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Saturated hydraulic conductivity (Ks) is an important soil property that shows a high degree of spatial
heterogeneity. There is a lack of research that investigates and determines Ks at a regional scale, due
to the challenges associated with the required intensive sampling. To determine the closely correlated
factors affecting Ks at a regional scale and to then generate a regional distribution map of Ks, we selected
382 sampling sites across the Loess Plateau of China (620,000 km2) and collected undisturbed and dis-
turbed soil samples from two soil layers (0–5 and 20–25 cm). We found that both surface Ks and subsur-
face Ks had log(base 10)-normal distributions, and demonstrated strong spatial variability (CV = 206% and
135%, respectively). Surface LogKs was most closely correlated with LogSand, LogSilt, LogSG (slope gradi-
ent), LogSSWC (saturated soil water content), vegetation coverage and land use; while subsurface LogKs

was correlated with LogClay, SSWC, LogSG, LogAltitude, LogGY (growth year) and land use. Geostatistical
analysis indicated that semivariograms of surface and subsurface Log Ks could be best fitted by an isotro-
pic exponential model, with effective ranges of 204 km and 428 km, respectively. Distribution maps of Ks

produced by kriging indicated a pronounced spatial pattern and demonstrated an obvious spatial depth
gradient. The spatial distribution patterns of Ks at a regional scale in the loessial soils of China compre-
hensively reflected soil hydraulic properties and the combined effects of soil texture, vegetation, topog-
raphy and human activities.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Saturated hydraulic conductivity (Ks) is an important soil prop-
erty that can impact the rates of water and solute transport
through soil and influence patterns of infiltration and runoff gener-
ation (Buttle and House, 1997; Mallants et al., 1997). In distributed
hydrological models, Ks is one of the most sensitive input parame-
ters. However, Ks is characterized by large spatial variability due to
the combined effects of physical, chemical and biological pro-
cesses, which operate with different intensities and at different
scales (Santra et al., 2008; Sobieraj et al., 2004). A better under-
standing of the spatial variation of Ks and of the factors that influ-
ence the magnitude and distribution of Ks, as well as their
quantitative relationships, is crucial for estimating the flow of
water and the transport of solutes across the land-atmosphere
ll rights reserved.

.

boundary and within the vadose zone (Gupta et al., 2006; Russo
and Bresler, 1982; Sivapalan and Wood, 1986; Corradini et al.,
1998; Morbidelli et al., 2007).

Spatial variation of Ks and its influencing factors may change
with increases or decreases in the research scale (scale-depen-
dency). In recent years, the spatial variability of Ks has been studied
in different regions around the world (Ciollaro and Romano, 1995;
Sobieraj et al., 2004; Zimmermann and Elsenbeer, 2008). Zeleke
and Si (2005) studied the spatial variability and scaling of Ks and
its soil surrogates along a 384 m transect. They found that several
variables demonstrated a certain degree of statistical scale-invari-
ance and long-range dependency; at the observation scale, the var-
iability in Ks was significantly related to sand and silt content,
whereas across a wider range of scales, it was related to clay con-
tent and soil organic carbon. Buttle and House (1997) investigated
the spatial variability of Ks in a 3.22 ha basin and evaluated the ef-
fects of macropores on Ks. They found that Ks generally decreased
with depth for hillslope podzols and stream valley gleysols.
Sobieraj et al. (2002) investigated Ks variation along a tropical

http://dx.doi.org/10.1016/j.jhydrol.2013.02.006
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Fig. 1. Location of the Loess Plateau within China and the distribution of the
sampling sites.
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rainforest Kandiudult–Hapludox toposequence and found no rela-
tionship between topography and Ks. These studies have increased
the understanding of Ks variation at plot, hillslope, and local scales.

However, the majority of past Ks studies have presented data
that were obtained at relatively small spatial scales (generally
<2 km2), which were inappropriate for understanding large-scale
hydrological processes. With increasing spatial scale, the large-
scale factors and processes that govern variation in Ks must be ta-
ken into account and the large-scale processes may obscure the
contribution of small-scale factors (Gimenez et al., 1999). There-
fore, information about large-scale spatial variability of Ks and its
related factors is needed to systematically understand large-scale
hydrological processes.

Obtaining sufficient and reliable Ks data to determine and char-
acterize the spatial variability of Ks at large-scales (i.e.,
>100,000 km2) is challenging due to the high degree of Ks variabil-
ity and the effort required to collect a sufficient number of soil
samples for Ks measurements (Zeleke and Si, 2005). The use of
pedotransfer functions (PTFs), which have been derived in various
countries in order to estimate Ks indirectly, has been proposed
(Buczko and Gerke, 2005; Julià et al., 2004). However, in practice
this method has not given accurate results when the PTFs were
used outside of the region that they were designed for (Li et al.,
2007; Wang et al., 2012a). Therefore, it is important to ground
truth the PTFs using direct local measurements of Ks and to adapt
them, if necessary.

Soil hydraulic properties are usually influenced by the com-
bined effects of topography, soil, parent material, vegetation, and
time (Brantley, 2008). All these factors potentially affect Ks by
affecting the soil structure, including the soil porosity and the
pore-size distribution. Thus, topography related to the landscape
geomorphology affects a series of eco-hydrological processes
involving the movement and fate of soil water and soil particles,
which can in turn affect soil porosity. Parent material affects the
soil texture and mineralogy of the soil particles. Vegetation charac-
teristics (e.g., vegetation coverage, type, and age) affect soil struc-
ture by changing the soil physically and chemically, as well as the
micro-organism community (Benjamin et al., 2008; Wang et al.,
2009). Land use type, which is a human-induced factor, influences
the rooting systems and physiology of plants, and soil properties
such as bulk density and porosity (Hu et al., 2009). Consequently,
all these factors may directly or indirectly, alone or in combination,
influence Ks (Zimmermann and Elsenbeer, 2008). However, it is
necessary to ascertain or to select the factors that are most closely
correlated with Ks from among the large number of potential fac-
tors in order to attempt to model and predict Ks effectively.

