
Precise Enforcement of Confidentiality for

Reactive Systems (extended version)

Dante Zanarini Mauro Jaskelioff Alejandro Russo

May 22, 2013

Abstract

In the past years, researchers have been focusing on applying infor-
mation flow security to web applications. These mechanisms should raise
a minimum of false alarms in order to be applicable to the millions of
existing web pages. A promising technique to achieve this is secure multi-
execution (SME). If a program is already secure, its secure multi-execution
produces the same output events; otherwise, this correspondence is inten-
tionally broken in order to preserve security. Thus, there is no way to
know if unexpected results are due to bugs or due to semantics changes
produced by SME. Moreover, SME provides no guarantees on the relative
ordering of output events from different security levels. We argue that
these shortcomings limit the applicability of SME.

In this article, we propose a scheduler for secure multi-execution which
makes it possible to preserve the order of output events. Using this sched-
uler, we introduce a novel combination between monitoring and SME,
called multi-execution monitor, which raises alarms only for actions break-
ing the non-interference notion of ID-security for reactive systems. More-
over, we show that the monitor guarantees transparency even for CP-
similarity, a progress-sensitive notion of observation.

1 Introduction

In recent years there has been an increasing interest in applying information flow
control as a general mechanism to preserve confidentiality on web applications
(e.g. [11, 19, 22, 27, 46]). The adoption of this technology promises to reduce
the need for ad-hoc and purpose-specific counter-measures (e.g. architectures
to contain advertisement scripts [26], browser extension to control cache-based
leaks [20], etc.) In fact, several of the OWASP top-ten web vulnerabilities [49]
can be rephrased in terms of information-flow problems.

In a web scenario, where millions of web pages have been written and de-
ployed, it is important to provide permissive information-flow mechanisms, i.e.
mechanisms that raise as few false alarms as possible. Traditional Denning-
style [16, 35, 48] information-flow enforcements perform over-approximations

1

that could lead to reject secure programs. Driven by permissiveness and dy-
namic features of web scripting languages, researchers tend to adopt dynamic
techniques in the form of execution monitors (e.g. [2, 4, 5, 37]). Despite efforts
to push the limits of dynamic information-flow, execution monitors are still not
capable of enforcing sound and precise information-flow policies [29, 39], and
must therefore reject possibly secure and useful web pages.

Recently, Devriese and Piessens [17] devised an alternative dynamic ap-
proach, called secure multi-execution (SME), based on the idea of executing the
same program several times, once for each security level. As opposed to previous
enforcement mechanisms, this novel technique works with a black-box approach;
it only requires applying specific actions when inputs and outputs (I/O) are pro-
duced. Secure multi-execution does not require either static analysis or execu-
tion monitoring. As claimed by their authors, secure multi-execution enforces a
specific version of non-interference with significantly better precision than tradi-
tional static and/or other dynamic techniques. More precisely, they prove that
termination-sensitive non-interferent programs, which terminate under normal
execution, match the behaviour produced under secure multi-execution. In con-
trast, if the program is leaking information, secure multi-execution will change
its semantics in order to enforce security. It is claimed that this approach is the
first one to achieve both soundness and precision.

Although promising, secure multi-execution suffers from some drawbacks
which may limit the applicability of this technique. More concretely, we identify
the following weaknesses.

I Precision As described above, it is postulated that secure-multi execution is
precise, and thus more permissive than static analysis and execution mon-
itoring [7, 9, 17, 24]. We argue that such comparison might be somehow
unfair. While static analysis and execution monitors are capable of accept-
ing or rejecting programs, secure multi-execution just runs them. Trading
permissiveness by uncertainty, secure multi-execution makes it not possible
to distinguish when the semantics of a program has been altered in order to
preserve security. As a result, users might experience that their programs
do not behave as expected without knowing if it is due to software errors
or due to security reasons. We believe that a better terminology to refer to
the precision of secure multi-execution is transparency [25], i.e. the ability
of an enforcement mechanism to preserve the semantics of executions which
already obey the security policy in question.

I Order of events Secure multi-execution is claimed to be transparent for
terminating runs of termination-sensitive non-interferent programs. Under
scrutiny, this claim only holds if the interleaving of events from different
security levels is not relevant for the computation. In fact, output events
might be arbitrarily interleaved when coming from different security levels.
Not preserving the order of events might be problematic, for instance, in web
pages with complex DOM-elements reacting to the same event (e.g. mouse
click.)1

1The W3C consortium specifies the expected behaviour for such scenarios. http://www.

2

I Schedulers In [7, 17], the soundness and transparency arguments are given
for a particular scheduler, called selectlowprio. This scheduler prioritises
the execution of the copy of the program associated to the lowest security
level. Due to this choice, secure multi-execution rules out leaks through the
external timing covert channel, i.e. revealing confidential data by precisely
measuring the time in which external (and observable) events are triggered.
However, one major drawback of this scheduler is that it requires a total
extension of the lattice order. In web scenarios, however, web domains are
often modelled as incomparable security levels [27], which prohibits the use
of such scheduler. Authors in [24] discuss alternative scheduling strategies
for arbitrary lattices which guarantee different security policies for different
security levels.

The main contribution of this paper is multi-execution monitoring, a novel
combination of monitoring and secure multi-execution. This technique respects
the interleaving of events from different security levels, and thus provides better
transparency results than secure multi-execution. More importantly, multi-
execution monitoring allows to detect insecure commands with precision, i.e.
the monitor only raises an alarm when a command breaks the non-interference
notion of ID-security [11] for reactive systems.

Intuitively, the idea of multi-execution monitoring is simply to monitor a
program by comparing it with its secure multi-execution. A multi-execution
monitor runs a program simultaneously with its secure multi-execution version.
The two programs will be in sync (perform exactly the same I/O operations) for
as long as the execution is secure. If one version tries to do something different
from the other, then the monitor reports that the program is insecure.

The most important contributions of this paper can be summarised as fol-
lows.

I Inspired by the coalgebraic theory of systems [21], we propose a novel se-
mantics for programs based on interaction trees. This formulation treats
programs as black-boxes, about which nothing is known except what is in-
ferred from their I/O interactions with the environment. In this manner, we
gain modularity since new programming features related to internal opera-
tions do not affect our formal results.

I We define a scheduler that significantly improves the transparency guaran-
tees for secure multi-execution. With this scheduler, we can guarantee that
secure multi-execution preserves the order of events and progress of secure
programs.

I We introduce a multi-execution monitor which can precisely detect when
commands violate ID-security. This feature, not only allows us to no-
tify users when programs are malicious, but also enables the debugging
of insecure programs. Moreover, multi-execution monitoring gives good
transparency guarantees for the non-interference notions of ID- and CP-
security [11]. In fact, these transparency guarantees make it possible to

w3.org/TR/DOM-Level-2-Events/events.html

3

report leaks as traces of the original program.

The paper is organised as follows. In Section 2 we introduce reactive inter-
action trees, our model of reactive systems, show how JavaScript-like programs
might be interpreted on it, and define the notion of ID-secure programs. Secure
multi-execution is presented in Section 3. Section 4 presents a scheduler for
secure multi-execution which preserves the order of events and provides bet-
ter transparency guarantees. In Section 5, we define the security condition on
executions that the multi-execution monitor will enforce. Multi-execution mon-
itoring is introduced in Section 6. In Section 7 we discuss related work. Finally,
in Section 8 we conclude and discuss future work.

2 Reactive Systems and Non-Interference

We model reactive programs as interaction trees, i.e. data structures in the
form of trees describing every possible interaction with the environment. We
assume a set of channels Chan, input values in a set I, and output values in a
set O. An event is a piece of data paired with the name of the communication
channel associated to it. Let EA = Ch× A denote the set of events of type A.
Interaction trees are then defined as the following coinductive datatype.

Definition 1 (Reactive Interaction Trees).

React = Read (EI → React)

| Write (EO × React)

| Step React

Intuitively, constructor Read denotes a program that receives an input from
a channel determined by the environment (EI) and, based on that, decides
how to continue (React). Constructor Write represents programs which write
an output in a chosen channel (EO) and continue with another computation
(React). Finally, constructor Step corresponds to a silent step, that is, a com-
putation which does not affect the environment. Silent steps allows us to model
divergence. We do not model termination (React trees are necessarily infinite)
as reactive systems are usually meant to run forever. However, we could easily
model termination by adding a new constructor Stop.

Interaction trees have no notion of state, and therefore are more abstract
than concrete labelled transition systems and make the semantics and proof
machinery simpler.

The idea of modelling the interactions of reactive programs through an in-
finite tree comes from a coalgebraic view of systems [21]. An interaction tree
is the carrier of the final coalgebra of a functor, implementations of concrete
systems are given by coalgebras for this functor, and the interpretation of a
program into React arises from the universal property of the final coalgebra.

4

(R1)
(Read(f), [])⇒ []

(R2)
(f(e), i)⇒ o

(Read(f), e :: i) • ⇒ o

(W)
(t, i)⇒ o

(Write (e, t), i)⇒ e :: o
(S)

(t, i)⇒ o

(Step(t), i)⇒ • :: o

Figure 1: Evaluation relation for interaction trees

2.1 Semantics

An interaction tree is essentially a static description of the possible inputs and
outputs that might occur during execution. To know exactly which interactions
occur for a given run, we need to provide an evaluation relation. We start by
defining possibly infinite sequences.2

Definition 2 (Colists). Let A be a set. Consider the type of possibly infinite
sequences of A to be coinductively defined as follows.

ColistA = [] | A :: ColistA

We write [a, b, c] to denote a finite colist a :: b :: c :: [].

The structure of input and output events of the system is given by colists.

Definition 3 (Colists of input and output events). We define the set of colists
of inputs I and the set of colists of outputs O for reactive systems as follows.

I = ColistEI
O = ColistEo∪{•}

The elements of an output colist are either an event EO, or an invisible output
•.

The evaluation relation ⇒ ⊆ (React × I) × O is coinductively defined by
the rules in Figure 2.1, where we write (t, i) ⇒ o for (t, i, o) ∈ ⇒. Intuitively,
feeding an interaction tree t with a colist of input events i ∈ I yields the output
colist o ∈ O iff (t, i)⇒ o.

Rule (R1) produces no outputs ([]) when no input events are present. Rule
(R2) consumes the first available input event (e), and based on that, produces
the output o ((f(e), i)⇒ o). Rule (W) outputs an event e (e :: o), and then the
outputs triggered by program t ((t, i)⇒ o). Rule (S) simply outputs • when a
silent computation step is performed.

