# The Ricci flow in a class of solvmanifolds 

Romina M. Arroyo<br>FaMAF and CIEM, Córdoba, Argentina

Encuentro de Geometría Diferencial Rosario

August 2012

## Contents

(1) Preliminaries

## Contents

(1) Preliminaries
(2) The bracket flow in a class of solvmanifolds

## Contents

(1) Preliminaries
(2) The bracket flow in a class of solvmanifolds
(3) The normalized bracket flow

## Contents

(1) Preliminaries
(2) The bracket flow in a class of solvmanifolds
(3) The normalized bracket flow
(4) Negative curvature

The Ricci flow

## The Ricci flow

(M,g),

## The Ricci flow

$(M, g)$, the Ricci flow is:

## The Ricci flow

$(M, g)$, the Ricci flow is:

$$
\begin{equation*}
\frac{\partial}{\partial t} g(t)=-2 \operatorname{Rc}(g(t)), \quad g(0)=g . \tag{1}
\end{equation*}
$$

## The Ricci flow

$(M, g)$, the Ricci flow is:

$$
\begin{equation*}
\frac{\partial}{\partial t} g(t)=-2 \operatorname{Rc}(g(t)), \quad g(0)=g . \tag{1}
\end{equation*}
$$

M,

## The Ricci flow

$(M, g)$, the Ricci flow is:

$$
\begin{equation*}
\frac{\partial}{\partial t} g(t)=-2 \operatorname{Rc}(g(t)), \quad g(0)=g . \tag{1}
\end{equation*}
$$

$M$, a complete $g$ is a Ricci soliton if:

## The Ricci flow

( $M, g$ ), the Ricci flow is:

$$
\begin{equation*}
\frac{\partial}{\partial t} g(t)=-2 \operatorname{Rc}(g(t)), \quad g(0)=g . \tag{1}
\end{equation*}
$$

$M$, a complete $g$ is a Ricci soliton if:

$$
\operatorname{Rc}(g)=c g+L_{X} g, \quad c \in \mathbb{R}, X \in \chi(M) \text { complete. }
$$

## The Ricci flow

( $M, g$ ), the Ricci flow is:

$$
\begin{equation*}
\frac{\partial}{\partial t} g(t)=-2 \operatorname{Rc}(g(t)), \quad g(0)=g . \tag{1}
\end{equation*}
$$

$M$, a complete $g$ is a Ricci soliton if:

$$
\operatorname{Rc}(g)=c g+L_{x} g, \quad c \in \mathbb{R}, X \in \chi(M) \text { complete. }
$$

g Ricci soliton

## The Ricci flow

( $M, g$ ), the Ricci flow is:

$$
\begin{equation*}
\frac{\partial}{\partial t} g(t)=-2 \operatorname{Rc}(g(t)), \quad g(0)=g . \tag{1}
\end{equation*}
$$

$M$, a complete $g$ is a Ricci soliton if:

$$
\operatorname{Rc}(g)=c g+L_{x} g, \quad c \in \mathbb{R}, X \in \chi(M) \text { complete. }
$$

$g$ Ricci soliton $\Leftrightarrow$

## The Ricci flow

$(M, g)$, the Ricci flow is:

$$
\begin{equation*}
\frac{\partial}{\partial t} g(t)=-2 \operatorname{Rc}(g(t)), \quad g(0)=g . \tag{1}
\end{equation*}
$$

$M$, a complete $g$ is a Ricci soliton if:

$$
\operatorname{Rc}(g)=c g+L_{X} g, \quad c \in \mathbb{R}, X \in \chi(M) \text { complete. }
$$

$g$ Ricci soliton $\Leftrightarrow g(t)=(-2 c t+1) \phi_{t}^{*} g$ is a solution of the Ricci flow.

## Varying Lie brackets

## Varying Lie brackets

We fix $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$,

## Varying Lie brackets

We fix $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$,
$\mathfrak{L}_{n}=\left\{\mu: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}: \mu\right.$ bilinear, skew-symmetric and Jacobi $\}$.

## Varying Lie brackets

We fix $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$,
$\mathfrak{L}_{n}=\left\{\mu: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}: \mu\right.$ bilinear, skew-symmetric and Jacobi $\}$.
$\mathrm{GL}_{n}(\mathbb{R})$ acts on $\mathfrak{L}_{n}:$

## Varying Lie brackets

We fix $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$,
$\mathfrak{L}_{n}=\left\{\mu: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}: \mu\right.$ bilinear, skew-symmetric and Jacobi $\}$.
$\mathrm{GL}_{n}(\mathbb{R})$ acts on $\mathfrak{L}_{n}: \quad X, Y \in \mathbb{R}^{n}, g \in \mathrm{GL}_{n}(\mathbb{R}), \mu \in \mathfrak{L}_{n}$.

## Varying Lie brackets

We fix $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$,
$\mathfrak{L}_{n}=\left\{\mu: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}: \mu\right.$ bilinear, skew-symmetric and Jacobi $\}$.
$\mathrm{GL}_{n}(\mathbb{R})$ acts on $\mathfrak{L}_{n}: \quad X, Y \in \mathbb{R}^{n}, g \in \mathrm{GL}_{n}(\mathbb{R}), \mu \in \mathfrak{L}_{n}$.

$$
\begin{equation*}
g \cdot \mu(X, Y)=g \mu\left(g^{-1} X, g^{-1} Y\right) \tag{2}
\end{equation*}
$$

## Varying Lie brackets

We fix $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$,
$\mathfrak{L}_{n}=\left\{\mu: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}: \mu\right.$ bilinear, skew-symmetric and Jacobi $\}$.
$\mathrm{GL}_{n}(\mathbb{R})$ acts on $\mathfrak{L}_{n}: \quad X, Y \in \mathbb{R}^{n}, g \in \mathrm{GL}_{n}(\mathbb{R}), \mu \in \mathfrak{L}_{n}$.

$$
\begin{equation*}
g \cdot \mu(X, Y)=g \mu\left(g^{-1} X, g^{-1} Y\right) \tag{2}
\end{equation*}
$$

$$
\mu \in \mathfrak{L}_{n} \nless>\left(G_{\mu},\langle\cdot, \cdot\rangle\right)=\left(G_{\mu}, g_{\mu}\right)
$$

## Varying Lie brackets

We fix $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$,
$\mathfrak{L}_{n}=\left\{\mu: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}: \mu\right.$ bilinear, skew-symmetric and Jacobi $\}$.
$\mathrm{GL}_{n}(\mathbb{R})$ acts on $\mathfrak{L}_{n}: \quad X, Y \in \mathbb{R}^{n}, g \in \mathrm{GL}_{n}(\mathbb{R}), \mu \in \mathfrak{L}_{n}$.

$$
\begin{equation*}
g \cdot \mu(X, Y)=g \mu\left(g^{-1} X, g^{-1} Y\right) \tag{2}
\end{equation*}
$$

$$
\begin{gathered}
\mu \in \mathfrak{L}_{n} \rightsquigarrow\left(G_{\mu},\langle\cdot, \cdot\rangle\right)=\left(G_{\mu}, g_{\mu}\right) \\
g \in \mathrm{GL}_{n}(\mathbb{R}) \rightsquigarrow\left(G_{g \cdot \mu},\langle\cdot, \cdot\rangle\right) \rightarrow\left(G_{\mu},\langle g \cdot, g \cdot\rangle\right) \text { isometry. }
\end{gathered}
$$

## Varying Lie brackets

We fix $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$,
$\mathfrak{L}_{n}=\left\{\mu: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}: \mu\right.$ bilinear, skew-symmetric and Jacobi $\}$.
$\mathrm{GL}_{n}(\mathbb{R})$ acts on $\mathfrak{L}_{n}: \quad X, Y \in \mathbb{R}^{n}, g \in \mathrm{GL}_{n}(\mathbb{R}), \mu \in \mathfrak{L}_{n}$.

$$
g \cdot \mu(X, Y)=g \mu\left(g^{-1} X, g^{-1} Y\right)
$$

$$
\mu \in \mathfrak{L}_{n} \nless>\left(G_{\mu},\langle\cdot, \cdot\rangle\right)=\left(G_{\mu}, g_{\mu}\right)
$$

$$
g \in \mathrm{GL}_{n}(\mathbb{R}) \rightsquigarrow\left(G_{g . \mu},\langle\cdot, \cdot\rangle\right) \rightarrow\left(G_{\mu},\langle g \cdot, g .\rangle\right) \text { isometry. }
$$

vary Lie brackets $\rightsquigarrow \rightsquigarrow$ vary inner products.

