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Abstract

Our objectives were to describe the field-scale horizontal and vertical spatial variability of soil physical properties and their relations to soil
map units in typical southeastern USA coastal plain soils, and to identify the soil properties, or clusters of properties, that defined most of the
variability within the field. The study was conducted on a 12-ha field in Kinston, NC. A 1:2400 scale soil survey had delineated three soil map
units in the field: Norfolk loamy sand, Goldsboro loamy sand, and Lynchburg sandy loam. These are representative of millions of hectares of
farmland in the Coastal Plain of the southeastern USA. Sixty soil cores were taken to ∼1-m depth, sectioned into five depth increments, and
analyzed for: soil texture as percentage sand, silt, and clay; soil water content (SWC) at −33 and −1500 kPa; plant available water (PAW);
saturated hydraulic conductivity (Ksat); bulk density (BD); and total porosity. A penetrometer was used to measure cone index (CI) at each sample
location. Variography, two mixed-model analyses, and principal components analysis were conducted. Results indicated that soil physical
properties could be divided into two categories. The first category described the majority of the within-field variability and included particle size
distribution (soil texture), SWC, PAW, and CI. These characteristics showed horizontal spatial structure that was captured by soil map units and
especially by the division between sandy loams and finer loam soils. The second class of variables included BD, total porosity, and Ksat. These
properties were not spatially correlated in the field and were unrelated to soil map unit. These findings support the hypothesis that coastal plain soil
map units that delineate boundaries between sandy loams versus finer loam soils may be useful for developing management zones for site-specific
crop management.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Site-specific management or precision agriculture seeks to
identify, analyze, and manage spatial and temporal variability
within fields in order to optimize profitability, sustainability,
and environmental protection (Robert et al., 1996). Variability
in soil properties can present management challenges to pro-
ducers. Soil classification and survey have been widely used to
characterize this variation (Trangmar et al., 1985). Soil surveys
generate maps of soil classes representing soil properties esti-
mated within a defined region or mapping unit (Webster, 1985).
Traditional soil surveys may lead to a general understanding of
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the effects of soil mapping units on crop productivity. However,
they were not intended for making within-field recommenda-
tions at the same scale used today for site-specific management
(Mausbach et al., 1993). Sadler et al. (1998) reported that crop
yields in southeastern U.S. coastal plain soils were correlated
with soil map unit, but the relationship was weak at best.

Management zones are subdivisions of fields within which
uniform management is appropriate (Doerge, 1999). Stafford
et al. (1996) reported that management zones might be defined
using a soil survey, namely by soil types. However, soil physical
properties can vary considerably between sampling sites, not
only within a soil map unit but also within a small area of
seemingly uniform soil (Bigger, 1978; Tsegaye and Hill, 1998).
Spatial heterogeneity of soil properties is caused by a number of
factors and processes acting at different spatial and temporal
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scales. Consequently, another approach to defining management
zones might be through direct analysis of the spatial distribution
of soil physical properties (Boruvka et al., 2002).

Attempts have been made to examine the variability of soil
physical properties within a given field using the coefficient of
variation (CV). Warrick and Nielsen (1980) reported that bulk
density and saturated water content had low CVs of 7 to 11%,
particle size distribution and water retention had medium CVs
of 12 to 62%, and saturated hydraulic conductivity had high
CVs of 86 to 420%. While the CV gives a relative estimate of a
property's variability, it provides no information about how that
variability is distributed through space. Geostatistical tools such
as variogram analysis allow differentiation between spatially
structured and unstructured variation (Cressie, 1993). They
have been used to estimate spatially variable soil physical
properties (Cambardella et al., 1994; Tsegaye and Hill, 1998;
Cassel et al., 2000), map soil properties, and guide site-specific
management and development of management zones.

We sought to assess quantitatively the horizontal and vertical
spatial variability of soil physical properties between, within,
and across morphologically defined soil series taxonomic units.
Our objectives were to describe the field-scale horizontal and
vertical spatial variability of soil physical properties in relation
to soil map units in typical southeastern U.S. coastal plain soils,
and to identify the important soil variables, or clusters of
variables, that define most of the variability within a field. The
study aimed to provide a quantitative test of the ability of the
classification system to account for the spatial variability of soil
physical properties.