Interaction trees are not concerned with the features of the programming
language used to code a reactive system. This level of abstraction allows us to

2We distinguish lists (finite sequences), colists (possibly infinite sequences), and streams
(infinite sequences). However, we overload the notation for constructors.

5

apply our technique and results to, for instance, different imperative or func-
tional languages. For each language, it is enough to describe how interaction
trees are generated from programs. To illustrate this point, we briefly describe
interaction trees for reactive JavaScript-like programs.

2.2 Interaction trees for a JavaScript-like language

p ::= · | h; p

h ::= ch(x) {c}
c ::= skip

| c; c
| x := e

| if e {c} {c}
| while e do c

| out(ch,e)
| new h
| eval (e)

Figure 2: A
JavaScript-like lan-
guage. Symbols ch
and e range over chan-
nels and expressions,
respectively.

Despite its simplicity, React is able to model the inter-
actions of complex languages. As an example of that,
Figure 2 presents a language inspired by [32]. This lan-
guage is a subset of JavaScript and describes many of
its features. Expressions are side-effect free and denote
strings, numbers, and boolean values. Event handlers
can change the state of the system as well as define
new ones. Input and output channels are disjoint since
we focus on how programs react with the environment
rather than themselves. Programs (p) are defined as
a sequence of event handlers. Event handlers (h) indi-
cate which commands (c) to execute when an input ar-
rives to a channel (ch(x) {c}). Most of the commands
are self-explanatory. However, some of them require
further explanation. Command out(ch,e) outputs the
value denoted by e into channel ch. Command new h
declares a new event handler (or replaces an existing
one). Command eval (e) dynamically evaluates the
instructions denoted by a string expression e.

Throughout the examples of this article, we will
make the following assumptions: events have integer
values; there are two input channels L?, H? and two
output channels L!, H!; events received on L? and events sent to L! are consid-
ered public events; events received on H? and events sent to H! are considered
private or secret events. Programs in this language may be seen as a loop
which reads an event and executes the handler associated to it. Such a handler
may produce some outputs, end silently or diverge. We can interpret every
JavaScript-like program using interaction trees. More specifically, there exists a
function J−K : Prg → M → React , that given a program p ∈ Prg and a mem-
ory µ ∈ M , it gives us the resulting interaction tree JpK(µ) (see Appendix A
for details). This tree denotes the interactions that may happen when program
p is run under memory µ. Here, M is the set of memories, i.e. mappings of
variables to values.

The programs of this language have a special structure: no input event may
be handled inside a handler. However, this structure plays no role once we
abstract away programs by interpreting them into interaction trees. The same
observation can be made about many features of this language, such as assign-
ments, conditionals, loops, and dynamic code evaluation, as well as features not
present in it, e.g., objects and DOM-trees.

6

Example 4. Consider the following JavaScript-like program.

p = H?(x){ r := x };

L?(x){ if r = 0

{out(L!,0)}
{ while 1 do skip };

The program diverges when the secret value stored in r is different from
zero. The interpretation of p for a memory µ is (isomorphic to) the following
interaction tree.

JpK(µ) = Read (λ(ch, v). case ch of
H?→Step (JpK(µ[r 7→ v]))
L?→Step (if µ(r) = 0

then Write ((L!, 0), JpK(µ))
else diverge)

→Step (JpK(µ)))

We write f [x 7→ y] for the function that behaves like f , except on x where it
maps to y. We denote with diverge the infinite sequence of Steps (i.e. diverge =
Step diverge.)

2.3 Reactive Non-Interference

We organise security levels in a lattice (L,v), with the intention to express
that data at level `1 can securely flow into data at level `2 when `1 v `2, and
we associate a security level to each channel. The security level of an event e
(noted lvl(e)) is determined by the security level of its channel. We define the
predicate visible` on events that determines when an event is observable for an
observer at level `.

lvl(e) v `
visible`(e)

Output colists may also have a silent event •. Hence, for output colists we
extend the predicate so that silent events are not visible at any security level
(∀`.¬visible`(•)).

Definition 5 (ID-similarity). ID-similarity between colists for an observer at
level ` is formalised coinductively by the following rules.

[] ∼ID

` []

¬visible`(e) s ∼ID

` s′

e :: s ∼ID

` s′
¬visible`(e) s ∼ID

` s′

s ∼ID

` e :: s′

visible`(e) s ∼ID

` s′

e :: s ∼ID

` e :: s′

7

ID-similarity is reflexive and symmetric, but it is not transitive. Note that
two colists will be considered similar while there is hope that they may produce
the same observable events. In particular, a colist s will be similar to every
other colist if it consist of nothing but infinitely many events not visible at level
`. Hence, transitivity would imply that every pair of colists is similar, but this
is clearly not the case.

We define the non-interference notion of ID-security for reactive programs [9,
11] as follows.

Definition 6 (ID-security). An interaction tree t is ID-secure iff, for every
level ` and input colists i, i′ such that (t, i)⇒ o and (t, i′)⇒ o′, i ∼ID

` i′ implies
o ∼ID

` o′.

The following definitions will be used exclusively in the proofs of the next
sections.

Level by level ID-security We define ID-similarity of colists on a level-by-
level basis.

Definition TR 1. The following relation coinductively defines ID-similarity
for events at security level `.

LS1
[] 'ID

` []
LS2

lvl(e) = ` s 'ID

` s′

e :: s 'ID

` e :: s′

LS3

lvl(e) 6= ` s 'ID

` s′

e :: s 'ID

` s′
LS4

lvl(e) 6= ` s 'ID

` s′

s 'ID

` e :: s′

To deal with output colists, we assume that for every level ` ∈ L, lvl(•) 6= `.
Two colists are ID-level-by-level similar when the colists of events at level `

are similar (for any `). More formally, we have the following definition.

Definition TR 2 (ID-Level-by-level similarity). Given two colists s and s′,
they are ID-level-by-level similar, written s 'ID s′, if and only if ∀`. s 'ID

` s′.

Similarity at one security level ('ID

`) is weaker than similarity to an observer
of level ` (∼ID

`):
s ∼ID

` s′ ⇒ s 'ID

` s′

Similarity to an observer at level ` (∼ID

`) tell us that the two colists are
similar if they coincide in every event e such that lvl(e) v `. In contrast, 'ID

` is
more modest: it only demands colists to coincide on events at level `.

3 Secure Multi-Execution

Secure multi-execution runs a program multiple times, once for each security
level, but giving I/O operations a level-dependent semantics. Outputs to a
channel at security level ` are only performed in the execution corresponding to

8

Receive

��

Sch

��

Produce

...
''OOOOOOOOOOOO

React

rcv

::

prd`0oooo

77oooo

prd`i //

prd`n

OOOO

''OOOO

Produce //

...

⊗
join // React

Produce

77oooooooooooo

Figure 3: Transformation providing secure-multi execution

level `. Inputs from a channel at security level ` are only available to executions
corresponding to a level `e, where ` v `e. It is clear that the secure multi-
execution of programs does not leak information. The execution at level `
produces outputs only at that level, while consuming data with less or equal
confidentiality than `.

We will define secure multi-execution directly on interaction trees as a trans-
formation that takes an interaction tree and returns another one representing its
secure multi-execution. The returned interaction tree is guaranteed to be non-
interferent, i.e. it does not leak secrets (see Definition 6). The transformation
proceeds in two steps:

I The original interaction tree React gives rise to a receiver interaction tree
Receive and to one producer interaction tree Produce for each security level.
These new types of interaction trees are generated by functions rcv and prd `,
respectively (explained below). Following the modelling of reactive systems
[9–11], the interaction tree Receive captures actions related to obtaining
input data from the environment, while Produce captures actions related to
producing outputs.

I The Receive and Produce interaction trees are re-interpreted back into an
interaction tree React with the help of a scheduler Sch. This is done by the
function join.

Figure 3 illustrates the transformation process.

3.1 Receiver and Producers

Interaction trees Receive are coinductively defined as follows.

Receive = RnQ (EI → Receive)

| Step Receive

The transformation from the original interaction tree to a receiver simply trans-
forms writes into silent steps, and reads into “read and queue” (constructor

9

RnQ).
rcv : React → Receive
rcv (Read f) = RnQ (λe. rcv (f(e)))
rcv (Write (e, t)) = Step (rcv(t))
rcv (Step t) = Step (rcv(t))

When an input is obtained at security level `, secure multi-execution dictates
that it should be observable for executions at level `′ such that ` v `′. In
order to distribute data to the appropriate executions, we use queues of events.
Constructor RnQ is then denoting the fact that every input data is obtained
from the environment and placed in the appropriate queues (see function join).

Interaction trees Produce are coinductively defined as follows.

Produce = Reuse (EI → Produce)

| Write (EO × Produce)

| Step Produce

The producer function is parameterised by a security level (prd `). Reads are
replaced by fetching data obtained by the receiver (constructor Reuse). How
data is reused is explained in detail in the function join. Writes are only per-
formed if the security level of the channel coincides with the security level of
the producer.

prd ` : React → Produce
prd ` (Read f) = Reuse (λe. prd ` (f(e)))
prd ` (Write (e, t)) = if ` = lvl(e)

then Write (e, prd `(t))
else Step (prd `(t))

prd ` (Step t) = Step (prd `(t))

Interaction trees of the kind Produce are isomorphic to React . Moreover,
Receive can be embedded into React . In this light, functions rcv and prd `
could be defined to simply produce React interaction trees instead. However,
we have chosen to introduce new types of interaction trees in order to make the
presentation more intuitive.

The following relationships are self-explanatory and they are useful to prove
the propositions in Section 4. As done with the evaluation relation for interac-
tion trees, we define evaluation relations for producers and receivers.

Definition TR 3 (Evaluation relation for producers). Let p : Produce. The
evaluation relation ⇒⊆ (Produce × I)×O is defined coinductively as follows

(Reuse(f), [])⇒ []

(f(e), i)⇒ o

(Reuse(f), e :: i)⇒ o

(t, i)⇒ o

(Write(e, t), i)⇒ e :: o

(t, i)⇒ o

(Step(t), i)⇒ • :: o

10

Definition TR 4 (Evaluation relation for receivers). Let p : Receive. The

evaluation relation
?
↪→⊆ (Receive × I)× Colist{?,•} is defined coinductively as

follows

(RnQ(f), [])
?
↪→ []

(f(e), i)
?
↪→ s

(RnQ(f), e :: i)
?
↪→ ? :: s

(t, i)
?
↪→ s

(Write(e, t), i)
?
↪→ • :: s

(t, i)
?
↪→ s

(Step(t), i)
?
↪→ • :: s

If we replace Receive by React and RnQ by Read in Definition TR 4, we
obtain an evaluation relation or React interaction trees that takes into account
when an input event is consumed (marked with ?). This information is not
present in the evaluation relation ⇒. Definition TR 5 formally defines such a
relation for React .