## Ricci flow on Lie groups: The bracket flow

## Ricci flow on Lie groups: The bracket flow

G,

## Ricci flow on Lie groups: The bracket flow

$G,(G, g)$ is isometric to ( $\left.G_{\mu}, g_{\mu}\right)$, with $\mu \in \mathcal{L}_{n}$.

## Ricci flow on Lie groups: The bracket flow

$G,(G, g)$ is isometric to $\left(G_{\mu}, g_{\mu}\right)$, with $\mu \in \mathcal{L}_{n}$. The Ricci flow equation (1) is equivalent to:

## Ricci flow on Lie groups: The bracket flow

$G,(G, g)$ is isometric to $\left(G_{\mu}, g_{\mu}\right)$, with $\mu \in \mathcal{L}_{n}$. The Ricci flow equation (1) is equivalent to:

$$
\begin{equation*}
\frac{d}{d t}\langle\cdot, \cdot\rangle_{t}=-2 \operatorname{Rc}\left(\langle\cdot, \cdot\rangle_{t}\right), \quad\langle\cdot, \cdot\rangle_{0}=\langle\cdot, \cdot\rangle, \tag{3}
\end{equation*}
$$

## Ricci flow on Lie groups: The bracket flow

$G,(G, g)$ is isometric to $\left(G_{\mu}, g_{\mu}\right)$, with $\mu \in \mathcal{L}_{n}$. The Ricci flow equation (1) is equivalent to:

$$
\begin{equation*}
\frac{d}{d t}\langle\cdot, \cdot\rangle_{t}=-2 \operatorname{Rc}\left(\langle\cdot, \cdot\rangle_{t}\right), \quad\langle\cdot, \cdot\rangle_{0}=\langle\cdot, \cdot\rangle, \tag{3}
\end{equation*}
$$

$\mu \in \mathcal{L}_{n}$,

## Ricci flow on Lie groups: The bracket flow

$G,(G, g)$ is isometric to $\left(G_{\mu}, g_{\mu}\right)$, with $\mu \in \mathcal{L}_{n}$. The Ricci flow equation (1) is equivalent to:

$$
\begin{equation*}
\frac{d}{d t}\langle\cdot, \cdot\rangle_{t}=-2 \operatorname{Rc}\left(\langle\cdot, \cdot\rangle_{t}\right), \quad\langle\cdot, \cdot\rangle_{0}=\langle\cdot, \cdot\rangle, \tag{3}
\end{equation*}
$$

$\mu \in \mathcal{L}_{n}$, the bracket flow starting at $\mu$ is:

## Ricci flow on Lie groups: The bracket flow

$G,(G, g)$ is isometric to $\left(G_{\mu}, g_{\mu}\right)$, with $\mu \in \mathcal{L}_{n}$. The Ricci flow equation (1) is equivalent to:

$$
\begin{equation*}
\frac{d}{d t}\langle\cdot, \cdot\rangle_{t}=-2 \operatorname{Rc}\left(\langle\cdot, \cdot\rangle_{t}\right), \quad\langle\cdot, \cdot\rangle_{0}=\langle\cdot, \cdot\rangle, \tag{3}
\end{equation*}
$$

$\mu \in \mathcal{L}_{n}$, the bracket flow starting at $\mu$ is:

$$
\begin{equation*}
\frac{d}{d t} \mu(t)=\delta_{\mu(t)}\left(\operatorname{Ric}_{\mu(t)}\right), \quad \mu(0)=\mu \tag{4}
\end{equation*}
$$

## Ricci flow on Lie groups: The bracket flow

$G,(G, g)$ is isometric to $\left(G_{\mu}, g_{\mu}\right)$, with $\mu \in \mathcal{L}_{n}$. The Ricci flow equation (1) is equivalent to:

$$
\begin{equation*}
\frac{d}{d t}\langle\cdot, \cdot\rangle_{t}=-2 \operatorname{Rc}\left(\langle\cdot, \cdot\rangle_{t}\right), \quad\langle\cdot, \cdot\rangle_{0}=\langle\cdot, \cdot\rangle, \tag{3}
\end{equation*}
$$

$\mu \in \mathcal{L}_{n}$, the bracket flow starting at $\mu$ is:

$$
\begin{equation*}
\frac{d}{d t} \mu(t)=\delta_{\mu(t)}\left(\operatorname{Ric}_{\mu(t)}\right), \quad \mu(0)=\mu \tag{4}
\end{equation*}
$$

where $\delta_{\mu}(A)=\mu(A \cdot, \cdot)+\mu(\cdot, A \cdot)-A \mu(\cdot, \cdot), A \in \mathrm{GL}_{n}(\mathbb{R}), \mu \in V_{n}$.

## Ricci flow on Lie groups: The bracket flow

$G,(G, g)$ is isometric to $\left(G_{\mu}, g_{\mu}\right)$, with $\mu \in \mathcal{L}_{n}$. The Ricci flow equation (1) is equivalent to:

$$
\begin{equation*}
\frac{d}{d t}\langle\cdot, \cdot\rangle_{t}=-2 \operatorname{Rc}\left(\langle\cdot, \cdot\rangle_{t}\right), \quad\langle\cdot, \cdot\rangle_{0}=\langle\cdot, \cdot\rangle, \tag{3}
\end{equation*}
$$

$\mu \in \mathcal{L}_{n}$, the bracket flow starting at $\mu$ is:

$$
\begin{equation*}
\frac{d}{d t} \mu(t)=\delta_{\mu(t)}\left(\operatorname{Ric}_{\mu(t)}\right), \quad \mu(0)=\mu \tag{4}
\end{equation*}
$$

where $\delta_{\mu}(A)=\mu(A \cdot, \cdot)+\mu(\cdot, A \cdot)-A \mu(\cdot, \cdot), A \in \mathrm{GL}_{n}(\mathbb{R}), \mu \in V_{n}$.

Theorem ([L3],2012)
There exist time-dependent diffeomorphisms
$\varphi(t): G \rightarrow G_{\mu(t)}$ such that $g(t)=\varphi(t)^{*} g_{\mu(t)}, \forall t \in(a, b)$.

The bracket flow in a class of solvmanifolds

## The bracket flow in a class of solvmanifolds

Solvmanifold:

## The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric.

## The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric. $(S,\langle\cdot, \cdot\rangle)$

## The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric. $(S,\langle\cdot, \cdot\rangle)$

- Purpose:


## The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric. $(S,\langle\cdot, \cdot\rangle)$

- Purpose: To study the Ricci flow.


## The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric. $(S,\langle\cdot, \cdot\rangle)$

- Purpose: To study the Ricci flow.
- How?:


## The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric. $(S,\langle\cdot, \cdot\rangle)$

- Purpose: To study the Ricci flow.
- How?: Using the bracket flow.


## The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric. $(S,\langle\cdot, \cdot\rangle)$

- Purpose: To study the Ricci flow.
- How?: Using the bracket flow.
- In which solvmanifolds?:


## The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric. $(S,\langle\cdot, \cdot\rangle)$

- Purpose: To study the Ricci flow.
- How?: Using the bracket flow.
- In which solvmanifolds?: Solvmanifolds whose Lie algebras have an abelian ideal of codimension 1.


