▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

# The Ricci flow in a class of solvmanifolds

#### Romina M. Arroyo FaMAF and CIEM, **Córdoba**, Argentina

#### Encuentro de Geometría Diferencial Rosario August 2012









#### 2 The bracket flow in a class of solvmanifolds



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで





#### 2 The bracket flow in a class of solvmanifolds

3 The normalized bracket flow





2 The bracket flow in a class of solvmanifolds

3 The normalized bracket flow



- \* ロ > \* 個 > \* 注 > \* 注 > ・ 注 ・ の < ?





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# The Ricci flow

#### The Ricci flow

(M,g), the Ricci flow is:



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## The Ricci flow

(M,g), the Ricci flow is:

$$\frac{\partial}{\partial t}g(t) = -2\operatorname{Rc}(g(t)), \quad g(0) = g.$$
 (1)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

## The Ricci flow

#### (M,g), the Ricci flow is:

$$\frac{\partial}{\partial t}g(t) = -2\operatorname{Rc}(g(t)), \quad g(0) = g.$$
 (1)

М,

## The Ricci flow

(M,g), the Ricci flow is:

$$\frac{\partial}{\partial t}g(t) = -2\operatorname{Rc}(g(t)), \quad g(0) = g.$$
 (1)

M, a complete g is a Ricci soliton if:

## The Ricci flow

(M,g), the Ricci flow is:

$$\frac{\partial}{\partial t}g(t) = -2\operatorname{Rc}(g(t)), \quad g(0) = g.$$
 (1)

M, a complete g is a Ricci soliton if:

 $\mathsf{Rc}(g) = cg + L_X g, \ c \in \mathbb{R}, \ X \in \chi(M)$  complete.

ヘロト ヘ週ト ヘヨト ヘヨト

æ

## The Ricci flow

(M,g), the Ricci flow is:

$$\frac{\partial}{\partial t}g(t) = -2\operatorname{Rc}(g(t)), \quad g(0) = g.$$
 (1)

M, a complete g is a Ricci soliton if:

$$\operatorname{\mathsf{Rc}}(g) = cg + L_X g, \ c \in \mathbb{R}, \ X \in \chi(M)$$
 complete.

g Ricci soliton

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

## The Ricci flow

(M,g), the Ricci flow is:

$$\frac{\partial}{\partial t}g(t) = -2\operatorname{Rc}(g(t)), \quad g(0) = g.$$
 (1)

M, a complete g is a Ricci soliton if:

$$\operatorname{\mathsf{Rc}}(g) = cg + L_X g, \ c \in \mathbb{R}, \ X \in \chi(M)$$
 complete.

g Ricci soliton  $\Leftrightarrow$ 

## The Ricci flow

(M,g), the Ricci flow is:

$$\frac{\partial}{\partial t}g(t) = -2\operatorname{Rc}(g(t)), \quad g(0) = g.$$
 (1)

M, a complete g is a Ricci soliton if:

$$\operatorname{Rc}(g) = cg + L_X g, \ c \in \mathbb{R}, \ X \in \chi(M)$$
 complete.

g Ricci soliton  $\Leftrightarrow g(t) = (-2ct+1)\phi_t^*g$  is a solution of the Ricci flow.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Varying Lie brackets

# Varying Lie brackets

We fix  $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ ,



# Varying Lie brackets

We fix  $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ ,

 $\mathfrak{L}_n = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric and Jacobi}\}.$ 

# Varying Lie brackets

We fix  $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ ,

 $\mathfrak{L}_n = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric and Jacobi}\}.$ 

 $\operatorname{GL}_n(\mathbb{R})$  acts on  $\mathfrak{L}_n$ :

#### Varying Lie brackets

We fix  $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ ,

 $\mathfrak{L}_n = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric and Jacobi}\}.$ 

 $\operatorname{GL}_n(\mathbb{R})$  acts on  $\mathfrak{L}_n$ :  $X, Y \in \mathbb{R}^n, g \in \operatorname{GL}_n(\mathbb{R}), \mu \in \mathfrak{L}_n$ .

## Varying Lie brackets

We fix  $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ ,  $\mathfrak{L}_n = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric and Jacobi}\}.$   $\operatorname{GL}_n(\mathbb{R}) \text{ acts on } \mathfrak{L}_n: \quad X, Y \in \mathbb{R}^n, g \in \operatorname{GL}_n(\mathbb{R}), \mu \in \mathfrak{L}_n.$  $g.\mu(X, Y) = g\mu(g^{-1}X, g^{-1}Y).$  (2)

## Varying Lie brackets

We fix  $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ ,  $\mathfrak{L}_n = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric and Jacobi}\}.$   $\operatorname{GL}_n(\mathbb{R}) \text{ acts on } \mathfrak{L}_n: \quad X, Y \in \mathbb{R}^n, g \in \operatorname{GL}_n(\mathbb{R}), \mu \in \mathfrak{L}_n.$  $g.\mu(X, Y) = g\mu(g^{-1}X, g^{-1}Y).$  (2)

 $\mu \in \mathfrak{L}_n \leftrightsquigarrow (\mathcal{G}_\mu, \langle \cdot, \cdot 
angle) = (\mathcal{G}_\mu, \mathcal{g}_\mu)$ 

## Varying Lie brackets

We fix  $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ ,  $\mathfrak{L}_n = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric and Jacobi}\}.$   $\operatorname{GL}_n(\mathbb{R}) \text{ acts on } \mathfrak{L}_n: \quad X, Y \in \mathbb{R}^n, g \in \operatorname{GL}_n(\mathbb{R}), \mu \in \mathfrak{L}_n.$  $g.\mu(X, Y) = g\mu(g^{-1}X, g^{-1}Y).$  (2)

 $\mu \in \mathfrak{L}_n \leftrightsquigarrow (\mathcal{G}_\mu, \langle \cdot, \cdot 
angle) = (\mathcal{G}_\mu, \mathcal{g}_\mu)$ 

 $g \in \operatorname{GL}_n(\mathbb{R}) \rightsquigarrow (\mathcal{G}_{g.\mu}, \langle \cdot, \cdot \rangle) \rightarrow (\mathcal{G}_{\mu}, \langle g., g. \rangle)$  isometry.

# Varying Lie brackets

We fix  $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ ,  $\mathfrak{L}_n = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric and Jacobi}\}.$   $\operatorname{GL}_n(\mathbb{R}) \text{ acts on } \mathfrak{L}_n: \quad X, Y \in \mathbb{R}^n, g \in \operatorname{GL}_n(\mathbb{R}), \mu \in \mathfrak{L}_n.$  $g.\mu(X, Y) = g\mu(g^{-1}X, g^{-1}Y).$  (2)

 $\mu \in \mathfrak{L}_n \leftrightsquigarrow (\mathcal{G}_\mu, \langle \cdot, \cdot 
angle) = (\mathcal{G}_\mu, \mathcal{g}_\mu)$ 

 $g \in \operatorname{GL}_n(\mathbb{R}) \rightsquigarrow (\mathcal{G}_{g.\mu}, \langle \cdot, \cdot \rangle) \rightarrow (\mathcal{G}_{\mu}, \langle g., g. \rangle)$  isometry.

vary Lie brackets <----> vary inner products.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Ricci flow on Lie groups: The bracket flow

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Ricci flow on Lie groups: The bracket flow

*G*,

#### Ricci flow on Lie groups: The bracket flow

G, (G, g) is isometric to  $(G_{\mu}, g_{\mu})$ , with  $\mu \in \mathcal{L}_n$ .



