
Alternating-time Temporal Logic in
the Calculus of (Co)Inductive Constructions

Dante Zanarini1, Carlos Luna2, and Luis Sierra2

1 CIFASIS, Blvd. 27 de Febrero 210 bis, Rosario, Argentina,
dante@fceia.unr.edu.ar

2 InCo, Facultad de Ingenieŕıa, Universidad de la República, Uruguay,
{cluna,sierra}@fing.edu.uy

Abstract. This work presents a complete formalization of Alternating-
time Temporal Logic (ATL) and its semantic model, Concurrent Game
Structures (CGS), in the Calculus of (Co)Inductive Constructions, using
the logical framework Coq. Unlike standard ATL semantics, temporal
operators are formalized in terms of inductive and coinductive types,
employing a fixpoint characterization of these operators. The formaliza-
tion is used to model a concurrent system with an unbounded number
of players and states, and to verify some properties expressed as ATL
formulas. Unlike automatic techniques, our formal model has no restric-
tions in the size of the CGS, and arbitrary state predicates can be used
as atomic propositions of ATL.

1 Introduction

Linear-time and branching-time temporal logics are natural specification lan-
guages for reactive systems [8, 16]. Alternating-time Temporal Logic (ATL), in-
troduced by Alur, Henzinger and Kupferman [1, 2], is a temporal logic suitable
for open systems specificiations, where an open system is a system that interacts
with its environment and whose behavior depends on the state of the system as
well as the behavior of the environment [2].

The logic ATL offers selective quantification over those paths that are possible
outcomes of games. For instance, by preceding the temporal operator “eventu-
ally” with a selective path quantifier, it is possible to specify that in a game
between a reactive system and the environment, the system has a strategy to
reach a certain state.

An ATL formula is interpreted over Concurrent Game Structures (CGS) [2].
Every state transition of a CGS results from a simultaneous choice of moves,
one for each player. The players represent individual components and the en-
vironment of an open system. CGS can capture various forms of synchronous
composition for open systems.

In this work we formalize the CGS semantics of ATL in the Calculus of
(Co)Inductive Constructions (CIC) [6, 15, 9], using the logical framework Coq
[19, 4]. This formalization is divided in two parts: the logic ATL and the CGS
semantics for a given game structure S. We show that the proof of the Coq

proposition ϕ q guarantees that the CGS S satisfies the ATL formula ϕ in the
state q of S (i.e. q |= ϕ). This work uses a general approach to deal with CGS
where the number of states is unbounded; this generality is scarcely obtained
using standard model checking techniques [3].

There exists previous work in formalizing temporal logic in systems other
than Coq. We can mention the axiomatic encoding of Lamport’s Temporal Logic
of Actions in Isabelle [14]; and formalizations of Linear Temporal Logic (LTL)
[16] in PVS [17] and HOL [18].

The choice of the CIC is dictated by its considerable expressive power as
well as by the fact that it is supported by a tool of industrial strength, namely
the Coq proof assistant. As one example of its applicability, Coq has been used
for the development and formal verification of a compiler of a large subset of
the C programming language [12]. Furthermore, there are works that formal-
ize temporal logics in the CIC. We can mention the formalization of LTL [7]
and Computation Tree Logic (CTL) [13]. LTL assumes implicit universal quan-
tification over all paths that are generated by system moves. CTL [21] allows
explicit existential and universal quantification over all paths. ATL introduces a
more general variety of temporal logic; offers selective quantification over those
paths that are possible outcomes of games. As compared to previous work by
the authors [13], the present formalization of ATL is more general and complex.

A detailed description of the formalization is presented in Spanish in [22].
This document, along with the full formalization in Coq may be obtained from
http://www.fceia.unr.edu.ar/~dante/.

The rest of the paper is organized as follows. In Section 2 we introduce CGS
as well as the syntax and semantics of ATL. In Section 3 are formalized both
the logic ATL and CGS including the notions of coalition and strategies. Unlike
standard ATL semantics, temporal operators are formalized in terms of inductive
and coinductive types, employing a fixpoint characterization of these operators.
Then, Section 4 shows a complete list of axioms, theorems and inference rules
for ATL according to [10] that have been proved in Coq with our proposal [22,
23]. In Section 5 we present the usual train example [2] as a simple (due to space
restrictions) case study for the bounded and unbounded cases. Finally, Section 6
concludes with a summary of our contributions and directions for future work.

2 Alternating-time Temporal Logic

In this section we introduce CGS (Section 2.1) as well as the syntax and the
semantics of ATL (Section 2.2) as found in [2].

2.1 Concurrent Game Structures

Definition 1 (CGS). A CGS is a tuple S = 〈Σ,Q,Π, π, d, δ〉 with:

– A set Σ = {1, . . . , k} of players or agents.
– A set Q of states.

– A finite set Π of atomic propositions.
– For each q ∈ Q, a set π(q) ⊆ Π of propositions true at q.
– For each player a ∈ Σ and each state q ∈ Q, a natural number da(q) ≥ 1 of

moves available at state q to player a. We identify the moves of a at state
q with the numbers 1, . . . , da(q). For q ∈ Q, a move vector at q is a tuple
〈j1, . . . , jk〉 such that 1 ≤ ja ≤ da(q) for each player a. We define D(q) as
the set of move vectors available at q; function D is called the move function.