## The bracket flow in a class of solvmanifolds

 We fix $\left(\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle\right)$.
## The bracket flow in a class of solvmanifolds

We fix $\left(\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle\right)$. If $\left(\mathbb{R}^{n+1}, \mu\right)$ is a Lie algebra with an abelian ideal of codimension 1 ,

## The bracket flow in a class of solvmanifolds

We fix $\left(\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle\right)$. If $\left(\mathbb{R}^{n+1}, \mu\right)$ is a Lie algebra with an abelian ideal of codimension 1 , then there exists an orthonormal basis $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ such that:

## The bracket flow in a class of solvmanifolds

We fix $\left(\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle\right)$. If $\left(\mathbb{R}^{n+1}, \mu\right)$ is a Lie algebra with an abelian ideal of codimension 1 , then there exists an orthonormal basis $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ such that:

$$
\begin{aligned}
& \mu\left(e_{0}, e_{i}\right)=A e_{i}, \quad i=1, \ldots, n, \quad A \in \mathfrak{g l}_{n}(\mathbb{R}), \\
& \mu\left(e_{i}, e_{j}\right)=0, \quad \forall i, j \geq 1
\end{aligned}
$$

## The bracket flow in a class of solvmanifolds

We fix $\left(\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle\right)$. If $\left(\mathbb{R}^{n+1}, \mu\right)$ is a Lie algebra with an abelian ideal of codimension 1 , then there exists an orthonormal basis $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ such that:

$$
\begin{aligned}
& \mu\left(e_{0}, e_{i}\right)=A e_{i}, \quad i=1, \ldots, n, \quad A \in \mathfrak{g l}_{n}(\mathbb{R}) \\
& \mu\left(e_{i}, e_{j}\right)=0, \quad \forall i, j \geq 1
\end{aligned}
$$

From now on,

## The bracket flow in a class of solvmanifolds

We fix $\left(\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle\right)$. If $\left(\mathbb{R}^{n+1}, \mu\right)$ is a Lie algebra with an abelian ideal of codimension 1 , then there exists an orthonormal basis $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ such that:

$$
\begin{aligned}
& \mu\left(e_{0}, e_{i}\right)=A e_{i}, \quad i=1, \ldots, n, \quad A \in \mathfrak{g l}_{n}(\mathbb{R}) \\
& \mu\left(e_{i}, e_{j}\right)=0, \quad \forall i, j \geq 1
\end{aligned}
$$

From now on, $\left(\mathbb{R}^{n+1}, \mu_{A}\right)$ or $\mu_{A}$,

## The bracket flow in a class of solvmanifolds

We fix $\left(\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle\right)$. If $\left(\mathbb{R}^{n+1}, \mu\right)$ is a Lie algebra with an abelian ideal of codimension 1 , then there exists an orthonormal basis $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ such that:

$$
\begin{aligned}
& \mu\left(e_{0}, e_{i}\right)=A e_{i}, \quad i=1, \ldots, n, \quad A \in \mathfrak{g l}_{n}(\mathbb{R}) \\
& \mu\left(e_{i}, e_{j}\right)=0, \quad \forall i, j \geq 1
\end{aligned}
$$

From now on, $\left(\mathbb{R}^{n+1}, \mu_{A}\right)$ or $\mu_{A}$, and $\left(G_{\mu_{A}},\langle\cdot, \cdot\rangle\right)$, or $\left(G_{\mu_{A}}, g_{\mu_{A}}\right)$.

## The bracket flow in a class of solvmanifolds

We fix $\left(\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle\right)$. If $\left(\mathbb{R}^{n+1}, \mu\right)$ is a Lie algebra with an abelian ideal of codimension 1 , then there exists an orthonormal basis $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ such that:

$$
\begin{aligned}
& \mu\left(e_{0}, e_{i}\right)=A e_{i}, \quad i=1, \ldots, n, \quad A \in \mathfrak{g l}_{n}(\mathbb{R}) \\
& \mu\left(e_{i}, e_{j}\right)=0, \quad \forall i, j \geq 1
\end{aligned}
$$

From now on, $\left(\mathbb{R}^{n+1}, \mu_{A}\right)$ or $\mu_{A}$, and $\left(G_{\mu_{A}},\langle\cdot, \cdot\rangle\right)$, or $\left(G_{\mu_{A}}, g_{\mu_{A}}\right)$. The Ricci operator of $\left(G_{\mu_{A}}, g_{\mu_{A}}\right)$ w. r. t. $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ is:

$$
\operatorname{Ric}_{\mu_{A}}=\left(\begin{array}{cc}
-\operatorname{tr}\left(S(A)^{2}\right) & 0  \tag{5}\\
0 & \frac{1}{2}\left[A, A^{t}\right]-\operatorname{tr}(A) S(A)
\end{array}\right)
$$

## The bracket flow in a class of solvmanifolds

We fix $\left(\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle\right)$. If $\left(\mathbb{R}^{n+1}, \mu\right)$ is a Lie algebra with an abelian ideal of codimension 1 , then there exists an orthonormal basis $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ such that:

$$
\begin{aligned}
& \mu\left(e_{0}, e_{i}\right)=A e_{i}, \quad i=1, \ldots, n, \quad A \in \mathfrak{g l}_{n}(\mathbb{R}), \\
& \mu\left(e_{i}, e_{j}\right)=0, \quad \forall i, j \geq 1
\end{aligned}
$$

From now on, $\left(\mathbb{R}^{n+1}, \mu_{A}\right)$ or $\mu_{A}$, and $\left(G_{\mu_{A}},\langle\cdot, \cdot\rangle\right)$, or $\left(G_{\mu_{A}}, g_{\mu_{A}}\right)$. The Ricci operator of $\left(G_{\mu_{A}}, g_{\mu_{A}}\right)$ w. r. t. $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ is:

$$
\operatorname{Ric}_{\mu_{A}}=\left(\begin{array}{cc}
-\operatorname{tr}\left(S(A)^{2}\right) & 0  \tag{5}\\
0 & \frac{1}{2}\left[A, A^{t}\right]-\operatorname{tr}(A) S(A)
\end{array}\right) .
$$

Then, using $\frac{d}{d t} \mu(t)=\delta_{\mu(t)}\left(\operatorname{Ric}_{\mu(t)}\right)$ and proposing $\mu_{A(t)}$ as a solution, we obtain that $\mu(t)=\mu_{A(t)}$, with $A(t)$ that satisfies:

## The bracket flow in a class of solvmanifolds

We fix $\left(\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle\right)$. If $\left(\mathbb{R}^{n+1}, \mu\right)$ is a Lie algebra with an abelian ideal of codimension 1 , then there exists an orthonormal basis $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ such that:

$$
\begin{aligned}
& \mu\left(e_{0}, e_{i}\right)=A e_{i}, \quad i=1, \ldots, n, \quad A \in \mathfrak{g l}_{n}(\mathbb{R}), \\
& \mu\left(e_{i}, e_{j}\right)=0, \quad \forall i, j \geq 1
\end{aligned}
$$

From now on, $\left(\mathbb{R}^{n+1}, \mu_{A}\right)$ or $\mu_{A}$, and $\left(G_{\mu_{A}},\langle\cdot, \cdot\rangle\right)$, or $\left(G_{\mu_{A}}, g_{\mu_{A}}\right)$. The Ricci operator of $\left(G_{\mu_{A}}, g_{\mu_{A}}\right)$ w. r. t. $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ is:

$$
\operatorname{Ric}_{\mu_{A}}=\left(\begin{array}{cc}
-\operatorname{tr}\left(S(A)^{2}\right) & 0  \tag{5}\\
0 & \frac{1}{2}\left[A, A^{t}\right]-\operatorname{tr}(A) S(A)
\end{array}\right) .
$$

Then, using $\frac{d}{d t} \mu(t)=\delta_{\mu(t)}\left(\operatorname{Ric}_{\mu(t)}\right)$ and proposing $\mu_{A(t)}$ as a solution, we obtain that $\mu(t)=\mu_{A(t)}$, with $A(t)$ that satisfies:

$$
\begin{equation*}
\frac{d}{d t} A=-\operatorname{tr}\left(S(A)^{2}\right) A+\frac{1}{2}\left[A,\left[A, A^{t}\right]\right]-\frac{1}{2} \operatorname{tr}(A)\left[A, A^{t}\right] . \tag{6}
\end{equation*}
$$

## The bracket flow in a class of solvmanifolds Let $A:=\left(\begin{array}{cc}0 & x_{0} \\ y_{0} & 0\end{array}\right) \in \mathfrak{g l}_{2}(\mathbb{R})$, with $x_{0} y_{0}<0$.