Previous studies have tended to focus on the variation in the Ks

of soil surface layers when the research scale was relatively large.
However, due to active soil-forming processes (e.g., eluviation–
illuviation between soil horizons) and the impact of human activ-
ities on soil structure (e.g. irrigation, tillage and traffic), Ks may
vary significantly with soil depth. Factors affecting Ks may also dif-
fer spatially at different soil depths and consequently the spatial
distribution of Ks itself may also differ with depth (Santra et al.,
2008). Hence, characterization of subsurface soils is also important
for effective management of water and nutrients in the root zone
(Kılıç et al., 2004). It also has important applications for modeling
various hydrological processes, such as field-scale infiltration in
two-layered soils (Corradini et al., 2011).

Therefore, the objectives of this study were to: (1) characterize
the variations in surface and subsurface Ks and related factors
across the entire Loess Plateau of China; (2) identify factors that
are closely correlated with surface and subsurface Ks using a com-
bination of correlation analysis, principal component analysis, and
minimum data set compilation; and (3) generate regional distribu-
tion maps of Ks for the two soil layers across the Loess Plateau.
Obtaining this information and understanding its applications are
useful for assessing hydrological processes at a range of scales
(e.g., by downscaling for a deterministic or stochastic framework),
and for evaluating the impact of large-scale factors on soil, hydro-
logical and atmospheric processes.
2. Materials and methods

2.1. Description of the study area

The study area was the entire Loess Plateau of China (34–
45�50N, 101–114�330E) (Fig. 1). The Plateau is in the continental
monsoon region, with annual precipitation ranging from 150 mm
in the northwest to 800 mm in the southeast; 55–78% of the rain
falls from June to September (Shi and Shao, 2000). The annual
evaporation is 1400–2000 mm. The mean annual temperature
ranges from 3.6 �C in the northwest to 14.3 �C in the southeast
(He et al., 2003).

The distribution of soil types was reported by Wang et al. (2011)
in detail but, in general, soil textures are coarser in the northwest
and finer in the southeast. This distribution pattern of soil texture
is closely related to the origin and fallout patterns of the loess
deposits in this region. These result from a combination of condi-
tions, which have persisted for 2–3 million years, namely: (1) the
rapid uplift of the Tibetan Plateau and surrounding mountain
ranges; (2) high rates of sediment production and supply to adja-
cent basins; (3) a strong northwesterly and westerly wind regime;
and (4) the existence of effective dust traps downwind of the
source regions (Pye, 1995). Vegetation zones are distributed along
a southeast to northwest transect in the general order of: forest,
forest-steppe, typical-steppe, desert-steppe, and steppe-desert.
The main geomorphic landforms are large flat surfaces with little
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or no erosion, as well as more erodible ridges and hills, and exten-
sive steep gullies (Shi and Shao, 2000). Fig. 2 illustrates the land-
forms of the Loess Plateau with the distribution of the vegetation
zones.

2.2. Soil sampling and data collection

2.2.1. Soil sampling
To determine accurate values of Ks, we designed an intensive

soil sampling scheme that covered the entire Loess Plateau. We
chose sampling routes across the Plateau that would use the road
transportation system to more conveniently access sites. The spac-
ing between two adjacent routes was approximately 40 km. Sites
along the selected sampling routes were also approximately
40 km apart; however, in areas with a more complex landscape
and geomorphological type, we decreased the sampling distance
to include at least one randomly selected site to better represent
the area. In the field, we used a GPS receiver to locate the 382
pre-determined sampling sites (with 5 m precision) (Fig. 1).

The routes that we selected were not confined to paved roads.
Many roads were unpaved, earthen roads that had little traffic.
Such roads are distributed throughout the Plateau region, even at
higher (mountainous or ridge) and lower (gully) altitudes. There-
fore, our sampling scheme largely represented the natural geo-
graphical conditions of the Loess Plateau.

Sampling sites were selected at least 150 m away from roads to
reduce the effects of their presence and use. At each site, undis-
turbed soil cores were collected in metal cylinders (diameter
5 cm; length 5 cm) to measure Ks, bulk density (BD) and saturated
soil water content (SSWC) in the soil surface layer (0�5 cm) and in
a subsurface layer (20�25 cm). Disturbed soil samples (about 1 kg)
were also collected to determine soil particle composition and soil
organic carbon (SOC) contents in the two layers. Over a 6-month
period (April to October 2008), we visited 382 pre-selected sites
and collected four soil samples at each site: one disturbed and
one undisturbed sample taken from each of the two depths. There-
fore, a total of 764 undisturbed soil cores and 764 disturbed soil
samples were collected.

2.2.2. Laboratory analyses
The Ks of the undisturbed soil cores was determined using the

constant head method (Klute and Dirksen, 1986; Wang et al.,
2008); BD was determined from the volume–mass relationship
Fig. 2. Elevations of the Loess Plateau and the distribution of vegetation zones.
for each oven-dried core sample (Wang et al., 2008); SSWC (g
H2O/100 g dry soil) was determined by mass loss from saturated
soil samples during oven drying at 105 �C to constant weight,
and then it was calculated on a volumetric basis using the deter-
mined BD value.

The disturbed soil samples were air-dried and were divided to
either pass through a 1 mm mesh or to be crushed to pass through
a 0.25 mm mesh. For the samples that passed through the 1 mm
mesh, soil particle composition was measured by laser diffraction
using a Mastersizer2000 (Malvern Instruments, Malvern, England)
(Liu et al., 2005). For the samples that passed through the 0.25 mm
mesh, SOC was measured using dichromate oxidation (Nelson and
Sommers, 1982). It should be noted that the >1 mm fraction is
practically negligible in loess-based soils and this was verifiable
by observing that few sand particles were retained on the 1-mm
mesh. In addition, the absence of the >1 mm soil particle sizes
may reduce scratching of the flow cell walls by quartz grains, for
example, that may affect the laser diffraction and the quality of
the measurements.

