Spec(ad(ep))) > 0.
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Question: Is the same true in the general case?
We consider (fx o, (-, -)) defined as follows:
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Negative curvature

Question: Is the same true in the general case?
We consider (fx o, (-, -)) defined as follows:

A
,u)\’a(eg, &) =« 1-A €, N)\,a(ela &) = es.
1

V3
2(A2+(1-2)241) "

(tr,a, (-, -)) is an algebraic soliton < o =

1 3\
K(ely 63) 4 2F(a-N)41

K(e,e3) >0 & A<2—-V3 6 A>2+43.

If0 <\ <2—+/3,then 0 < 1— X and so Re(Spec(ad(ep))) > 0.
Then py o admits an inner product with negative curvature ([H]).

Hence, as (pxq, (-, -)) is an algebraic soliton, if x(t) is the bracket
flow starting at p1) o then (G(t), 8u(r)) has planes with curvature

bigger than or equal to zero.
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metric whose sectional curvatures are all negative?



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

Negative curvature

Question: What happens with the Ricci flow when we start with a
metric whose sectional curvatures are all negative? Let A be fixed



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

Negative curvature

Question: What happens with the Ricci flow when we start with a
metric whose sectional curvatures are all negative? Let A be fixed
and we consider p(t) starting at fiq ).



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

Negative curvature

Question: What happens with the Ricci flow when we start with a
metric whose sectional curvatures are all negative? Let A be fixed
and we consider p(t) starting at fiq ).

A
p(t)(eo, &) = ft) 1-A ei, p(t) = h(t)es,



Preliminaries The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature

Negative curvature

Question: What happens with the Ricci flow when we start with a
metric whose sectional curvatures are all negative? Let A be fixed
and we consider p(t) starting at fiq ).

A
p(t)(eo, &) = ft) 1-A ei, p(t) = h(t)es,
1
: _ 1 _ 1
with a(t) = Jootiaz and h(t) T



Negative curvature

Negative curvature

Question: What happens with the Ricci flow when we start with a

metric whose sectional curvatures are all negative? Let A be fixed
and we consider p(t) starting at fiq ).

A
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with a(t) = Jootiaz and h(t) s For each t, we have
that
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Negative curvature
Question: What happens with the Ricci flow when we start with a

metric whose sectional curvatures are all negative? Let A be fixed
and we consider p(t) starting at fiq ).

A
w(t)(eo, ) = a(t) ( 1-A ) ei, wp(t)=h(t)es,
1

: _ 1 _ 1
with a(t) = T and h(t) s For each t, we have
that
_ R N2 1 A
K(e,e3) =7 —Aa” = 4Bt+1)  2c\t+a,?

K(er,e3) >0 & (2cy — 12\)t > 4) — a2

For sufficiently large o, piq  has a negative curvature ([H]) but if
0 < A <2 —+/3 then from some tg, K(er, e3) > 0,Vt > ty.
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j Thank you for your attention!
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