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Saturated hydraulic conductivity (Ks) is an important soil characteristic affecting soil water storage, runoff
generation and erosion processes. In some areas where high-intensity rainfall coincides with low Ks values
at shallow soil depths, frequent overland flow entails dense drainage networks. Consequently, linear struc-
tures such as flowlines alternate with inter-flowline areas. So far, investigations of the spatial variability of
Ks mainly relied on isotropic covariance models which are unsuitable to reveal patterns resulting from linear
structures. In the present study, we applied two sampling approaches so as to adequately characterize Ks

spatial variability in a tropical forest catchment that features a high density of flowlines: A classical nested
sampling survey and a purposive sampling strategy adapted to the presence of flowlines. The nested sam-
pling approach revealed the dominance of small-scale variability, which is in line with previous findings.
Our purposive sampling, however, detected a strong spatial gradient: surface Ks increased substantially as
a function of distance to flowline; 10 m off flowlines, values were similar to the spatial mean of Ks. This
deterministic trend can be included as a fixed effect in a linear mixed modeling framework to obtain realistic
spatial fields of Ks. In a next step we used probability maps based on those fields and prevailing rainfall inten-
sities to assess the hydrological relevance of the detected pattern. This approach suggests a particularly good
agreement between the probability statements of Ks exceedance and observed overland flow occurrence
during wet stages of the rainy season.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The saturated hydraulic conductivity (Ks) exerts a dominating
influence on the partitioning of rainfall in vertical and lateral flow
paths. Therefore, estimates of Ks are essential for describing and
modeling hydrological processes. For such applications, it might be
beneficial to characterize not only the frequency distribution of Ks

but also its spatial structure as the spatial organization of soil proper-
ties, among them Ks, strongly influences runoff generation (Herbst
et al., 2006; Merz and Bárdossy, 1998; Merz and Plate, 1997; Mueller
et al., 2007; Taskinen et al., 2008). According to the majority of studies
which investigated spatial correlations of Ks, the size of the area of
interest determines whether long-range or short-range autocorrelation
dominates (Zimmermann et al., 2008). In large research areas, the
variation of Ks is dominated by long-range processes associated with
differences in parent material and land use (Cemek et al., 2007; Iqbal
et al., 2005). In smaller areas, which are homogeneous with respect
to these factors, the predominant short-range autocorrelation of Ks

(Duffera et al., 2007; Mallants et al., 1996; Mohanty et al., 1991;
Sobieraj et al., 2004; Zimmermann and Elsenbeer, 2008) is attributed
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to local variations in soil structure (Mohanty et al., 1991; Sobieraj
et al., 2004). In the latter situation, the spatial prediction of Ks values at
unsampled locations is extremely difficult due to the large kriging
variance in between measurement locations.

In addition to the variability across spatial domains, Ks shows
pronounced changes with soil depth. In the majority of cases, mean
Ks decreases with increasing soil depth (e.g. Ahuja et al., 1984;
Bonell et al., 1981; Chappell and Sherlock, 2005; Ziegler et al., 2004;
Zimmermann and Elsenbeer, 2008), a decrease some attribute to
higher clay contents or a lower biogenic macroporosity in subsurface
(>0.2 m depth) compared to surface (0–0.2 m depth) soil layers
(e.g. Ahuja et al., 1984; Bonell et al., 1981). In areaswhere a pronounced
decrease of Ks at a shallow depth coincides with the occurrence of large
and intense rainfall events, saturation-excess overland flow occurs fre-
quently (Bonell and Gilmour, 1978; de Moraes et al., 2006; Elsenbeer
and Vertessy, 2000; Germer et al., 2010). Interestingly, several of
the aforementioned studies described a runoff mechanism distinct
from that of other well-known overland flow-prone catchments
(e.g. Dunne and Black, 1970a, 1970b): in areas with extensive near-
surface impeding layers, overland flowmay essentially be “widespread”
(Bonell and Gilmour, 1978), whereas overland flowwhich originates as
a consequence of a near-streamwater table rise is restricted to relatively
small (downslope) areas (Dunne and Black, 1970a, 1970b). Studies
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following the investigation of Bonell and Gilmour (1978) modified
the notion of “widespread” in that overland flow can be pervasive
on a hillslope yet restricted to certain microtopographic features such
as flowlines and swales (Bonell et al., 1981; Elsenbeer and Vertessy,
2000; Loos and Elsenbeer, 2011).

Spatially organized overland flow on hillslopes, however, hardly
agrees with an uncorrelated Ks pattern although the latter might be
expected on slopes with homogeneous soil and vegetation cover
(see first part of this section). In fact, it is more likely that the pattern
of Ks reflects the spatial organization of overland flow, or vice versa.
To overcome the apparent mismatch between reported Ks patterns
and hydrological observations we hypothesized that Ks varies as a
function of distance to flowline.