2. Materials and methods

2.1. Site description

The study was conducted on a 12-ha field that hosts a long-
term experiment on remote sensing-informed N management
and water quality at the Lower Coastal Plain Tobacco Research
Station, Kinston, NC. An intensive (scale=1:2400) soil survey
(North Carolina Agric. Exp. Stn., 1976) mapped three soil series
in three drainage classes in the field: Norfolk (No) loamy sand
(fine-loamy, siliceous, thermic, Typic Paleudults), Goldsboro
(Go) loamy sand (fine-loamy, siliceous, thermic, Aquic Paleu-
dults), and Lynchburg (Ly) sandy loam (fine-loamy, siliceous,
thermic, Aeric Paleaquults). Norfolk loamy sand is well-drained,
Goldsboro loamy sand is moderately well drained, and Lynch-
burg sandy loam is somewhat poorly drained. In the FAO clas-
sification system (FAO, 1998), the Norfolk and Goldsboro
would likely be classified as Orthic Acrisols and the Lynchburg
among the Gleyic Acrisols. These soils are representative of
millions of hectares of farmland in the Coastal Plain of North
Carolina and the southeastern United States.

2.2. Soil sampling and analyses

Sampling sites corresponded to the locations of time domain
reflectometry (TDR) profiling probes that had been installed to
monitor soil moisture. Thirty sampling sites were at cell centers
within a regular 60-m grid. An additional 30 sites were placed
randomly within the constraints of being an adequate distance
from the cell center, outside a cell border-harvest buffer area,
and inline from plot to plot parallel to crop rows to facilitate
field operations. This sampling scheme combined elements
commonly associated with designed-based (random sampling)
and model-based (geostatistical grid) approaches (De Gruijter
and ter Braak, 1990; Lark and Cullis, 2004). Sampling sites
were georeferenced using a differential GPS (DGPS) and pro-
jected to North Carolina State Plane NAD83 meters using
ArcView GIS 3.2 (ESRI, Redlands, CA). Soil map unit poly-
gons were created by scanning and georeferencing soil maps
from the research station survey. Fig. 1 is a map of the study
area showing locations of soil sampling sites. The grids resulted
in the three soil map units being sampled in approximate pro-
portion to their areal extent in the field: Goldsboro, 6.9 ha,
n=40; Lynchburg, 3.0 ha, n=14, and Norfolk, 0.95 ha, n=6.

Relatively undisturbed soil core samples were taken to about
1-m depth by inserting a hydraulically driven soil tube (Giddings
Machine Co., Windsor, CO). The soil cores were sectioned into
depth increments that corresponded to the centers of the TDR
probe profiling increments. Segments of 7.6-cm diameter by 7.6-
cm length corresponding to depths of 4 to 12, 19 to 27, 34 to 42,
49 to 57, and 64 to 72 cm were cut and placed into soil cans
immediately after core extraction, capped using air-tight plastic
caps, and stored at 4 °C until they could be processed.

The soil cores were analyzed in the laboratory for saturated
hydraulic conductivity, bulk density, porosity, soil water contents
at −33 and −1500 kPa, and particle size distribution. Saturated
hydraulic conductivity was measured using a constant head per-
meameter (Klute and Dirksen, 1986). A hydraulic head difference
was imposed on the soil column, and the resulting flux of water
was measured. Bulk density was measured on core soil samples
by drying in a low-temperature (105 °C) oven for at least 24 h or
until the sample was at a constant weight. Soil bulk density was
calculated based on the sample dry weight and core section
volume. Total soil porosity for each sample was calculated using
the measured bulk density of the sample and assuming a particle
density of 2.65 g cm−3 (Danielson and Sutherland, 1986).

The sample was then ground and sieved through a 2-mm
mesh sieve. Soil particle size distribution was determined by the
hydrometer method after pretreatment with Na-hexametapho-
sphate (Gee and Bauder, 1986). Soil water content (SWC) by
weight at −33 kPa and −1500 kPa was measured on samples
passing a 2 mm sieve, saturated for 24 h, and then equilibrated
for 24 h on a pressure-plate apparatus (Klute, 1986). Plant
available water (PAW) was calculated as the difference between
SWC by weight at soil water tension of −33 kPa and −1500 kPa.

A handheld cone penetrometer was used to measure soil
strength (cone index, CI) in the field near each location where the
core samples were taken. The penetration resistance was
recorded as a function of depth and stored on an index card.
Three sets of readings were taken at each location. Cone index
values were determined by averaging the readings from the three
sets over an interval of ±5 cm from the desired nominal depth.
Only the CI values within the depth range of the soil core
samples are reported here.



Fig. 1. Map of North Carolina showing the three physiographic regions, location
of the study field within the Coastal Plain, and distribution of soil sampling sites
within soil map units in the study field.