– For each state q ∈ Q and each move vector 〈j1, . . . , jk〉 ∈ D(q), a state
δ(q, j1, . . . , jk) ∈ Q that results from state q if each player a ∈ Σ chooses
move ja. The function δ is called transition function.

For two states q and q′, we say that q′ is a successor of q if there exists a
move vector 〈j1, . . . , jk〉 such that q′ = δ(q, j1, . . . , jk). A computation of S is
an infinite sequence ω = q0, q1, q2, . . . of states such that for all i ≥ 0, the state
qi+1 is a successor of qi. We refer to a computation starting at state q as a q-
computation. For a computation ω and a position i ≥ 0, we use ω[i] and ω[0, i]
to denote the i-th state and the finite prefix q0, . . . , qi, respectively.

2.2 ATL Syntax and Semantics

Definition 2 (ATL). Let Π be a set of atomic propositions, and Σ a set of k
players. The set of ATL formulas is inductively defined as follows:

– p, for each p ∈ Π.
– ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ→ ψ, where ϕ,ψ are ATL formulas.
– 〈〈A〉〉#ϕ, 〈〈A〉〉2ϕ, 〈〈A〉〉ϕU ψ, where ϕ,ψ are ATL formulas and A ⊆ Σ.

The operator 〈〈 〉〉 is a path quantifier; # (next), 2 (box) and U (until) are
temporal operators.

ATL can be viewed as a generalization of the branching-time temporal logic
CTL where path quantifiers can be parametrized by sets of players. In particular,
we obtain a CTL-equivalent logic restricting A to ∅ or Σ in Def. 2.

Formulas in ATL are interpreted over states of a CGS with the same players
and atomic propositions. The concept of strategy is introduced in [2] to formalize
the semantics.

Definition 3 (Strategy). Let S = 〈Σ,Q,Π, π, d, δ〉 be a CGS and a ∈ Σ. A
strategy for a is a function fa : Q+ → N that maps every nonempty finite state
sequence α ∈ Q+ to a natural number such that if q is the last state of α, then
1 ≤ fa(α) ≤ da(q).

Given a state q ∈ Q, and A ⊆ Σ, an A-strategy FA = {fa | a ∈ A} is a set of
strategies, one for each player in A. The outcomes of FA from a state q is the set
of traces that players in A can enforce when they follow the strategies in FA. A
computation ω = q0, q1, . . . belongs to out(q, FA) if q0 = q and for all positions
i, there is a move vector 〈j1, . . . , jk〉 such that (1) if a ∈ A, ja = fa(ω[0, i]), and
(2) δ(qi, j1, . . . , jk) = qi+1.

Definition 4 (Standard ATL Semantics). Let S be a CGS and q a state of
S. We write q |= ϕ to indicate that the ATL formula ϕ holds at q. The relation
|= is defined inductively as follows:

– q |= p , for atomic propositions p ∈ Π iff p ∈ π(q).
– q |= ¬ϕ iff q 6|= ϕ.
– q |= ϕ1 ∨ ϕ2 iff q |= ϕ1 or q |= ϕ2 .
– q |= ϕ1 ∧ ϕ2 iff q |= ϕ1 and q |= ϕ2 .
– q |= ϕ1 ⇒ ϕ2 iff q |= ϕ2 given that q |= ϕ1 .
– q |= 〈〈A〉〉#ϕ iff there exists an A-strategy FA = {fa | a ∈ A}, such that for

all ω ∈ out(q, FA), we have ω[1] |= ϕ .
– q |= 〈〈A〉〉2ϕ iff there exists an A-strategy FA = {fa | a ∈ A} such that for

all ω ∈ out(q, FA) and all positions i ≥ 0 we have ω[i] |= ϕ .
– q |= 〈〈A〉〉ϕ1 U ϕ2 iff there exists an A-strategy FA = {fa | a ∈ A}, such that

for all ω ∈ out(q, FA) there exists a position i ≥ 0 such that ω[i] |= ϕ2 and
for all positions 0 ≤ j < i we have ω[j] |= ϕ1 .

3 Formalizing CGS and ATL

Our formalization is divided in two main parts. Section 3.2 provides a way to rep-
resent CGS, coalitions and strategies. In Section 3.3 we proceed to formalize the
logic ATL. The formalization of temporal operators follows the axiomatization
presented in [10], using fixpoints characterizations for 〈〈A〉〉2ϕ and 〈〈A〉〉ϕU ψ.

We believe that giving semantics to temporal operators using fixpoint defi-
nitions by means of inductive and coinductive types has some advantages over
the standard semantics from def. 4. The inductive and coinductive principles
associated to our definition of temporal operators can be used to construct more
elegant and concise proofs for ATL theorems (sect. 4) and for specific propierties
of reactive systems (sect. 5).