The main objective of our study is to test this hypothesis. Moreover,
wewish to illustrate how prior hydrological knowledge (in our case the
position of flowlines) can be used to uncover Ks patterns. Finally, we
wish to place our data into a hydrological context to inform studies
which apply distributed hydrological models on the hillslope to small
catchment scale (e.g. Herbst et al., 2006; Merz and Bárdossy, 1998;
Weiler andMcDonnell, 2004). To achieve our aims, wemodeled Ks spa-
tial variability in an overland flow-prone forest catchment (Godsey et
al., 2004; Zimmermann et al., 2012) following two different sampling
approaches: in a first step, we employed a nested spatial sampling
design (Youden and Mehlich, 1937) which reveals the spatial scales
where most variation occurs. This or similar sampling approaches are
standard and have been applied in several of the aforementioned Ks

studies. Our motivation to employ nested spatial sampling was to test
its suitability to uncover the hypothesized Ks pattern. In a second step,
we applied a purposive sampling strategy adapted to the presence of
flowlines. If Ks were indeed linked to the preferential occurrence of
overland flow in flowlines, the second approach should clearly reveal
a discernible spatial pattern. Finally, we combined the datasets and
performed spatial predictions of Ks in order to assess the hydrological
relevance of the detected Ks patterns.

2. Methods

2.1. Study site

The study site, Lutzito catchment (LC fromhereon), is a 3.3 ha catch-
ment located on Barro Colorado Island (BCI), Panama (9° 9′ 32″ N, 79°
50′ 17″ W; Fig. 1a,b). The island was isolated from the main land in
1914 after damming the Chagres River to form Lake Gatun, which is
part of the Panama Canal. The topography of LC is heterogeneous:
channels and rills dissect slopes that reach 35° in places. Most of the
slopes in LC feature flowlines, which drain into the channel network
(Fig. 1c,d; see also Video 1, Supplementary material).

The vegetation of BCI has been classified as tropical semideciduous
moist forest (Foster and Brokaw, 1982). The forest in LC is secondary
growth older than 100 years (Foster and Brokaw, 1982; Kenoyer, 1929).

The climate features distinct wet and dry seasons. The wet season
lasts from May to mid-December. Total annual rainfall averages
2641±485 mm(mean±1 sd, n=82, data from1929 to 2010, courtesy
of the Environmental Sciences Program, Smithsonian Tropical Research
Institute, Republic of Panama). Long-term averages of monthly rainfall
indicate a fairly uniform rainfall distribution during the wet season
with a maximum of around 400 mm in November. There is, however,
a large year-to-year variation, and pronounced dry spells are common
during the wet season.

LC is underlain by tuffaceous siltstone of the Caimito Marine Facies
(Woodring, 1958). Soils are classified as Eutric Cambisols (F.A.O.,
1998) or, following USDA criteria (Soil Survey Staff, 2006), as Typic
Eutrudepts (Baillie et al., 2007) and reach depths between 0.3 m on
some ridges and steep slopes and ~1 m elsewhere. Data of a recent
soil survey (Baillie et al., 2007) suggest a characteristic sequence of
soil texture in our research area: silty loams and clay loams prevail
at a depth of 0–5 cm, silty clays occur at depths of 5–40 cm, and
clay loams occupy the bottom of the soil profile (40–75 cm).

At the end of the dry season (May) and to a lesser extent during
prolonged dry periods (June–July), soils in LC show cracks up to
2 cm wide and 10 cm deep (Dietrich et al., 1982) due to a substantial
admixture of smectite in the clay fraction (Grimm et al., 2008).
During the progressing wet season, cracks close and the degree of sat-
uration (i.e. wetness) in the upper soils increases to more than 60%
(Zimmermann et al., 2012). The spatial mean of infiltrability exceeds
rainfall intensities substantially (Zimmermann et al., 2012); there is,
however, evidence for a strong decrease of Ks with depth (Godsey
et al., 2004; Zimmermann et al., 2012). Given the prevailing rainfall
characteristics and soil moisture conditions during the wet season,
this depth gradient of Ks likely results in a near-surface perched
water table and explains observations of frequent saturation-excess
overland flow (Dietrich et al., 1982; Godsey et al., 2004; Loos and
Elsenbeer, 2011; Zimmermann et al., 2012).

2.2. Ks measurements

Undisturbed soil samples were taken in the wet season of 2009
and 2010 using a drop hammer method on leveled ground. The core
cylinders were 3.65 cm and 6 cm in radius and height, respectively.
After cutting the core ends level with a sharp knife we slowly saturated
the samples upside down for a period of 48 h to prevent air entrapment
(Reynolds et al., 2002). Subsequently, we applied a constantwater head
and recorded the flow rate through the cores per time unit, following
themethodology described by Reynolds et al. (2002). After establishing
a constant flow rate we measured percolated water volume per time
unit and calculated Ks according to Darcy's equation for saturated
conditions:

q ¼ −Ks
dh
ds

� �
ð1Þ

where q refers to the flux density (m s−1), Ks is the saturated hydraulic
conductivity (m s−1), and dh/ds is the hydraulic gradient (m m−1).
The flux density can be expressed as q=Q/A with Q being the water
flux (m3 s−1) and A the cross section the water flows through (m2).

2.3. Sampling approaches

2.3.1. Nested spatial sampling approach
We chose an unbalanced nested sampling design (Oliver and

Webster, 1987; Youden and Mehlich, 1937) to explore the spatial
structure of Ks in Lutzito catchment. Nested sampling was adapted
from multi-stage hierarchical sampling (Youden and Mehlich,
1937). It treats a set of distances between sampling locations, which
are incremented in geometric progression, as stages in the hierarchy.
The central idea of the nested spatial sampling approach is that each
stage involves a particular source of variation of the target variable.
The contribution of each stage to the overall variance can then be
assessed by partitioning the total variance into components. If the var-
iance components for all scales shorter than or equal to a particular
length scale are accumulated then the result is an estimate of the
variogram with lag distances equal to the length scales (Miesch, 1975).