329M. Duffera et al. / Geoderma 137 (2007) 327–339
2.3. Statistical methods

The descriptive statistics mean, maximum, minimum, range,
coefficient of variation, and skewness and kurtosis coefficients
were calculated for each variable using PROC MEANS in SAS
Release 9 (SAS Institute, Cary, NC). Skewness and kurtosis
coefficients are used to describe the shape of the data distri-
bution. If an absolute value of either coefficient is greater than
two, the distribution is considered either skewed or kurtotic
(Huang et al., 2001). Correlations among soil parameters were
determined using PROC CORR in SAS Release 9. Regarding
the particle size distribution parameters (percentage sand, silt,
and clay), we caution that the constant sum constraint (i.e., must
sum to 100%) of such closed compositional variables violates
correlation theory assumptions of potentially independent vari-
ances and covariances and results in a bias towards negative
correlations among such variables (Chayes, 1971). The latter is
intuitively obvious: as the proportion of one component in-
creases, that of one or more of the others must decrease.

The theory of regionalized variables was used to investigate
spatial variability of soil physical properties (Matheron, 1971).
The semivariance calculation, semivariogram function model
fitting, and kriging were performed using geostatistical soft-
ware, GS+ version 5.1 for Windows (Gamma Design Software,
Plainwell, MI), with consideration restricted to half the maxi-
mum lag distance (Journel and Huijbregts, 1978). No aniso-
tropy was evident in the directional semivariograms of any soil
properties, thus isotropic semivariogram models were fitted to
the data. Spherical, exponential, Gaussian, linear, or linear to sill
models were fitted to the empirical semivariogram. Selection of
semivariogram models was made based on the regression
coefficient of determination (r2). We caution that there are
concerns regarding the behavior of the Gaussian model as it
approaches lag zero: it is infinitely differentiable and determin-
istic (Wackernagel, 2003). We present the best fit among the
theoretical semivariogram models available in GS+ solely to
describe the form of the empirical semivariogram; we ascribe no
practical nor theoretical significance to the best fit model.

The nugget semivariance expressed as a percentage of the
total semivariance (i.e., the nugget to sill ratio) enables com-
parison of the relative magnitude of the nugget effect among
soil properties (Trangmar et al., 1985; Cambardella et al., 1994),
especially if sampled at similar scales. To define distinct classes
of spatial dependence among soil properties with depth, nugget-
to-sill ratio ranges similar to those presented by Cambardella
et al. (1994) were used. If the nugget-to-sill ratio was b25%, the
variable was considered strongly spatially dependent; if the
ratio was between 25 and 75%, the variable was considered
moderately spatially dependent; and if the ratio was N75%, the
variable was considered weakly spatially dependent. Addition-
ally, spatial dependence was defined as weak if the best-fit
semivariogram model had an r2b0.5. When the spatial depen-
dence was considered to be moderate or strong, an effective
range was also computed. For spherical, exponential, and
Gaussian models the effective range was calculated by
multiplying the best-fit model's range parameter by 1.0, 3.0,
or 1.73 respectively (Gamma Design Software, 2002).

To determine the proportion of soil physical property vari-
ability captured by soil map units, the data were analyzed using
two mixed model approaches. In the first approach, analyses of
variance were calculated at each depth interval using the re-
stricted maximum likelihood (REML) algorithm in PROC
MIXED in SAS Release 9 (SAS Institute, Cary, NC) following
the procedure outlined by Hong et al. (2005) modified for our
case, which did not include a randomized complete block de-
sign structure. Three isotropic spatial covariance functions
(spherical, Gaussian, and exponential) both with and without
nugget effects were considered because of their applicability in
describing the spatial covariance structure commonly encoun-
tered in agriculture and soil science. It is important to note that
the covariances estimated in the PROC MIXED spatial analysis
were not the same as those described above in the variography
of the original data. The covariances estimated in the mixed
model analyses with map unit and depth as fixed effects were
similar, but not identical, to estimating the covariances of the
residuals of classical (iid) ANOVAmodels including these fixed
effects. They were thus distinctly different from estimating the
covariances of the original data. Also, in the variography of the
original data, we restricted semivariance estimation to half the
maximum lag distance to better estimate the semivariogram
within the spatial correlation range and to avoid inaccurate
estimates at long lag intervals where few observation pairs were
available (Journel and Huijbregts, 1978). In contrast, REML
within PROC MIXED uses information similar to the full
semivariogram calculated over all lag distances, but in fact does
not actually calculate the semivariogram (Littell et al., 1996).