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Ricci flow on Lie groups: The bracket flow

G, (G, g) is isometric to  $(G_{\mu}, g_{\mu})$ , with  $\mu \in \mathcal{L}_n$ . The Ricci flow equation (1) is equivalent to:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Ricci flow on Lie groups: The bracket flow

G, (G, g) is isometric to  $(G_{\mu}, g_{\mu})$ , with  $\mu \in \mathcal{L}_n$ . The Ricci flow equation (1) is equivalent to:

$$\frac{d}{dt}\langle\cdot,\cdot\rangle_t = -2\operatorname{Rc}(\langle\cdot,\cdot\rangle_t), \quad \langle\cdot,\cdot\rangle_0 = \langle\cdot,\cdot\rangle, \tag{3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Ricci flow on Lie groups: The bracket flow

G, (G, g) is isometric to  $(G_{\mu}, g_{\mu})$ , with  $\mu \in \mathcal{L}_n$ . The Ricci flow equation (1) is equivalent to:

$$\frac{d}{dt}\langle\cdot,\cdot\rangle_t = -2\operatorname{Rc}(\langle\cdot,\cdot\rangle_t), \quad \langle\cdot,\cdot\rangle_0 = \langle\cdot,\cdot\rangle, \tag{3}$$

 $\mu \in \mathcal{L}_n,$ 

#### Ricci flow on Lie groups: The bracket flow

G, (G, g) is isometric to  $(G_{\mu}, g_{\mu})$ , with  $\mu \in \mathcal{L}_n$ . The Ricci flow equation (1) is equivalent to:

$$\frac{d}{dt}\langle\cdot,\cdot\rangle_t = -2\operatorname{Rc}(\langle\cdot,\cdot\rangle_t), \quad \langle\cdot,\cdot\rangle_0 = \langle\cdot,\cdot\rangle, \tag{3}$$

 $\mu \in \mathcal{L}_n$ , the bracket flow starting at  $\mu$  is:

#### Ricci flow on Lie groups: The bracket flow

G, (G, g) is isometric to  $(G_{\mu}, g_{\mu})$ , with  $\mu \in \mathcal{L}_n$ . The Ricci flow equation (1) is equivalent to:

$$\frac{d}{dt}\langle\cdot,\cdot\rangle_t = -2\operatorname{\mathsf{Rc}}(\langle\cdot,\cdot\rangle_t), \quad \langle\cdot,\cdot\rangle_0 = \langle\cdot,\cdot\rangle, \tag{3}$$

 $\mu \in \mathcal{L}_n$ , the bracket flow starting at  $\mu$  is:

$$\frac{d}{dt}\mu(t) = \delta_{\mu(t)}(\operatorname{Ric}_{\mu(t)}), \quad \mu(0) = \mu,$$
(4)

#### Ricci flow on Lie groups: The bracket flow

G, (G, g) is isometric to  $(G_{\mu}, g_{\mu})$ , with  $\mu \in \mathcal{L}_n$ . The Ricci flow equation (1) is equivalent to:

$$\frac{d}{dt}\langle\cdot,\cdot\rangle_t = -2\operatorname{\mathsf{Rc}}(\langle\cdot,\cdot\rangle_t), \quad \langle\cdot,\cdot\rangle_0 = \langle\cdot,\cdot\rangle, \tag{3}$$

 $\mu \in \mathcal{L}_n$ , the bracket flow starting at  $\mu$  is:

$$\frac{d}{dt}\mu(t) = \delta_{\mu(t)}(\operatorname{Ric}_{\mu(t)}), \quad \mu(0) = \mu, \tag{4}$$
  
where  $\delta_{\mu}(A) = \mu(A, \cdot) + \mu(\cdot, A) - A\mu(\cdot, \cdot), A \in \operatorname{GL}_{n}(\mathbb{R}), \mu \in V_{n}.$ 

## Ricci flow on Lie groups: The bracket flow

G, (G, g) is isometric to  $(G_{\mu}, g_{\mu})$ , with  $\mu \in \mathcal{L}_n$ . The Ricci flow equation (1) is equivalent to:

$$\frac{d}{dt}\langle\cdot,\cdot\rangle_t = -2\operatorname{Rc}(\langle\cdot,\cdot\rangle_t), \quad \langle\cdot,\cdot\rangle_0 = \langle\cdot,\cdot\rangle, \tag{3}$$

 $\mu \in \mathcal{L}_n$ , the bracket flow starting at  $\mu$  is:

$$\frac{d}{dt}\mu(t) = \delta_{\mu(t)}(\operatorname{Ric}_{\mu(t)}), \quad \mu(0) = \mu,$$
(4)

where  $\delta_{\mu}(A) = \mu(A \cdot, \cdot) + \mu(\cdot, A \cdot) - A\mu(\cdot, \cdot)$ ,  $A \in \operatorname{GL}_n(\mathbb{R})$ ,  $\mu \in V_n$ .

#### Theorem ([L3],2012)

There exist time-dependent diffeomorphisms  $\varphi(t) : G \to G_{\mu(t)}$  such that  $g(t) = \varphi(t)^* g_{\mu(t)}, \ \forall t \in (a, b).$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### The bracket flow in a class of solvmanifolds

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### The bracket flow in a class of solvmanifolds

Solvmanifold:
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

### The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric.

#### The bracket flow in a class of solvmanifolds

### The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric.  $(S, \langle \cdot, \cdot \rangle)$ 

• Purpose:

### The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric.  $(S, \langle \cdot, \cdot \rangle)$ 

• Purpose: To study the Ricci flow.

### The bracket flow in a class of solvmanifolds

- Purpose: To study the Ricci flow.
- How?:

### The bracket flow in a class of solvmanifolds

- Purpose: To study the Ricci flow.
- How?: Using the bracket flow.

### The bracket flow in a class of solvmanifolds

- Purpose: To study the Ricci flow.
- How?: Using the bracket flow.
- In which solvmanifolds?:

### The bracket flow in a class of solvmanifolds

- Purpose: To study the Ricci flow.
- How?: Using the bracket flow.
- In which solvmanifolds?: Solvmanifolds whose Lie algebras have an abelian ideal of codimension 1.

Negative curvature

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# The bracket flow in a class of solvmanifolds We fix $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)$ .