3.1 The CIC and Coq

The CIC is a type theory, in brief, a higher order logic in which the individuals are
classified into a hierarchy of types. The types work very much as in strongly typed
functional programming languages which means that there are basic elementary
types, types defined by induction, like sequences and trees, and function types.
An inductive type is defined by its constructors and its elements are obtained as
finite combinations of these constructors. Data types are called “Sets” in the CIC
(in Coq). When the requirement of finiteness is removed we obtain the possibility
of defining infinite structures, called coinductive types, like infinite sequences.
On top of this, a higher-order logic is available which serves to predicate on the
various data types. The interpretation of the propositions is constructive, i.e. a
proposition is defined by specifying what a proof of it is and a proposition is
true if and only if a proof of it has been constructed. The type of propositions is
called Prop. We use the usual notation for logical connectives and quantifiers (→,

∨, ∧, ¬, ∀, ∃). For anonymous functions and predicates, we utilize a notation
similar to the Coq specification language. For instance, predicate pos : N→ Prop
is written as (λn : N⇒ n > 0).

We define a (co)inductive predicate I by giving introduction rules of the
form:

P1 . . . Pm

I x1 . . . xn
(introi)

where free ocurrences of variables are implicitly universally quantified.
In this work we use some inductive types defined in the Coq Standard Li-

brary [20]. We employ notation { } for the empty type, {1} for unit type, A+B
for disjoint union (sum type). Type (seq A) denotes the set of finite sequences
of type A. Empty sequence is noted as 〈〉, and the infix notation sa e is used to
denote the sequence resulting by appending element e to sequence s. The Stream
type is used to represent infinite sequences of objects from a fixed type A. Con-
structor Cons adds an element e : A to an infinite sequence ω. Infix notation
e / ω is used for (Cons e ω). We refer to [19, 4] for further details on the CIC
and Coq.

3.2 Formalizing CGS

We assume three basic types in sort Set: State, the set of states; Player , the
players in the system; and Move, the set of moves (or actions). These types are
specification parameters, and must be instantiated when specifyng a concrete
CGS. Observe that we do not imposse any finiteness requirement to these types.

Move Vectors and Transitions. A move vector is a function that assigns

a move to each player, 〈Move〉 def
= Player → Move. The transition function is

introduced as a relation δ : State → 〈Move〉 → State → Prop. We say that
the move m is enabled at state q for player a if there exists a move vector
mv and a state q′ such that mv assigns m to player a and q′ is the successor
of q when players in Σ chooses the movements in mv. Formally, the relation
enabled : State → Player → Move → Prop has one constructor:

mv : 〈Move〉 q′ : State mv a = m δ q mv q′

enabled q a m
(enabled intro) (1)

A proof of type (enabled q a m) is interpreted as “player a can choose move
m at state q”. Two expected properties are assumed over δ; the property δ f
guarantees that the relation is indeed a function, while the property δ d guaran-
tees that for every state q, if you choose a move vector mv such that (mv a) is
enabled at q for every player a, then you will found an outgoing transition from
q labeled with mv.

δ f : ∀(q, q′, q′′ : State)(mv : 〈Move〉), δ q mv q′ → δ q mv q′′ → q′ = q′′

δ d : ∀(q : State)(mv : 〈Move〉),
(∀a : Player , enabled q a (mv a))→ ∃(q′ : State), δ q mv q′

(2)

Coalitions. A coalition is a set of players A ⊆ Σ. The Coq Standard Library [20]
defines a set over a universe U as an inhabitant of type U → Prop. We say that
element x belongs to set X if we can exhibit a proof of proposition (X x).

In particular, the union of sets X,Y is defined as Union X Y
def
= (λx : U ⇒

X x∨Y x). However, this formalization of sets is not satisfactory for our purposes
due to its lack of computational content. This computational content is required,
for instance, to prove the valid formula 〈〈A〉〉#ϕ→ 〈〈B〉〉#ψ → 〈〈A∪B〉〉#(ϕ∧ψ),
when A and B are disjoint sets. The proof “joins” the strategies for A and B
given in the premises to construct a new strategy for the coalition A ∪ B. For
a player a ∈ A ∪ B, the new strategy chooses the strategy given by the first
premise when a ∈ A, and the strategy given by the second premise when a ∈ B.

As we will introduce strategies as an object with computational content, i.e.
an inhabitant of sort Set, the election of a strategy cannot be made eliminating
an inhabitant in Prop [19]. We conclude that proofs of set membership must live
in sort Set. Therefore, we define a coalition as a term of type Player → Set. We
say that player a belongs to coalition C if we can construct an element in type
(C a). Coalitions Σ and ∅, and the union of two coalitions are defined as:

Σ
def
= λ a⇒ {1} ∅ def

= λ a⇒ { } A]B def
= λ a⇒ A a+B a (3)

Other operators, like coalition complement, can be defined easily. We refer the
interested reader to [23].