In addition to the spatial covariance models, the classical
model assuming independent and identically distributed errors
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(iid) was also considered. The best-fit model among iid and
spatial covariance models was selected based on the Akaike
Information Criterion (Akaike, 1974) for each model, which was
used to compare the relative goodness-of-fit among them. The
best-fit model was then used to calculate a separation of least
square means by soil map unit at each depth. These estimates
were then graphed to allow a visual estimation of any potential
map unit by depth interaction. The mixed model by definition
incorporates both fixed and random effects. Given our mixed
sampling design and the sequential analysis strategy described
above, our analyses combined elements of both design and
model-based approaches (De Gruijter and ter Braak, 1990;
Lark and Cullis, 2004; Hong et al., 2005). The mixed model
approach accounts for the spatial dependence inherent in the data
and therefore is expected to give more robust parameter es-
timates and p-values for testing hypotheses (Cressie, 1993;
Littell et al., 1996; Hong et al., 2005). However, should the
covariance structures differ by depth, this approach would not
allow a formal test of the significance of the soil map unit by
depth interaction.

Therefore, the complete data set combining all observations
over all depths was also analyzed by a second mixed model
approach. In this analysis, an unstructured covariance model
(Littell et al., 1996) was used to examine the potential interaction
of soil map units with depth for each soil property. This fixed
effects model including the map unit×depth interaction addres-
ses several elements of our objectives by first answering the
questions: “Did a parameter's variation over depth differ de-
pending on map unit?” and “Did a parameter's central tendancy
as captured by map units vary over depth?” The strength of this
approach was that it allowed a formal test of the main effects
(map unit and depth) and their interaction (map unit×depth).
The potential weakness of this approach was that it ignored the
spatial dependence inherent in the data.

Principal component (PC) analysis was run on the soil pa-
rameters with PROC PRINCOMP in SAS Release 9 (SAS
Institute, Cary, NC) using the means of the combined 4- to 12-
and the 19- to 27-cm depth intervals (“plow layer” or Ap), and
the mean of all depth intervals (“profile”) to investigate which
physical properties contributed most to the soil variability. A
sample correlation matrix instead of a covariance matrix was
used in the PC calculation due to differences in order of mag-
Table 1
The mean, median, standard deviation (SD), coefficient of variation (CV), minimum, m
soil water content (SWC) at −33 and −1500 kPa, and plant available water (PAW); sa
averaged over the three soil map units and five depth increments (n=300)

Variable Mean Median S.D. CV

Sand (%) 55.5 55.2 8.3 1
Silt (%) 25.6 24.6 5.6 2
Clay (%) 18.9 19.2 7.7 4
Ksat (cm h −1) 5.3 2.9 5.4 10
BD (kg m−3) 1.6 1.6 0.12
Total porosity 39.0 38.8 0.05 1
SWC at −33 kPa (%) 20.1 20.0 5.1 2
SWC at −1500 kPa (%) 7.5 7.5 3.3 4
PAW (%) 12.7 12.2 2.6 2
Cone index (MPa) 1.5 1.4 0.9 5
nitude among the soil properties measured. We caution again
that the concerns mentioned above regarding the compositional
particle size distribution data apply as well to PC analysis. In
addition, compositional data frequently, but not always, exhibit
marked curvature that a linear technique like PC analysis may
characterize inadequately (Aitchison, 1983). Log linear and log
ratio contrast methods of PC analysis have been proposed to
address these concerns (Aitchison, 1983, 1986), but we did not
attempt them.

2.4. Map interpolation

Interpolated maps of soil properties and principle compo-
nents 1 and 2 averaged over the 4- to 27-cm depth (plow layer)
were computed by block kriging in GS+ version 5.1 for
Windows (Gamma Design Software, Plainwell, MI). The results
were mapped and classified into five classes using the so-called
“smart quantile” classification in the Geostatistical Analyst of
ArcGIS version 8.3 (ESRI, Redlands, CA). “Smart quantile”
classification, known previously in ArcView GIS as “natural
breaks,” does not create quantiles in the traditional sense of
dividing a distribution into equal and equiprobable subgroups.
Instead, it delineates classes based on natural groupings of data
values using the Jenks optimization procedure (Jenks, 1967,
1977), an iterative algorithm that minimizes the variance within
each class (ArcGIS, version 8.3; ESRI, 2004). Thus, the re-
sulting classes delineated relatively large changes in data val-
ues, where samples with similar values were placed in the same
class.