2.2.3. Environmental conditions at the sampling sites
Altitude, longitude and latitude were determined at each site

using a GPS receiver (5 m precision). The information was im-
ported into a geographic information system (Arc/Info) as Albers
coordinates. The slope gradient and aspect at each site were mea-
sured using a geological compass. Other site-specific parameters
that were recorded were land use type (farmland, grassland, forest-
land), vegetation zone (forest, forest-steppe, typical-steppe, desert-
steppe, steppe-desert; see Fig. 2), and vegetation coverage (%). The
growth age (years) was ascertained from local people who were
familiar with the history of the site land use.

2.3. Data analysis method

2.3.1. Descriptive statistics
Primary statistical parameters including the mean, maximum,

minimum, standard deviation (SD) and coefficient of variation
(CV) of the measured variables were calculated; these parameters
are generally used as indicators of the midpoint and spread of the
data. Skewness and Kolmogorov–Smirnov tests were used to deter-
mine whether or not the data were normally distributed; non-
normally distributed data, including that of Ks, generally needed
to be log transformed in order to be normally distributed. Pearson’s
correlation coefficients were used to determine the strength of
possible relationships between Ks and measured soil and environ-
mental factors (Andrews and Carroll, 2001; Lark et al., 2007). Prin-
cipal component analysis (PCA) was carried out on the variables
that were significantly correlated with Ks. The PCA transformed
an original set of inter-correlated variables into an equal number
of new independent uncorrelated variables or principal compo-
nents (PCs). The PCs receiving high eigenvalues (>1.0) and compris-
ing variables with a high factor loading (<10% of the highest factor
loading) were assumed to be the variables that best explained the
variations of Ks (Brejda et al., 2000; Mandal et al., 2008).

After PCA, correlation coefficients and correlation sums were
used to reduce redundancy and rule out spurious groupings among
the highly weighted variables within a particular PC. These pro-
cesses reduced the number of variables that were then selected
to form a minimum data set (MDS) of variables that best repre-
sented Ks. Details of MDS compilation can be found in Mandal
et al. (2008) and Wang et al. (2012b).

2.3.2. Geostatistical analysis
Geostatistical analysis was used to produce semivariograms

with a best-fit model for Ks that quantified the spatial structure
and derived the input parameters for kriging spatial interpolation
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(Goovaerts, 1999; Western et al., 2004). The preparation of Ks dis-
tribution maps through spatial interpolation of point-based mea-
surements is an important way to display Ks patterns. We used
diagnostic plots to explore the spatial data for non-stationarity that
may be caused by local trends (Zimmermann and Elsenbeer, 2008).

We derived semivariograms that described the rate of change in
Ks as a function of the distance between sampling points using the
following equation:

cðhÞ ¼ 1
2NðhÞ

XNðhÞ
i¼1

½zðxiÞ � zðxiþhÞ�2 ð1Þ

where for each site i, z(xi) and z(xi+h) are values of z at locations xi

and xi+h, respectively; h is the lag and N(h) is the number of pairs
of sample points separated by h. Four variogram models (spherical,
exponential, linear, and Gaussian) were used to describe the semi-
variograms, and the best-fitted models, as indicated by the smallest
residual sum of squares (RSS) and the largest coefficient of determi-
nation (r2) between model predicted variances and the measured
values of Ks, were selected (Wang et al., 2002). Information pro-
vided by the best-fitted model was used to analyze the spatial
structure of variables.

The semivariogram model describes spatial structure as:
C(h) = C0 + Cs. C0 represents the nugget effect, which is the short-
range structure that occurs at distances smaller than the sampling
interval, microheterogeneity and experimental error; Cs is the
structural component; and C0 + Cs is the sill (total variance) (Sobi-
eraj et al., 2002). The anisotropy ratio, i.e., the ratio between the
slopes of the directions for maximum and minimum variations,
was used to identify anisotropy. We considered that there was
no significant anisotropy if the anisotropy ratio was less than 2.5,
although there is actually no unequivocal index value for identifi-
cation of anisotropy (Trangmar et al., 1985; Wang et al., 2002).

Spatial distribution maps of Ks at two layers were prepared
using semivariogram parameters through ordinary kriging which
estimated the value of Ks at unsampled locations by using the fol-
lowing equation:

ẑðx0Þ ¼
Xn

i¼1

kizðxiÞ ð2Þ

where ẑðx0Þ is the value to be estimated at the location of x0, zðxiÞ is
the known value at the sampling site xi and n is the number of sites
within the search neighborhood used for the estimation. The num-
ber n was based on the size of the moving window and was defined
by the user. The weights, ki, depended on the parameters of the
semivariogram model and the sampling configuration and were
decided under the conditions of unbiasedness and minimized esti-
mation variance. Accuracy of the soil maps was evaluated through
a cross-validation approach. Another way of examining the perfor-
mance of kriging was to calculate the diagnostic statistics of cross-
validation. Generally, three statistics: the mean error (ME), the
mean squared deviation (MSE), and the mean squared deviation ra-
tio (MSDR) were considered. The model was optimal if these statis-
tics met the following criteria: ME and MSE were close to 0 and
MSDR was close to 1 (Webster and Oliver, 2007).
3. Results

3.1. Descriptive statistics

Descriptive statistics, including overall variability and distribu-
tion for Ks and the measured soil properties are presented in Ta-
ble 1. Surface and subsurface Ks values both had high levels of
variability, with CV values of 206% and 135%, respectively.
Normality of the data distribution was evaluated using the
skewness function and Kolmogorov–Smirnov test. The critical
skewness value for the measured 13 variables, having 382 samples
from each layer was 0.25 (Tabachnick and Fidell, 1996). The distri-
butions of surface and subsurface Ks values were positively skewed
with values of 9.35 and 5.38, respectively (Table 1 and Fig. 3). Val-
ues of skewness for most of the measured variables (except for the
BD and SSWC of the subsurface layer, and vegetation coverage for
both layers) were also greater than 0.25, indicating that the data
were non-normally distributed. A logarithmic-transformation
(log base 10) was performed on the skewed data before further sta-
tistical analyses were conducted. The log-transformed values of Ks

were normally distributed (Table 1 and Fig. 3), and the other trans-
formed data were also generally normally or near normally
distributed.