## The bracket flow in a class of solvmanifolds We fix $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)$ . If $(\mathbb{R}^{n+1}, \mu)$ is a Lie algebra with an abelian ideal of codimension 1,

### The bracket flow in a class of solvmanifolds We fix $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)$ . If $(\mathbb{R}^{n+1}, \mu)$ is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis $\{e_0, e_1, \ldots, e_n\}$ such that:

The bracket flow in a class of solvmanifolds We fix  $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)$ . If  $(\mathbb{R}^{n+1}, \mu)$  is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis  $\{e_0, e_1, \ldots, e_n\}$  such that:

$$\begin{split} \mu(e_0, e_i) &= Ae_i, \quad i = 1, \dots, n, \quad A \in \mathfrak{gl}_n(\mathbb{R}), \\ \mu(e_i, e_j) &= 0, \quad \forall i, j \geq 1. \end{split}$$

The bracket flow in a class of solvmanifolds We fix  $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)$ . If  $(\mathbb{R}^{n+1}, \mu)$  is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis  $\{e_0, e_1, \ldots, e_n\}$  such that:

$$\begin{aligned} \mu(e_0, e_i) &= Ae_i, \quad i = 1, \dots, n, \quad A \in \mathfrak{gl}_n(\mathbb{R}), \\ \mu(e_i, e_j) &= 0, \quad \forall i, j \geq 1. \end{aligned}$$

From now on,

◆ロト ◆昼 → ◆ 臣 → ◆ 臣 → のへぐ

The bracket flow in a class of solvmanifolds We fix  $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)$ . If  $(\mathbb{R}^{n+1}, \mu)$  is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis  $\{e_0, e_1, \ldots, e_n\}$  such that:

$$\begin{aligned} \mu(e_0, e_i) &= Ae_i, \quad i = 1, \dots, n, \quad A \in \mathfrak{gl}_n(\mathbb{R}), \\ \mu(e_i, e_j) &= 0, \quad \forall i, j \geq 1. \end{aligned}$$

From now on,  $(\mathbb{R}^{n+1}, \mu_A)$  or  $\mu_A$ ,

The bracket flow in a class of solvmanifolds We fix  $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)$ . If  $(\mathbb{R}^{n+1}, \mu)$  is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis  $\{e_0, e_1, \ldots, e_n\}$  such that:

$$\begin{aligned} \mu(e_0, e_i) &= Ae_i, \quad i = 1, \dots, n, \quad A \in \mathfrak{gl}_n(\mathbb{R}), \\ \mu(e_i, e_j) &= 0, \quad \forall i, j \geq 1. \end{aligned}$$

From now on,  $(\mathbb{R}^{n+1}, \mu_A)$  or  $\mu_A$ , and  $(G_{\mu_A}, \langle \cdot, \cdot \rangle)$ , or  $(G_{\mu_A}, g_{\mu_A})$ .

The bracket flow in a class of solvmanifolds We fix  $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)$ . If  $(\mathbb{R}^{n+1}, \mu)$  is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis  $\{e_0, e_1, \ldots, e_n\}$  such that:

$$\begin{aligned} \mu(e_0, e_i) &= Ae_i, \quad i = 1, \dots, n, \quad A \in \mathfrak{gl}_n(\mathbb{R}), \\ \mu(e_i, e_j) &= 0, \quad \forall i, j \geq 1. \end{aligned}$$

From now on,  $(\mathbb{R}^{n+1}, \mu_A)$  or  $\mu_A$ , and  $(G_{\mu_A}, \langle \cdot, \cdot \rangle)$ , or  $(G_{\mu_A}, g_{\mu_A})$ . The Ricci operator of  $(G_{\mu_A}, g_{\mu_A})$  w. r. t.  $\{e_0, e_1, \ldots, e_n\}$  is:

$$\operatorname{Ric}_{\mu_{A}} = \begin{pmatrix} -\operatorname{tr}(S(A)^{2}) & 0\\ 0 & \frac{1}{2}[A, A^{t}] - \operatorname{tr}(A)S(A) \end{pmatrix}.$$
(5)

The bracket flow in a class of solvmanifolds We fix  $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)$ . If  $(\mathbb{R}^{n+1}, \mu)$  is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis  $\{e_0, e_1, \ldots, e_n\}$  such that:

$$\begin{aligned} \mu(e_0, e_i) &= Ae_i, \quad i = 1, \dots, n, \quad A \in \mathfrak{gl}_n(\mathbb{R}), \\ \mu(e_i, e_j) &= 0, \quad \forall i, j \geq 1. \end{aligned}$$

From now on,  $(\mathbb{R}^{n+1}, \mu_A)$  or  $\mu_A$ , and  $(G_{\mu_A}, \langle \cdot, \cdot \rangle)$ , or  $(G_{\mu_A}, g_{\mu_A})$ . The Ricci operator of  $(G_{\mu_A}, g_{\mu_A})$  w. r. t.  $\{e_0, e_1, \ldots, e_n\}$  is:

$$\operatorname{Ric}_{\mu_{A}} = \begin{pmatrix} -\operatorname{tr}(S(A)^{2}) & 0\\ 0 & \frac{1}{2}[A, A^{t}] - \operatorname{tr}(A)S(A) \end{pmatrix}.$$
(5)

Then, using  $\frac{d}{dt}\mu(t) = \delta_{\mu(t)}(\operatorname{Ric}_{\mu(t)})$  and proposing  $\mu_{A(t)}$  as a solution, we obtain that  $\mu(t) = \mu_{A(t)}$ , with A(t) that satisfies:

The bracket flow in a class of solvmanifolds We fix  $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)$ . If  $(\mathbb{R}^{n+1}, \mu)$  is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis  $\{e_0, e_1, \ldots, e_n\}$  such that:

$$\begin{aligned} \mu(e_0, e_i) &= Ae_i, \quad i = 1, \dots, n, \quad A \in \mathfrak{gl}_n(\mathbb{R}), \\ \mu(e_i, e_j) &= 0, \quad \forall i, j \geq 1. \end{aligned}$$

From now on,  $(\mathbb{R}^{n+1}, \mu_A)$  or  $\mu_A$ , and  $(G_{\mu_A}, \langle \cdot, \cdot \rangle)$ , or  $(G_{\mu_A}, g_{\mu_A})$ . The Ricci operator of  $(G_{\mu_A}, g_{\mu_A})$  w. r. t.  $\{e_0, e_1, \ldots, e_n\}$  is:

$$\operatorname{Ric}_{\mu_{A}} = \begin{pmatrix} -\operatorname{tr}(S(A)^{2}) & 0\\ 0 & \frac{1}{2}[A, A^{t}] - \operatorname{tr}(A)S(A) \end{pmatrix}.$$
(5)

Then, using  $\frac{d}{dt}\mu(t) = \delta_{\mu(t)}(\operatorname{Ric}_{\mu(t)})$  and proposing  $\mu_{A(t)}$  as a solution, we obtain that  $\mu(t) = \mu_{A(t)}$ , with A(t) that satisfies:

$$\frac{d}{dt}A = -\operatorname{tr}(S(A)^2)A + \frac{1}{2}[A, [A, A^t]] - \frac{1}{2}\operatorname{tr}(A)[A, A^t].$$
(6)

Negative curvature

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## The bracket flow in a class of solvmanifolds Let $A := \begin{pmatrix} 0 & x_0 \\ y_0 & 0 \end{pmatrix} \in \mathfrak{gl}_2(\mathbb{R})$ , with $x_0y_0 < 0$ .