Definition TR 5. Let t : React . The evaluation relation ↪→⊆ (React × I) ×
Colist{?,•} is defined coinductively as follows

(Read(f), []) ↪→ []

(f(e), i) ↪→ s

(Read(f), e :: i) ↪→ ? :: s

(t, i) ↪→ s

(Write(e, t), i) ↪→ • :: s

(t, i) ↪→ s

(Step(t), i) ↪→ • :: s

The following lemmas relate evaluation of interaction trees with evaluation
of producers and receivers, respectively.

Lemma TR 6. Let t : React, ` ∈ L, and i an input colist. If (t, i) ⇒ o1 and
(prd `(t), i) ⇒ o2, then o1 'ID

` o2. Moreover, fin(o1) iff fin(o2); where fin(s) is
true if and only if s is a finite colist.

Proof. As 'CP implies 'ID , this result is a direct consequence of Lemma TR 9.

Lemma TR 7. Let t : React, and i be an input colist. If (t, i) ↪→ s and

(rcv(t), i)
?
↪→ s′, then s ≡ s′.

Proof. By coinduction on t.

In order to define similarity notions on colist having the special event ?, we
assume ∀`, visible`(?).

11

3.2 Obtaining ID-secure interaction trees

Once we have obtained the receiver and the producers, we proceed to join them
into a single interaction tree React . We do this by choosing commands from
different trees, as dictated by a scheduler. Schedulers are modelled as streams
of elements in L∪{?}, where the symbol ? accounts for the receiver, while each
` ∈ L accounts for the producer at level `. We denote with Sch the set of all
schedulers.

In order to receive data from the receiver, we equip each producer with a
queue of input events. We model this system of queues by a function from
levels to queues of input events, i.e., Q = L → Queue (EI). As dictated by
secure multi-execution, input events are distributed to producers only when the
security level of the producer is equal or higher than the security level of the
event. We define the operator ⊕ responsible for the proper distribution of input
events to producers via queues. More precisely, given q ∈ Q and an event
e ∈ EI , we define

q ⊕ e = λ`. if lvl(e) v `
then enqueue (q(`), e)
else q(`)

where the function enqueue just adds an event to a queue. Observe that function
⊕ modifies a system of queues q by appending a new event e to each queue
corresponding to a level ` such that lvl(e) v `.

Function join, the most interesting function of the transformation, takes a
scheduler, a receiver, a producer for each security level, and a system of queues.
As a result, it calculates an ID-secure interaction tree. More precisely, the type
signature of join is as follows.

join : Sch × Receive × (L → Produce)×Q → React

The function is defined by pattern-matching on the scheduler. If the sched-
uler dictates that it is the turn of the receiver (?), join reproduces each Step
in the receiver’s interaction tree until it finds a RnQ . At this point join should
perform a Read . However, in order to avoid leaking secrets through the termi-
nation channel, it must first check that all producers have consumed their input
queues and that they are waiting for more input. This situation is verified by
the predicate sync(p, q), which holds iff the next interaction in every producer
is Reuse, and q(`) is empty for all `. Hence, when the producers are synched, a
Read can be performed and the input event added to the corresponding queues.
If producers are not synched (for example, because there is a producer whose
first action is to do a Step) then join should execute producers in order to try
to synchronise them. This execution of producers is performed by the function

12

next .
join (? :: s, r, p, q) = case r of

Step r′ → Step (join (? :: s, r′, p, q))
RnQ f → if sync(p, q) then

Read (λe. join (s, f(e), p, q ⊕ e))
else let (p′, q′) = next(p, q)

in Step (join (? :: s, r, p′, q′))

Here, next(p, q) = (λ`. (step(p, q, `))1, λ`. (step(p, q, `))2) is the function that
tries to make a single step at every security level ` using the function step.
The function step, in turn, tries to make a single step at a single level. The
subindices in the definition of next denote pair projections. The function step
is defined as follows.

step(p, q, `) =

(p`, q(`)) if p(`) = Step p`
(f(e), q`) if p(`) = Reuse f

∧ q(`) = e :: q`
(p(`), q(`)) otherwise

This function simply makes a computation step on a producer unless there
is a Write or a Reuse with an empty queue.

Continuing with the definition of join, if the scheduler dictates that it is the
turn of the producer at level `, join will inspect the producer tree corresponding
to level ` and execute it until it finds a write. If that producer would perform
a write, a Write is added to the resulting tree. If the producer tries to reuse
an event when there is none, it just yields the execution; if, on the other hand,
there is an event, it gets consumed. If the producer makes a Step, join will
replicate it.

join (` :: s, r, p, q) = case p(`) of
Write (o, p`) → Write (o, join (s, r, p[` 7→ p`], q))
Step p` → Step (join (` :: s, r, p[` 7→ p`], q))
Reuse f → case q(`) of
e :: es → Step (join (` :: s, r, p[` 7→ f(e)], q[` 7→ es]))
[] → Step (join (` :: s, r, p, q))

Given a scheduler, secure multi-execution for interaction trees is defined by
the following function.

sme : Sch×React→ React
sme (s, t) = join (s, rcv(t), λ`. prd `(t), λ`. [])

The next proposition states the security of sme.

Proposition 7. Let t ∈ React and s ∈ Sch. Then, the interaction tree
sme (s, t) is ID-secure.

Similarly to [7, 9, 17, 24], we can prove that the transformation preserves
the semantics of ID-secure programs when the interleaving of events at different

13

security levels is not relevant. Proposition 7 and Corollary 25 in Appendix B,
quantify over all schedulers. This might seem surprising, as clearly one can
choose a bad scheduler. For instance, we could choose the scheduler that always
chooses the receiver. Such a scheduler would never issue a Write, and there-
fore would always diverge. As discussed in Section 2, a silent infinite colist is
ID-similar to every other one. In particular, the output colist ⊥ = • : : ⊥ is
infinite and silent at every level, and therefore ID-similar to every output colist.
Therefore, the trivial transformation bad(t) = diverge satisfies the security and
transparency propositions. After all, diverge is ID-secure and produces an out-
put (⊥) ID-similar to any other output. We believe that secure multi-execution
can do better than the trivial diverging transformation, but in order to show it
we need to state better formal guarantees.

In the next section, we present one of the main contributions of this paper.
We show how the program under execution and its input induce a scheduler that
significantly improves the transparency guarantees of secure multi-execution.

4 Order-preserving Scheduler

The definition of secure multi-execution in the previous section is parameterised
by a scheduler. However, if we are interested in the order in which events from
different levels are produced, the choice of scheduler is of paramount importance.
The standard precision result for secure multi-execution [7, 9, 17, 24] ensures
that the order of output events is preserved only when looking at a given security
level in isolation. However, in certain scenarios (such as the monitor in Section 6)
one needs to take into account the interleaving of events from different security
levels. Therefore, a stronger guarantee is required. Example 8, although very
simple, illustrates this point.

Example 8. We define program p with just one handler as follows:

p = L?(x){ out(L!,x);
if x > 10 {out(H!,x)}

{skip};
out(L!,1) };

This program is non-interferent. Since there is no handler for channel H?, every
secret input is ignored.

It is easy to see that, for all inputs, every event on channel H! is preceded
by an event on channel L! with exactly the same value. However, the secure
multi-execution of p with a selectlowprio scheduler has a different behaviour
for a high observer: every event on channel H! is preceded by an event with
constant 1 on L!.

In order to preserve the order of events we will look at the order of events
generated by the original program. That is, we will use the execution of the

14

original program to guide secure multi-execution. If the original execution is-
sues a Read command, the scheduler chooses the receiver, identified as ?, to
run. Observe that this is the only interaction tree under secure multi-execution
capable of issuing such command. Instead, if the original execution issues a
Write command to a channel at level `, then the producer p(`) is run. Observe
that p(`) is the only interaction tree under secure multi-execution that is able
to perform Writes into channels at level `. However, if the original execution
issues a Step, there is no information from which to decide what to schedule
next. To account for this situation, we extend our definition of schedulers (Sch)
in Section 3.2 with the element ◦. Finally, if read commands are issued by the
execution of the original program under an empty colist of input events, it does
not really matter which program under secure multi-execution gets scheduled.
After all, the execution of the original program has stopped (see rule (R1) in
Figure 2.1). More precisely, the order-preserving scheduler, called ops, is defined
as follows.

ops : React × I → Sch
ops (Read f, e :: i) = ? :: (ops (f(e), i))
ops (Read f, []) = ◦ :: (ops (Read f, []))
ops (Write (e, t), i) = lvl(e) :: ops (t, i)
ops (Step p, i) = ◦ :: ops (p, i)

The scheduler takes the interaction tree of the program to be executed under
secure multi-execution (React), the colist of inputs (I), and returns the schedul-
ing policy (Sch). Observe how reads in the presence of inputs are mapped to
the receiver (?), while writes are mapped into producers with the same security
level as the channel (lvl(e)).

As a consequence of adding symbol ◦ to the scheduler, we need to extend
the definition of join with the following additional case.

join (◦ :: s, p, r, q) = Step (join (s, p, r, q))

When join finds the symbol ◦ in the scheduling policy, it simply makes a Step.

4.1 Transparency guarantees for the scheduler ops

The order-preserving scheduler ops allows secure multi-execution to provide
better transparency guarantees than the ones previously shown.

Theorem 9 (Transparency for ID-secure trees). Let t be an ID-secure interac-
tion tree, and i an input colist such that (t, i)⇒ o. If (sme(ops(t, i), t), i)⇒ o′

then ∀`. o ∼ID

` o′.

Proof. Since t is an ID-secure interaction tree, it follows from Lemma 16 that
every input is secure for it. In particular, i is ID-secure for t. Hence, by
Theorem 18 we have the desired result.

The theorem above states that the output of the original program and its
secure multi-execution are ID-similar for ID-secure interaction trees. This means

15

that for any observer at some level `, the order of `-visible events is preserved.
This is an improvement over previous results since it considers the interleaving
of events. Nevertheless, satisfying transparency for ID-secure programs does not
guarantee that secure multi-execution performs any progress, e.g., sme might
always diverge (see discussion at the end of Section 3.)