Table 1 also shows that the mean values of BD and of the clay
and silt contents were lower for the surface layer than for the sub-
surface layer. In contrast, the mean values for SSWC, SOC, and sand
content were larger in the surface layer than in the subsurface
layer. The CV values of the BD, SSWC and silt content data, in both
the surface and subsurface layers, were relatively low and ranged
from 11% to 22%, which indicated that they were relatively uni-
form. Clay content and SOC data were moderately variable (surface
CV: 40% and 70%; subsurface CV: 39% and 67%, respectively). The
greater degree of variation in these parameters was likely due to
large-scale processes and small-scale fluctuations in the data
(Zeleke and Si, 2005).

The environmental factors at the sampling sites located across
the entire Loess Plateau, including the topographical parameters
of altitude (AL), slope gradient (SG), and slope aspect (SA), and
the vegetation traits such as coverage (VC) and growth year (GY),
were highly variable across the Loess Plateau (CV values ranged
from 43% to 245%) (Table 1). The large ranges of altitude
(2879 m), SG (44�), SA (355�), VC (99%) and GY (55 years) may have
contributed to the spatial variation of Ks (Hu et al., 2009; Pachep-
sky et al., 2001).

3.2. Identification and evaluation of factors affecting Ks
3.2.1. Analysis of correlations between Ks and other parameters
We first investigated the impact of two categorical variables

(land use and vegetation zones) on Ks at the regional scale. These
variables were selected based on expert knowledge. Fig. 4 shows
that land use and vegetation zones significantly affected the Ks in
both the surface and subsurface layers. The median and mean Ks,
for both surface and subsurface layers, increased with land use
type in the order: Farmland < Grassland < Forestland (Fig. 4a); in
contrast, there were differences in the order of the vegetation
zones for Ks in the two soil layers (Fig. 4b). This implied that the
mechanisms by which land use and vegetation zones influenced
Ks were different. Land use is generally affected and managed by
humans while vegetation zones reflect the natural gradients of
sunlight hours, temperature and precipitation.

Ordinal categorical variables, such as land use and vegetation
zones, were assigned numeric codes, which corresponded to the
order of the mean values of Ks. For example, land use in our study
was divided into three levels, and the mean values of surface and
subsurface Ks for each type of land use followed the order: Farm-
land < Grassland < Forestland. Thus, land use was represented by
three ordinal numerically coded variables: 1 = farmland, 2 = grass-
land, and 3 = forestland. Similarly, there were five coded numeric
values for VZ but these followed two different orders for the two
soil layers according to their different affects on the Ks values,
namely: 1 = steppe-desert zone (SDZ), 2 = typical-steppe zone
(TSZ), 3 = desert-steppe zone (DSZ), 4 = forest zone (FZ), and



Table 1
Descriptive statistics for Ks in two soil layers and other measured soil and site properties (382 observations for each soil layer).

Variables Depth Min Max Mean SD CV Skewnessa DT

Ks Surface 0.0003 1.87 0.07 0.13 206 9.35 NN
Subsurface 0.0005 0.79 0.05 0.07 135 5.38 NN

BD Surface 1.02 1.82 1.34 0.15 11 0.49 NN
Subsurface 1.03 1.81 1.44 0.16 11 0.05 N

SSWC Surface 32.8 69.4 50.9 6.0 12 �0.58 NN
Subsurface 28.8 72.9 47.5 6.1 13 �0.19 N

Clay (%) Surface 0.44 36 20 7.9 40 �0.45 NN
Subsurface 0.00 38 21 8.2 39 �0.48 NN

Silt (%) Surface 6.27 85 69 13 19 �2.62 NN
Subsurface 7.03 86 69 13 19 �2.63 NN

Sand (%) Surface 0.81 92 11 17 156 2.97 NN
Subsurface 0.59 93 9.3 17 181 3.23 NN

SOC Surface 0.33 40.9 7.6 5.3 70 2.60 NN
Subsurface 0.29 31.6 5.1 3.4 67 2.56 NN

AL (m) – 99 2978 1190 517 43 0.74 NN
SG (�) – 0 44 4 9 224 2.30 NN
SA (�) – 0 355 42 103 245 2.31 NN
VC (%) – 1 100 45 33 74 0.14 N
GA (year) – 1 55 13 14 112 0.98 NN

Notes: Ks, saturated hydraulic conductivity (cm min�1); BD, bulk density (Mg m�3); SSWC, saturated soil water content (cm3 cm�3); SOC, soil organic carbon (g kg�1); AL,
altitude; SG, slope gradient; SA, slope aspect; VC, vegetation coverage; GA, growth age; SD, standard deviation; CV, coefficient of variation (%); DT, distribution type; N,
normal distribution; NN, non-normal distribution.

a The critical skewness value is 2 � (6/i)0.5 = 2 � (6/382)0.5 = 0.25; i is the number of observations (Tabachnick and Fidell, 1996).
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Fig. 3. Histograms of surface and subsurface saturated hydraulic conductivity (Ks) data.
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5 = forest-steppe zone (FSZ) for surface Ks; while for subsurface Ks

the order was: 1 = SDZ, 2 = FZ, 3 = FSZ, 4 = DSZ, and 5 = TSZ. This
procedure enabled correlation analysis, PCA, and regression analy-
sis to be appropriate and meaningful while using ordinal numeric
codes for land use and VZ (note: both numeric codes were nor-
mally distributed).