In the present study, we selected a 120 m by 120 m sized plot
(Fig. 1c), which we subdivided into 30 m by 30 m grid cells. Nodal lo-
cations of the grid cells constituted the main stations of our nested
sampling design, and from them we chose further sampling locations
(the substations) at distances of 10 m (substations 1), 3.3 m (substa-
tions 2), 1.1 m (substations 3), and 0.36 m (substations 4). According
to the requirements of nested spatial sampling, we determined the
directions between main stations and substations 1, and between all
further substations randomly. Altogether, we took 118 and 111 intact
soil cores at the depths of 0–6 cm and 6–12 cm, respectively.
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Fig. 1. (a) Location of Barro Colorado Island (BCI) in Panama, and (b) location of Lutzito catchment (LC) on BCI. (c) Map of Lutzito catchment; numbered brown lines refer to
flowlines, crosses mark Ks sampling positions and circles depict overland flow monitoring sites. (d) Flowline #2, photograph was taken in the lower part of the flowline after a
heavy rainfall event.

3A. Zimmermann et al. / Geoderma 195–196 (2013) 1–11
2.3.2. Purposive sampling approach
Prior to the purposive sampling campaign we monitored the oc-

currence of overland flow throughout three consecutive rainy seasons
(2007–2009) using overland flow detectors (Kirkby et al., 1976) that
we installed in flowlines at regular distances of 5 m. The monitoring
started in flowlines that we had identified in the field during rain
events (see Video 1, Supplementary material); over the years,
ever-increasing field knowledge resulted in the instrumentation of
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all major flowlines throughout their entire lengths. The data of this
monitoring, which comprised 98 rainfall events, provided the neces-
sary information to determine location, extent and activity of all
flowlines in the research area (Fig. 1c). Interestingly, some flowlines
nearly reach the catchment divide (e.g. flowline 1, Fig. 1c).

Our purposive sampling strategy involved the collection of soil
cores in flowlines, 5 m off flowlines, and 10 m off flowlines; all
cores were taken at a depth of 0–6 cm. We dedicated our sampling
resources to the upper soil layer where we anticipated the strongest
spatial gradient of Ks. In total we sampled 10 of the 11 flowlines
under previous monitoring; flowline #11 was excluded because of
its vague spatial extent. We determined Ks within flowlines right
below the former locations of the overland flow detectors; hence,
sampling locations were separated by 5 m distances. The samples
outside flowlines were taken perpendicular to the direction of
the flowline at both 5 m and 10 m distance to flowline sampling
locations. The side (left or right to the particular flowlines) was
pre-determined randomly unless major obstacles such as trees,
streams or other flowlines precluded the chosen side. In doing so,
we took 86 samples within flowlines and another 86 each at distances
of 5 and 10 m. The sample size per flowline varied between 3 and 18
depending on flowline length.

2.4. Data analysis

2.4.1. Nested sampling analysis
After an exploratory data analysis including the identification of

an appropriate data transformation (cf. Section 3.1), we examined
the variance components for each sampling distance using a linear
mixed-effects model (Pinheiro et al., 2009). We then accumulated
the variance components and calculated the proportion of each com-
ponent to the total variance. Because the estimation of variance com-
ponents from a nested spatial sampling is most often accompanied by
large uncertainties (Papritz et al., 2011), we did not attempt to inter-
pret these results in terms of physical meaning but rather treated
them as a rough indication of the scales over which Ks shows spatial
correlation.

2.4.2. Exploratory data analysis of the purposive sample and comparisons
with nested sampling data

In this step we compared the three purposively sampled datasets
(Ks in flowlines, Ks 5 m off flowlines, Ks 10 m off flowlines) among
each other and with the nested sampling datasets by means of box
plot comparisons.

2.4.3. Geostatistical model of spatial variation of Ks

The Ks data that we obtained by both nested and purposive sam-
pling in the upper soil layer (0–6 cm depth) can be combined for a
geostatistical data analysis. In doing so, we model the spatial variabil-
ity of the sample data, which can subsequently be reproduced by
stochastic simulations. As Lark et al. (2006) state, the geostatistical
model of spatial variation is a special case of a linear mixed model
where the data are modeled as the additive combination of fixed
effects, random effects and independent random error; the latter
two are described by the variogram. As suggested by the same au-
thors, we used residual maximum likelihood (REML) to estimate the
variogram parameters, whereupon the mixed model equation is
solved to estimate the fixed and random effects; the fixed effects
can be the unknown mean or the coefficients of a trend model (Lark
et al., 2006). For our case study of Ks spatial variation, we ascribed
the fixed effects to an external drift variable, the distance to flowline
of each point in space, which was calculated on a 1 m grid based on
the marked location of the field-determined flowlines. We then ap-
plied the t statistic to evaluate the null hypothesis that the coeffi-
cients of the trend model are zero; this procedure enables statistical
inference about the effect of distance to flowline on the spatial
variation of Ks. Since the maximum distance to flowlines of our pur-
posively sampled data is 10 m, we fixed the maximum distance of
the drift variable to 10 m, an approach justified a posteriori by our
results (cf. Section 3.2).