The bracket flow in a class of solvmanifolds

$$
\begin{align*}
& \text { Let } A:=\left(\begin{array}{cc}
0 & x_{0} \\
y_{0} & 0
\end{array}\right) \in \mathfrak{g l}_{2}(\mathbb{R}), \text { with } x_{0} y_{0}<0 . \text { Then, } \mu(t)=\mu_{A(t)} \\
& \text { with } A(t)=\left(\begin{array}{cc}
0 & x(t) \\
y(t) & 0
\end{array}\right) \text { and } x(t)=x, y(t)=y \text { satisfy: } \\
& x^{\prime}=x(x+y)\left(-\frac{3}{2} x+\frac{1}{2} y\right), \quad x(0)=x_{0}, \\
&  \tag{7}\\
& y^{\prime}=y(x+y)\left(-\frac{3}{2} y+\frac{1}{2} x\right), \quad y(0)=y_{0} .
\end{align*}
$$

The bracket flow in a class of solvmanifolds Let $A:=\left(\begin{array}{cc}0 & x_{0} \\ y_{0} & 0\end{array}\right) \in \mathfrak{g l}_{2}(\mathbb{R})$, with $x_{0} y_{0}<0$. Then, $\mu(t)=\mu_{A(t)}$ with $A(t)=\left(\begin{array}{cc}0 & x(t) \\ y(t) & 0\end{array}\right)$ and $x(t)=x, y(t)=y$ satisfy:

$$
\begin{array}{ll}
x^{\prime}=x(x+y)\left(-\frac{3}{2} x+\frac{1}{2} y\right), & x(0)=x_{0}, \\
y^{\prime}=y(x+y)\left(-\frac{3}{2} y+\frac{1}{2} x\right), & y(0)=y_{0} . \tag{7}
\end{array}
$$



## The bracket flow in a class of solvmanifolds

Question:

The bracket flow in a class of solvmanifolds Question: Limits of solutions?

## The bracket flow in a class of solvmanifolds

Question: Limits of solutions?
Lemma
Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at $\mu_{A}$. Then:

## The bracket flow in a class of solvmanifolds

Question: Limits of solutions?
Lemma
Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at $\mu_{A}$. Then:

- If $\operatorname{tr}(A)=0$, then $\lim _{t \rightarrow \infty} \frac{A(t)}{\|A(t)\|}=A_{\infty}^{1}$


## The bracket flow in a class of solvmanifolds

Question: Limits of solutions?
Lemma
Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at $\mu_{A}$. Then:

- If $\operatorname{tr}(A)=0$, then $\lim _{t \rightarrow \infty} \frac{A(t)}{\|A(t)\|}=A_{\infty}^{1}\left(\rightsquigarrow A(t) \rightarrow A_{\infty}\right)$,


## The bracket flow in a class of solvmanifolds

Question: Limits of solutions?

## Lemma

Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at $\mu_{A}$. Then:

- If $\operatorname{tr}(A)=0$, then $\lim _{t \rightarrow \infty} \frac{A(t)}{\|A(t)\|}=A_{\infty}^{1}\left(\rightsquigarrow A(t) \rightarrow A_{\infty}\right)$,
- If $\operatorname{tr}(A) \neq 0$, then $A(t) \rightarrow 0$.


## The bracket flow in a class of solvmanifolds

Question: Limits of solutions?

## Lemma

Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at $\mu_{A}$. Then:

- If $\operatorname{tr}(A)=0$, then $\lim _{t \rightarrow \infty} \frac{A(t)}{\|A(t)\|}=A_{\infty}^{1}\left(\rightsquigarrow A(t) \rightarrow A_{\infty}\right)$,
- If $\operatorname{tr}(A) \neq 0$, then $A(t) \rightarrow 0$.

Sketch of proof.

## The bracket flow in a class of solvmanifolds

Question: Limits of solutions?

## Lemma

Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at $\mu_{A}$. Then:

- If $\operatorname{tr}(A)=0$, then $\lim _{t \rightarrow \infty} \frac{A(t)}{\|A(t)\|}=A_{\infty}^{1}\left(\rightsquigarrow A(t) \rightarrow A_{\infty}\right)$,
- If $\operatorname{tr}(A) \neq 0$, then $A(t) \rightarrow 0$.

Sketch of proof.

- If $\operatorname{tr}(A)=0$,


## The bracket flow in a class of solvmanifolds

Question: Limits of solutions?

## Lemma

Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at $\mu_{A}$. Then:

- If $\operatorname{tr}(A)=0$, then $\lim _{t \rightarrow \infty} \frac{A(t)}{\|A(t)\|}=A_{\infty}^{1}\left(\rightsquigarrow A(t) \rightarrow A_{\infty}\right)$,
- If $\operatorname{tr}(A) \neq 0$, then $A(t) \rightarrow 0$.

Sketch of proof.

- If $\operatorname{tr}(A)=0$, we consider $F(A)=\frac{\left\|\left[A, A^{t}\right]\right\|^{2}}{\|A\|^{4}}$ for $A=A(t)$, and the negative gradient flow of $F, \bar{A}(t)$.


## The bracket flow in a class of solvmanifolds

## Question: Limits of solutions?

## Lemma

Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at $\mu_{A}$. Then:

- If $\operatorname{tr}(A)=0$, then $\lim _{t \rightarrow \infty} \frac{A(t)}{\|A(t)\|}=A_{\infty}^{1}\left(\rightsquigarrow A(t) \rightarrow A_{\infty}\right)$,
- If $\operatorname{tr}(A) \neq 0$, then $A(t) \rightarrow 0$.

Sketch of proof.

- If $\operatorname{tr}(A)=0$, we consider $F(A)=\frac{\left\|\left[A, A^{t}\right]\right\|^{2}}{\|A\|^{4}}$ for $A=A(t)$, and the negative gradient flow of $F, \bar{A}(t)$. Then if $A$ is not nilpotent $\lim _{t \rightarrow \infty} \frac{\bar{A}(t)}{\|\bar{A}(t)\|}=\lim _{t \rightarrow \infty} \frac{A(t)}{\|A(t)\|}$.


## The bracket flow in a class of solvmanifolds

## Question: Limits of solutions?

## Lemma

Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at $\mu_{A}$. Then:

- If $\operatorname{tr}(A)=0$, then $\lim _{t \rightarrow \infty} \frac{A(t)}{\|A(t)\|}=A_{\infty}^{1}\left(\rightsquigarrow A(t) \rightarrow A_{\infty}\right)$,
- If $\operatorname{tr}(A) \neq 0$, then $A(t) \rightarrow 0$.

Sketch of proof.

- If $\operatorname{tr}(A)=0$, we consider $F(A)=\frac{\|\left[A, A^{t} \|^{2}\right.}{\|A\|^{4}}$ for $A=A(t)$, and the negative gradient flow of $F, \bar{A}(t)$. Then if $A$ is not nilpotent $\lim _{t \rightarrow \infty} \frac{\bar{A}(t)}{\|\bar{A}(t)\|}=\lim _{t \rightarrow \infty} \frac{A(t)}{\|A(t)\|}$.
- If $\operatorname{tr}(A) \neq 0$,


## The bracket flow in a class of solvmanifolds

## Question: Limits of solutions?

## Lemma

Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at $\mu_{A}$. Then:

- If $\operatorname{tr}(A)=0$, then $\lim _{t \rightarrow \infty} \frac{A(t)}{\|A(t)\|}=A_{\infty}^{1}\left(\rightsquigarrow A(t) \rightarrow A_{\infty}\right)$,
- If $\operatorname{tr}(A) \neq 0$, then $A(t) \rightarrow 0$.

Sketch of proof.

- If $\operatorname{tr}(A)=0$, we consider $F(A)=\frac{\left\|\left[A, A^{t}\right]\right\|^{2}}{\|A\|^{4}}$ for $A=A(t)$, and the negative gradient flow of $F, \bar{A}(t)$. Then if $A$ is not nilpotent $\lim _{t \rightarrow \infty} \frac{\bar{A}(t)}{\|\bar{A}(t)\|}=\lim _{t \rightarrow \infty} \frac{A(t)}{\|A(t)\|}$.
- If $\operatorname{tr}(A) \neq 0$, it is easy to see that $A(t) \rightarrow 0$ using the spectra of $A$ and $A(t)$.


## The bracket flow in a class of solvmanifolds

Lemma
Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at $\mu_{A}$. Then:

## The bracket flow in a class of solvmanifolds

## Lemma

Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at $\mu_{A}$. Then:

- $A(t)=a(t) \varphi_{t} A \varphi_{t}^{-1}, a(t)$ is a real valued function, and $\varphi_{t} \in \mathrm{GL}_{n}(\mathbb{R})$.