Strategies. A strategy decides the next move taking into account the complete
history of the game:

Strategy
def
= seq State → State → Move (4)

where the first argument is the past sequence of states, and the second the
current state of the game. Let A be a coalition. A strategy for coalition A is a
term of type (StrategySet A), where:

StrategySet(A : Coalition)
def
= ∀a : Player , A a→ Strategy (5)

A term FA : (StrategySet A) gives a strategy for each player a, provided that
a ∈ A. We define the notion of FA-successor state for a coalition strategy FA.
Let q be the current state, and qs the game history. We say that q′ is an FA-
successor of qs a q if there exists a move vector mv such that: (1) a transition
from q to q′ labelled with mv exists; and (2) strategy fa ∈ FA for player a ∈ A
is such that fa(qsa q) = mv(a). Formally, relation suc is introduced by means
of the following definition:

suc : ∀A : Coalition,StrategySet A→ seq State → State → State → Prop

mv : 〈Move〉 δ q mv q′

∀(a : Player)(H : A a), FA a H qs q = mv a

suc A FA qs q q′
(suc intro)

(6)

In the sequel, we will omit the first argument, since it can be inferred from the
second. Also, we write q′ ∈ suc(qs, q, FA) for a proof of (suc FA qs q q′).

Now, we define coinductively the set of traces that a coalition A can enforce
by following the strategy FA. The relation isOut determines if the trace (q/q′/ω)
is a possible result of the game when players in A follows strategies in FA and
game history is qs:

isOut : ∀A : Coalition,StrategySet A→ seq State → Trace → Prop

q′ ∈ suc(qs, q, FA) isOut A FA (qsa q) (q′ / ω)

isOut A FA qs (q / q′ / ω)
(isOut intro)

(7)

where Trace
def
= (Stream State). The set out(q, FA) of traces a coalition A can

enforce if follows strategies in FA is defined as:

ω ∈ out(q, FA)
def
= isOut A FA 〈〉 (q / ω) (8)

3.3 Formalizing ATL

In this section we present a formalization of the syntax and semantics of ATL. Let

S be a CGS, an ATL state formula is a term of type StateForm
def
= State → Prop.

If q : State and ϕ : StateForm, a proof (term) of (ϕ q) is interpreted as q |= ϕ .

Constants and Boolean Connectives. The > and ⊥ formulas are easily

defined as > def
= (λ q : State ⇒ True), and ⊥ def

= (λ q : State ⇒ False). We use a
standard point-free use of boolean connectives. For example, for state formulas

ϕ,ψ, disjunction is defined as ϕ ∨ ψ def
= (λ q : State ⇒ ϕ q ∨ ψ q).

Temporal Operators. The standard ATL semantics presented in Def. 4 for
〈〈A〉〉#ϕ uses the notion of execution traces. We present here an alternative
(and equivalent) semantics using only the notion of successor state. Let q be
the current state of a game. To guarantee that the property ϕ holds in the
next state a coalition A should follow a strategy FA such that for every possible
FA-successor state q′ we have q′ |= ϕ .

Definition 5 (Next). Let A : Coalition, q : State and ϕ : StateForm. The rela-
tion Next : Coalition → StateForm → StateForm is defined with one constructor
as follows:

F : StrategySet A ∀q′, q′ ∈ suc(〈〉, q, F)→ ϕ q′

Next A ϕ q
(next) (9)

The ATL axiomatization found in [10] establishes that 〈〈A〉〉2ϕ is the greatest
fixed point of equation X ↔ ϕ∧〈〈A〉〉#X. Following this approach, we introduce
a coinductive predicate to model this semantics for formulas of the form 〈〈A〉〉2ϕ.

Definition 6 (Box). Let A : Coalition, ϕ : StateForm and q : State. The
coinductive predicate Box : Coalition → StateForm → StateForm is defined as:

ϕ q F : StrategySet A
∀q′, q′ ∈ suc(〈〉, q, F)→ Box A ϕ q′

Box A ϕ q
(box) (10)

To construct a proof of q |= 〈〈A〉〉2ϕ two conditions must hold: (1) ϕ must
be valid at state q; and (2) we need to find an A-strategy F such that, for all
F -successor state q′ of q we have q′ |= 〈〈A〉〉2ϕ .

Using the fact that 〈〈A〉〉ϕU ψ is the least fixed point ofX ↔ ψ∨(ϕ∧〈〈A〉〉#X)
we introduce the semantics of 〈〈A〉〉ϕU ψ by an inductive relation.

Definition 7 (Until). Let A : Coalition, ϕ,ψ : StateForm and q : State. The
inductive relation Until : Coalition → StateForm → StateForm → StateForm is
defined with two constructors as follows:

ψ q

Until A ϕ ψ q
(U1)

F : StrategySet A ϕ q
∀q′, q′ ∈ suc(〈〉, q, F)→ Until A ϕ ψ q′

Until A ϕ ψ q
(U2)

(11)

If q |= ψ , then q |= 〈〈A〉〉ϕU ψ (constructor U1). To prove q |= 〈〈A〉〉ϕU ψ
using constructor U2, we need to prove that q |= ϕ and there exists an A-
strategy F such that, if players in A follow this strategy, in all FA-successor
state q′ of q we have q′ |= 〈〈A〉〉ϕU ψ.

Derived operators like 〈〈A〉〉3ϕ (eventually), and 〈〈A〉〉
∞
F ϕ (infinitely often)

have been defined. For example, 〈〈A〉〉
∞
F ϕ

def
= 〈〈A〉〉2〈〈∅〉〉3ϕ. For details see [23].

4 A Deductive System for ATL

The formalization presented in Section 3 can be used to reason about proper-
ties of ATL and CGS. To prove ATL theorems we often use general properties
involving coalitions and strategies.