Any geostatistical analysis requires a proper exploratory data
analysis. Both the likelihood estimation of the variogram and sequen-
tial Gaussian simulations rely on the assumption of a joint Gaussian
data distribution. Whereas this assumption can only be justified
theoretically (see discussion in Lark et al., 2006), we can check the
uni- and bivariate distribution of the data after appropriate transfor-
mation. This was done using histograms and h-scattergrams. The
h-scattergrams are plots of all pairs of measurements which are
separated by a fixed distance; they enable us to detect outlying values
(Goovaerts, 1997). We assessed the performance of the variogram
model by leave-one-out cross-validation and calculated the statistic
θ(x) (Lark, 2000):

θ xð Þ ¼
z xð Þ−Ẑ xð Þ

n o2

σ2
K;x

; ð2Þ

where z(x) is the observed Ks at location x, Ẑ xð Þ is its kriged estimate,
and σK,x

2 is the kriging variance. The mean of θ(x) is called the mean
squared deviation ratio, MSDR (Webster and Oliver, 2001), and
should be 1 if the model of the variogram is accurate (Webster and
Oliver, 2001). Because outliers in the data will influence θ(x), we
also computed its median, which is 0.455 when a correct variogram
is used for kriging (Lark, 2000).

Upon the geostatistical modeling, we used sequential Gaussian
simulation (Goovaerts, 1997) to generate sets of values that repro-
duce the sample statistics while honoring the data at their locations
(conditional simulations). Each set of values constitutes a realization
of the spatial distribution of Ks, and the use of multiple realizations
provides us with a measure of spatial uncertainty (Goovaerts, 1997);
if, for instance, most realizations feature certain zones of low Ks we
can be confident that these areas actually exist. This is important
when we assess the hydrological relevance of the modeled Ks pattern
(cf. Section 2.4.4).

2.4.4. Assessment of hydrological relevance
The Ks measurements can be compared to rainfall intensities to get

a basic understanding of the hydrological consequences of observed
Ks patterns (Chappell and Sherlock, 2005). Since this study is limited
to the topsoil, a spatially significant exceedance of Ks by prevailing
rain intensities indicates the possibility of overland flow generation.

Rainfall intensities were extracted from a 22-year (1989–2010),
5-min resolution tipping bucket rainfall record from a clearing 250 m
away fromour study site (rainfall data by courtesy of the Environmental
Sciences Program, Smithsonian Tropical Research Institute, Republic of
Panama). Because tipping bucket measurements (Nbucket) usually
underestimate high intensity rainfall, we used complementary totalisa-
tor rainfall data of daily resolution (Ntotal, n=2825 days) for correction
of the tipping bucket record (Ncorrected). Assuming that underestimation
starts at a threshold amount per time step (Nthresh), above which the
measurement error increases linearly with c, we optimized Eq. (4) for
Nthresh and c to match the daily rainfall record.

Xtstep
i¼1

Ncorrected day; ið Þ¼! Ntotal dayð Þ ð3Þ

Ncorrected day; ið Þ ¼ Nbucket day; ið Þ þ max 0;Nbucket day; ið Þ−Nthreshð Þ⋅c ð4Þ

where tstep refers to the number of time steps per day.



Table 1
Summary statistics of the saturated hydraulic conductivity (Ks) datasets.

Dataseta NS-US NS-LS PS-Fl PS-Fl-5 PS-Fl-10 NS-PS

Depth (cm) 0–6 6–12 0–6 0–6 0–6 0–6
Sample size 118 111 86 86 86 342b

Ks (mm h−1)
Minimum 0.18 0.05 0.05 0.06 0.03 0.03
Lower quartile 5.5 0.8 0.9 5.1 13.4 3.3
Median 71.6 7.3 3.8 21.9 79.6 26.4
Upper quartile 312.8 44.2 16.8 56.9 318.2 144.5
Maximum 1691.2 1441.6 278.7 968.6 1692.8 1692.8
MADc 68.8 7.0 3.4 19.9 77.5 25.6
Mean 246.4 77.0 21.5 85.5 233.4 148.7
Std. dev. 393.1 205.9 46.3 165.3 331.0 278.8
Skewness 2.07 4.33 3.60 3.38 2.12 2.93

a Datasets are nested sampling in the upper soil layer (NS-US), nested sampling
lower soil layer (NS-LS), purposive sampling in flowlines (PS-Fl), purposive sampling
5-m off flowlines (PS-Fl-5), purposive sampling 10-m off flowlines (PS-Fl-10), and
combined data of nested and purposive sampling (NS-PS).

b 34 data values were excluded due to insufficient quality of geographic coordinates.
c MAD refers to the median absolute deviation.
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Based on the corrected tipping bucket data we first selected rain
events, which are defined as rainfall periods separated by at least
2 h without rainfall; one-tip-“events”were excluded from the record.
We then aggregated six 5-minute readings for events of at least
30-minute duration or all readings for shorter events, respectively.
From the aggregated data, we computed the maximum 30-minute
rain intensity per event. Last, we selected the minimum, the deciles,
and the maximum of these intensities as rainfall thresholds for the
comparison with the Ks values.