## The bracket flow in a class of solvmanifolds

## Lemma

Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at $\mu_{A}$. Then:

- $A(t)=a(t) \varphi_{t} A \varphi_{t}^{-1}, a(t)$ is a real valued function, and $\varphi_{t} \in \mathrm{GL}_{n}(\mathbb{R}) .\left(\rightsquigarrow \operatorname{Spec}\left(A_{\infty}\right)=a_{\infty} \operatorname{Spec}(A).\right)$


## The bracket flow in a class of solvmanifolds

## Lemma

Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at $\mu_{A}$. Then:

- $A(t)=a(t) \varphi_{t} A \varphi_{t}^{-1}, a(t)$ is a real valued function, and $\varphi_{t} \in \mathrm{GL}_{n}(\mathbb{R}) .\left(\rightsquigarrow \operatorname{Spec}\left(A_{\infty}\right)=a_{\infty} \operatorname{Spec}(A).\right)$
- $A(t)$ is defined $\forall t \in[0, \infty)$.


## The bracket flow in a class of solvmanifolds

## Lemma

Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at $\mu_{A}$. Then:

- $A(t)=a(t) \varphi_{t} A \varphi_{t}^{-1}, a(t)$ is a real valued function, and $\varphi_{t} \in \mathrm{GL}_{n}(\mathbb{R}) .\left(\rightsquigarrow \operatorname{Spec}\left(A_{\infty}\right)=a_{\infty} \operatorname{Spec}(A).\right)$
- $A(t)$ is defined $\forall t \in[0, \infty)$.
- $\operatorname{tr}\left(S(A(t))^{2}\right)$ is strictly decreasing if $A$ is not skew-symmetric. Moreover, $\operatorname{tr}\left(S(A(t))^{2}\right) \rightarrow 0$ as $t \rightarrow \infty$.


## The bracket flow in a class of solvmanifolds

## Corollary

There exists a sequence $\left(G_{\mu_{A\left(t_{k}\right)}}, g_{\left.\mu_{A\left(t_{k}\right)}\right)}\right)$ which converges in the pointed (Cheeger - Gromov) sense to a manifold locally isometric to $\left(G_{\mu_{A_{\infty}}}, g_{\mu_{A_{\infty}}}\right)$, which is flat.

## The bracket flow in a class of solvmanifolds

## Corollary

There exists a sequence $\left(G_{\mu_{\mathcal{A}\left(t_{k}\right)}}, g_{\left.\mu_{\mathcal{A}\left(t_{k}\right)}\right)}\right)$ which converges in the pointed (Cheeger - Gromov) sense to a manifold locally isometric to $\left(G_{\mu_{A_{\infty}}}, g_{\mu_{A_{\infty}}}\right)$, which is flat.

## Proposition

If $\operatorname{Spec}(A) \nsubseteq i \mathbb{R}$ then $g_{\mu_{A(t)}} \rightarrow g_{\mu_{A_{\infty}}}$ smoothly on $\mathbb{R}^{n}$.

## The bracket flow in a class of solvmanifolds

## Proposition

For every $\mu_{A}$ with $\operatorname{tr}\left(A^{2}\right) \geq 0$, the Ricci flow $g(t)$ with $g(0)=g_{\mu_{A}}$ is a Type - III solution

## The bracket flow in a class of solvmanifolds

## Proposition

For every $\mu_{A}$ with $\operatorname{tr}\left(A^{2}\right) \geq 0$, the Ricci flow $g(t)$ with $g(0)=g_{\mu_{A}}$ is a Type - III solution (it is defined $\forall t \in[0, \infty)$ and there exists $C \in \mathbb{R}$ such that $\left.\|\operatorname{Rm}(g(t))\| \leq \frac{c}{t}, \quad \forall t \in(0, \infty)\right)$,

## The bracket flow in a class of solvmanifolds

## Proposition

For every $\mu_{A}$ with $\operatorname{tr}\left(A^{2}\right) \geq 0$, the Ricci flow $g(t)$ with $g(0)=g_{\mu_{A}}$ is a Type - III solution (it is defined $\forall t \in[0, \infty)$ and there exists $C \in \mathbb{R}$ such that $\left.\|\operatorname{Rm}(g(t))\| \leq \frac{C}{t}, \quad \forall t \in(0, \infty)\right)$, for some constant $C_{n}$ that only depends on the dimension $n$.

## The bracket flow in a class of solvmanifolds

## Theorem

Let $A \in \mathfrak{g l}_{n}(\mathbb{R})$. Consider $\mu_{A(t)}$ the bracket flow starting at $\mu_{A}$ and $g(t)$ the Ricci flow starting at $g_{\mu_{A}}$. Then:
(i) $g(t)$ is defined $\forall t \in[0, \infty)$.
(ii) $A(t) \rightarrow A_{\infty}$.
(iii) There exists a sequence $\left(G_{\left.\mu_{A\left(t_{k}\right)}\right)}, g_{\mu_{A\left(t_{k}\right)}}\right)$ which converges in the pointed sense to a manifold locally isometric to $\left(G_{\mu_{A_{\infty}}}, g_{\mu_{A_{\infty}}}\right)$, which is flat.
(iv) If $\operatorname{Spec}(A) \nsubseteq i \mathbb{R}$, then $g_{\mu_{A(t)}} \rightarrow g_{\mu_{A_{\infty}}}$ smoothly on $\mathbb{R}^{n}$.
(v) If $\operatorname{tr}\left(A^{2}\right) \geq 0$, then $g(t)$ is a type - III solution for some constant $C_{n}$ that only depends on the dimension of $V_{n}$.

## Norm-normalized bracket flow

## Norm-normalized bracket flow

Lemma
Let $A$ be with $\|A\|=1$ and consider $\mu_{A(t)}$ the norm-normalized bracket flow starting at $\mu_{A}$. Then the following are equivalent:

## Norm-normalized bracket flow

## Lemma

Let $A$ be with $\|A\|=1$ and consider $\mu_{A(t)}$ the norm-normalized bracket flow starting at $\mu_{A}$. Then the following are equivalent:
(i) $\mu_{A}$ is not an algebraic soliton.

## Norm-normalized bracket flow

## Lemma

Let $A$ be with $\|A\|=1$ and consider $\mu_{A(t)}$ the norm-normalized bracket flow starting at $\mu_{A}$. Then the following are equivalent:
(i) $\mu_{A}$ is not an algebraic soliton. (algebraic soliton:

$$
\left.\operatorname{Ric}_{\mu}=c l+D, \quad c \in \mathbb{R}, \quad D \in \operatorname{Der}(\mu)\right)
$$

## Norm-normalized bracket flow

## Lemma

Let $A$ be with $\|A\|=1$ and consider $\mu_{A(t)}$ the norm-normalized bracket flow starting at $\mu_{A}$. Then the following are equivalent:
(i) $\mu_{A}$ is not an algebraic soliton. (algebraic soliton:

$$
\left.\operatorname{Ric}_{\mu}=c l+D, \quad c \in \mathbb{R}, \quad D \in \operatorname{Der}(\mu)\right)
$$

(ii) $\frac{d}{d t}\left\|\left[A, A^{t}\right]\right\|^{2}<0$.

## Norm-normalized bracket flow

## Lemma

Let $A$ be with $\|A\|=1$ and consider $\mu_{A(t)}$ the norm-normalized bracket flow starting at $\mu_{A}$. Then the following are equivalent:
(i) $\mu_{A}$ is not an algebraic soliton. (algebraic soliton:

$$
\left.\operatorname{Ric}_{\mu}=c l+D, \quad c \in \mathbb{R}, \quad D \in \operatorname{Der}(\mu)\right)
$$

(ii) $\frac{d}{d t}\left\|\left[A, A^{t}\right]\right\|^{2}<0$.

Theorem
Assume that $A\left(t_{k}\right) \rightarrow A_{\infty}$.

## Norm-normalized bracket flow

## Lemma

Let $A$ be with $\|A\|=1$ and consider $\mu_{A(t)}$ the norm-normalized bracket flow starting at $\mu_{A}$. Then the following are equivalent:
(i) $\mu_{A}$ is not an algebraic soliton. (algebraic soliton:

$$
\left.\operatorname{Ric}_{\mu}=c l+D, \quad c \in \mathbb{R}, \quad D \in \operatorname{Der}(\mu)\right)
$$

(ii) $\frac{d}{d t}\left\|\left[A, A^{t}\right]\right\|^{2}<0$.

Theorem
Assume that $A\left(t_{k}\right) \rightarrow A_{\infty}$. Then, $A_{\infty}$ is an algebraic soliton.