The bracket flow in a class of solvmanifolds Let  $A := \begin{pmatrix} 0 & x_0 \\ y_0 & 0 \end{pmatrix} \in \mathfrak{gl}_2(\mathbb{R})$ , with  $x_0y_0 < 0$ . Then,  $\mu(t) = \mu_{A(t)}$ with  $A(t) = \begin{pmatrix} 0 & x(t) \\ y(t) & 0 \end{pmatrix}$  and x(t) = x, y(t) = y satisfy:  $x' = x(x+y)(-\frac{3}{2}x + \frac{1}{2}y)$ ,  $x(0) = x_0$ ,  $y' = y(x+y)(-\frac{3}{2}y + \frac{1}{2}x)$ ,  $y(0) = y_0$ . (7) The bracket flow in a class of solvmanifolds Let  $A := \begin{pmatrix} 0 & x_0 \\ y_0 & 0 \end{pmatrix} \in \mathfrak{gl}_2(\mathbb{R})$ , with  $x_0y_0 < 0$ . Then,  $\mu(t) = \mu_{A(t)}$ with  $A(t) = \begin{pmatrix} 0 & x(t) \\ y(t) & 0 \end{pmatrix}$  and x(t) = x, y(t) = y satisfy:  $x' = x(x+y)(-\frac{3}{2}x + \frac{1}{2}y), \quad x(0) = x_0,$  $y' = y(x+y)(-\frac{3}{2}y + \frac{1}{2}x), \quad y(0) = y_0.$ (7)



Negative curvature

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# The bracket flow in a class of solvmanifolds Question:

Negative curvature

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## The bracket flow in a class of solvmanifolds Question: Limits of solutions?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

## The bracket flow in a class of solvmanifolds Question: Limits of solutions?

#### Lemma

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

## The bracket flow in a class of solvmanifolds Question: Limits of solutions?

#### Lemma

• If 
$$\operatorname{tr}(A) = 0$$
, then  $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A^1_{\infty}$ 

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

## The bracket flow in a class of solvmanifolds Question: Limits of solutions?

#### Lemma

• If 
$$\operatorname{tr}(A) = 0$$
, then  $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A^1_{\infty}( \rightsquigarrow A(t) \to A_{\infty})$ ,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## The bracket flow in a class of solvmanifolds Question: Limits of solutions?

#### Lemma

Let  $A \in \mathfrak{gl}_n(\mathbb{R})$  and consider the bracket flow  $\mu_{A(t)}$  starting at  $\mu_A$ . Then:

• If  $\operatorname{tr}(A) = 0$ , then  $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A^1_{\infty}( \rightsquigarrow A(t) \to A_{\infty})$ ,

• If 
$$tr(A) \neq 0$$
, then  $A(t) \rightarrow 0$ .

#### Lemma

Let  $A \in \mathfrak{gl}_n(\mathbb{R})$  and consider the bracket flow  $\mu_{A(t)}$  starting at  $\mu_A$ . Then:

• If  $\operatorname{tr}(A) = 0$ , then  $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A^1_{\infty}( \rightsquigarrow A(t) \to A_{\infty})$ ,

• If 
$$tr(A) \neq 0$$
, then  $A(t) \rightarrow 0$ .

Sketch of proof.

#### Lemma

Let  $A \in \mathfrak{gl}_n(\mathbb{R})$  and consider the bracket flow  $\mu_{A(t)}$  starting at  $\mu_A$ . Then:

• If  $\operatorname{tr}(A) = 0$ , then  $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A^1_{\infty}( \rightsquigarrow A(t) \to A_{\infty})$ ,

• If 
$$tr(A) \neq 0$$
, then  $A(t) \rightarrow 0$ .

Sketch of proof.

#### Lemma

Let  $A \in \mathfrak{gl}_n(\mathbb{R})$  and consider the bracket flow  $\mu_{A(t)}$  starting at  $\mu_A$ . Then:

• If  $\operatorname{tr}(A) = 0$ , then  $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A^1_{\infty}( \rightsquigarrow A(t) \to A_{\infty})$ ,

• If 
$$tr(A) \neq 0$$
, then  $A(t) \rightarrow 0$ .

#### Sketch of proof.

• If tr(A) = 0, we consider  $F(A) = \frac{\|[A,A^t]\|^2}{\|A\|^4}$  for A = A(t), and the negative gradient flow of  $F, \bar{A}(t)$ .

#### Lemma

Let  $A \in \mathfrak{gl}_n(\mathbb{R})$  and consider the bracket flow  $\mu_{A(t)}$  starting at  $\mu_A$ . Then:

• If  $\operatorname{tr}(A) = 0$ , then  $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A^1_{\infty}( \rightsquigarrow A(t) \to A_{\infty})$ ,

• If 
$$tr(A) \neq 0$$
, then  $A(t) \rightarrow 0$ .

#### Sketch of proof.

• If tr(A) = 0, we consider  $F(A) = \frac{\|[A,A^t]\|^2}{\|A\|^4}$  for A = A(t), and the negative gradient flow of F,  $\overline{A}(t)$ . Then if A is not nilpotent  $\lim_{t\to\infty} \frac{\overline{A}(t)}{\|\overline{A}(t)\|} = \lim_{t\to\infty} \frac{A(t)}{\|A(t)\|}$ .

#### Lemma

Let  $A \in \mathfrak{gl}_n(\mathbb{R})$  and consider the bracket flow  $\mu_{A(t)}$  starting at  $\mu_A$ . Then:

• If  $\operatorname{tr}(A) = 0$ , then  $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A^1_{\infty}( \rightsquigarrow A(t) \to A_{\infty})$ ,

• If 
$$tr(A) \neq 0$$
, then  $A(t) \rightarrow 0$ .

#### Sketch of proof.

If tr(A) = 0, we consider F(A) = <sup>||[A,A<sup>t</sup>]||<sup>2</sup></sup>/<sub>||A||<sup>4</sup></sub> for A = A(t), and the negative gradient flow of F, Ā(t). Then if A is not nilpotent lim<sub>t→∞</sub> <sup>Ā(t)</sup>/<sub>||Ā(t)||</sub> = lim<sub>t→∞</sub> <sup>A(t)</sup>/<sub>||A(t)||</sub>.
If tr(A) ≠ 0,

#### Lemma

Let  $A \in \mathfrak{gl}_n(\mathbb{R})$  and consider the bracket flow  $\mu_{A(t)}$  starting at  $\mu_A$ . Then:

• If  $\operatorname{tr}(A) = 0$ , then  $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A^1_{\infty}( \rightsquigarrow A(t) \to A_{\infty})$ ,

• If 
$$tr(A) \neq 0$$
, then  $A(t) \rightarrow 0$ .

#### Sketch of proof.

- If tr(A) = 0, we consider  $F(A) = \frac{\|[A,A^t]\|^2}{\|A\|^4}$  for A = A(t), and the negative gradient flow of F,  $\overline{A}(t)$ . Then if A is not nilpotent  $\lim_{t\to\infty} \frac{\overline{A}(t)}{\|\overline{A}(t)\|} = \lim_{t\to\infty} \frac{A(t)}{\|A(t)\|}$ .
- If tr(A) ≠ 0, it is easy to see that A(t) → 0 using the spectra of A and A(t).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

### The bracket flow in a class of solvmanifolds

#### Lemma

### The bracket flow in a class of solvmanifolds

#### Lemma

Let  $A \in \mathfrak{gl}_n(\mathbb{R})$  and consider the bracket flow  $\mu_{A(t)}$  starting at  $\mu_A$ . Then:

•  $A(t) = a(t)\varphi_t A \varphi_t^{-1}$ , a(t) is a real valued function, and  $\varphi_t \in GL_n(\mathbb{R})$ .