Our assessment of the hydrological relevance of the Ks data is
based on probability statements. First, we evaluated, separately for
each dataset, the frequency that a given rainfall intensity exceeds
the measured Ks values; high frequencies indicate a spatially signifi-
cant restraint to vertical percolation. This approach is based on the
frequency distribution of the measured Ks values and does inform
neither about the spatial extent nor about the continuity of impeding
patches, i.e. these patches may be highly localized or spatially clus-
tered. In order to overcome this limitation, we secondly used the
geostatistical model to perform 100 conditional simulations on a
1 m grid (cf. Section 2.4.3). These simulations were post-processed
to summarize the spatial uncertainty information. We displayed the
outcome in probability maps: at each simulated grid cell, the proba-
bility of Ks being lower than a given threshold rainfall intensity, is
evaluated as the proportion of the 100 simulated values that fall
below that threshold (Goovaerts, 1997).

2.4.5. Plausibility check of Ks exceedance probability maps
In the previous step of our analysis we created maps that show

the probability of a given rainfall intensity to exceed Ks in each grid
cell. To assess the plausibility of these maps we examined the rela-
tionship between the probability of Ks exceedance and field data of
overland flow occurrence, which we collected for 98 rainfall events
(cf. Section 2.3.2). For this analysis we generated probability maps
based on the maximum 30-minute rainfall intensity of each of the
98 rainfall events. Because our overland flowmonitoring was restricted
to flowlines, we extracted only the exceedance probabilities in flowline
areas, which were defined as grid cells having a distance to flowline
of less than one meter. We then plotted the event-dependent mean
probabilities versus the event-dependent fraction of responsive
overlandflow detectors. Ameaningful relationship between probability
of Ks exceedance and field data of overland flow occurrence would
provide evidence that the simulated Ks data can indeed be used for a
rough assessment of the expected extent of (near)-surface lateral flow
for given rainfall intensities.

2.4.6. Software
For all calculations, we used the software R, version 2.14.1 (R

Development Core Team, 2011). For the nested sampling analysis we
applied thepackage nlme (Pinheiro et al., 2009) and for the geostatistical
analysis we used the former package and geoR (Ribeiro and Diggle,
2001).

3. Results

3.1. Nested sampling analysis

Median Ks at 0–6 cm depth is 71.6 mm h−1 and drops markedly
to 7.3 mm h−1 at 6–12 cm depth (Table 1). After transformation to
log10, the large coefficients of skewness of the raw data reduce to
−0.33 and 0.01 for the datasets from 0 to 6 cm depth and 6 to
12 cm depth, respectively. At 0–6 cm soil depth, the proportions of
variance of each sampling stage to the total variance are as follows:
67% of the total variance lay already within the shortest separation
distance of 0.36 m, whereas only 3% can be ascribed to values 1.1 m
apart. Both the 3.3 m and the 10 m distance resulted in estimated
variance components of zero; that is, Ks from measurement locations
only 36 cm apart are as different as values 10 m apart. Only the larg-
est separation distance of 30 m yielded a further proportion of 30% to
the total variance. At a depth of 6–12 cm, the proportions of variance
were determined to be 79%, 19%, 0%, 0%, and 1% for distances of
0.36 m, 1.1 m, 3.3 m, 10 m, and 30 m, respectively. Hence, at both
soil depths it is the shortest separation distance of 36 cm which
entails the major proportion of the total spatial variability of Ks.

3.2. Exploratory data analysis of the purposive sample and comparisons
with nested sampling data

Box plot comparisons reveal a pronounced gradient of Ks with
increasing distance to flowlines: median Ks is 3.8 mm h−1 in
flowlines, increases to 21.9 mm h−1 5 m off flowlines, and eventually
approaches 79.6 mm h−1 at a distance of 10 m to a flowline (Table 1,
Fig. 2). Interestingly, there is a second gradient of Ks (Fig. 3): in prox-
imity to the channel network, that is, in the lower parts of flowlines,
Ks values tend to be very low, whereas in the uppermost parts of
flowlines Ks values approach those measured at 0–6 cm depth in
the nested sampling plot (cf. Figs. 2 and 3). The comparison of purpo-
sive and nested sampling datasets show that Ks values in flowlines are
not only markedly lower than Ks in the surrounding areas but Ks in
flowlines is also similar to Ks measured at 6–12 cm soil depth in the
nested-sampling plot (Table 1, Fig. 2). In contrast, Ks data from a
10 m distance to flowlines do not show any difference to the nested
sampling plot data from 0 to 6 cm depth (Table 1, Fig. 2).

3.3. Geostatistical model of spatial variation of Ks

The combined data (Table 1) show a large coefficient of skewness
(2.93). After transformation to log10 the coefficient of skewness indi-
cates a slight skewness to the left (−0.27) which is acceptable for fur-
ther geostatistical analyses (Webster and Oliver, 2001). Likewise, the
histogram of residuals from the trend model, which we plotted for
exploratory purpose, reveals an approximate Gaussian distribution
(Fig. 4a), and the h-scattergrams do not display outlying values (not
shown). Using the maximized log residual likelihood as criterion for
model selection, the data are modeled best with an exponential
variogram function (Table 2, Fig. 4b). The high nugget-to-sill ratio of
68% corroborates the results of the nested sampling analysis, which
attributed most variation to the smallest separation distance. The sat-
isfactory performance of this variogram model (Fig. 4b) is indicated
by an MSDR of 0.994 and a median of θ(x) of 0.486. We subsequently
used this model to simulate log10-transformed Ks values within
the simulation field (Fig. 1c), which we back-transformed in each
realization.
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distance to flowlines, respectively (all samples were taken at 0–6 cm depth).
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The observation of a gradient of Ks with increasing distance to
a flowline is supported by the results of the t statistic, which we
used to evaluate the null hypothesis that the coefficients of the
trend model (Table 2) are zero: fitting a linear trend model to the
log10-transformed data (cf. Section 3.3) resulted in a t-value of
2.53 for the intercept (p-value=0.012, d.f.=340) and of 8.62 for
the slope (p-value=9⋅10−16, d.f.=340), respectively. Hence, we can
conclude that the distance to flowline clearly influences the spatial
pattern of Ks.