A complete set of axioms and inference rules for ATL is presented in [10].
We have proved all these results in our formalization. Due to space constraints,
proofs are merely outlined; however, all proofs have been formalized in Coq and
are available as part of the full specification [23].

Theorem 1. The following formulas are valid in all states of all CGS:

(⊥) ¬〈〈A〉〉#⊥.
(>) 〈〈A〉〉#>.
(Σ) ¬〈〈∅〉〉#¬ϕ→ 〈〈Σ〉〉#ϕ.
(S) 〈〈A1〉〉#ϕ1 ∧ 〈〈A2〉〉#ϕ2 → 〈〈A1 ∪A2〉〉# (ϕ1 ∧ ϕ2) , if A1 ∩A2 = ∅.
(FP2) 〈〈A〉〉2ϕ↔ ϕ ∧ 〈〈A〉〉#〈〈A〉〉2ϕ.
(GFP2) 〈〈∅〉〉2 (θ → (ϕ ∧ 〈〈A〉〉#θ))→ 〈〈∅〉〉2 (θ → 〈〈A〉〉2ϕ).

(FPU) 〈〈A〉〉ϕ1 U ϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ 〈〈A〉〉#〈〈A〉〉ϕ1 U ϕ2).
(LFPU) 〈〈∅〉〉2 ((ϕ2 ∨ (ϕ1 ∧ 〈〈A〉〉#θ))→ θ)→ 〈〈∅〉〉2 (〈〈A〉〉ϕ1 U ϕ2 → θ).

Also, the following inference rules preserves validity 1:

ϕ→ ψ

〈〈A〉〉#ϕ→ 〈〈A〉〉#ψ
(monotonicity)

ϕ

〈〈∅〉〉2ϕ
(necessitation)

Proof. The proof of (FP2) in our system is trivial, because we have used this
formula as a definition for 〈〈A〉〉2. Formula (GFP2) is a consequence of the
use of a coinductive type for this operator. A similar consideration can be done
about formulas (FPU), used to define formulas involving U ; and (LFPU), con-
sequence of the inductive definition. Formula (Σ) is valid only in classical logic.
In constructive logic we can prove (Σ ′): ¬〈〈∅〉〉#¬ϕ → ¬¬〈〈Σ〉〉#ϕ. To demon-
strate the equivalence (Σ)↔ (Σ′) from classical logic in our system, we must add
the excluded middle law explicitly. Proof of (S) involves reasoning about union
of coalitions and strategies, as well as relating the “join” of coalition strategies
(collaborative game) and the traces in which each coalition plays regardless the
other one (competitive game). These results are properties about game struc-
tures, and we have proved them in [23] using definitions introduced in Section
2.1. Rule monotonicity is proved by showing that strategy FA given by premise
〈〈A〉〉#ϕ is an A strategy ensuring ψ in all states q′ ∈ suc(〈〉, q, FA). We prove
necessitation by coinduction, unfolding Def. 6 and using the fact that ϕ is valid
in all states. ut

To show that our formalization can be used as a suitable proof system for
ATL, we have proved in [23] an extensive list of ATL theorems taken from [10].
Lemma 1 shows a list with a subset of such formulas.

Lemma 1 (Derived formulas). The following judges can be proved valid in
our formalization:

(1) Regularity: ` 〈〈A〉〉#ϕ→ ¬〈〈Σ\A〉〉#¬ϕ.
(2) And monotonicity: ` 〈〈A〉〉#(ϕ ∧ ψ)→ 〈〈A〉〉#ϕ.
(3) Coalition monotonicity: ` 〈〈A〉〉#ϕ→ 〈〈A]B〉〉#ϕ.
(4) Monotonicity of 〈〈 〉〉2: (ϕ→ ψ) ` 〈〈A〉〉2ϕ→ 〈〈A〉〉2ψ.
(5) Monotonicity of 〈〈 〉〉 U : (ϕ→ ϕ′), (ψ → ψ′) ` 〈〈A〉〉ϕU ψ → 〈〈A〉〉ϕ′ U ψ′.
(6) Necessitation of 〈〈 〉〉2: ϕ ` 〈〈A〉〉2ϕ.
(7) Induction for 〈〈 〉〉2: (ϕ→ (ψ ∧ 〈〈A〉〉#ϕ)) ` ϕ→ 〈〈A〉〉2ψ.
(8) Induction for 〈〈 〉〉 U : (ψ ∨ (ϕ ∧ 〈〈A〉〉#χ)→ χ) ` 〈〈A〉〉ϕU ψ → χ.

5 A Case Study

The formalization presented in Section 3 has been used in Section 4 to prove
general properties over CGS and the logic ATL. In this section, we specify and

1 We omit the modus ponens rule from [10], since this rule is already valid in our
meta-logic via the shallow embedding.

verify a simple concrete system which is a good guide to model and analyze
many systems. Section 5.1 presents an example taken from [2], describing a
control protocol for a train entering a railroad crossing. Section 5.2 presents
a generalization of this model where an unknown number of trains compete
to enter a gate, and the gate controller must ensure some safety and liveness
properties. This example can not be directly analyzed using model checking
techniques because it involves an unbounded space of states.