In order to guarantee progress, we consider a stronger notion of non-interference
for reactive systems called CP-security [11].

4.1.1 CP-security

We coinductively define when a colist of events is not visible (silent) for an
observer at level ` as follows.

¬visible`(e) silent`(s)

silent`(e :: s) silent`([])

We define a relation that identifies the next event that it is visible to an observer
at level ` (if exists). Intuitively, we say that s .` e :: s′ when e is the next event
in s visible at level `. The following rules inductively define the relation .`.

visible`(e)
e :: s .` e :: s

¬visible`(e) s .` e
′ :: s′

e :: s .` e
′ :: s′

Note that the relation is inductively defined, which means that when s .` e :
: s′, the next `-visible event e of the colist s must come after a finite sequence
of `-invisible events.

Definition 10 (CP-similarity). CP-similarity between colists is defined coin-
ductively by the following rules.

silent`(s) silent`(s
′)

s ∼CP

` s′

s .` e :: s1 s′ .` e :: s′1 s1 ∼CP

` s′1
s ∼CP

` s′

As opposed to ID-similarity, CP-similarity is an equivalence relation. More-
over, CP-similarity guarantees progress by asking one colist to be as productive
as the other, i.e. the two colists either produce the same visible event in a fi-
nite number of steps, or both become silent. We now define when a program is
CP-secure.

Definition 11 (CP-security). An interaction tree t is CP-secure iff, for every
level ` and input colists i, i′ such that (t, i)⇒ o and (t, i′)⇒ o′, i ∼CP

` i′ implies
o ∼CP

` o′.

CP-security is strictly stronger than ID-security: any CP-secure program is
ID-secure [11].

16

Level by level CP-security

In order to define level-by-level CP-similarity, we start by defining a predicate
sil=` to represent the fact that a stream s has no events at a particular security
level `:

lvl(e) 6= ` sil=`(s)

sil=`(e :: s) sil=`([])

The relation D` is inductively defined as follows.

lvl(e) = `

e :: s D` e :: s

lvl(e) 6= ` s D` e′ :: s′

e :: s D` e′ :: s′

Intuitively, we say that s D` e :: s′ if e is the first event in s such that lvl(e) = `,
and s′ is obtained from s removing all events up to e.

Definition TR 8 (level-by-level CP-similarity). The following relation coin-
ductively defines CP-similarity for events at security level `.

LSCP
1

sil=`(s) sil=`(s
′)

s 'CP

` s′
LSCP

2

s D` e :: s1 s′ D` e :: s′1 s1 'CP

` s′1
s 'CP

` s′

We have the following result about the producer tranformation from Sect. ??.
It relates the behaviour of a reactive interaction tree with the behaviour of its
producers.

Lemma TR 9. Let t : React, ` ∈ L, and i an input colist. If (t, i) ⇒ o1 and
(prd `(t), i)⇒ o2, then o1 'CP

` o2. Moreover, fin(o1) iff fin(o2).

Proof. By coinduction on t.

We show that secure multi-execution is transparent with respect to CP-
secure programs when using the order preserving scheduler.

Theorem 12 (Transparency for CP-secure trees). Let t be CP-secure interac-
tion tree, and i an input colist such that (t, i)⇒ o. If (sme(ops(t, i), t), i)⇒ o′

then ∀`. o ∼CP

` o′.

Proof. Since t is a CP-secure interaction tree, it follows from Lemma 15 that
every input is secure for it. In particular, i is CP-secure for t. Hence, by
Theorem 19 we have the desired result.

The transparency theorem for CP-secure trees is a significant improvement
over previous results for secure multi-execution in reactive systems. Previous
results did not show that secure multi-executions approaches fulfilling the secu-
rity and transparency properties were any better than the transformation that
always produces diverging runs. The above theorem, however, is able to guaran-
tee progress for CP-secure programs as well as event-order preservation. Hence,
if a CP-secure program produces a visible event, its secure multi-execution is
forced to produce it too (o ∼CP

` o′).

17

5 Secure Inputs

We want to precisely detect leaks of secret information in reactive systems.
Non-interference, a property of programs, cannot be precisely enforced by an
execution monitor [29, 39]. More importantly, it may not be a desirable prop-
erty to enforce. For instance, many web applications deployed on the web
might be harmless most of the time, but leak information only in certain situ-
ations. That is, they may leak information in certain runs, but not on oth-
ers. In this light, it is not surprising that some information-flow monitors
accept runs of interferent programs as long as they do not leak information.
For instance, monitors in [2, 5, 19, 34, 37, 42] accept the runs of program
if public = 42 then public := secret else skip when the public input is dif-
ferent from 42. With this in mind, we define a security condition on runs (rather
than on programs), by characterising the inputs for which programs do not leak
secret information (we ignore leaks due to covert channels.) In order to define
this notion, we need to present an auxiliary relation.

We coinductively define the relation I` responsible for removing all the
events unobservable at level `.

silent`(s)

s I` []

s .` e :: s′ s′ I` s′′

s I` e :: s′′

Observe that given a colist s, there is a unique colist s′ such that s I` s′. We
will write sI`

for this unique colist, and refer to it as the restriction of s at level
`.

Let us assume a level-indexed similarity relation ∼` between colists. Two
inputs for a program reveal the same secrets at a given security level ` if, for an
observer at level `, they are similar and induce similar outputs.

Definition 13 (≈`,t). Let t ∈ React , ` ∈ L, and i, i′ input colists such that
i ∼` i′, (t, i) ⇒ o and (t, i′) ⇒ o′. We say that the program t reveals the same
`-secrets when given the inputs i, i′, noted i ≈`,t i′ iff o ∼` o′.

Similarly to [9], we consider an input to be secure for a program t if it reveals
the same information about the secrets as the input where secrets have been
erased.

Definition 14 (Secure input). Let t be an interaction tree. An input colist i is
secure for t iff ∀`. i ≈`,t iI`

. We say that the input i is ID-secure (CP-secure)
for t when ∼` is instantiated to ∼ID

` (∼CP

`) in Definition 13.

It is desirable to establish a connection between programs and their secure
inputs, so as to be able to transfer security properties from one notion to the
other. Fortunately, there is a close relationship between CP-secure programs
and CP-secure inputs.

Lemma 15 (Secure inputs and CP-security). A reactive interaction tree t ∈
React is CP-secure iff ∀i ∈ I. i is CP-secure for t.

18

p = H?(x){ r := x };

L?(x){ if r ≥ 1

{out(L!,r)}
{while 1 do skip }};

(1)

Figure 4: ID-insecure program with ID-secure inputs

Proof.
⇒) Since t is CP-secure, we have that ∀`, i, i′ such that i ∼CP

` i′,

(t, i)⇒ o and (t, i′)⇒ o′ imply o ∼CP o′.

If we substitute iI`
for i′ above, we obtain that i and iIl

produce CP-similar
outputs, and therefore i is CP-Secure for t.
⇐) Let i, i′ be input colists such that i ∼CP

` i′. The relation ∼CP is transitive,
and thefore i′I`

∼CP i′ ∼CP

` i ∼CP

` iI`
. Note that iI`

∼CP

` i′I`
⇐⇒ iI`

= i′I`
,

and therefore all of these input colists will produce CP-similar results.

When it comes to ID-security, the relationship between secure programs and
secure inputs is not that strong.

Lemma 16 (Secure inputs and ID-security). If a reactive interaction tree t ∈
React is ID-secure, then ∀i ∈ I. i is ID-secure for t.

Proof. Since t is ID-secure, we have that ∀`, i, i′ such that i ∼ID

` i′,

(t, i)⇒ o and (t, i′)⇒ o′ imply o ∼ID o′.

If we substitute iI`
for i′ above, we obtain that i and iIl

produce ID-similar
outputs, and therefore i is ID-Secure for t.

It is easy to prove that all inputs are secure for a secure program, in both the
ID-security and the CP-security case. However, it might not be obvious that a
program such that every input is CP-secure is a CP-secure program. Note that
whenever two inputs i, i′ are similar at some level ` they have exactly the same
restriction at that level.

i ∼CP

` i′ =⇒ iI`
= i′I`

By definition of secure input and transitivity of ∼CP

` , we can conclude that the
output streams produced by t with i and i′ must be CP-similar, provided that
i and i′ are CP-secure.

Lemma 16 indicates that if a program is ID-secure, then every input for
that program is ID-secure, i.e. running the program under those inputs leaks
the same amount of information as if secrets had been erased. The converse,
however, does not hold. We illustrate this point with the following example.

19

Example 17. Consider the program p in Figure 4. Every input is ID-secure
for p but p is not an ID-secure program, as the following two ID-similar inputs
show.

i = [(H?, 1), [(L?, 0)] ∼ID

L i′ = [(H?, 2), (L?, 0)]

Let µ0 be the initial memory where every variable is initialised to 0, and let
t = JpK(µo), the interaction tree obtained from p and µ0. Then, we see that t is
not ID-secure, since i and i′ are ID-similar at level L, but their outputs are not
ID-similar at level L.

(t, i) ⇒ [•, •, •, •, (L!, 1)]
�ID

L

(t, i′) ⇒ [•, •, •, •, (L!, 2)]

Nevertheless, all inputs i are ID-secure for t (Definition 14). The key observation
here is that t diverges for iIL

(which coincides with i′IL
), since r was initially

zero. In other words, the input colist without events on channel H? produces an
output which is silent and infinite, and hence ID-similar to every other output.

Secure inputs and producers The next two lemmas provide useful invari-
ants to prove the transparency results for ID- and CP-secure inputs.

Lemma TR 10 (ID-secure inputs and producers). Let t : React, ` ∈ L, and i
an ID-secure input for t such that (t, i)⇒ o. Then,

(prd `(t), iI`
)⇒ o` ⇒ o 'ID

` o`

Proof. Different from the proof of Lemma TR-11, ID-similarity is not transitive,
so we need to proceed carefuly. As i is ID-secure for t, we have (t, iI`

) ⇒ o′,
and o ∼ID

` o′. Therefore o 'ID

` o′. From Lemma TR- 9 we have o′ 'CP

` o`, and
we know that o′ is finite if and only if o` is finite. Using these facts, it is easy
to conclude that o 'ID

` o`.

The next lemma is similar to the previous one but considers CP-secure in-
puts.