3.4. Assessment of hydrological relevance

Our comparisons of rainfall intensities and Ks, which are based on
8124 rainfall events, clearly show the hydrological relevance of the
detected Ks patterns (Fig. 5): if we only considered the nested sam-
pling data at 0–6 cm depth, we would underestimate the influence
Distance to channel (m)
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Fig. 3. Box plot comparison of saturated hydraulic conductivity (Ks) measurements
grouped into classes of different distances to the channel network. The distance classes
0–15 m, 20–35 m, 40–55 m, and 60–75 m comprise a sample size of 38, 25, 11 and 8,
respectively. Two Ks measurements in a distance of >75 m are not included in the
comparison. Note: the boxplots are restricted to Ks values ≤150 mm h−1; two larger
values, one in the 0–15 m and one in the 40–55 m distance class are not shown.
of topsoil Ks on overland flow generation because even the highest
rainfall intensities do not exceed the majority of the Ks values. This
impression, however, changes completely if we also consider Ks

data from flowlines. In and around flowlines, the potential for over-
land flow generation increases substantially as high rainfall intensi-
ties, e.g. the 0.9 decile of the maximum 30-min rainfall intensity,
exceed 80% of flowline Ks values.

Our probability maps (Fig. 6) corroborate the findings of the com-
parisons between the Ks datasets and the range of rainfall intensities
(Fig. 5): Flowlines are clearly associated with the highest exceedance
probabilities, whereas even the largest rains should percolate verti-
cally through the 0–6 cm soil depth in areas 10 m off flowlines. The
probability maps display further interesting issues. Because these
maps are based on conditional simulations which use a very large
number of data points (cf. Section 2.4.3 and Fig. 6), they do not only
reflect the trend of Ks with distance to flowline but also capture a
trend of Ks within flowlines (cf. Fig. 3). Due to this feature, increasing
rainfall intensities do not simply cause the connection of patches with
a high probability of Ks exceedance anywhere in a flowline; instead
these patches (i.e. patches in blue) appear first and connect first in
the lower parts of the flowlines (cf. maps of the 0.3, 0.4, and the 0.5
decile of maximum 30 min-rainfall intensities, Fig. 6d–f). Moreover,
the probability maps reflect a larger spatial trend of Ks with lower
values in the downslope area (i.e. the lower part of the maps) and
higher Ks values, and hence lower exceedance probabilities, in up-
slope areas. This trendmay reflect a relation between Ks and the topo-
graphic wetness index which we calculated with a multiple flow path
algorithm. This correlation, however, is weaker than the correlation
between Ks and the distance to flowline (R2 of 0.10 vs. R2 of 0.19, lin-
ear regression model). Further DEM-derived topographic attributes
such as single flow path-based topographic wetness indices, slope,
upslope contributing area, or flow path length did not show any
correlation with our Ks data.

3.5. Plausibility of probability maps

Our comparison between the mean exceedance probability of Ks in
flowlines and monitoring data of overland flow response shows that
the calculated probability values and field data are related in a mean-
ingful way (Fig. 7a). That is to say, low and high probabilities of Ks

exceedance often match the minimum and maximum of overland
flow response, respectively. The overland flow response data of
2008, however, cause a large scatter. This is because 2008 was an
extremely dry year; in fact, this year ranks as the fifth-driest in the
long-term (1929–2010) rainfall record of Barro Colorado Island. As a
consequence, soil cracks persisted unusually long during that year
and even high intensity rainfalls caused only marginal overland
flow (Zimmermann et al., 2012). Overland flow response data of the
other years also show some low values, which are as well related to
early and mid-wet season events. If we restrict our analysis to late
wet season events, the relationship improves; that is, our probability
statements of Ks exceedance and field observations match better
(Fig. 7b). Even more important than the mere correlation is the fact
that overland flowdoes not start until themean exceedance probability
exceeds a threshold (Zehe et al., 2007) of about 50% and increases
steadily from there on. This agreement between exceedance probabili-
ties andmeasured overlandflowoccurrence corroborates the suitability
of spatial Ks data for an assessment of near-surface flow paths.

4. Discussion

4.1. Spatial variation of saturated hydraulic conductivity: detection of
pattern

In the first step of the present study, the nested sampling analysis
associated the bulk of Ks spatial variability with the very small
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separation distance of 0.36 m. Moreover, the variogram model
(Fig. 4b), which is based on Ks data of both sampling approaches
(cf. Section 2.4.3), also indicates the dominance of small-scale varia-
tion (cf. Section 3.3, Table 2). These results are clearly in line with
past research findings of areas of homogeneous soil and land cover
(Duffera et al., 2007; Mallants et al., 1996; Mohanty et al., 1991;
Sobieraj et al., 2004; Zimmermann and Elsenbeer, 2008). The purpo-
sive sampling strategy, however, reveals a strong link between the
proximity of a sampling point to a flowline and the corresponding
Ks value (Table 1, Fig. 2). Therefore, Ks shows a characteristic pattern
depending on the topographic position: a large variation of low and
high Ks values over short spatial scales prevails in inter-flowline
areas (i.e. areas in >10 m distance to a flowline), whereas Ks values
in proximity to flowlines tend to be lower due to the distinct gradient
of Ks with increasing distance to flowlines (Table 1, Fig. 2). Clearly,
this pattern is hard to detect using a sampling approach that focusses
on isotropic variation. Therefore, we recommend considering hydro-
logical flow paths during sampling, e.g. ephemeral drainage networks
on hillslopes, in order to account for deterministic trends of Ks

patterns.