The degree of linear association between Ks and the measured
soil properties and other related environmental factors (including
land use and VZ) on the Loess Plateau were evaluated using Pear-
son’s correlation analysis (Table 2). Surface LogKs was significantly
correlated with 11 of the 13 measured or described variables, i.e.,
negatively correlated with LogBD, LogSOC, LogClay, and LogSilt
(P < 0.01) and positively correlated with LogSSWC, LogSand, LogSG,
VC, LogGY, land use and VZ, but not correlated with LogAL and Log-
SA. Subsurface LogKs showed significant correlations with all of the
measured variables (P < 0.01). Our observation of the negative
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Table 2
Pearson correlation coefficients between saturated hydraulic conductivity (Ks) in surface and subsurface layers, and related factors in the Loess Plateau region; and principle
component analysis (PCA) of factors that are most closely correlated with LogKs (log base 10).

Variables Pearson correlation coefficient Surface LogKs Subsurface LogKs

Surface LogKs Subsurface LogKs PC1 PC2 PC3 PC1 PC2 PC3 PC4

BDa �0.36** �0.41** �0.677 �0.418 0.445 �0.230 �0.787 0.147 �0.165
SSWCa 0.29** 0.22** 0.654 0.464 �0.441 0.164 0.796 �0.165 0.142

LogClay �0.25** �0.38** 0.821 �0.105 0.410 �0.703 0.456 0.213 0.168

LogSilt �0.21** �0.17**
0.769 0.125 0.036 �0.354 0.691 �0.079 0.182

LogSand 0.19** 0.32** �0.832 �0.039 �0.261 0.580 �0.631 �0.215 �0.034

LogSOC �0.15** �0.20** 0.644 �0.034 0.254 �0.533 0.361 0.118 0.117
LogAL �0.098 0.22** 0.372 0.115 �0.574 0.478
LogSG 0.12* 0.24** �0.036 0.525 �0.482 0.536 0.565 �0.226 �0.469

LogSA 0.10 0.24** 0.511 0.559 �0.215 �0.519
VC 0.23** 0.21** �0.146 0.758 0.375 0.485 0.233 0.626 0.190

LogGY 0.34** 0.39** �0.508 0.751 0.152 0.796 0.100 0.414 0.148

LD 0.34** 0.30** �0.296 0.777 0.328 0.600 0.128 0.657 0.123

VZ 0.15** 0.31** 0.529 0.256 0.107 0.524 �0.170 �0.406 0.492
PC analysis Eigenvalue 3.91 2.50 1.21 3.51 3.22 1.75 1.16

% of Variance 35.52 22.76 11.00 26.99 24.77 13.44 8.89
Cumulative % 35.52 58.27 69.27 26.99 51.76 65.20 74.10

Note: Bold type denotes variables with a high factor loading within 10% of the highest loading in a principle component (PC). Numbers written in italics indicate variables
mean that were not significantly correlated with LogKs. BD, bulk density (Mg m�3); SSWC, soil saturated water content (cm3 cm�3); SOC, soil organic carbon (g kg�1); AL,
altitude (m); SG, slope gradient (�); SA, slope aspect (�); VC, vegetation coverage (%); GY, plant growth year (year); LD, land use; VZ, vegetation zone.

a For surface LogKs, the data of surface BD and SSWC were log-transformed (log base 10).
* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).
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correlation between surface and subsurface LogKs and LogSOC
(P < 0.01) was in accordance with the results of Nemes et al.
(2005) and Wang et al. (2009). These latter studies also reported
similar negative correlations, contrary to the common perception
that the opposite would be the case since SOC is usually associated
with improved soil structure and hence higher Ks values. Note that
a correlation analysis between SOC and other variables is beyond
the scope of this study.
The variability in surface and subsurface LogKs was mainly cor-
related with soil properties (i.e., soil texture, porosity) and vegeta-
tion traits (i.e., vegetation coverage, growth year). The topographic
factors (LogAL, LogSG, and LogSA) appeared to play a different role
in contributing to the surface and subsurface LogKs variation,
whereby they had weak or non-significant correlations with sur-
face LogKs (except for LogSG, P < 0.05) but significant correlations
with subsurface LogKs (P < 0.01).



Surface Log Ks

Subsurface Log Ks

Fig. 5. Post-plot of surface and subsurface LogKs at the sampling sites on the Loess
Plateau.
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3.2.2. Principal component analysis
We used PCA to extract the vectors of the correlation matrix for

the measured continuous variables of surface and subsurface LogKs

(Webster et al., 1994). The variables that were not significantly cor-
related with LogKs were excluded from the respective PCAs be-
cause they were weakly related to LogKs (Table 2).

For the surface LogKs, the PCA of the 11 correlated variables re-
sulted in three principal components (PC) that had eigenvalues >1
and accounted for 69% of the variance in the data (Table 2). In PC1,
LogSand was the greatest contributor to the PC, identified from the
factor loadings; LogClay and LogSilt had highly weighted factor
loadings (i.e., absolute values within 10% of the LogSand factor
loading). PC2 showed that land use was the greatest contributor,
followed by VC and LogGY. In the third PC, LogSG was the greatest
contributor, followed by SSWC and BD.

For subsurface LogKs, the PCA identified four PCs that accounted
for 74% of the variance (Table 2). The first PC identified LogGY as
the best representative variable, followed by LogClay; PC2 was rep-
resented by SSWC and BD; PC3 was represented by land use and
VC; and PC4 was best represented by LogSA, VZ, LogAL, and LogSG
in that order.