Lemma TR 11 (CP-secure inputs and producers). Let t : React, ` ∈ L and i
a CP-secure input for t such that (t, i)⇒ o. Then,

(prd `(t), iI`
)⇒ o` ⇒ o 'CP

` o`

Proof. As i is CP-secure for t, we have (t, iI`
) ⇒ o′, and o ∼CP

` o′. Therefore
o 'CP

` o′. From Lemma TR- 9 we have o′ 'CP

` o`. By transitivity of 'CP

` , we
conclude o 'CP

` o`.

The following theorems state the transparency of secure inputs for secure
multi-execution with our order-preserving scheduler. That is, the theorems

20

show that outputs of a given program under secure multi-execution are not
observably different when provided with a secure input.

In order to prove the transparency theorems, we will first prove two technical
lemmas that establish the key invariant needed in the proofs.

Lemma TR 12. Let t be a reactive interaction tree, i an input colist CP-
secure for t such that (t, i) ⇒ o , r : Receive, p : L → Produce, q : Q, and
sch = ops(t, i). Suppose that

∀`, (p(`), q(`)++ iI`
)⇒ o` ⇒ o 'CP

` o` (2)

(r, i)
?
↪→ s ∧ (t, i) ↪→ s′ ⇒ s 'CP s′ (3)

If (join(sch, r, p, q), i)⇒ o′, then ∀`, o ∼CP

` o′.

Proof. Let ` ∈ L. We have to show that o ∼CP

` o′. The proof is by coinduction
on the proof of (t, i) ⇒ o, by showing that all rules preserve the invariants (2)
and (3).

We prove a similar result for ID-secure inputs.

Lemma TR 13. Let t be a reactive interaction tree, i an input colist ID-
secure for t such that (t, i) ⇒ o , r : Receive, p : L → Produce, q : Q, and
sch = ops(t, i). Suppose that

∀`, (p(`), q(`)++ iI`
)⇒ o` ⇒ o 'ID

` o` (4)

(r, i)
?
↪→ s ∧ (t, i) ↪→ s′ ⇒ s 'CP s′ (5)

If (join(sch, r, p, q), i)⇒ o′, then ∀`, o ∼ID

` o′ 3.

Proof. Analogous to Lemma TR 12. Only case t = Write(e, t′) has a different
proof; since we need to take into account the case in wich the evaluation of t
with input i generates a visible event al level ` but prod `(t) silently diverges.

Theorem 18 (Transparency for ID-secure inputs). Let t be an interaction
tree, and let i be an input colist ID-secure for t such that (t, i) ⇒ o. If
(sme(ops(t, i), t), i)⇒ o′ then ∀`. o ∼ID

` o′.

Proof. We have

sme(ops(t, i), t) = join(ops(t, i), rcv(t), λ`.prd `(t), λ`.[])

By Lemma TR 13, it is enough to show that

∀`, (prd `(t), []++ iI`
)⇒ o` ⇒ o 'ID

` o` (6)

3Note that (5) is exactly the same property than (3).

21

(rcv(t), i)
?
↪→ s ∧ (t, i) ↪→ s′ ⇒ s 'CP s′ (7)

Property (6) is valid from Lemma TR 10, and Property (7) is a consequence of
Lemma TR-7.

The theorem above uses ∼ID

` and therefore assures transparency under this
notion of observation, i.e. differences in outputs due to divergence are not
observable and therefore not captured. If one wants to distinguish productive
outputs from divergence, then CP-similarity is the right notion of observation.

Theorem 19 (Transparency for CP-secure inputs). Let t be an interaction
tree, and let i be an input colist CP-secure for t such that (t, i) ⇒ o. If
(sme(ops(t, i), t), i)⇒ o′ then ∀`. o ∼CP

` o′.

Proof. Analogous to Theorem 18 using Lemmas TR 11 and TR 7.

6 Multi-execution Monitor

An important problem of the secure multi-execution approach is that it makes
programs non-interferent by modifying its semantics. Consequently, it is difficult
to detect if, and when, programs behave maliciously. To remedy this situation,
we present a monitor capable of precisely detecting when an input is insecure
for a program.

Our monitor executes the original program and its secure multi-execution
in parallel, checking at each step that both executions would produce the same
output command. If outputs differ, we are in presence of information leaks, and
thus execution is aborted. If, on the other hand, executions remain synchronised,
the output command is safe to be executed. It is crucial for the monitor to work
that secure multi-execution is run under a scheduler that preserves the order of
output events such as the scheduler ops from Section 4.

At any point during execution, the monitor might need to signal an alarm.
Hence, we define a new kind of datatype that can represent the outputs of the
monitor. This datatype, written Oε, is similar to a colist of output events, but it
may end with an alarm ε. More formally, we coinductively define Oε as follows.

Oε = [] | ε | O :: Oε

At a first glance, it seems enough to simply run the interaction tree of the
program under consideration in parallel with the one obtained from the sme
transformation. However, in order to precisely detect violations of the secu-
rity policy a new relation is needed. The monitor is expressed by the rela-
tion ⇓⊆ React × I × (L → Produce) × Q × Oε defined in Figure 5, where we
write (t, i, p, q) ⇓ o whenever (t, i, p, q, o) ∈⇓. The intuition is that whenever
(t, i, p, q) ⇓ o, the evaluation of the interaction tree t, together with the input
i, a producer for each security level p, and a system of queues q, results in an
output o. Note that the first two components (t and i) pertain to the execution

22

(W1)

lvl(e) = ` p(`) = Write(e, p`)
(t, i, p[` 7→ p`], q) ⇓ o

(Write (e, t), i, p, q) ⇓ e :: o

(W2)
lvl(e) = ` p(`) = Write(e′, p`) e 6= e′

(Write (e, t), i, p, q) ⇓ ε

(W3)

lvl(e) = ` p(`) = Reuse f` q(`) = e′ :: q`
(Write (e, t), i, p[` 7→ f`(e

′)], q[` 7→ q`]) ⇓ o
(Write (e, t), i, p, q) ⇓ • :: o

(W4)
lvl(e) = ` p(`) = Reuse f` q(`) = []

(Write (e, t), i, p, q) ⇓ ε

(W5)

lvl(e) = ` p(l) = Step p`
(Write (e, t), i, p[` 7→ p`], q) ⇓ o

(Write (e, t), i, p, q) ⇓ • :: o
(S)

(t, i, p, q) ⇓ o
(Step t, i, p, q) ⇓ • :: o

(R1)
(f(e), i, p, q) ⇓ o

(Read f, e :: i, p, q) ⇓ • :: o
(R2)

(Read f, [], p, q) ⇓ go(p, q)

Figure 5: Semantics for the multi-execution monitor

of the original program, while the third and fourth one (p and q) pertain to the
secure multi-execution of the program.

Rules (W1) to (W5) concern the case where the monitored interaction tree
wants to do a Write of an event at security level `. In rule (W1), the producer at
level ` (p(`)) tries to write the same event, hence the event is performed (e :: o).
In rule (W2), on the other hand, the producer at level ` tries to write a different
event (e 6= e′), so the monitor raises an alarm (ε) and aborts execution. In rule
(W3) and (W4), the producer at level ` tries to reuse some input events. If there
is an event available (q(`) = e′ :: q`), rule (W3) provides the information to the
producer (p[` 7→ f`(e

′)]). In contrast, if there is no event available (q(`) = []),
rule (W4) aborts execution (ε). Finally, in rule (W5), the producer at level `
makes a silent step, so a silent event is perform by the monitor (•).

In rule (S), the interaction tree tries to make a silent step (Step), in which
case the monitor outputs a silent event (•). Rules (R1) and (R2) are related to
consuming input data. If there is an input event (e :: i), rule (R1) consumes it
(f(e)). If, on the other hand, there is no event, rule (R2) determines the result
of the evaluation depending on the state of system of queues, as determined by
the function go.

The function go examine, when possible, if the termination behaviour of
the interaction tree matches its secure multi-execution version. There are three

23

possible situations. In the first one, every producer has consumed its input
queue and the next command to be executed is a Reuse, thus matching the Read
event. We indicate this situation on the producer at level ` by the predicate
end (end(p(`), q(`))). Since at this point the interaction tree and producers are
in sync, go just returns the empty colist. In the second situation, if there is one
Write event as the next command to be executed by a producer at level `, noted
writer(p(`)), then an alarm is raised, since executions are out of sync. Lastly,
it may happen that none of the two conditions above apply, e.g., there are no
writes but some of the producers are on Step commands. In this situation, go
should make progress on the producers until some of the two first situations
occur. This search, however, may lead to divergence. More specifically, we
define go as follows.

go(p, q) =

 [] if ∀`, end(p(`), q(`))
ε if ∃`,writer(p(`))
• :: go(next(p, q)) otherwise

where the predicate sync and the function next are those defined in Section 3.
It may seem odd to go through the complication of defining the function go
when the program was going to end anyway, but the following example shows
why this is needed:

Example 20. Consider the following reactive program:

p = H?(x){ r := x };

L?(x){ if r = 0

{out(L!,1)}
{skip} };

Let t be the interaction tree obtained from it for the initial memory µ0, and
let i = [(H, 1), (L, 0)]. The evaluation of t with input i, will result in a finite
sequence of invisible events.

(t, i)⇒ [•, •, •, •, •]

On the other hand, the evaluation of t when fed with the restriction of i at level
L, i.e. iIL

= [(L, 0)], has an observable event.

(t, iIL
)⇒ [•, •, (L, 1)]

Since the outputs are distinguishable at level L, we conclude that i is not ID-
secure for t.

In order to detect cases like this one, where the normal execution ends,
but its execution with the secrets erased would produce an output, the monitor
needs to make sure that the execution of the producers with the available inputs
will not produce an output, as done by rule (R2).

24

6.1 Properties of multi-execution monitoring

This section describes the most important contribution of this work. We es-
tablish the security policy enforced by our monitor as well as the transparency
guarantees. To simplify notation, given an interaction tree t and input colist
i, we define monitor(t, i) = (t, i, λ`. prd `(t), λ`.iI`

) as the initial configuration
of our monitor for auditing program t under the input events i. We define the
predicate ok ⊆ Oε identifying outputs colists where the monitor has not raised
an alarm. The predicate is defined coinductively by the following rules.

ok([])

ok(s)

ok(e :: s)

It is easy to see that an output is not ok precisely when it ends with an alarm
ε. Clearly, we can embed any output o ∈ Oε such that ok(o) in O. To avoid
additional notation, we perform such embedding transparently.

The following theorem states that the multi-execution monitor is able to
precisely detect ID-secure inputs.