## Norm-normalized bracket flow

## Lemma

Let $A$ be with $\|A\|=1$ and consider $\mu_{A(t)}$ the norm-normalized bracket flow starting at $\mu_{A}$. Then the following are equivalent:
(i) $\mu_{A}$ is not an algebraic soliton. (algebraic soliton:

$$
\left.\operatorname{Ric}_{\mu}=c l+D, \quad c \in \mathbb{R}, \quad D \in \operatorname{Der}(\mu)\right)
$$

(ii) $\frac{d}{d t}\left\|\left[A, A^{t}\right]\right\|^{2}<0$.

Theorem
Assume that $A\left(t_{k}\right) \rightarrow A_{\infty}$. Then, $A_{\infty}$ is an algebraic soliton. Moreover, the following are equivalent:

## Norm-normalized bracket flow

## Lemma

Let $A$ be with $\|A\|=1$ and consider $\mu_{A(t)}$ the norm-normalized bracket flow starting at $\mu_{A}$. Then the following are equivalent:
(i) $\mu_{A}$ is not an algebraic soliton. (algebraic soliton:

$$
\left.\operatorname{Ric}_{\mu}=c l+D, \quad c \in \mathbb{R}, \quad D \in \operatorname{Der}(\mu)\right)
$$

(ii) $\frac{d}{d t}\left\|\left[A, A^{t}\right]\right\|^{2}<0$.

Theorem
Assume that $A\left(t_{k}\right) \rightarrow A_{\infty}$. Then, $A_{\infty}$ is an algebraic soliton. Moreover, the following are equivalent:
(i) $\operatorname{Spec}(A) \subseteq i \mathbb{R}$.

## Norm-normalized bracket flow

## Lemma

Let $A$ be with $\|A\|=1$ and consider $\mu_{A(t)}$ the norm-normalized bracket flow starting at $\mu_{A}$. Then the following are equivalent:
(i) $\mu_{A}$ is not an algebraic soliton. (algebraic soliton:

$$
\left.\operatorname{Ric}_{\mu}=c l+D, \quad c \in \mathbb{R}, \quad D \in \operatorname{Der}(\mu)\right)
$$

(ii) $\frac{d}{d t}\left\|\left[A, A^{t}\right]\right\|^{2}<0$.

Theorem
Assume that $A\left(t_{k}\right) \rightarrow A_{\infty}$. Then, $A_{\infty}$ is an algebraic soliton. Moreover, the following are equivalent:
(i) $\operatorname{Spec}(A) \subseteq i \mathbb{R}$.
(ii) $\left(G_{\mu_{A_{\infty}}}, g_{\mu_{A_{\infty}}}\right)$ is flat.

## Negative curvature

## Negative curvature

Question:

## Negative curvature

Question: How does the curvature evolve along the Ricci flow?

## Negative curvature

Question: How does the curvature evolve along the Ricci flow?
(M,g),

## Negative curvature

Question: How does the curvature evolve along the Ricci flow?
$(\mathrm{M}, \mathrm{g})$, we will say that it has negative curvature,

## Negative curvature

Question: How does the curvature evolve along the Ricci flow?
$(\mathrm{M}, \mathrm{g})$, we will say that it has negative curvature, and denote it by $K<0$,

## Negative curvature

Question: How does the curvature evolve along the Ricci flow?
$(\mathrm{M}, \mathrm{g})$, we will say that it has negative curvature, and denote it by $K<0$, if all sectional curvatures are strictly negative.

## Negative curvature

Question: How does the curvature evolve along the Ricci flow?
$(\mathrm{M}, \mathrm{g})$, we will say that it has negative curvature, and denote it by $K<0$, if all sectional curvatures are strictly negative.

If $(\mathfrak{g},\langle\cdot, \cdot\rangle)$ is a Lie algebra with an inner product, we will think about sectional curvatures of $(G, g)$.

## Negative curvature

Question: How does the curvature evolve along the Ricci flow?
( $\mathrm{M}, \mathrm{g}$ ), we will say that it has negative curvature, and denote it by $K<0$, if all sectional curvatures are strictly negative.

If $(\mathfrak{g},\langle\cdot, \cdot\rangle)$ is a Lie algebra with an inner product, we will think about sectional curvatures of $(G, g)$.
In the case of $\mu_{A}$, we will denote it by $K_{A}$.

## Negative curvature

Theorem
Let $\mu_{A}$ be a solvable Lie algebra that admits an inner product with negative curvature.

## Negative curvature

Theorem
Let $\mu_{A}$ be a solvable Lie algebra that admits an inner product with negative curvature. If $\mu_{A(t)}$ is the bracket flow starting at $\mu_{A}$, then there exists $S \in \mathbb{N}$ such that $K_{A(t)}<0, \forall t \geq S$.

## Negative curvature

Theorem
Let $\mu_{A}$ be a solvable Lie algebra that admits an inner product with negative curvature. If $\mu_{A(t)}$ is the bracket flow starting at $\mu_{A}$, then there exists $S \in \mathbb{N}$ such that $K_{A(t)}<0, \forall t \geq S$.

Sketch of proof.

- We consider the norm-normalized bracket flow.


## Negative curvature

Theorem
Let $\mu_{A}$ be a solvable Lie algebra that admits an inner product with negative curvature. If $\mu_{A(t)}$ is the bracket flow starting at $\mu_{A}$, then there exists $S \in \mathbb{N}$ such that $K_{A(t)}<0, \forall t \geq S$.

Sketch of proof.

- We consider the norm-normalized bracket flow.
- If $A\left(t_{k}\right) \rightarrow A_{\infty}$, then $\operatorname{Spec}\left(A_{\infty}\right)=\alpha_{\infty} \operatorname{Spec}(A)$, con $\alpha_{\infty}>0$.


## Negative curvature

## Theorem

Let $\mu_{A}$ be a solvable Lie algebra that admits an inner product with negative curvature. If $\mu_{A(t)}$ is the bracket flow starting at $\mu_{A}$, then there exists $S \in \mathbb{N}$ such that $K_{A(t)}<0, \forall t \geq S$.

Sketch of proof.

- We consider the norm-normalized bracket flow.
- If $A\left(t_{k}\right) \rightarrow A_{\infty}$, then $\operatorname{Spec}\left(A_{\infty}\right)=\alpha_{\infty} \operatorname{Spec}(A)$, con $\alpha_{\infty}>0$.
- As $\mu_{A}$ admits an inner product with $K<0$, the $\operatorname{Re}(\operatorname{Spec}(A))>0$ or $\operatorname{Re}(\operatorname{Spec}(A))<0([H])$.


## Negative curvature

## Theorem

Let $\mu_{A}$ be a solvable Lie algebra that admits an inner product with negative curvature. If $\mu_{A(t)}$ is the bracket flow starting at $\mu_{A}$, then there exists $S \in \mathbb{N}$ such that $K_{A(t)}<0, \forall t \geq S$.

Sketch of proof.

- We consider the norm-normalized bracket flow.
- If $A\left(t_{k}\right) \rightarrow A_{\infty}$, then $\operatorname{Spec}\left(A_{\infty}\right)=\alpha_{\infty} \operatorname{Spec}(A)$, con $\alpha_{\infty}>0$.
- As $\mu_{A}$ admits an inner product with $K<0$, the $\operatorname{Re}(\operatorname{Spec}(A))>0$ or $\operatorname{Re}(\operatorname{Spec}(A))<0([H])$.
- Then $\operatorname{Re}\left(\operatorname{Spec}\left(A_{\infty}\right)\right)>0$ or $\operatorname{Re}\left(\operatorname{Spec}\left(A_{\infty}\right)\right)<0$, and $A_{\infty}$ is normal because it is an algebraic soliton.


## Negative curvature

## Theorem

Let $\mu_{A}$ be a solvable Lie algebra that admits an inner product with negative curvature. If $\mu_{A(t)}$ is the bracket flow starting at $\mu_{A}$, then there exists $S \in \mathbb{N}$ such that $K_{A(t)}<0, \forall t \geq S$.

Sketch of proof.

- We consider the norm-normalized bracket flow.
- If $A\left(t_{k}\right) \rightarrow A_{\infty}$, then $\operatorname{Spec}\left(A_{\infty}\right)=\alpha_{\infty} \operatorname{Spec}(A), \operatorname{con} \alpha_{\infty}>0$.
- As $\mu_{A}$ admits an inner product with $K<0$, the $\operatorname{Re}(\operatorname{Spec}(A))>0$ or $\operatorname{Re}(\operatorname{Spec}(A))<0([H])$.
- Then $\operatorname{Re}\left(\operatorname{Spec}\left(A_{\infty}\right)\right)>0$ or $\operatorname{Re}\left(\operatorname{Spec}\left(A_{\infty}\right)\right)<0$, and $A_{\infty}$ is normal because it is an algebraic soliton. Then $K_{A_{\infty}}<0$.