#### The bracket flow in a class of solvmanifolds

#### Lemma

Let  $A \in \mathfrak{gl}_n(\mathbb{R})$  and consider the bracket flow  $\mu_{A(t)}$  starting at  $\mu_A$ . Then:

•  $A(t) = a(t)\varphi_t A \varphi_t^{-1}$ , a(t) is a real valued function, and  $\varphi_t \in GL_n(\mathbb{R})$ . ( $\rightsquigarrow$  Spec $(A_\infty) = a_\infty$  Spec(A).)
## The bracket flow in a class of solvmanifolds

#### Lemma

Let  $A \in \mathfrak{gl}_n(\mathbb{R})$  and consider the bracket flow  $\mu_{A(t)}$  starting at  $\mu_A$ . Then:

- $A(t) = a(t)\varphi_t A \varphi_t^{-1}$ , a(t) is a real valued function, and  $\varphi_t \in GL_n(\mathbb{R})$ . ( $\rightsquigarrow$  Spec $(A_\infty) = a_\infty$  Spec(A).)
- A(t) is defined  $\forall t \in [0, \infty)$ .

## The bracket flow in a class of solvmanifolds

#### Lemma

Let  $A \in \mathfrak{gl}_n(\mathbb{R})$  and consider the bracket flow  $\mu_{A(t)}$  starting at  $\mu_A$ . Then:

- $A(t) = a(t)\varphi_t A \varphi_t^{-1}$ , a(t) is a real valued function, and  $\varphi_t \in \operatorname{GL}_n(\mathbb{R})$ . ( $\rightsquigarrow$  Spec $(A_\infty) = a_\infty$  Spec(A).)
- A(t) is defined  $\forall t \in [0,\infty)$ .
- $tr(S(A(t))^2)$  is strictly decreasing if A is not skew-symmetric. Moreover,  $tr(S(A(t))^2) \rightarrow 0$  as  $t \rightarrow \infty$ .

## The bracket flow in a class of solvmanifolds

### Corollary

There exists a sequence  $(G_{\mu_{A(t_k)}}, g_{\mu_{A(t_k)}})$  which converges in the pointed (Cheeger - Gromov) sense to a manifold locally isometric to  $(G_{\mu_{A_{\infty}}}, g_{\mu_{A_{\infty}}})$ , which is flat.

## The bracket flow in a class of solvmanifolds

### Corollary

There exists a sequence  $(G_{\mu_{A(t_k)}}, g_{\mu_{A(t_k)}})$  which converges in the pointed (Cheeger - Gromov) sense to a manifold locally isometric to  $(G_{\mu_{A_{\infty}}}, g_{\mu_{A_{\infty}}})$ , which is flat.

# Proposition If $\text{Spec}(A) \nsubseteq i\mathbb{R}$ then $g_{\mu_{A(t)}} \to g_{\mu_{A_{\infty}}}$ smoothly on $\mathbb{R}^n$ .

## The bracket flow in a class of solvmanifolds

### Proposition

For every  $\mu_A$  with  $tr(A^2) \ge 0$ , the Ricci flow g(t) with  $g(0) = g_{\mu_A}$  is a Type - III solution

## The bracket flow in a class of solvmanifolds

### Proposition

For every  $\mu_A$  with  $\operatorname{tr}(A^2) \ge 0$ , the Ricci flow g(t) with  $g(0) = g_{\mu_A}$ is a Type - III solution (it is defined  $\forall t \in [0, \infty)$  and there exists  $C \in \mathbb{R}$  such that  $\|\operatorname{Rm}(g(t))\| \le \frac{C}{t}, \quad \forall t \in (0, \infty)$ ),

## The bracket flow in a class of solvmanifolds

### Proposition

For every  $\mu_A$  with  $\operatorname{tr}(A^2) \ge 0$ , the Ricci flow g(t) with  $g(0) = g_{\mu_A}$ is a Type - III solution (it is defined  $\forall t \in [0, \infty)$  and there exists  $C \in \mathbb{R}$  such that  $\|\operatorname{Rm}(g(t))\| \le \frac{C}{t}$ ,  $\forall t \in (0, \infty)$ ), for some constant  $C_n$  that only depends on the dimension n.

# The bracket flow in a class of solvmanifolds

### Theorem

Let  $A \in \mathfrak{gl}_n(\mathbb{R})$ . Consider  $\mu_{A(t)}$  the bracket flow starting at  $\mu_A$  and g(t) the Ricci flow starting at  $g_{\mu_A}$ . Then:

- (i) g(t) is defined  $\forall t \in [0, \infty)$ .
- (ii)  $A(t) \rightarrow A_{\infty}$ .
- (iii) There exists a sequence  $(G_{\mu_{A(t_k)}}, g_{\mu_{A(t_k)}})$  which converges in the pointed sense to a manifold locally isometric to  $(G_{\mu_{A_{\infty}}}, g_{\mu_{A_{\infty}}})$ , which is flat.
- (iv) If  $\operatorname{Spec}(A) \nsubseteq i\mathbb{R}$ , then  $g_{\mu_{A(t)}} \to g_{\mu_{A_{\infty}}}$  smoothly on  $\mathbb{R}^n$ .
- (v) If  $tr(A^2) \ge 0$ , then g(t) is a type III solution for some constant  $C_n$  that only depends on the dimension of  $V_n$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Norm-normalized bracket flow

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### Norm-normalized bracket flow

#### Lemma

Let A be with ||A|| = 1 and consider  $\mu_{A(t)}$  the norm-normalized bracket flow starting at  $\mu_A$ . Then the following are equivalent:

## Norm-normalized bracket flow

#### Lemma

Let A be with ||A|| = 1 and consider  $\mu_{A(t)}$  the norm-normalized bracket flow starting at  $\mu_A$ . Then the following are equivalent: (i)  $\mu_A$  is not an algebraic soliton.

### Norm-normalized bracket flow

#### Lemma

Let A be with ||A|| = 1 and consider  $\mu_{A(t)}$  the norm-normalized bracket flow starting at  $\mu_A$ . Then the following are equivalent: (i)  $\mu_A$  is not an algebraic soliton. (algebraic soliton:  $\operatorname{Ric}_{\mu} = cl + D$ ,  $c \in \mathbb{R}$ ,  $D \in \operatorname{Der}(\mu)$ )

## Norm-normalized bracket flow

#### Lemma

Let A be with ||A|| = 1 and consider  $\mu_{A(t)}$  the norm-normalized bracket flow starting at  $\mu_A$ . Then the following are equivalent:

(i) 
$$\mu_A$$
 is not an algebraic soliton. (algebraic soliton  
Ric <sub>$\mu$</sub>  = cl + D, c  $\in \mathbb{R}$ , D  $\in$  Der( $\mu$ ))

(ii) 
$$\frac{d}{dt} \| [A, A^t] \|^2 < 0.$$

## Norm-normalized bracket flow

#### Lemma

Let A be with ||A|| = 1 and consider  $\mu_{A(t)}$  the norm-normalized bracket flow starting at  $\mu_A$ . Then the following are equivalent:

(i) 
$$\mu_A$$
 is not an algebraic soliton. (algebraic soliton  
Ric <sub>$\mu$</sub>  = cl + D, c  $\in \mathbb{R}$ , D  $\in$  Der( $\mu$ ))

(ii) 
$$\frac{d}{dt} \| [A, A^t] \|^2 < 0.$$

### Theorem

Assume that  $A(t_k) \rightarrow A_{\infty}$ .