5.1 Controlling a Railroad Crossing

We formalize a protocol for a train entering a railroad crossing with a finite
CGS. All components for this CGS are instantiated using definitions presented in
Section 3.2, and some properties for the system are specified using ATL formulas
as described in Section 3.3.

Example 1. The CGS ST = 〈k,Q,Π, π, d, δ〉 has the following components:

– k = 2. Player 1 represents the train, and player 2 the gate controller.

– Q = {qout , qreq , qgran , qin}.
– Π = {Out ,Request , In gate,Grant}.
– π(qout) = {Out}, the train is outside the gate; π(qreq) = {Out ,Request},

the train is still outside the gate, but has requested to enter; π(qgran) =
{Out ,Grant}, the controller has given the train permission to enter the gate;
π(qin) = {In gate}, the train is in the gate.

– • d1(qout) = 2 and d2(qout) = 1.
At qout , the train can choose to either stay outside the gate, or request
to enter the gate.

• d1(qreq) = 1 and d2(qreq) = 3.
At qreq , the controller can choose to either grant the train permission to
enter the gate, or deny the train’s request, or delay the handling of the
request.

• d1(qgran) = 2 and d2(qgran) = 1.
At qgran , the train can choose to either enter the gate, or relinquish its
permission to enter the gate.

• d1(qin) = 1 and d2(qin) = 2.
At qin , the controller can choose to either keep the gate closed, or reopen
the gate to new requests.

– The transition function δ is depicted in Figure 1.

A Model Based on CGS. In order to prove properties of the protocol de-
scribed in Example 1, we proceed to model all the components of ST following
definitions presented in Section 3.2.

qout

Out

qreq

Out,Request

qin

In gate

qgran

Out,Grant

〈2,1〉

〈1,1〉 〈1,3〉

〈1,2〉 〈1,1〉

〈1,1〉

〈1,2〉

〈1,1〉

〈2,1〉

Fig. 1. Graphical representation of Example 1.

States, Players and Moves. These sets are introduced as types with one con-
structor for each element in the set, excepting the sets of moves, where a unique
constructor is used to represent an idle move.

State : Set
def
= | qout | qreq | qgran | qin

Player : Set
def
= | Train | Controller

Move : Set
def
= | stayOut | request | grant | delay | deny | enter
| relinquish | keepClosed | reopen | idle

We use the tuple notation 〈mt,mc〉 to denote the move vector: λ p : Player ⇒
(match p withTrain ⇒ mt | Controller ⇒ mc).

Transitions. Transitions are introduced with the following predicate 2:

δ : State → 〈Move〉 → State → Prop
def
=

| δ qout 〈stayOut , idle〉 qout | δ qout 〈request , idle〉 qreq
| δ qreq 〈idle, grant〉 qgran | δ qreq 〈idle, delay〉 qreq
| δ qreq 〈idle, deny〉 qout | δ qgran 〈enter , idle〉 qin
| δ qgran 〈relinquish, idle〉 qout | δ qin 〈idle, keepClosed〉 qin
| δ qin 〈idle, reopen〉 qout

Coalitions. Singleton sets of players T = {Train} and C = {Controller} are
defined as:

T
def
= λ p⇒ match p withTrain ⇒ {1} | Controller ⇒ { }

C
def
= λ p⇒ match p withTrain ⇒ { } | Controller ⇒ {1}

Atomic State Formulas. The atomic state formulas are easily introduced using
case analysis over the current state. For example, a state formula representing
the fact that the train is not in the gate is:

OutGate
def
= λ q ⇒ match q with qin ⇒ False | ⇒ True

2 For the sake of readability, we omit here the name of contructors.

. In a similar way, we have defined formulas Requested , Granted and InGate
according to Example 1.

Proving Properties. The following properties, taken from [2], are provable in
our system:

1. Whenever the train is out of the gate, the controller cannot force it to enter
the gate:

〈〈∅〉〉2 (OutGate → ¬〈〈C〉〉3InGate)

2. Whenever the train is out of the gate, the train and the controller can coop-
erate so that the train will enter the gate:

〈〈∅〉〉2 (OutGate → 〈〈Σ〉〉3InGate)

For space constraints, we omit proofs here, and we refer the interested reader
to [23].

5.2 Controlling an Unbounded Number of Trains

Suppose there is an unknown number of trains to cross a single gate. The gate
controller must ensure some safety (for instance, at most one train is in the gate)
and liveness (for instance, a request must be processed) properties.

Formalizing the System Using CGS. We propose an extendend CGS S∞
as a model of the system described above.

Players. The system components are the controller and the set of trains:

Player : Set
def
= Train : Id → Player | Controller : Player

where Id
def
= N. We abbreviate tn the term Train n, denoting the n-th train.

States. In each state of the system, we should have information about the trains
that have made a request to enter the gate, and which train has obtained such
permission. To represent the set of trains that want to enter to the gate, we

introduce the type Petition
def
= Id → Bool . For a function f : Petition, we say

that tn wants to enter the gate if f tn = true. The set of states is defined as:

State : Set
def
= | qout : State | qreq : Petition → State
| qgran : Petition → Id → State | qin : Petition → Id → State

The first argument of states qreq , qgran and qin is used to represent the set
of trains that have made a request. The second argument of state qgran (qin) is
the id of the train having permission to enter (has entered) the gate.