4.2. Spatial variation of saturated hydraulic conductivity: origin of
pattern

The short-scale variation of Ks (cf. Section 3.1) and some very
high Ks values (Table 1) in inter-flowline areas can be attributed
to bioturbation-controlled macroporosity (e.g. Sobieraj et al.,
2002). However, the detected deterministic trends, i.e. low Ks in
flowlines, a decrease of Ks towards flowlines and towards the chan-
nel system into which flowlines drain, have to be explained by
Table 2
Results for fitting the geostatistical model by REML.

Trend model: Linear

Variogram model: Exponential

Variance model
Nugget 0.67
Partial silla 0.32
Rangeb 44.13

Fixed effects
Interceptc 0.78 (0.308)
Slopec 0.12 (0.014)

a Sill variance less the nugget variance.
b Distance parameter of the exponential correlation function.
c Values in brackets are standard errors.
another process. We hypothesize that the steady erosion in
flowlines (Zimmermann et al., 2012) removed the original topsoil,
which is why the uppermost soil layer in flowlines features hydro-
logical characteristics of a lower soil depth. The strikingly similar
Ks values in flowlines and in areas without flowlines at a depth of
6–12 cm (Table 1) corroborate this hypothesis. Our field observa-
tions indicate that flowlines are not necessarily well defined geo-
morphic features on hillslopes as they can be relocated by branch
and tree falls. The resulting anastomosing of flowlines offers an ex-
planation for the gradual decrease of Ks towards flowlines (Table 1);
moreover, it implies that the Ks pattern is not necessarily stable in
time. By chance, however, some flowlines have not been subject to
disturbance for a long time. In this case, the lowering of Ks towards
the flowline can only be explained by occasionally widespread over-
land flow (e.g. Godsey et al., 2004; Zimmermann et al., 2012) that
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Fig. 5. Frequency of rainfall intensities exceeding saturated hydraulic conductivity (Ks)
for the extremes and deciles of the maximum 30-minute rainfall intensity (maxI30, n=
8124 rainfall events) and various Ks datasets. The extremes and deciles of maxI30 refer
to the following rainfall intensities: minimum, 0.6 mm h−1; 0.1 decile, 1.2 mm h−1;
0.2 decile, 1.7 mm h−1; 0.3 decile, 2.3 mm h−1; 0.4 decile, 3.5 mm h−1; median,
5.2 mm h−1; 0.6 decile, 8.1 mm h−1; 0.7 decile, 12.7 mm h−1; 0.8 decile, 21.4 mm h−1;
0.9 decile, 36.4 mm h−1; and maximum, 184.8 mm h−1.
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we expect to occur due to the pronounced decrease of Ks with
depth: Whereas Ks of the surface soil away from flowlines is too
high to be exceeded even by the area's most intense rainstorms
(Fig. 6), heavy rainfall has the potential to involve the formation
of a perched water table at 6–12 cm depth (Fig. 5) and hence, satu-
ration excess overland flow. With increasing proximity to the flow-
line, flow increases in depth and so does its erosivity. The increasing
depth and frequency of overland flow could also explain the gradi-
ent of Ks within flowlines (Fig. 3). According to the above line of
reasoning, the development of a flowline provides a typical example
of a positive feedback process where the strong decrease of Ks with
depth induces a process (saturation excess overland flow) and, sub-
sequently, the development of functional elements (flowlines versus
inter-flowline areas) which then produce a pattern (spatial variability
of Ks).
4.3. Spatial variation of saturated hydraulic conductivity: hydrological
implications

It is remarkable that a variety of studies (Herbst et al., 2006; Merz
and Plate, 1997; Mueller et al., 2007) which used very different
approaches to derive spatial fields of Ks came to similar conclusions:
hydrological predictions based on Ks fields with a distinct, highly or-
ganized spatial structure (e.g. connected bands of low Ks) outperform
models which apply pure stochastic realizations of Ks. Our results
(Figs. 5 and 6) are in line with these findings insofar as the detected
deterministic component of the Ks pattern facilitates the understand-
ing of the hydrological response, that is, the high frequency of over-
land flow in flowlines (Loos and Elsenbeer, 2011; Zimmermann
et al., 2012). Yet, the field work necessary to uncover these patterns
of Ks is substantial, which is why several studies used auxiliary
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variables to generate Ks fields for hydrologic modeling. Merz and
Plate (1997), for instance, derived spatially-structured Ks fields by
relating Ks to the topographic wetness index. It will not always be
possible, however, to link DEM-derived topographic attributes to Ks