## Negative curvature

## Theorem

Let $\mu_{A}$ be a solvable Lie algebra that admits an inner product with negative curvature. If $\mu_{A(t)}$ is the bracket flow starting at $\mu_{A}$, then there exists $S \in \mathbb{N}$ such that $K_{A(t)}<0, \forall t \geq S$.

## Sketch of proof.

- We consider the norm-normalized bracket flow.
- If $A\left(t_{k}\right) \rightarrow A_{\infty}$, then $\operatorname{Spec}\left(A_{\infty}\right)=\alpha_{\infty} \operatorname{Spec}(A)$, con $\alpha_{\infty}>0$.
- As $\mu_{A}$ admits an inner product with $K<0$, the $\operatorname{Re}(\operatorname{Spec}(A))>0$ or $\operatorname{Re}(\operatorname{Spec}(A))<0([H])$.
- Then $\operatorname{Re}\left(\operatorname{Spec}\left(A_{\infty}\right)\right)>0$ or $\operatorname{Re}\left(\operatorname{Spec}\left(A_{\infty}\right)\right)<0$, and $A_{\infty}$ is normal because it is an algebraic soliton. Then $K_{A_{\infty}}<0$.
- Finally, it is easy to see that the theorem is true for the norm-normalized bracket flow and then for the bracket flow.


## Negative curvature

Question:

## Negative curvature

Question: Is the same true in the general case?

## Negative curvature

Question: Is the same true in the general case?
We consider $\left(\mu_{\lambda, \alpha},\langle\cdot, \cdot\rangle\right)$ defined as follows:

## Negative curvature

Question: Is the same true in the general case?
We consider ( $\mu_{\lambda, \alpha},\langle\cdot, \cdot\rangle$ ) defined as follows:

$$
\mu_{\lambda, \alpha}\left(e_{0}, e_{i}\right)=\alpha\left(\begin{array}{ccc}
\lambda & & \\
& 1-\lambda & \\
& & 1
\end{array}\right) e_{i}, \quad \mu_{\lambda, \alpha}\left(e_{1}, e_{2}\right)=e_{3}
$$

## Negative curvature

Question: Is the same true in the general case?
We consider ( $\mu_{\lambda, \alpha},\langle\cdot, \cdot\rangle$ ) defined as follows:

$$
\mu_{\lambda, \alpha}\left(e_{0}, e_{i}\right)=\alpha\left(\begin{array}{ccc}
\lambda & & \\
& 1-\lambda & \\
& & 1
\end{array}\right) e_{i}, \quad \mu_{\lambda, \alpha}\left(e_{1}, e_{2}\right)=e_{3} .
$$

$\left(\mu_{\lambda, \alpha},\langle\cdot, \cdot\rangle\right)$ is an algebraic soliton $\Leftrightarrow \alpha=\frac{\sqrt{3}}{\sqrt{2\left(\lambda^{2}+(1-\lambda)^{2}+1\right)}}$.

## Negative curvature

Question: Is the same true in the general case?
We consider ( $\mu_{\lambda, \alpha},\langle\cdot, \cdot\rangle$ ) defined as follows:

$$
\mu_{\lambda, \alpha}\left(e_{0}, e_{i}\right)=\alpha\left(\begin{array}{ccc}
\lambda & & \\
& 1-\lambda & \\
& & 1
\end{array}\right) e_{i}, \quad \mu_{\lambda, \alpha}\left(e_{1}, e_{2}\right)=e_{3} .
$$

$\left(\mu_{\lambda, \alpha},\langle\cdot, \cdot\rangle\right)$ is an algebraic soliton $\Leftrightarrow \alpha=\frac{\sqrt{3}}{\sqrt{2\left(\lambda^{2}+(1-\lambda)^{2}+1\right)}}$.

$$
K\left(e_{1}, e_{3}\right)=\frac{1}{4}-\frac{3 \lambda}{\lambda^{2}+(1-\lambda)^{2}+1} .
$$

## Negative curvature

Question: Is the same true in the general case?
We consider ( $\mu_{\lambda, \alpha},\langle\cdot, \cdot\rangle$ ) defined as follows:

$$
\mu_{\lambda, \alpha}\left(e_{0}, e_{i}\right)=\alpha\left(\begin{array}{ccc}
\lambda & & \\
& 1-\lambda & \\
& & 1
\end{array}\right) e_{i}, \quad \mu_{\lambda, \alpha}\left(e_{1}, e_{2}\right)=e_{3} .
$$

$\left(\mu_{\lambda, \alpha},\langle\cdot, \cdot\rangle\right)$ is an algebraic soliton $\Leftrightarrow \alpha=\frac{\sqrt{3}}{\sqrt{2\left(\lambda^{2}+(1-\lambda)^{2}+1\right)}}$.

$$
\begin{gathered}
K\left(e_{1}, e_{3}\right)=\frac{1}{4}-\frac{3 \lambda}{\lambda^{2}+(1-\lambda)^{2}+1} . \\
K\left(e_{1}, e_{3}\right) \geq 0 \quad \Leftrightarrow \quad \lambda \leq 2-\sqrt{3} \quad \text { ó } \quad \lambda \geq 2+\sqrt{3} .
\end{gathered}
$$

## Negative curvature

Question: Is the same true in the general case?
We consider ( $\mu_{\lambda, \alpha},\langle\cdot, \cdot\rangle$ ) defined as follows:

$$
\mu_{\lambda, \alpha}\left(e_{0}, e_{i}\right)=\alpha\left(\begin{array}{ccc}
\lambda & & \\
& 1-\lambda & \\
& & 1
\end{array}\right) e_{i}, \quad \mu_{\lambda, \alpha}\left(e_{1}, e_{2}\right)=e_{3}
$$

$\left(\mu_{\lambda, \alpha},\langle\cdot, \cdot\rangle\right)$ is an algebraic soliton $\Leftrightarrow \alpha=\frac{\sqrt{3}}{\sqrt{2\left(\lambda^{2}+(1-\lambda)^{2}+1\right)}}$.

$$
K\left(e_{1}, e_{3}\right)=\frac{1}{4}-\frac{3 \lambda}{\lambda^{2}+(1-\lambda)^{2}+1} .
$$

$$
K\left(e_{1}, e_{3}\right) \geq 0 \quad \Leftrightarrow \quad \lambda \leq 2-\sqrt{3} \quad \text { ó } \quad \lambda \geq 2+\sqrt{3} .
$$

If $0<\lambda \leq 2-\sqrt{3}$, then $0<1-\lambda$ and so $\operatorname{Re}\left(\operatorname{Spec}\left(\operatorname{ad}\left(e_{0}\right)\right)\right)>0$.

## Negative curvature

Question: Is the same true in the general case?
We consider ( $\mu_{\lambda, \alpha},\langle\cdot, \cdot\rangle$ ) defined as follows:

$$
\mu_{\lambda, \alpha}\left(e_{0}, e_{i}\right)=\alpha\left(\begin{array}{ccc}
\lambda & & \\
& 1-\lambda & \\
& & 1
\end{array}\right) e_{i}, \quad \mu_{\lambda, \alpha}\left(e_{1}, e_{2}\right)=e_{3}
$$

$\left(\mu_{\lambda, \alpha},\langle\cdot, \cdot\rangle\right)$ is an algebraic soliton $\Leftrightarrow \alpha=\frac{\sqrt{3}}{\sqrt{2\left(\lambda^{2}+(1-\lambda)^{2}+1\right)}}$.

$$
K\left(e_{1}, e_{3}\right)=\frac{1}{4}-\frac{3 \lambda}{\lambda^{2}+(1-\lambda)^{2}+1} .
$$

$$
K\left(e_{1}, e_{3}\right) \geq 0 \quad \Leftrightarrow \quad \lambda \leq 2-\sqrt{3} \quad \text { ó } \quad \lambda \geq 2+\sqrt{3} .
$$

If $0<\lambda \leq 2-\sqrt{3}$, then $0<1-\lambda$ and so $\operatorname{Re}\left(\operatorname{Spec}\left(\operatorname{ad}\left(e_{0}\right)\right)\right)>0$. Then $\mu_{\lambda, \alpha}$ admits an inner product with negative curvature $([\mathrm{H}])$.