The next lemma is useful to show the precision result for ID-secure runs.
It states a sufficient condition (in the form of an invariant) to ensure that the
monitor will not raise an alarm with secure inputs.

Lemma TR 14. Let t : React, i an input colist such that (t, i) ⇒ o, p : L →
Produce, and q : Q. Assume

∀` (p(`), q(`))⇒ o` ⇒ o 'ID

` o` (8)

If (t, i, p, q) ⇓ o′, then ok(o′).

Proof. We have to show that an alarm is not raised in the derivation of (t, i, p, q) ⇓
o′. Note that, if Property (8) is valid on (t, i, p, q), then the rules of ⇓ raising
an alarm (W2, W4 and R2 in case that some producer generates a visible event)
cannot be applied to this tuple. Formal proof is by coinduction on the definition
of ⇓, proving that property (8) is preserved by all rules of the monitor that can
be applied.

(W1) We have

– t = Write(e, t′),

– lvl(e) = `,

– p(`) = Write(e, p`),

– o = e :: o′, and

– (t′, i, p[` 7→ p`], q) ⇓ o′.

We have to show that property (8) holds for (t′, i, p[` 7→ p`], q).

Let `1 ∈ L. We distinguish two cases

25

1. `1 = `. In this case, we have to prove that

(t′, i)⇒ o′1 ∧ (p`, q(`))⇒ o′2 ⇒ o′1 'ID

` o′2

By definition of ⇒, we know that o1 = e :: o′1 and by definition of
⇒, o2 = e :: o′2. Using the hypothesis (o1 'ID

` o2), and rule LS2 in
definition of 'ID

` , we conclude that o′1 'ID

` o′2.

2. `1 6= `. In this case, we have to prove that

(t′, i)⇒ o′1 ∧ (p(`1), q(`1))⇒ o′2 ⇒ o′1 'ID

`1 o
′
2

By definition of ⇒, we know that o1 = e : : o′1 and by definition
of ⇒, o2 = o′2. Using the hypothesis (o1 'ID

` o2), the fact that
lvl(e) = l 6= `1, we can apply rule LS4 in definition of 'ID

`1
to conclude

that o′1 'ID

`1
o′2.

I The proof for the other rules are analogous.

Theorem 21 (Precision for ID-secure runs). Let t : React and let i be an input
colist such that monitor(t, i) ⇓ o. Then

i is ID-secure for t ⇐⇒ ok(o)

Proof.

(=⇒) By Lemma TR-14, it is enough to show that

∀`((prd `(t), iI`
)⇒ o` ⇒ o 'ID

` o`

This property is true by Lemma TR 10.

(⇐=) By contraposition. Assume i not ID-secure for t, i.e. there exists a level `
such that (t, iI`

)⇒ o1, and o �ID

` o1. Let o` such that (prod `(t), iI`
)⇒ o`.

Applying Lemma TR 9, we know that o` 'CP

` o1 and fin(o`) ⇐⇒ fin(o1).
Then, it is easy to show that o �ID

` o`.

Therefore, one of the following cases occur

1. silent`(o`), fin(o`) and o .` e :: o′

2. o` .` e :: o′`, silent`(o) and fin(o)

3. o` .` e
′ :: o′`, o .` e :: o′, and e 6= e′.

We show that in all cases the monitor raises an alarm.

Case (1) raises an alarm by rule (W4). Since e is an event in o, after a
finite number of evaluation steps, the tree t will issue a Write. Note that,
if the producer al level ` generates a silent and finite colist (o`), then after
a finite number of silent steps it will be of the form Reuse(f) and q(`) will

26

be the empty colist. So rule (W4) will be applied after a finite number of
steps and an alarm is raised.

Case (2) raises an alarm by rule (R2). If o is finite and silent at level `,
then after a finite number of steps will be in the case of rule (R2). As
there exists a producer that generates an event visible at ` (e), function
go will detect this situation and an alarm is raised.

Case (3) raises an alarm by rule (W2). When the execution of t tries to
write event e, the producer at level ` is inspected and after a finite number
of steps the preconditions of rule (W2) are valid and a alarm is raised.

This theorem states that, if and only if the monitor raises an alarm (¬ok(o)),
the run i is not ID-secure. Consequently, the run has tried to leak more infor-
mation than the one observed in a run where secrets are not present in the
system (Definition 14). In this case, having detected such condition, the moni-
tor assures that the program under surveillance is not ID-secure (contrapositive
of Lemma 16). Differently from most of the dynamic monitoring techniques
for confidentiality (e.g. [2, 5, 19, 28, 37, 40, 42]), our monitor does not raise
false alarms due to some imprecision in the analysis of information flow inside
a program.

When our monitor does not raise an alarm, we cannot infer the ID-security of
the program, only the ID-security of the observed run. It could be the case that
the program is ID-secure, in which case the monitor will never raise an alarm
(Lemma 16), but also that the program is interferent but the input was ID-
secure. This last case is common in dynamic monitors which accept non-leaking
runs of interferent programs [2, 5, 19, 34, 37, 42].

To sum up, our monitor can precisely detect if a run is ID-secure. However,
we can only assert that a program is not ID-secure when an alarm is raised.
Otherwise, the monitor has not enough information to determine if the program
is ID-secure or we are in presence of an ID-secure input. In either case, it is
guaranteed that the output will be ID-similar to the output obtained without
secrets.

The invariant in Lemma TR 14 ensures that the monitor will be transparent
for secure inputs.

Lemma TR 15. Let t : React, i an input colist such that (t, i) ⇒ o, p : L →
Produce, and q : Q. Assume

∀`((p(`), q(`))⇒ o`)⇒ o 'ID

` o` (9)

If (t, i, p, q) ⇓ o′, then ∀`, o ∼ID

` o′.

Proof. Similar to Lemma TR 14. By coinduction on the derivation of (t, i, p, q) ⇓
o′.

27

The next theorem establishes that the monitor is transparent for ID-secure
runs. In particular, the interleaving of events from different security levels is
not altered (∼ID

`).

Theorem 22 (Transparency for ID-secure runs). Let t : React and i an input
colist such that (t, i)⇒ o and monitor(t, i) ⇓ o′. Then,

i is ID-secure for t =⇒ ok(o′) ∧ ∀`. o ∼ID

` o′.

Proof. From Theorem 21, we know that ok(o′). To prove ∀`. o ∼ID

` o′, applying
Lemma TR 15, it is enough to show that

∀`, (prd `(t), iI`
)⇒ o` ⇒ o 'ID

` o`

This property is true by Lemma TR 10.

When considering CP-security, we can guarantee that the monitor will not
raise an alarm and be transparent for CP-secure inputs. However, a CP-insecure
input may cause the monitor to diverge without raising an alarm, as the monitor
cannot predict if another visible event will be found.

Theorem 23 (CP-precise monitor). Let t : React and i an input colist such
that (t, i)⇒ o and monitor(t, i) ⇓ o′. Then,

i is CP-secure for t =⇒ ok(o′) ∧ ∀` o ∼CP

` o′.

Proof.

We proceed analougsly to Theorem 21 and Theorem22, taking

∀` (prd `(t), iI`
)⇒ o` ⇒ o 'CP

` o` (10)

as an invariant in the monitor evaluation; and then proving that this invariant
is a sufficient condition to ensure ok(o′) 4 ∀` o ∼CP

` o′ 5, provided that i is
CP-secure for t.

Note that (10) is valid from Lemma TR 11.

7 Related Work

Precise dynamic enforcement of non-interference A series of work char-
acterises the security policies enforceable by execution monitoring [18, 25, 39].
As a result of that, it is known that non-interference is not a safety property
(see [29, 39] for a proof), and therefore not enforceable by execution monitors.
The main argument for that claim relies on the fact that non-interference re-
lates a pair of execution traces, while safety properties refer to a single one.
Despite being inherently imprecise, researchers propose execution monitors to

4The proof proceed as in Lemma TR 14, (=⇒) part
5The proof proceed as in Lemma TR 15

28

enforce, in the shape of a safety property, a stronger version of non-interference
(e.g. [2, 4, 5, 34, 37].) Although these monitors stop the execution of potentially
dangerous programs, they still reject some non-interferent ones. Motivated by
theorem proving techniques, Darvas, Hähnle, and Sands [15] show how to cast
non-interference into a safety property by composing programs with a copy of
themselves. This technique is known as self-composition (term coined in [8]) and
it has been used to exploit known techniques for program verification [8, 45].
It is an open question if some sort of self-composition could precisely, and dy-
namically, detect when programs violate confidentiality. This work shows that
it is possible to precisely, and dynamically, detect when the notion of non-
interference ID-security [11] gets violated.

Secure multi-execution The closest related work to ours is secure multi-
execution. From a systems perspective, Capizzi et al. [12] describe the idea of
secure multi-execution for two security levels using the term shadow executions.
Similarly to this work, the authors do not cover timing covert channels. How-
ever, they do not give any transparency guarantees for secure programs when
using shadow executions. Similarly to Capizzi et al., but looking to obtain
a secure Linux kernel, Cristiá and Mata [14] consider similar ideas as secure
multi-execution using two security levels and ignoring timing channels. Dif-
ferently from this work, their method is formalised for a specific programming
language. Devriese and Piessens [17] introduce secure multi-execution. In that
work, authors evaluate the practicality of their ideas in the Google Chrome web
browser. Our work, instead, focus on theoretical results. Barthe et al. [7] show
how to achieve secure multi-exection by code transformation. While their trans-
formation is defined over an specific programming language, ours in Section 3
is described for interaction trees and thus more general. Under the same sched-
uler and security condition as Devriese and Piessens, Barthe et al. prove the
soundness and precision of the transformed code. Focusing only on implementa-
tion issues, Jaskelioff and Russo [23] provide secure multi-execution for Haskell
programs via a library. In that work, the authors propose a pure description
of the I/O operations of programs that influenced the adoption of interaction
trees in this paper. In order to deal with timing leaks, authors in [7, 17] require
a total order of the lattice and choose a specific scheduler. Instead, authors
in [24] describe a range of schedulers capable of preventing timing leaks which
depends on the comparability of the elements in the lattice. In this work, we
ignore the external timing covert channel for the sake of simplicity and pre-
cision of our enforcement. However, due to the modularity of our approach,
we could easily apply practical black-box techniques [3, 50] to mitigate timing
leaks. Bielova et al. [9] adapt secure multi-execution for web browsers. Similarly
to this work, they consider a notion of secure runs for which they can provide
transparency guarantees, i.e., that the behaviour of those runs is not altered by
secure multi-execution. None of the works described above [7, 9, 12, 14, 17, 24]
can preserve the interleaving of events generated at different security levels as
well as report when insecurities occur. Instead, at the price of not consider-

29

ing timing covert channels, our work describes a scheduling strategy capable
of preserving such order and detecting insecure actions violating ID-security.
Focusing on extending secure multi-execution, and independent of this work,
Rafnsson and Sabelfeld [33] propose a scheduler that is also able to preserve the
order of events. Their work lifts the totality assumptions on input channels, i.e.
that inputs are always available, and introduce means for declassification. Our
monitor might be able to benefit from these results since it uses secure-multi
execution underneath.