for two reasons. First, the tremendous small-scale spatial variation
of Ks (Fig. 2, Table 1) may mask its possible relationship with topog-
raphy (Elsenbeer and Vertessy, 2000; Leij et al., 2004). In other
words, deterministic trends in Ks patterns are inherently weak and
therefore are hard to detect. Second, DEM parameters can be computed
in many different ways, and it is known that different algorithms
produce strongly varying correlations with environmental variables
(Sørensen et al., 2006). In our case, only the application of a multiple
flow-direction algorithm reveals the weak correlation between Ks

and the topographic wetness index (cf. Section 3.4). Our findings
highlight the value of hydrological field data as the distance to
flowline parameter captures a larger portion of the variance in Ks

than do DEM-derived topographic attributes. As a consequence,
our simulations show more distinct patterns of Ks compared with
simulated fields based on the topographic wetness index (not
shown). Nevertheless, in the absence of information on the spatial
extent of active flowlines, the topographic wetness index may serve
as an alternative auxiliary variable for implementing deterministic
structures into Ks fields.

In spite of the often weak expression of the deterministic trends,
their incorporation into spatial fields of Ks helps to understand the
hydrological response of the system under study. One way to imple-
ment these trends in Ks fields is to use the linear mixed modeling
framework as we successfully demonstrated with the distance to
flowline as a fixed effect. It is then interesting to link detected Ks

patterns to the observed hydrological response of a catchment. In
our study we related the probability that Ks is exceeded by a storm's
rainfall intensity to observations of overland flow (Fig. 7). This ap-
proach revealed the link between the Ks pattern and overland flow
occurrence; in addition, by sampling many events at all stages of
the rainy season we could demonstrate that the strength of the rela-
tionship is not constant but varies over time. During the late wet sea-
son, when wetness is highest (Zimmermann et al., 2012), the Ks

exceedance probabilities and overland flow response match parti-
cularly well (Fig. 7b). During (extremely) dry periods, in contrast,
the relationship deteriorates (Fig. 7a) as other processes such the
replenishing of the soil moisture deficit and bypass flow in soil cracks
possibly dictate the hydrological response of our study area. This
varying importance of our simulated Ks pattern for the development
of overland flow teaches a general lesson: a sufficient number of rain-
fall events, which capture the temporal variation of soil hydraulic
characteristics, are required to assess the impact of Ks spatial variability
on runoff generation.

Finally, our approach to relate Ks patterns and hydrological obser-
vations by means of probability maps could be extended further.
For instance, we advocate using virtual experiments (Weiler and
McDonnell, 2004) as a next step to assess the influence of realistic
patterns of Ks on hydrological processes. Such studies could addi-
tionally account for the variation in net precipitation (Hopp and
McDonnell, 2011) which as a whole may provide valuable insights
into the coupling of abiotic patterns at the soil–atmosphere interface.

5. Conclusions

Flowlines, i.e. concentrated flow paths, are common elements in
many catchments featuring abundant overland flow. In this study
we provide evidence that the saturated hydraulic conductivity (Ks)
in the topsoil layer (0–6 cm soil depth) of a forest catchment, which
is prone to frequent overland flow, varies as a function of distance
to flowline. In flowlines, median Ks in the topsoil layer is low
(3.8 mm h−1), increases to 21.9 mm h−1 5 m off flowlines, and
approaches a value (79.6 mm h−1) in a distance to flowline of 10 m
that resembles Ks of the entire research catchment (median of
71.6 mm h−1). This deterministic component of Ks spatial variation
adds to the tremendous small-scale heterogeneity of this soil property.
Unfortunately, a sampling approach dedicated to primarily deal with
isotropic variation, such as spatial nested sampling, would not suffice
to detect the flowline-dependent Ks pattern. Instead, a combined sam-
pling strategy that includes a purposive element based on hydrological
field knowledge is required to obtain a realistic description of Ks varia-
tion in the investigated high-connectivity landscape. In the absence of
information on flowline locations we suggest using the topographic
wetness index as an alternative variable for accommodating determin-
istic trends in Ks.

Surface Ks values in flowlines (3.8 mm h−1) are in the range of
catchment-wide Ks at a depth of 6–12 cm (7.3 mm h−1), which sug-
gests that flowlines have been subject to topsoil removal due to
steady erosion by overland flow. The decrease of Ks towards flowlines
and towards the channel system to which flowlines drain might also
be an effect of an increased erosivity due to an increasing depth of
flow. We argue that the development of a flowline represents a posi-
tive feedback process: the more defined the flowline, the more topsoil
is removed, which in turn results in lower Ks values and hence, more
runoff.

Based on simulated fields of Ks and prevailing rainfall intensities,
we assessed the potential hydrological impact of the detected Ks pat-
terns. If we only considered Ks data from the nested sampling survey,
it would seem unlikely that the topsoil layer (0–6 cm soil depth) con-
tributes to surface runoff. This impression changes substantially if we

Mario
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incorporate the distance to flowline parameter as a fixed effect into
our linear mixed modeling framework: In and around flowlines,
the potential for overland flow generation increases. We achieved a
particular good agreement between probability statements of Ks ex-
ceedance and actually measured overland flow occurrence during
the wet stages of the rainy season. This highlights the importance of
temporal trends in soil hydraulic characteristics for runoff generation.
We advocate usingmore complex virtual experiments for future studies
to understand the coupling of abiotic patterns at the soil–atmosphere
interface.

Supplementary data related to this article can be found online at
http://dx.doi.org/10.1016/j.geoderma.2012.11.002.
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