Moves and Move Vectors. The set of moves is similar to the finite case. Addi-
tional moves are used for communication between components. The set of moves
is extended in the following way:

Move
def
= | stayOut : Move | request : Move | grant : Id → Move
| delay : Move | deny : Id → Move | denyAll : Move
| enter : Move | relinquish : Move | keepClosed : Move
| reopen : Move | idle : Move

In the following moves appear the main difference with the finite example:
(deny n) represents a move where the controller rejects a request from train tn,
denyAll models a situation where controller can reject all requests, and (grant n)
represents a situation where controller gives permission to tn.

Let mc : Move be a move of the controller and let mt : Id → Move be a
function assigning a move to each train, we use the notation 〈mt,mc〉 to represent
the move vector defined as λ p⇒ (match p with tn ⇒ mt n | Controller ⇒ mc).

Transitions. To model the transition relation we use the following auxiliary func-
tions: =b: Id → Id → Bool , that decides equality in type Id ; and an overwrite
operator ⊕ : Petition → Id → Bool → Petition, such that (f⊕{n← b}) applied
to m returns b if m = n, and f m otherwise. The transition relation is defined
as follows 3:

δ
def
= | δ qout 〈λn⇒ stayOut , idle〉 qout
| ∀f, (∃n : Id , f n = true)→
δ qout 〈λn⇒ if f n then request else stayOut , idle〉 (qreq f)

| ∀f n, f n = true →
δ (qreq f) 〈λn⇒ idle, grant n〉 (qgran (f ⊕ {n← false}) n)

| ∀f, δ (qreq f) 〈λn⇒ idle, delay〉 (qreq f)
| ∀f n, (∃m : Id ,m 6= n ∧ f m = true)→
δ (qreq f) 〈λn⇒ idle, deny n〉 (qreq f ⊕ {n← false})

| ∀f n, (∀m : Id ,m 6= n→ f m = false)→
δ (qreq f) 〈λn⇒ idle, deny n〉 qout

| ∀f, δ (qreq f) 〈λn⇒ idle, denyAll〉 qout
| ∀f n, δ (qgran f n) 〈entern, idle〉 (qin f n)
| ∀f n, (∀k : Id , k 6= n→ f k = false)→
δ (qgran f n) 〈relinquishn, idle〉 qout

| ∀f n, (∃k : Id , k 6= n ∧ f k = true)→
δ (qgran f n) 〈relinquishn, idle〉 (qreq f)

| ∀f n, δ (qin f n) 〈λn⇒ idle, keepClosed〉 (qin f n)
| ∀f n, (∀m, f m = false)→ δ (qin f n) 〈λn⇒ idle, reopen〉 qout
| ∀f n, (∃m, f m = true)→ δ (qin f n) 〈λn⇒ idle, reopen〉 (qreq f)

where entern, relinquishn : Id →Move are defined as:

entern
def
= λm⇒ if m =b n then enter else idle

relinquishn
def
= λm⇒ if m =b n then relinquish else idle

3 We have omitted constructors names.

The relation δ takes into account the existence of different train requests
using the petition function. For instance, when the system is in state qout , there
are two possible transitions: (1) no train make a request, then the system stays
in qout ; and (2) there exists a subset of trains making a request to enter the gate,
represented with f ; in this case, the system make a transition to state (qreq f).

Coalitions. Different coalitions can be defined for this system, depending on the
properties to be specified. For example:

{tn}
def
= λ p⇒ match p with | Train k ⇒ if n =b k then {1} else { }

| Controller ⇒ { }

State Formulas. State formulas can be defined by pattern matching on states.
For example, we define formula Out , valid if the current state is qout , and In(n),
valid if train tn is in the gate:

Out
def
= λ q ⇒ match q with | qout ⇒ True | ⇒ False

In(n)
def
= λ q ⇒ match q with | qin f m⇒ if n =b m then True else False

| ⇒ False

Properties. Some properties proved in S∞ are:

– Controller and train tn can cooperate so that this train will enter the gate:

〈〈∅〉〉2 (Out → 〈〈{tn}] {Controller}〉〉3In(n)) (12)

– Cooperation is needed in order to ensure progress: Neither the set of trains
nor the controller can enforce a trace where state In(n) is reached, for some
n:

〈〈∅〉〉2 (Out → ¬ (〈〈{Controller}〉〉3In(n) ∨ 〈〈{t1, t2, . . .}〉〉3In(n))) (13)

Formula (12) express a liveness property. To prove it, we construct a strategy
FA for coalition A = {tn,Controller}; then, we proceed to show that, if player
in A follows strategy FA, a state where In(n) is valid will be eventually reached,
regardless the behaviour of the other components. To prove the safety property
(13), we show that it is not the case that controller (the set of trains) can
construct an strategy F such that, if controller (the set of trains) follows F , then
state qin will be eventually reached. A detailed proof of these properties can be
found in [23], along with the analysis of other safety and liveness properties.

6 Conclusions and Future Work

ATL is a game-theoretic generalization of CTL with applications in the formal
verification of multi-agent systems. In this paper we have presented a formal-
ization of ATL and its semantic model CGS. Unlike standard ATL semantics,

temporal operators have been interpreted in terms of inductive and coinductive
types, using a fixpoint characterization of these operators in the CIC.