## Negative curvature

Question: Is the same true in the general case?
We consider ( $\mu_{\lambda, \alpha},\langle\cdot, \cdot\rangle$ ) defined as follows:

$$
\mu_{\lambda, \alpha}\left(e_{0}, e_{i}\right)=\alpha\left(\begin{array}{ccc}
\lambda & & \\
& 1-\lambda & \\
& & 1
\end{array}\right) e_{i}, \quad \mu_{\lambda, \alpha}\left(e_{1}, e_{2}\right)=e_{3}
$$

$\left(\mu_{\lambda, \alpha},\langle\cdot, \cdot\rangle\right)$ is an algebraic soliton $\Leftrightarrow \alpha=\frac{\sqrt{3}}{\sqrt{2\left(\lambda^{2}+(1-\lambda)^{2}+1\right)}}$.

$$
K\left(e_{1}, e_{3}\right)=\frac{1}{4}-\frac{3 \lambda}{\lambda^{2}+(1-\lambda)^{2}+1} .
$$

$$
K\left(e_{1}, e_{3}\right) \geq 0 \quad \Leftrightarrow \quad \lambda \leq 2-\sqrt{3} \quad \text { ó } \quad \lambda \geq 2+\sqrt{3} \text {. }
$$

If $0<\lambda \leq 2-\sqrt{3}$, then $0<1-\lambda$ and so $\operatorname{Re}\left(\operatorname{Spec}\left(\operatorname{ad}\left(e_{0}\right)\right)\right)>0$. Then $\mu_{\lambda, \alpha}$ admits an inner product with negative curvature $([\mathrm{H}])$. Hence, as $\left(\mu_{\lambda, \alpha},\langle\cdot, \cdot\rangle\right)$ is an algebraic soliton, if $\mu(t)$ is the bracket flow starting at $\mu_{\lambda, \alpha}$ then $\left(G_{\mu(t)}, g_{\mu(t)}\right)$ has planes with curvature bigger than or equal to zero.

## Negative curvature

## Question:

## Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative?

## Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let $\lambda$ be fixed

## Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let $\lambda$ be fixed and we consider $\mu(t)$ starting at $\mu_{\alpha, \lambda}$.

## Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let $\lambda$ be fixed and we consider $\mu(t)$ starting at $\mu_{\alpha, \lambda}$.

$$
\mu(t)\left(e_{0}, e_{i}\right)=\alpha(t)\left(\begin{array}{ccc}
\lambda & & \\
& 1-\lambda & \\
& & 1
\end{array}\right) e_{i}, \quad \mu(t)=h(t) e_{3},
$$

## Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let $\lambda$ be fixed and we consider $\mu(t)$ starting at $\mu_{\alpha, \lambda}$.

$$
\mu(t)\left(e_{0}, e_{i}\right)=\alpha(t)\left(\begin{array}{ccc}
\lambda & & \\
& 1-\lambda & \\
& & 1
\end{array}\right) e_{i}, \quad \mu(t)=h(t) e_{3}
$$

with $\alpha(t)=\frac{1}{\sqrt{2 c_{\lambda} t+\alpha^{-2}}}$ and $h(t)=\frac{1}{\sqrt{3 t+1}}$.

## Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let $\lambda$ be fixed and we consider $\mu(t)$ starting at $\mu_{\alpha, \lambda}$.

$$
\mu(t)\left(e_{0}, e_{i}\right)=\alpha(t)\left(\begin{array}{ccc}
\lambda & & \\
& 1-\lambda & \\
& & 1
\end{array}\right) e_{i}, \quad \mu(t)=h(t) e_{3},
$$

with $\alpha(t)=\frac{1}{\sqrt{2 c_{\lambda} t+\alpha^{-2}}}$ and $h(t)=\frac{1}{\sqrt{3 t+1}}$. For each $t$, we have that

$$
K\left(e_{1}, e_{3}\right)=\frac{h^{2}}{4}-\lambda \alpha^{2}=\frac{1}{4(3 t+1)}-\frac{\lambda}{2 c_{\lambda} t+\alpha_{0}^{-2}}
$$

## Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let $\lambda$ be fixed and we consider $\mu(t)$ starting at $\mu_{\alpha, \lambda}$.

$$
\mu(t)\left(e_{0}, e_{i}\right)=\alpha(t)\left(\begin{array}{ccc}
\lambda & & \\
& 1-\lambda & \\
& & 1
\end{array}\right) e_{i}, \quad \mu(t)=h(t) e_{3}
$$

with $\alpha(t)=\frac{1}{\sqrt{2 c_{\lambda} t+\alpha^{-2}}}$ and $h(t)=\frac{1}{\sqrt{3 t+1}}$. For each $t$, we have that

$$
\begin{gathered}
K\left(e_{1}, e_{3}\right)=\frac{h^{2}}{4}-\lambda \alpha^{2}=\frac{1}{4(3 t+1)}-\frac{\lambda}{2 c_{\lambda} t+\alpha_{0}^{-2}} \\
K\left(e_{1}, e_{3}\right) \geq 0 \quad \Leftrightarrow \quad\left(2 c_{\lambda}-12 \lambda\right) t \geq 4 \lambda-\alpha_{0}^{-2} .
\end{gathered}
$$

## Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let $\lambda$ be fixed and we consider $\mu(t)$ starting at $\mu_{\alpha, \lambda}$.

$$
\mu(t)\left(e_{0}, e_{i}\right)=\alpha(t)\left(\begin{array}{ccc}
\lambda & & \\
& 1-\lambda & \\
& & 1
\end{array}\right) e_{i}, \quad \mu(t)=h(t) e_{3}
$$

with $\alpha(t)=\frac{1}{\sqrt{2 c_{\lambda} t+\alpha^{-2}}}$ and $h(t)=\frac{1}{\sqrt{3 t+1}}$. For each $t$, we have that

$$
\begin{gathered}
K\left(e_{1}, e_{3}\right)=\frac{h^{2}}{4}-\lambda \alpha^{2}=\frac{1}{4(3 t+1)}-\frac{\lambda}{2 c_{\lambda} t+\alpha_{0}^{-2}} \\
K\left(e_{1}, e_{3}\right) \geq 0 \quad \Leftrightarrow \quad\left(2 c_{\lambda}-12 \lambda\right) t \geq 4 \lambda-\alpha_{0}^{-2} .
\end{gathered}
$$

For sufficiently large $\alpha, \mu_{\alpha, \lambda}$ has a negative curvature ([H])

## Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let $\lambda$ be fixed and we consider $\mu(t)$ starting at $\mu_{\alpha, \lambda}$.

$$
\mu(t)\left(e_{0}, e_{i}\right)=\alpha(t)\left(\begin{array}{ccc}
\lambda & & \\
& 1-\lambda & \\
& & 1
\end{array}\right) e_{i}, \quad \mu(t)=h(t) e_{3}
$$

with $\alpha(t)=\frac{1}{\sqrt{2 c_{\lambda} t+\alpha^{-2}}}$ and $h(t)=\frac{1}{\sqrt{3 t+1}}$. For each $t$, we have that

$$
\begin{gathered}
K\left(e_{1}, e_{3}\right)=\frac{h^{2}}{4}-\lambda \alpha^{2}=\frac{1}{4(3 t+1)}-\frac{\lambda}{2 c_{\lambda} t+\alpha_{0}^{-2}} \\
K\left(e_{1}, e_{3}\right) \geq 0 \quad \Leftrightarrow \quad\left(2 c_{\lambda}-12 \lambda\right) t \geq 4 \lambda-\alpha_{0}^{-2} .
\end{gathered}
$$

For sufficiently large $\alpha, \mu_{\alpha, \lambda}$ has a negative curvature ([H]) but if $0<\lambda \leq 2-\sqrt{3}$ then from some $t_{0}, K\left(e_{1}, e_{3}\right) \geq 0, \forall t \geq t_{0}$.

## ¡Thank you for your attention!

E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211, (1974), 23-34.
目 J. Lauret, Ricci soliton solvmanifolds, J. reine angew. Math. 650, (2011), 1-21.

國 J. Lauret, Convergence of homogeneous manifolds, J. London Math. Soc., en prensa (arXiv:1105.2082).
( J. Lauret, Ricci flow of homogeneous manifolds, arXiv:1112.5900 v2.