The PCA verified the role of soil properties, vegetation traits and
topographic factors in explaining surface and subsurface LogKs var-
iance. A clear impression was gained that surface LogKs variation
was explained in order of importance by soil properties (PC1), land
use and vegetation traits (PC2), and topographic factors and soil
properties (PC3), while subsurface LogKs variation was explained
in order of importance by vegetation traits (PC1), soil properties
(PC2), land use with vegetation traits (PC3), and topographic fac-
tors (PC4).

3.2.3. Identification of the most influential variables affecting Ks

Following the PCA, a minimum data set (MDS) of variables in-
tended to predict Ks in each soil layer was created from the vari-
ables having a high factor loading in each PC. In a PC that
contained at least two variables with a high factor loading, e.g.,
PC1 (LogSand, LogClay, and LogSilt) for surface LogKs, we used
Pearson’s correlation coefficients and correlation sums to further
evaluate the correlations and excluded the variable that was most
highly correlated with the greatest contributor (details can be
found in Wang et al., 2012b). For example, in PC1 for surface LogKs,
LogSand had the highest factor loading (0.832, Table 2) and corre-
lation sum (2.485) and was therefore included in the MDS; then,
although LogClay had the second highest correlation sum (2.413),
it was excluded from the MDS because it was highly correlated
with LogSand (r = �0.805, P < 0.01); LogSilt had the lowest correla-
tion sum (2.289) but was selected for the MDS, since its correlation
with LogSand was less than LogClay’s. Hence, two variables (Log-
Sand and LogSilt) were included in the MDS from the PC1 for sur-
face LogKs.

Using this procedure, variables from PC2 (land use and VC) and
PC3 (LogSG and LogSSWC) were also selected and added to the
MDS for surface LogKs. Likewise, variables from PC1 (LogClay and
LogGY), PC2 (SSWC), PC3 (land use), and PC4 (LogSG and LogAL)
were selected for a separate MDS for estimating subsurface LogKs.
The two final MDSs both included six closely correlated variables
for surface LogKs (LogSand, LogSilt, land use, VC, LogSG and LogS-
SWC) and for subsurface LogKs (LogGY, LogClay, SSWC, land use,
LogSG, and LogAL). Notably, the MDS was different for the two
depths.

3.3. Spatial analysis

3.3.1. Semivariogram
We used geostatistical methods to quantify the specific spatial

patterns and structure of LogKs variation. From the normally dis-
tributed dataset of Ks (after log-transformation), we presented
the post-plot maps of surface and subsurface LogKs (Fig. 5). Based
on the LogKs spatial distributions depicted in Fig. 5 combined with
Fig. 4, as well as the exploratory data analysis (i.e., trend analysis,
Voronoi map), it was concluded that LogKs did not satisfy the sec-
ond-order stationarity assumption, especially in the case of the
surface layer (Zimmermann and Elsenbeer, 2008). Therefore, we
used detrending parameters ranging from zero- to third-order re-
moval to overcome the non-stationarity of the LogKs data, and then
used the detrended LogKs data to construct semivariograms before
determining if there was directional variation based on the anisot-
ropy ratios. Only weak directional variances were detected for
LogKs in the surface and subsurface layers as we found small
anisotropy ratios (less than 2.5; Table 3); and thus we calculated
omnidirectional semivariograms (Fig. 6) (Wang et al., 2002). We
identified the geostatistical model that best fitted each semivario-
gram from the smallest RSS values and largest r2 values (Table 3),
and we obtained the parameters that provided quantitative
expressions of spatial structure.

Table 3 shows that after detrending with third-order removal,
the fit of the semivariogram model for surface LogKs was greatly
improved; while for subsurface LogKs, the improvement was less.
Table 3 also listed the semivariogram parameters (range, nugget
and sill) for the best-fitted models of surface and subsurface LogKs

and Fig. 6 presents their semivariograms which were best fitted by



Table 3
Geostatistical analysis results for LogKs at surface and subsurface layers (n = 382 for each soil layer). Bold font indicates the parameters of the best fitted semivariogram of LogKs

(Ks unit: cm min�1).

Order of trend
removal

Modela Surface layer Subsurface layer

r2 RSS Nugget
(�)

Sill
(�)

Range
(km)

ER AR r2 RSS Nugget
(�)

Sill
(�)

Range
(km)

ER AR

None E 0.719 0.00069 0.090 0.220 74 221 1.22 0.9470 0.00035 0.120 0.260 143 428 1.55
L 0.688 0.00078 0.6260 0.00255
S 0.619 0.00094 0.7960 0.00139
G 0.619 0.00094 0.7970 0.00139

Constant E 0.719 0.00070 0.109 0.220 87 262 1.22 0.9450 0.00056 0.129 0.262 156 468 1.55
L 0.691 0.00078 0.6260 0.00257
S 0.621 0.00094 0.7960 0.00140
G 0.621 0.00094 0.7980 0.00139

First E 0.678 0.00075 0.109 0.219 83 249 1.76 0.9370 0.00048 0.108 0.251 110 331 1.00
L 0.673 0.00077 0.4600 0.00281
S 0.612 0.00091 0.8640 0.00071
G 0.612 0.00091 0.8650 0.00070

Second E 0.649 0.00078 0.106 0.216 77 231 1.39 0.9450 0.00028 0.116 0.250 118 353 1.15
L 0.638 0.00081 0.5140 0.00247
S 0.589 0.00091 0.8590 0.00072
G 0.589 0.00091 0.8600 0.00071

Third E 0.727 0.00056 0.103 0.212 68 204 1.77 0.9160 0.00032 0.058 0.239 69 207 1.14
L 0.563 0.00073 0.2860 0.00271
S 0.644 0.00059 0.8900 0.00042
G 0.644 0.00059 0.8910 0.00042