Faceted values Focusing on gaining performance, Austin and Flanagan [6]
proposed a semantics based on faceted values that simulates multiple executions
in one run. Differently from this work, execution with faceted values requires
a full description of the underlying programming language semantics. They
provide no formal guarantees that the interleaving of output events at different
security levels is preserved. Similarly to secure multi-execution, this approach
is not capable of detecting when insecurities occur during the execution of pro-
grams.

Non-interference for reactive systems Bohannon et al. [11] define several
non-interference notions for reactive systems including ID- and CP-security.
While CP-security provides stronger guarantees, it is more difficult to enforce by
information-flow techniques. As noticed by Rafnsson and Sabelfeld [32], ID and
CP-security are termination-insensitive, making possible to leak secret values by
brute force attacks. Modern information-flow tools like Jif [30] (based on Java),
SPARK Examiner [13] (based on Ada), and the sequential version of LIO [42]
(based on Haskell) are not strong enough to avoid these leaks. For deterministic
systems like the ones we consider, the bandwidth of leaking information by
exploiting outputs in combination with termination is logarithmic in the size
of the secret, i.e. it takes exponential time in the size of the secret to leak
its whole value [1]. Nevertheless, the bandwidth can be reduced by applying
buffering techniques [32]. We could easily adapt our multi-execution monitor to
do that.

Interaction trees The interaction trees used to model reactive systems in
this work are based on the coalgebraic view of systems [21]. Swierstra and Al-
tenkirch [43, 44] use interaction trees to provide a functional model of some
of the features of Haskell’s I/O monad such as mutable state, interactive pro-
gramming and concurrency. Differently from us, they do not consider reactive
systems.

8 Summary

We propose multi-execution monitoring, a novel technique combining execu-
tion monitoring and secure multi-execution. This technique precisely detects
actions that reveal information under the notion of ID-security. Consequently,

30

we keep alarms to the minimum. We also prove that the monitor provides
good transparency guarantees for the progress-sensitive non-interference notion
of CP-security. To achieve these results, we rely on a scheduling strategy for
secure multi-execution which allows us to preserve the interleaving of events,
and the notions of ID-secure and CP-secure inputs.

Having the foundations for our multi-execution monitor, we can take our
work into several future directions. Interaction trees can be easily adapted to
model interactive programs [43, 44] (by adding one constructor Stop and modify-
ing the Read constructor to let the program, instead of the environment, choose
the channel.) However, interactive programs would require the modification of
the secure multi-execution mechanism in order to consider default values for
producers reading data from higher security levels. Modelling non-determinism
is another interesting direction to explore. To model non-determinism, instead
of considering one interaction with the environment at the time, one could con-
sider finite sets of them [21]. This modification demands a change in the notion
of similarity depending on attackers’ power [31, 41, 47]. Clearly, this extension
requires to extend secure multi-execution to account for non-determinism while
being permissive, which is an open challenge. Declassification [38], or intended
release of information, is a desirable feature of any practical information-flow
system. Taking the declassification policy of delimited release [36], Askarov and
Sabelfeld [2] show techniques to dynamically enforce it. We believe that our
monitor could enforce declassification permissively. For that, we would extend
the interaction tree model with a special constructor indicating a declassifica-
tion action. Every time that the original program reads a secret data that
would eventually be declassified, our monitor forwards it to the public produc-
ers. Then, when reaching a declassification point, the original program and
the public producers need to be sync: they should both release the same val-
ues; otherwise, the original program might be releasing more information than
expected.

References

[1] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive
noninterference leaks more than just a bit. In Proceedings of the 13th Eu-
ropean Symposium on Research in Computer Security: Computer Security,
ESORICS ’08. Springer-Verlag, 2008.

[2] A. Askarov and A. Sabelfeld. Tight enforcement of information-release
policies for dynamic languages. In Proceedings of the 22nd IEEE Com-
puter Security Foundations Symposium, Washington, DC, USA, 2009. IEEE
Computer Society.

[3] A. Askarov, D. Zhang, and A. C. Myers. Predictive black-box mitigation
of timing channels. In Proc. of the 17th ACM conference on Computer and
Communications Security. ACM, 2010.

[4] T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow

31

analysis. In Proc. ACM Workshop on Programming Languages and Anal-
ysis for Security (PLAS), June 2009.

[5] T. H. Austin and C. Flanagan. Permissive dynamic information flow anal-
ysis. In Proceedings of the 5th ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security, PLAS ’10. ACM, 2010.

[6] T. H. Austin and C. Flanagan. Multiple facets for dynamic information
flow. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, POPL ’12. ACM, 2012.

[7] G. Barthe, J. M. Crespo, D. Devriese, F. Piessens, and E. Rivas. Secure
multi-execution through static program transformation. In Formal Tech-
niques for Distributed Systems (FMOODS/FORTE 2012), June 2012.

[8] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by
self-composition. In Proceedings of the 17th IEEE workshop on Computer
Security Foundations, CSFW ’04. IEEE Computer Society, 2004.

[9] N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive non-
interference for a browser model. In Proceedings of the 5th International
Conference on Network and System Security (NSS 2011),, Sept. 2011.

[10] A. Bohannon and B. C. Pierce. Featherweight Firefox: formalizing the core
of a web browser. In Proceedings of the 2010 USENIX conference on Web
application development, WebApps’10. USENIX Association, 2010.

[11] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic.
Reactive noninterference. In Proceedings of the 16th ACM Conference on
Computer and Communications Security, CCS ’09. ACM, 2009.

[12] R. Capizzi, A. Longo, V. N. Venkatakrishnan, and A. P. Sistla. Preventing
information leaks through shadow executions. In Proceedings of the 2008
Annual Computer Security Applications Conference, ACSAC ’08. IEEE
Computer Society, 2008.

[13] R. Chapman and A. Hilton. Enforcing security and safety models with an
information flow analysis tool. In Proc. of the 2004 annual ACM SIGAda
international conference on Ada. ACM, 2004.

[14] M. Cristiá and P. Mata. Runtime enforcement of noninterference by dupli-
cating processes and their memories. In Workshop de Seguridad Informática
WSEGI 2009, Argentina, 38 JAIIO, 2009.

[15] A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to anal-
ysis of secure information flow. In Proceedings of the Second international
conference on Security in Pervasive Computing, SPC’05. Springer-Verlag,
2005.

[16] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20(7):504–513, July 1977.

[17] D. Devriese and F. Piessens. Noninterference through secure multi-
execution. In Proc. of the 2010 IEEE Symposium on Security and Privacy,
SP ’10. IEEE Computer Society, 2010.

[18] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes

32

for enforcement mechanisms. ACM Trans. Program. Lang. Syst., Jan. 2006.

[19] D. Hedin and A. Sabelfeld. Information-flow security for a core of
JavaScript. In Proc. IEEE Computer Sec. Foundations Symposium. IEEE
Computer Society, 2012.

[20] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Protecting browser
state from web privacy attacks. In Proceedings of the 15th international
conference on World Wide Web, WWW ’06. ACM, 2006.

[21] B. Jacobs and J. Rutten. A Tutorial on (Co)Algebras and (Co)Induction.
Bulletin of the European Association for Theoretical Computer Science,
62:222–259, 1997.

[22] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical study of
privacy-violating information flows in JavaScript web applications. In Pro-
ceedings of the 17th ACM conference on Computer and communications
security, CCS ’10. ACM, 2010.

[23] M. Jaskelioff and A. Russo. Secure multi-execution in Haskell. In Proc.
Andrei Ershov International Conference on Perspectives of System Infor-
matics, LNCS. Springer-Verlag, June 2011.

[24] V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and termination-
sensitive secure information flow: Exploring a new approach. In Proc. of
IEEE Symposium on Sec. and Privacy. IEEE, 2011.

[25] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mecha-
nisms for run-time security policies. International Journal of Information
Security, Feb. 2005.

[26] M. T. Louw, K. T. Ganesh, and V. N. Venkatakrishnan. AdJail: practical
enforcement of confidentiality and integrity policies on web advertisements.
In Proceedings of the 19th USENIX conference on Security, USENIX Secu-
rity’10, Berkeley, CA, USA, 2010. USENIX Association.

[27] J. Magazinius, A. Askarov, and A. Sabelfeld. A lattice-based approach to
mashup security. In Proceedings of the 5th ACM Symposium on Informa-
tion, Computer and Communications Security, ASIACCS ’10. ACM, 2010.

[28] J. Magazinius, A. Russo, and A. Sabelfeld. On-the-fly inlining of dynamic
security monitors. In Proceedings of the International Information Security
Conference, SEC, 2010.

[29] J. McLean. A general theory of composition for trace sets closed under se-
lective interleaving functions. In Proceedings of the 1994 IEEE Symposium
on Security and Privacy, SP ’94. IEEE Computer Society, 1994.

[30] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nys-
trom. Jif: Java information flow. Software release. Located at
http://www.cs.cornell.edu/jif, July 2001.

[31] W. Rafnsson, D. Hedin, and A. Sabelfeld. Securing interactive programs.
In Proc. IEEE Computer Sec. Foundations Symposium. IEEE Computer
Society, 2012.

[32] W. Rafnsson and A. Sabelfeld. Limiting information leakage in event-based

33

communication. In Proceedings of the ACM SIGPLAN 6th Workshop on
Programming Languages and Analysis for Security, PLAS ’11. ACM, 2011.

[33] W. Rafnsson and A. Sabelfeld. Secure multi-execution: fine-grained,
declassification-aware, and transparent. Submitted, Feb. 2013.

[34] A. Russo and A. Sabelfeld. Securing timeout instructions in web applica-
tions. In Proc. IEEE Computer Sec. Foundations Symposium. IEEE Com-
puter Society, July 2009.