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ ヨ ■ ● の Q (?)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

## Norm-normalized bracket flow

#### Lemma

Let A be with ||A|| = 1 and consider  $\mu_{A(t)}$  the norm-normalized bracket flow starting at  $\mu_A$ . Then the following are equivalent:

(i) 
$$\mu_A$$
 is not an algebraic soliton. (algebraic soliton)  
Ric <sub>$\mu$</sub>  = cl + D, c  $\in \mathbb{R}$ , D  $\in$  Der( $\mu$ ))

(ii) 
$$\frac{d}{dt} \| [A, A^t] \|^2 < 0.$$

#### Theorem

Assume that  $A(t_k) \to A_\infty$ . Then,  $A_\infty$  is an algebraic soliton.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

## Norm-normalized bracket flow

#### Lemma

Let A be with ||A|| = 1 and consider  $\mu_{A(t)}$  the norm-normalized bracket flow starting at  $\mu_A$ . Then the following are equivalent:

(i) 
$$\mu_A$$
 is not an algebraic soliton. (algebraic soliton  
Ric <sub>$\mu$</sub>  = cl + D, c  $\in \mathbb{R}$ , D  $\in$  Der( $\mu$ ))

(ii) 
$$\frac{d}{dt} \| [A, A^t] \|^2 < 0.$$

### Theorem

Assume that  $A(t_k) \rightarrow A_{\infty}$ . Then,  $A_{\infty}$  is an algebraic soliton. Moreover, the following are equivalent:

## Norm-normalized bracket flow

#### Lemma

Let A be with ||A|| = 1 and consider  $\mu_{A(t)}$  the norm-normalized bracket flow starting at  $\mu_A$ . Then the following are equivalent:

(i) 
$$\mu_A$$
 is not an algebraic soliton. (algebraic soliton)  
Ric <sub>$\mu$</sub>  = cl + D, c  $\in \mathbb{R}$ , D  $\in$  Der( $\mu$ ))

(ii) 
$$\frac{d}{dt} \| [A, A^t] \|^2 < 0.$$

### Theorem

Assume that  $A(t_k) \rightarrow A_{\infty}$ . Then,  $A_{\infty}$  is an algebraic soliton. Moreover, the following are equivalent:

(i) Spec(A)  $\subseteq i\mathbb{R}$ .

## Norm-normalized bracket flow

#### Lemma

Let A be with ||A|| = 1 and consider  $\mu_{A(t)}$  the norm-normalized bracket flow starting at  $\mu_A$ . Then the following are equivalent:

(i) 
$$\mu_A$$
 is not an algebraic soliton. (algebraic soliton  
Ric <sub>$\mu$</sub>  = cl + D, c  $\in \mathbb{R}$ , D  $\in$  Der( $\mu$ ))

(ii) 
$$\frac{d}{dt} \| [A, A^t] \|^2 < 0.$$

### Theorem

Assume that  $A(t_k) \rightarrow A_{\infty}$ . Then,  $A_{\infty}$  is an algebraic soliton. Moreover, the following are equivalent:

(i) Spec(A) 
$$\subseteq i\mathbb{R}$$
.  
(ii)  $(G_{\mu_{A_{\infty}}}, g_{\mu_{A_{\infty}}})$  is flat.





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Negative curvature

Question:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### Negative curvature

Question: How does the curvature evolve along the Ricci flow?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Negative curvature

Question: How does the curvature evolve along the Ricci flow? (M,g),

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Negative curvature

Question: How does the curvature evolve along the Ricci flow?

(M,g), we will say that it has negative curvature,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

### Negative curvature

Question: How does the curvature evolve along the Ricci flow?

(M,g), we will say that it has negative curvature, and denote it by K < 0,

## Negative curvature

Question: How does the curvature evolve along the Ricci flow?

(M,g), we will say that it has negative curvature, and denote it by K < 0, if all sectional curvatures are strictly negative.

## Negative curvature

Question: How does the curvature evolve along the Ricci flow?

(M,g), we will say that it has negative curvature, and denote it by K < 0, if all sectional curvatures are strictly negative.

If  $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$  is a Lie algebra with an inner product, we will think about sectional curvatures of (G, g).

## Negative curvature

Question: How does the curvature evolve along the Ricci flow?

(M,g), we will say that it has negative curvature, and denote it by K < 0, if all sectional curvatures are strictly negative.

If  $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$  is a Lie algebra with an inner product, we will think about sectional curvatures of (G, g). In the case of  $\mu_A$ , we will denote it by  $K_A$ .

イロト 不得 トイヨト イヨト

э.

# Negative curvature

### Theorem

Let  $\mu_A$  be a solvable Lie algebra that admits an inner product with negative curvature.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

## Negative curvature

### Theorem

Let  $\mu_A$  be a solvable Lie algebra that admits an inner product with negative curvature. If  $\mu_{A(t)}$  is the bracket flow starting at  $\mu_A$ , then there exists  $S \in \mathbb{N}$  such that  $K_{A(t)} < 0, \forall t \ge S$ .

### Theorem

Let  $\mu_A$  be a solvable Lie algebra that admits an inner product with negative curvature. If  $\mu_{A(t)}$  is the bracket flow starting at  $\mu_A$ , then there exists  $S \in \mathbb{N}$  such that  $K_{A(t)} < 0, \forall t \ge S$ .

## Sketch of proof.

• We consider the norm-normalized bracket flow.

### Theorem

Let  $\mu_A$  be a solvable Lie algebra that admits an inner product with negative curvature. If  $\mu_{A(t)}$  is the bracket flow starting at  $\mu_A$ , then there exists  $S \in \mathbb{N}$  such that  $K_{A(t)} < 0, \forall t \ge S$ .

- We consider the norm-normalized bracket flow.
- If  $A(t_k) \rightarrow A_{\infty}$ , then  $\operatorname{Spec}(A_{\infty}) = \alpha_{\infty} \operatorname{Spec}(A)$ , con  $\alpha_{\infty} > 0$ .

### Theorem

Let  $\mu_A$  be a solvable Lie algebra that admits an inner product with negative curvature. If  $\mu_{A(t)}$  is the bracket flow starting at  $\mu_A$ , then there exists  $S \in \mathbb{N}$  such that  $K_{A(t)} < 0, \forall t \ge S$ .