The formalization presented here was used to model a concurrent system with
an unbounded number of players and states, and we have verified some safety
and liveness properties expressed as ATL formulas. Unlike automatic techniques,
our formal model has no restriction in the size of the CGS, and arbitrary state
predicates can be used as atomic propositions of ATL. We conclude that in
systems with an intractable size, our formal model, based on an existent type
theory (the CIC) with the proof assistant Coq can be used as a specification and
verification tool for open multi-agent systems.

A possible extension of our system would consist of formalizing fair-ATL [2],
a logic extending ATL semantics with fairness constraints. These constraints rule
out certain infinite computations that ignore enabled moves forever.

The logic ATL is a fragment of a more expressive logic, ATL* [2]. In ATL*,
a path quantifier 〈〈A〉〉 is followed by an arbitrary linear time formula, allow-
ing boolean combination and nesting, over # , 2 and U . Another interesting
extension to our work is to formalize this logic in the CIC.

ATL has been used to specify properties in contract signing protocols where
n agents exchange signatures [11, 5]. The model checker Mocha [3] has suc-
ceeded in verifying these protocols in the case where two agents are involved [5].
However, model checking algorithms fail in case of multi-party protocols (n > 2),
since these algorithms can be used only with a fixed (and, in practice, small)
value for n.

The formalization presented in this work can be used as basis for a formal
verification of such protocols. Thus, a further extension of this work involves the
verification of multi-party protocols following an approach similar to the one of
Section 5.

References

1. R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
Revised Lectures from the International Symposium on Compositionality: The Sig-
nificant Difference, COMPOS’97, pages 23–60, London, UK, 1998. Springer-Verlag.

2. R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. Jour-
nal of the ACM, 49:672–713, 2002.

3. R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran. Mocha:
Modularity in model checking. In CAV ’98: Proceedings of the 10th International
Conference on Computer Aided Verification, pages 521–525, London, UK, 1998.
Springer-Verlag.

4. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer Verlag, 2004.

5. R. Chadha, S. Kremer, and A. Scedrov. Formal analysis of multiparty contract
signing. Journal of Automated Reasoning, 36(1-2):39–83, 2006.

6. T. Coquand and G. Huet. The Calculus of Constructions. In Information and
Computation, volume 76, pages 95–120. Academic Press, February/March 1988.

7. S. Coupet-Grimal. LTL in Coq. Contributions to the Coq system, Laboratoire
d’Informatique Fondamentale de Marseille, 2002. Available at http://coq.inria.
fr/contribs/LTL.tar.gz.

8. E. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, pages 995–1072. Elsevier, 1995.

9. E. Giménez. A Calculus of Infinite Constructions and its application to the verifi-
cation of communicating systems. PhD thesis, Ecole Normale Supérieure de Lyon,
1996.

10. V. Goranko and G. van Drimmelen. Complete axiomatization and decidability
of alternating-time temporal logic. Theoretical Computer Science, 353(1):93–117,
2006.

11. S. Kremer and J. Raskin. A game-based verification of non-repudiation and fair
exchange protocols. Journal of Computer Security, 11(3):399–429, 2003.

12. X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

13. C. Luna. Computation tree logic for reactive systems and timed computation tree
logic for real time systems. Contributions to the Coq system, Universidad de la
República, Uruguay, 2000.

14. S. Merz. An encoding of TLA in Isabelle. Technical report, Institut für Informatic,
Universität München, Germany, 1999.

15. C. Paulin-Mohring. Inductive definitions in the system coq - rules and properties.
In TLCA ’93: Proceedings of the International Conference on Typed Lambda Calculi
and Applications, pages 328–345, London, UK, 1993. Springer-Verlag.

16. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pages 46–57, Washington, DC,
USA, 1977. IEEE Computer Society.

17. A. Pnueli and T. Arons. TLPVS: A PVS-based LTL verification system. In Nachum
Dershowitz, editor, Verification: Theory and Practice, volume 2772 of Lecture Notes
in Computer Science, pages 598–625. Springer, 2003.

18. K. Schneider and D.W. Hoffmann. A HOL conversion for translating linear time
temporal logic to omega-automata. In Theorem Proving in Higher Order Logics,
pages 255–272. Springer, 1999.

19. The Coq development team. The Coq proof assistant reference manual, version
8.2. LogiCal Project, 2010. Distributed electronically at http://coq.inria.fr.

20. The Coq development team. The Coq Standard Library. LogiCal Project, 2010.
Available at http://coq.inria.fr/stdlib/.

21. J. van Leeuwen, editor. Handbook of Theoretical Computer Science, Volume B:
Formal Models and Semantics. Elsevier and MIT Press, 1990.

22. D. Zanarini. Formalización de lógica temporal alternante en el cálculo de construc-
ciones coinductivas. Master’s thesis, FCEIA, Universidad Nacional de Rosario,
Argentina, 2008. Available at www.fceia.unr.edu.ar/~dante.

23. D. Zanarini. Formalization of alternating time temporal logic in Coq, 2010. Avail-
able at www.fceia.unr.edu.ar/~dante.