Note: r2, coefficient of determination; RSS, residual sum of squares; ER, effective range (km); AR, anisotropy ratio (�).
a Model: E, exponential; L, linear; S, spherical; G, Gaussian.
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Fig. 6. Semivariograms of Ks for surface (a) and subsurface layers (b) across the entire Loess Plateau in China.
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an exponential model. The equation for an exponential semivario-
gram model is:

cðhÞ ¼
0 h ¼ 0

C0 þ Csð1� e�
h
aÞ h > 0

�
ð3Þ

where h is the lag; C0 represents the nugget effect; Cs is the struc-
tural component; and a is the distance parameter. For surface LogKs,
the nugget variance 0.103 was 49% of the total sill of 0.212. The dis-
tance parameter was 68 km, with the effective spatial range of
204 km. The nugget variance of subsurface LogKs was 0.120 which
was 45% of the total sill variance of 0.260. The effective range of
subsurface LogKs (428 km) suggested that there were some larger
spatial patterns in the variation than in that of surface LogKs

(204 km).
The value of effective range indicated that the LogKs values of

locations separated with lag distances less than 204 km for the sur-
face layer or 428 km for the subsurface layer were spatially corre-
lated. Beyond these distances, the variation can be defined as
random, without significant spatial correlation. Generally, a high
proportion of the nugget effect implies a poor model fit to the
semivariogram, which would then make the estimated value of
the site close to the global average. In the present study, due to
the very large studied area, we carried out a high density sampling
strategy (n = 382) to generate more reliable semivariograms of sur-
face and subsurface Ks, which can be verified, to some extent, by
the value of r2 and RSS (Table 3).

3.3.2. Spatial distribution of Ks

Producing Ks distribution maps through spatial interpolation of
point-based measurements is an important way to display Ks pat-
terns. We used an ordinary kriging interpolation method to pro-
duce distribution maps for surface and subsurface LogKs data
across the entire Loess Plateau region. The results were then back
transformed to Ks based on the method of Webster and Oliver
(2007) (Fig. 7). The same legend was applied to the maps of surface
and subsurface Ks so that they could be compared visually. Both
maps show spatial patterns of Ks data and, while the two maps
are similar in part, there are also some obvious differences.

To test the effectiveness of the models, cross-validation was
carried out, and Fig. 8 shows the scatter plots between the actual
and predicted values. The results of cross-validation showed the
smoothing effect of the spatial prediction. The range of the actual



Fig. 7. Spatial distribution maps of surface (a) and subsurface (b) Ks across the
entire Loess Plateau region. The interpolation method used was ordinary kriging
(unit of Ks: cm min�1).
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Table 4
Performance of ordinary kriging with different orders of trend removal for surface and
subsurface Ks (unit: cm min�1) (n = 382 for each soil layer). Bold font indicates the
best order of trend removal to be used for the interpolation.

Order of trend removal ME MSE MSDR

Surface layer
None 0.0039 0.0077 1.050
Constant 0.0039 0.0077 1.050
First 0.0048 0.0096 1.033
Second 0.0038 0.0075 1.028
Third 0.0031 0.0066 1.010

Subsurface layer
None 0.0010 0.0012 0.994
Constant 0.0011 0.0012 0.993
First 0.0011 0.0013 0.983
Second 0.0018 0.0014 1.018
Third 0.0036 0.0063 1.041

Note: ME, mean error; MSE, the mean squared deviation; MSDR, mean squared
deviation ratio.
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data for surface LogKs was �3.48 to �0.27 and that for the esti-
mated data was �2.39 to �0.92. The range for the actual data of
subsurface LogKs was �3.32 to �0.10 and that of the estimated
data was �2.47 to �0.78. The smoothing effect of kriging helped
to identify the spatial patterns. However, the smoothing effect also
indicated that kriging underestimated the larger values and over-
estimated the smaller ones (Webster and Oliver, 2007). Neverthe-
less, it should also be noted that the semivariogram models for
surface (after detrending) and subsurface LogKs were acceptable
(Table 3), and that the semivariogram-based kriging provided a
significantly better estimates than those that would be obtained
by using the global mean Ks value of the study area.

In addition, the ME, MSE, and MSDR values for ordinary kriging
of surface and subsurface LogKs with the exponential model were
0.0031 and 0.0010, 0.0066 and 0.0012, 1.010 and 0.994, respec-
tively (Table 4). These statistics were superior to those of spherical,
linear, and Gaussian models (data not shown), which indicated a
relatively good quality for the kriged maps. Moreover, these statis-
tics further justified the necessity of detrending for surface layer.

The surface Ks values were generally larger than the subsurface
Ks values at most of the sampled sites on the Loess Plateau (Table 1
and Fig. 7). In the middle part of the northern Loess Plateau, which
is a dry, sandy region, the surface and subsurface Ks were the larg-
est; this region is also known as the Ordos Plateau with sandy soil.
Areas with relatively small Ks had a particular spatial distribution
(Fig. 7), which generally occurred in the northwestern part around
the boundary (Fig. 7a) and in some interior areas such as the south-
ern and eastern parts of the Plateau (see Fig. 7b). The presence of
the lower Ks values generally matched the distribution of soil par-
ticle composition in the Loess Plateau. A relatively large clay con-
tent generally resulted in small Ks values, while a higher sand
content favored larger Ks values.
4. Discussion