- We consider the norm-normalized bracket flow.
- If  $A(t_k) \rightarrow A_{\infty}$ , then  $\operatorname{Spec}(A_{\infty}) = \alpha_{\infty} \operatorname{Spec}(A)$ , con  $\alpha_{\infty} > 0$ .
- As μ<sub>A</sub> admits an inner product with K < 0, the Re(Spec(A)) > 0 or Re(Spec(A)) < 0 ([H]).</li>

# Negative curvature

### Theorem

Let  $\mu_A$  be a solvable Lie algebra that admits an inner product with negative curvature. If  $\mu_{A(t)}$  is the bracket flow starting at  $\mu_A$ , then there exists  $S \in \mathbb{N}$  such that  $K_{A(t)} < 0, \forall t \ge S$ .

- We consider the norm-normalized bracket flow.
- If  $A(t_k) \to A_\infty$ , then  $\operatorname{Spec}(A_\infty) = \alpha_\infty \operatorname{Spec}(A)$ , con  $\alpha_\infty > 0$ .
- As μ<sub>A</sub> admits an inner product with K < 0, the Re(Spec(A)) > 0 or Re(Spec(A)) < 0 ([H]).</li>
- Then Re(Spec(A<sub>∞</sub>)) > 0 or Re(Spec(A<sub>∞</sub>)) < 0, and A<sub>∞</sub> is normal because it is an algebraic soliton.

# Negative curvature

### Theorem

Let  $\mu_A$  be a solvable Lie algebra that admits an inner product with negative curvature. If  $\mu_{A(t)}$  is the bracket flow starting at  $\mu_A$ , then there exists  $S \in \mathbb{N}$  such that  $K_{A(t)} < 0, \forall t \ge S$ .

- We consider the norm-normalized bracket flow.
- If  $A(t_k) \to A_\infty$ , then  $\operatorname{Spec}(A_\infty) = \alpha_\infty \operatorname{Spec}(A)$ , con  $\alpha_\infty > 0$ .
- As μ<sub>A</sub> admits an inner product with K < 0, the Re(Spec(A)) > 0 or Re(Spec(A)) < 0 ([H]).</li>
- Then Re(Spec(A<sub>∞</sub>)) > 0 or Re(Spec(A<sub>∞</sub>)) < 0, and A<sub>∞</sub> is normal because it is an algebraic soliton. Then K<sub>A<sub>∞</sub></sub> < 0.</li>

### Theorem

Let  $\mu_A$  be a solvable Lie algebra that admits an inner product with negative curvature. If  $\mu_{A(t)}$  is the bracket flow starting at  $\mu_A$ , then there exists  $S \in \mathbb{N}$  such that  $K_{A(t)} < 0, \forall t \ge S$ .

- We consider the norm-normalized bracket flow.
- If  $A(t_k) \to A_\infty$ , then  $\operatorname{Spec}(A_\infty) = \alpha_\infty \operatorname{Spec}(A)$ , con  $\alpha_\infty > 0$ .
- As μ<sub>A</sub> admits an inner product with K < 0, the Re(Spec(A)) > 0 or Re(Spec(A)) < 0 ([H]).</li>
- Then Re(Spec(A<sub>∞</sub>)) > 0 or Re(Spec(A<sub>∞</sub>)) < 0, and A<sub>∞</sub> is normal because it is an algebraic soliton. Then K<sub>A<sub>∞</sub></sub> < 0.</li>
- Finally, it is easy to see that the theorem is true for the norm-normalized bracket flow and then for the bracket flow.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



### Question:
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

#### Negative curvature

Question: Is the same true in the general case?

# Negative curvature

Question: Is the same true in the general case? We consider  $(\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)$  defined as follows:



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Negative curvature

Question: Is the same true in the general case? We consider  $(\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)$  defined as follows:

$$\mu_{\lambda,lpha}(e_0,e_i)=lpha\left(egin{array}{cc}\lambda&&&\\&1-\lambda&\\&&1\end{array}
ight)e_i,\ \ \mu_{\lambda,lpha}(e_1,e_2)=e_3.$$

# Negative curvature

Question: Is the same true in the general case? We consider  $(\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)$  defined as follows:

 $(\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)$  is an algebraic soliton  $\Leftrightarrow \alpha = \frac{\sqrt{3}}{\sqrt{2(\lambda^2 + (1-\lambda)^2 + 1)}}.$ 

# Negative curvature

Question: Is the same true in the general case? We consider  $(\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)$  defined as follows:

 $(\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)$  is an algebraic soliton  $\Leftrightarrow \alpha = \frac{\sqrt{3}}{\sqrt{2(\lambda^2 + (1-\lambda)^2 + 1)}}.$ 

$$\mathcal{K}(e_1, e_3) = \frac{1}{4} - \frac{3\lambda}{\lambda^2 + (1-\lambda)^2 + 1}$$

# Negative curvature

Question: Is the same true in the general case? We consider  $(\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)$  defined as follows:

 $(\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)$  is an algebraic soliton  $\Leftrightarrow \alpha = \frac{\sqrt{3}}{\sqrt{2(\lambda^2 + (1-\lambda)^2 + 1)}}.$ 

$$\mathcal{K}(e_1,e_3)=rac{1}{4}-rac{3\lambda}{\lambda^2+(1-\lambda)^2+1}$$

$$\mathcal{K}(e_1,e_3)\geq 0 \quad \Leftrightarrow \quad \lambda\leq 2-\sqrt{3} \quad ext{ ó } \quad \lambda\geq 2+\sqrt{3}.$$

Question: Is the same true in the general case? We consider  $(\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)$  defined as follows:

 $(\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)$  is an algebraic soliton  $\Leftrightarrow \alpha = \frac{\sqrt{3}}{\sqrt{2(\lambda^2 + (1-\lambda)^2 + 1)}}.$ 

$$K(e_1,e_3)=rac{1}{4}-rac{3\lambda}{\lambda^2+(1-\lambda)^2+1}$$

$$\begin{split} & \mathcal{K}(e_1,e_3) \geq 0 \quad \Leftrightarrow \quad \lambda \leq 2-\sqrt{3} \quad \text{o} \quad \lambda \geq 2+\sqrt{3}.\\ & \text{If } 0 < \lambda \leq 2-\sqrt{3}, \text{ then } 0 < 1-\lambda \text{ and so } \operatorname{Re}(\operatorname{Spec}(\operatorname{ad}(e_0))) > 0. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Question: Is the same true in the general case? We consider  $(\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)$  defined as follows:

 $(\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)$  is an algebraic soliton  $\Leftrightarrow \alpha = \frac{\sqrt{3}}{\sqrt{2(\lambda^2 + (1-\lambda)^2 + 1)}}.$ 

$$\mathcal{K}(e_1,e_3)=rac{1}{4}-rac{3\lambda}{\lambda^2+(1-\lambda)^2+1}$$

$$\begin{split} & \mathcal{K}(e_1,e_3) \geq 0 \quad \Leftrightarrow \quad \lambda \leq 2 - \sqrt{3} \quad \text{o} \quad \lambda \geq 2 + \sqrt{3}. \\ & \text{If } 0 < \lambda \leq 2 - \sqrt{3}, \text{ then } 0 < 1 - \lambda \text{ and so } \operatorname{Re}(\operatorname{Spec}(\operatorname{ad}(e_0))) > 0. \\ & \text{Then } \mu_{\lambda,\alpha} \text{ admits an inner product with negative curvature ([H]).} \end{split}$$