[35] A. Sabelfeld and A. C. Myers. Language-based information-flow security.
IEEE J. Selected Areas in Communications, 21(1):5–19, Jan. 2003.

[36] A. Sabelfeld and A. C. Myers. A model for delimited information release.
In Proc. International Symp. on Software Security (ISSS’03), volume 3233
of LNCS, pages 174–191. Springer-Verlag, Oct. 2004.

[37] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding the
roller coaster of information-flow control research. In Proc. Andrei Ershov
International Conference on Perspectives of System Informatics, LNCS.
Springer-Verlag, June 2009.

[38] A. Sabelfeld and D. Sands. Dimensions and principles of declassification.
In Proc. IEEE Computer Sec. Foundations Workshop, pages 255–269, June
2005.

[39] F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst.
Secur., 2000.

[40] P. Shroff, S. Smith, and M. Thober. Dynamic dependency monitoring to
secure information flow. In Proceedings of the 20th IEEE Computer Security
Foundations Symposium, CSF ’07. IEEE Computer Society, 2007.

[41] G. Smith and D. Volpano. Secure information flow in a multi-threaded
imperative language. In Proc. ACM Symp. on Principles of Programming
Languages, pages 355–364, Jan. 1998.

[42] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic in-
formation flow control in Haskell. In Haskell Symposium. ACM SIGPLAN,
September 2011.

[43] W. Swierstra. A Functional Specification of Effects. PhD thesis, University
of Nottingham, November 2008.

[44] W. Swierstra and T. Altenkirch. Beauty in the beast: A functional se-
mantics of the awkward squad. In Haskell ’07: Proceedings of the ACM
SIGPLAN Workshop on Haskell, pages 25–36, 2007.

[45] T. Terauchi and A. Aiken. Secure information flow as a safety problem. In
Proceedings of the 12th international conference on Static Analysis, SAS’05.
Springer-Verlag, 2005.

[46] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.
Cross-site scripting prevention with dynamic data tainting and static anal-
ysis. In Proc. Network and Distributed System Security Symposium, Feb.
2007.

[47] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent

34

language. J. Computer Security, 7(2–3), Nov. 1999.

[48] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow
analysis. J. Computer Security, 4(3):167–187, 1996.

[49] Williams and D. Wichers. OWASP Top 10 2010. http://www.owasp.org/
index.php/Top_10_2010, 2010.

[50] D. Zhang, A. Askarov, and A. C. Myers. Predictive mitigation of timing
channels in interactive systems. In Proc. of the 18th ACM conference on
Computer and Communications Security. ACM, 2011.

A Interaction trees for JavaScript-like Programs

We show how to obtain the corresponding interaction tree for programs in the
JavaScript-like language of Figure 2. We assume that every handler uses variable
x to store the message received, and we extend the set of commands C with an
special symbol c|. Making these assumptions, we can reinterpret p as mapping
from channels to the set C ∪ {c|} as follows.

(.)m = λch. c|
(ch(x){c}; p)m = λch′. (if ch = ch′ then c else (p)m)

The definition above simplifies our transformation, since we can treat uni-
formly all input events. We note (p)m as pm for simplicity.

A state s is a tuple (pm, µ, c), where

I pm is a mapping from channels to C∪{c|} (the re-interpretation of a reactive
program p as a mapping);

I µ is a mapping from variables to values, the memory;

I c ∈ C∪{c|} is the command being executed by the machine in response to
an input event, or c| if the system is ready to receive an input.

We name State the set of states for our JavaScript-like reactive program.
Given a state s = (pm, µ, c), we can compute the next interaction of s with
the environment. An interaction is an element in the set Signal = {↓, ↑chv
,�}. Interaction ↓ is raised if s is a consumer state, i.e. if c = c|. Signal
↑chv is raised when c will produce an output message (ch, v). Otherwise, the
next step of s is silent, represented by signal �. Figure 6 defines a function

step : State → Signal × State. We write s
i−→ s′ for step(s) = (i, s′).

The definition of step makes use of some auxiliary functions. The first one is
an evaluation function ⇓, such that (µ, e) ⇓ v iff expression e evaluates to value
v in memory µ. We assume that ⇓ is a side-effect free function. Second, function
parse takes an string s and returns the command denoted by it if successfully
parsed. For simplicity, if there is an error when parsing s, we assume parse
returns skip. The rules are self-explanatory and therefore we do not discuss
them.

35

(pm, µ, c|)
↓−→ (pm, µ, c|) (pm, µ, skip)

�−→ (pm, µ, c|)

(µ, e) ⇓ v

(pm, µ, x := e)
�−→ (pm, µ[x 7→ v], c|)

(pm, µ, new ch(x){c}) �−→ (pm[ch 7→ c], µ, c|)

(µ, e) ⇓ v

(pm, µ, out(ch,e))
↑chv−→ (pm, µ, c|)

(µ, e) ⇓ 0

(pm, µ, if e {c}{c′}) �−→ (pm, µ, c
′)

(µ, e) ⇓ v v 6= 0

(pm, µ, if e {c}{c′}) �−→ (pm, µ, c)

(µ, e) ⇓ 0

(pm, µ, while e do c)
�−→ (pm, µ, c|)

(µ, e) ⇓ v v 6= 0

(pm, µ, while e do c)
�−→ (pm, µ, c; while e do c)

(pm, µ, c)
i−→ (p′m, µ

′, c|)

(pm, µ, c; c
′)

i−→ (p′m, µ
′, c′)

(pm, µ, c)
i−→ (p′m, µ

′, c0) c0 6= c|

(pm, µ, c; c
′)

i−→ (p′m, µ
′, c0; c

′)

(pm, µ, eval(s))
�−→ (pm, µ, parse(s))

Figure 6: Next interaction for a reactive state

Given a state s = (pm, µ, c), and using function step, Figure 7 shows how to
map interactions from s into interaction trees. The effects on the environment
(i.e. �, ↓, and ↑chv) are simply mapped into the constructors of interaction
trees. The interesting case is the one related to input events. When processing
input events, the interaction tree describes that, when an event arrives, the
corresponding event handler is invoked (pm(ch)), and variable x gets updated
with the received value.

We now define function J−K from Section 2.2 as follows.

J−K : Prg ×M → React
JpK(µ) = J(pm, µ, c|)Kst

B Scheduler Independent Transparency for Se-
cure Multi-Execution

In Sect. 3 and Sect. 4, we provide security (Proposition 7) and transparency
(Theorem 9) for SME under the ops scheduler. These results, however, can
be generalized for arbitrary schedulers when the interleaving of events from

36

J−Kst : State→ React
JsKst = let (i, (pm, µ, c)) = step(s) in
case i of
� → Step (J(pm, µ, c)Kst)
↑chv → Write (ch, v, J(pm, µ, c)Kst)
↓ → Read (λ(ch, v). J(pm, µ[x 7→ v], pm(ch))Kst)

Figure 7: Generation of interaction trees for Javascript-like programs

different security levels is not relevant.
The key observation to achieve the generalization is to be aware of schedulers

which might produce leaks depending when inputs are consumed. To illustrate
this point, we assume the (malicious) scheduler sm = [?, L, ?, . . . , ?, . . .], i.e., an
scheduler which runs the receiver, then the public producer and then infinitly
often the receiver. Assume the program p:

p

read H(x) skip

read L(x) write(L, x)

By inspecting the code, this program seems secure. However, when run under
secure multi-execution with the sm scheduler, it leaks information. More specif-
ically, let us take the inputs i = [(H, 1), (L, 1)] and i′ = [(L, 1)], where i ∼ID

L i′.
Then,

(sme(sm, p), i)⇒ [•, (L, 1)]

and
(sme(sm, p), i

′)⇒ [•, •]

. where [•, •] 6∼ID

L [•, (L, 1)]. The leak is produced by the scheduler which exploits
the information regarding the amount of inputs in its policy [?, L, ?, . . . , ?, . . .].
To avoid such leaks, we make schedulers not capable to distinguish when pro-
grams are done consuming inputs. For that, we redefine the evaluation relation
to diverge when no inputs are present.

Definition TR 16 (New semantics for React). The evaluation relation V ⊆
(React× I)×O is coinductively defined by the folowing rules, where we write
(t, i)V o for (t, i, o) ∈V.

(R′1)
(Read f, [])V o

(Read f, [])V • :: o
(R′2)

(f(e), i)V o

(Read f, e :: i)V • :: o

(W ′)
(t, i)V o

(Write (e, t), i)V e :: o
(S′)

(t, i)V o

(Step t, i)V • :: o

Definition 16 ensures that t will produce a stream with any input i. It is
easy to show the following lemmas, relating ⇒ and V.

37

Lemma TR 17. Let t an interaction tree and i an input colist such that (t, i)⇒
o and (t, i)V o′. If fin(o) then o′ ≡ o++⊥, and if inf (o) then o ≡ o′.

Proof. By coinduction on the derivation of (t, i)⇒ o.

Lemma TR 18. Let t an interaction tree and i an input colist such that (t, i)⇒
o and (t, i)V o′. Then ∀`, o ∼CP

` o′.

Proof. Immediate from Lemma TR 17.

Replacing ⇒ by V in the definition of ID-security, we obtain a new notion
of security for reactive systems.

Definition TR 19. An interaction tree t is termination-ignoring ID-secure iff,
for every level ` and input colists i, i′ such that (t, i) V o and (t, i′) V o′,
i ∼ID

` i′ implies o ∼ID

` o′.

Note that if t is ID-secure, then t is termination-ignoring ID-secure. The
following proposition generalize Proposition 7 to an arbitrary scheduler.

Proposition TR 20. Let t ∈ React and s ∈ Sch. Then, the interaction tree
sme (s, t) is termination-ignoring ID-secure.

We prove that sme preserves the semantics of ID-secure programs when the
interleaving of events at different security levels is not relevant.

Theorem 24 (ID-Level-by-level semantic preservation for secure inputs). Let
t be an interaction tree, i an input colist ID-secure for t, and o an output colist.
For any scheduler s, if (t, i)V o, (sme(s, t), i)V o′ then o 'ID o′.

Since every input is secure for non-interferent programs, we have the follow-
ing corollary.

Corollary 25 (ID-level-by-level semantics preservation). Let t be a ID-secure
interaction tree, i an input colist, and o and output colists. For any scheduler
s, if (t, i)V o, (sme(s, t), i)V o′ then o 'ID o′.

Proof. Since t is an ID-secure interaction tree, by lemma 16, i is ID-secure for
t, and we can apply theorem 24.

38