The magnitude and spatial variation of Ks has been described as
a result of several independent processes operating at different
spatial scales (Sobieraj et al., 2004; Zeleke and Si, 2005). Processes
that are dominant at one scale may not have a significant effect at
other scales. Therefore, with increases in scale, local scale pro-
cesses/factors (i.e., soil structure, biological activity, and tillage)
and larger scale processes/factors (i.e., topography, land use, and
soil morphology) should be grouped together to evaluate the vari-
ation of Ks (Gimenez et al., 1999; Zeleke and Si, 2005). When we
studied the variation of Ks across the entire Loess Plateau, we found
that both small-scale factors (e.g., soil particle composition, SSWC,
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SG, VC, GY) and large-scale factors (e.g., land use type and vegeta-
tion zones) significantly contributed to the variation of surface and
subsurface Ks (Table 2 and Fig. 4), although the extent of explained
variability was different. There have been reports of the significant
effects on Ks by small-scale factors, such as soil particle composi-
tion (Parasuraman et al., 2007) and bulk density (Bayramin et al.,
2009). Here, we pointed out that large-scale factors (i.e., land use
type and growth year) should also be considered when evaluating
the variability of Ks at larger scales. Mechanisms of land use effects
on surface LogKs can be connected to, for example, tillage and/or
management in farmland and grazing in grassland, which may
cause differences in soil bulk density, aggregation, and pore size
distribution; while the type and growth year of the vegetation
may in part indicate the degree of aggregation and macropore for-
mation by roots and macro-biota activity (particularly that of
earthworms).

The surface Ks values were generally larger than the subsurface
Ks values at most of the sampled sites on the Loess Plateau (Table 1,
Fig. 7). Vertical changes in Ks can occur and, in general, it has been
reported that Ks decreases with depth (Hu et al., 2009; Mallants
et al., 1997; Santra et al., 2008). Our results confirm these findings
(Table 1). However, there are some studies where Ks has been
found to increase with depth. For example, Zimmermann and
Elsenbeer (2008) reported that Ks under pasture increased with soil
depth due to the high porosity of weathered sandstones and to
steeply inclined stone layers.

The Ks spatial variation was found to be greater for the soil sur-
face than for the subsurface. The strength of the correlations be-
tween Ks and BD and between Ks and SSWC also increased with
depth (Table 2), which was due to the more complex surface than
subsurface processes controlling the Ks variation. The surface soil
layer is often disturbed by human activities, for example as a result
of fertilization and tillage. These anthropogenic disturbances often
alter the natural structure, and increase the porosity and the
hydraulic conductivity of the surface soil layer in the short-term.
The presence of lower Ks values generally matched the distribution
of soil particle composition across the Loess Plateau, in that finer
textured soils generally had lower Ks while coarser textures re-
sulted in higher Ks (Santra et al., 2008; Zeleke and Si, 2005). The
soil texture distribution pattern is determined by the processes
controlling the type and deposition of the windblown particles that
comprise the loess in the study area. These processes, whose rela-
tive importance varies with the prevailing atmospheric and land
surface conditions, include (1) gravitational settling of individual
particles; (2) downward turbulent diffusion; (3) advection of dust
laden air towards the surface; and (4) wash out of particles by pre-
cipitation (Pye, 1995). Subsequently, the deposited loess is often
reworked to some degree by the processes of surface wash and soil
creep, which enhances the heterogeneity of the soil texture. Ulti-
mately, all of these processes indirectly affect the spatial heteroge-
neity of hydraulic conductivity both in horizontal and vertical
directions.

Finally, it is important to mention that Ks values may vary with
time. This has been reported for the Loess Plateau (Hu et al., 2009,
2012) and for other places (Darzi et al., 2008; Logsdon and Jaynes,
1996; Azevedo et al., 1998; Zhou et al., 2008). Various factors such
as management practices (Bodner et al., 2008; van Es et al., 1999),
rainfall (Gupta et al., 1998; Loague, 1992), drying/wetting pro-
cesses (Levy et al., 2005; Morbidelli et al., 2011; North and Nobel,
1995), and biological activity (Petersen et al., 2008) have been
identified as factors causing temporal changes in Ks. Although sig-
nificant temporal changes in Ks were found in many places, con-
flicting results have been reported as to what actually happens
with the passage of time; and some studies have even reported
that there was no systematic change in Ks spatial variation
(Bormann and Klaassen, 2008; Logsdon and Jaynes, 1996). In the
present study, due to the time that it took to sample and make
measurements at the 382 sites, some temporal effects on Ks may
have occurred that were unavoidable. Meanwhile, other variables
related to Ks could also be affected by time, e.g., bulk density, veg-
etation coverage, and SOC. This variation was unavoidable in a
study of this scale, and we assumed that the temporal variation
of Ks over the 6-month sampling period had a relatively minor
influence on the spatial variation of Ks at the regional scale, since
soil properties such as particle composition would probably not
undergo obvious changes within such a short time.
5. Conclusions

We studied the large-scale spatial variability of Ks in the 0–5 cm
and 20–25 cm soil layers across the entire Loess Plateau of China.
Surface and subsurface Ks values were log-normally distributed
and had relatively large variability (CV > 100%). The overall vari-
ability of surface LogKs (CV = 206%) was greater than the variability
of subsurface LogKs (CV = 135%). Pearson correlation analysis, PCA
and MDS compilation identified the closely correlated factors influ-
encing surface LogKs over large areas, which were LogSand, LogSilt,
LogSG, LogSSWC, VC and land use; subsurface LogKs was strongly
associated with LogClay, SSWC, LogSG, LogAL, LogGY and land
use. Omnidirectional semivariograms were used to quantitatively
characterize the spatial variations of surface and subsurface LogKs.
The effective ranges for surface and subsurface LogKs values were
204 km and 428 km, respectively. Spatial distribution maps of Ks

produced through ordinary kriging indicated clear spatial patterns
across the entire Loess Plateau, providing a comprehensive reflec-
tion of the soil hydraulic properties under the combined effects of
soil texture, parent material, vegetation, topography and human
activities (i.e., land use). The magnitudes and spatial patterns of
soil hydraulic conductivity in the Loess Plateau demonstrated a
pronounced spatial depth gradient.
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