Question: Is the same true in the general case? We consider  $(\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)$  defined as follows:

 $(\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)$  is an algebraic soliton  $\Leftrightarrow \alpha = \frac{\sqrt{3}}{\sqrt{2(\lambda^2 + (1-\lambda)^2 + 1)}}.$ 

$$\mathcal{K}(e_1,e_3)=rac{1}{4}-rac{3\lambda}{\lambda^2+(1-\lambda)^2+1}$$

 $\begin{array}{ll} \mathcal{K}(e_1,e_3)\geq 0 & \Leftrightarrow & \lambda\leq 2-\sqrt{3} & \circ & \lambda\geq 2+\sqrt{3}. \\ \text{If } 0<\lambda\leq 2-\sqrt{3}, \text{ then } 0<1-\lambda \text{ and so } \operatorname{Re}(\operatorname{Spec}(\operatorname{ad}(e_0)))>0. \\ \text{Then } \mu_{\lambda,\alpha} \text{ admits an inner product with negative curvature } ([H]). \\ \text{Hence, as } (\mu_{\lambda,\alpha},\langle\cdot,\cdot\rangle) \text{ is an algebraic soliton, if } \mu(t) \text{ is the bracket} \\ \text{flow starting at } \mu_{\lambda,\alpha} \text{ then } (G_{\mu(t)},g_{\mu(t)}) \text{ has planes with curvature} \\ \text{bigger than or equal to zero.} \end{array}$ 



Question:



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let  $\lambda$  be fixed

### Negative curvature

### Negative curvature

$$\mu(t)(e_0, e_i) = \alpha(t) \begin{pmatrix} \lambda & & \\ & 1-\lambda & \\ & & 1 \end{pmatrix} e_i, \quad \mu(t) = h(t)e_3,$$

# Negative curvature

$$\mu(t)(e_0, e_i) = \alpha(t) \begin{pmatrix} \lambda & & \\ & 1-\lambda & \\ & & 1 \end{pmatrix} e_i, \quad \mu(t) = h(t)e_3,$$

with 
$$\alpha(t) = \frac{1}{\sqrt{2c_{\lambda}t + \alpha^{-2}}}$$
 and  $h(t) = \frac{1}{\sqrt{3t+1}}$ .

# Negative curvature

$$\mu(t)(e_0, e_i) = \alpha(t) \begin{pmatrix} \lambda & & \\ & 1-\lambda & \\ & & 1 \end{pmatrix} e_i, \quad \mu(t) = h(t)e_3,$$

with 
$$\alpha(t) = \frac{1}{\sqrt{2c_{\lambda}t + \alpha^{-2}}}$$
 and  $h(t) = \frac{1}{\sqrt{3t+1}}$ . For each  $t$ , we have that

$$K(e_1, e_3) = \frac{h^2}{4} - \lambda \alpha^2 = \frac{1}{4(3t+1)} - \frac{\lambda}{2c_{\lambda}t + \alpha_0^{-2}}$$

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let  $\lambda$  be fixed and we consider  $\mu(t)$  starting at  $\mu_{\alpha,\lambda}$ .

$$\mu(t)(e_0, e_i) = \alpha(t) \begin{pmatrix} \lambda & & \\ & 1-\lambda & \\ & & 1 \end{pmatrix} e_i, \quad \mu(t) = h(t)e_3,$$

with 
$$\alpha(t) = \frac{1}{\sqrt{2c_{\lambda}t + \alpha^{-2}}}$$
 and  $h(t) = \frac{1}{\sqrt{3t+1}}$ . For each  $t$ , we have that

$$K(e_1, e_3) = \frac{h^2}{4} - \lambda \alpha^2 = \frac{1}{4(3t+1)} - \frac{\lambda}{2c_{\lambda}t + \alpha_0^{-2}}$$

 $K(e_1,e_3) \geq 0 \quad \Leftrightarrow \quad (2c_\lambda - 12\lambda)t \geq 4\lambda - \alpha_0^{-2}.$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let  $\lambda$  be fixed and we consider  $\mu(t)$  starting at  $\mu_{\alpha,\lambda}$ .

$$\mu(t)(e_0, e_i) = \alpha(t) \begin{pmatrix} \lambda & & \\ & 1-\lambda & \\ & & 1 \end{pmatrix} e_i, \quad \mu(t) = h(t)e_3,$$

with 
$$\alpha(t) = \frac{1}{\sqrt{2c_{\lambda}t + \alpha^{-2}}}$$
 and  $h(t) = \frac{1}{\sqrt{3t+1}}$ . For each  $t$ , we have that

$$K(e_1, e_3) = \frac{h^2}{4} - \lambda \alpha^2 = \frac{1}{4(3t+1)} - \frac{\lambda}{2c_\lambda t + \alpha_0^{-2}}$$

$$K(e_1, e_3) \geq 0 \quad \Leftrightarrow \quad (2c_\lambda - 12\lambda)t \geq 4\lambda - \alpha_0^{-2}.$$

For sufficiently large  $\alpha$ ,  $\mu_{\alpha,\lambda}$  has a negative curvature ([H])

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let  $\lambda$  be fixed and we consider  $\mu(t)$  starting at  $\mu_{\alpha,\lambda}$ .

$$\mu(t)(e_0, e_i) = \alpha(t) \begin{pmatrix} \lambda & & \\ & 1-\lambda & \\ & & 1 \end{pmatrix} e_i, \quad \mu(t) = h(t)e_3,$$

with 
$$\alpha(t) = \frac{1}{\sqrt{2c_{\lambda}t + \alpha^{-2}}}$$
 and  $h(t) = \frac{1}{\sqrt{3t+1}}$ . For each  $t$ , we have that

$$\mathcal{K}(e_1, e_3) = \frac{h^2}{4} - \lambda \alpha^2 = \frac{1}{4(3t+1)} - \frac{\lambda}{2c_{\lambda}t + \alpha_0^{-2}}$$

 $K(e_1,e_3) \geq 0 \quad \Leftrightarrow \quad (2c_\lambda - 12\lambda)t \geq 4\lambda - \alpha_0^{-2}.$ 

For sufficiently large  $\alpha$ ,  $\mu_{\alpha,\lambda}$  has a negative curvature ([H]) but if  $0 < \lambda \leq 2 - \sqrt{3}$  then from some  $t_0$ ,  $K(e_1, e_3) \geq 0, \forall t \geq t_0$ .

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

Preliminaries

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# ¡Thank you for your attention!

- E. HEINTZE, On homogeneous manifolds of negative curvature, *Math. Ann.* **211**, (1974), 23-34.
- J. LAURET, Ricci soliton solvmanifolds, J. reine angew. Math. **650**, (2011), 1 21.
- J. LAURET, Convergence of homogeneous manifolds, *J. London Math. Soc.*, en prensa (arXiv:1105.2082).
- J. LAURET, Ricci flow of homogeneous manifolds, arXiv:1112.5900 v2.