3. Results and discussion

3.1. Descriptive statistics and geostatistical parameters

Mean values of soil properties (Table 1) were representative
of typical coastal plain soils. In contrast to the soil survey
surficial textural classification, our particle size distribution
analyses indicated predominantly sandy loam texture (USDA
system; Soil Survey Division Staff, 1993) in the two surficial
depth intervals (4–12 and 19–27 cm; plow layer), particularly
for the Goldsboro and Norfolk soils where this class accounted
for over 90% of samples (not shown). The Lynchburg soil was
aximum, skewness, and kurtosis of the percentage sand, silt, clay, total porosity,
turated hydraulic conductivity (Ksat); bulk density (BD); and cone index (CI), all

Minimum Maximum Skewness Kurtosis

5 25.3 73.7 −0.24 0.27
2 5.0 52.9 1.51 5.60
1 6.3 51.9 0.42 0.22
2 0.02 22.9 1.05 0.01
8 1.2 1.9 −0.74 0.92
2 29 55.0 0.74 0.92
5 9.2 39.1 0.37 −0.35
4 2.3 17.7 0.56 0.38
1 6.9 24.3 1.14 2.36
7 0.03 5.8 1.58 2.76
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somewhat texturally distinct, with 46% of samples falling in
finer classes: loam, silt loam, sandy clay loam. All of these
textural classes were within the range in characteristics de-
scribed for these soil series at these depths (Soil Survey Staff,
USDA-NRCS, 2003, 2004).
Table 2
Geostatistical parameters for percentage sand, silt, and clay; saturated hydraulic condu
−1500 kPa; plant available water (PAW); and cone index (CI) at the five depth inte

Variable Soil depth [cm] Best-fit model R2 Nugget Sill

Sand 4 – 12 Sph 0.89 0.1 102
19 – 27 Sph 0.87 0.1 85
34 – 42 Sph 0.5 12 27
49 – 57 Gau 0.57 18 37
64 – 72 Sph 0.83 19 38

Silt 4 – 12 Sph 0.91 0.1 56
19 – 27 Sph 0.8 0.1 42
34 – 42 Linear 0.01 24 25
49 – 57 Linear 0.01 24 25
64 – 72 Exp 0.07 0.01 16

Clay 4 – 12 Sph 0.86 0.01 10
19 – 27 Sph 0.78 0.6 23
34 – 42 Exp 0.69 0.01 25
49 – 57 Sph 0.8 19 63
64 – 72 Exp 0.13 21 43

Ksat 4 – 12 Linear 0.02 24 24
19 – 27 Linear 0.03 2 2
34 – 42 Linear 0.19 31 31
49 – 57 Linear 0.15 30 30
64 – 72 Exp 0.1 26 52

BD 4 – 12 Linear 0.03 0.01 0.0
19 – 27 Sph 0.8 0 0.0
34 – 42 Sph 0.1 0.01 0.0
49 – 57 Linear 0.01 0.01 0.0
64 – 72 Exp 0.56 0.001 0.0

Porosity 4 – 12 Linear 0.01 15 16
19 – 27 Sph 0.79 0.01 21
34 – 42 Sph 0.12 13 26
49 – 57 Linear 0.02 16 17
64 – 72 Exp 0.56 2 14

SWC at −33 kPa 4 – 12 Sph 0.86 0.01 19
19 – 27 Sph 0.91 0.01 16
34 – 42 Sph 0.7 6 22
49 – 57 Gau 0.86 8 35
64 – 72 Sph 0.27 9 17

SWC at −1500 kPa 4 – 12 Sph 0.87 0.001 3
19 – 27 Sph 0.81 0.01 4
34 – 42 Exp 0.73 0.01 4
49 – 57 Sph 0.79 3 6
64 – 72 Exp 0.03 5 10

PAW 4 – 12 Sph 0.82 0.01 9
19 – 27 Sph 0.81 3 7
34 – 42 Sph 0.66 3 12
49 – 57 Sph 0.55 3 6
64 – 72 Sph 0.63 2 5

CI 0 – 15 Sph 0.52 0.1 0.2
15 – 30 Sph 0.61 0.6 1.3
30 – 45 Sph 0.52 0.1 0.2
45 – 60 Sph 0.31 0.1 0.2

Four semivariogram models (spherical [Sph], Gaussian [Gau], exponential [Exp], an
a Nugget to sill ratio (%)=(Nugget semivariance / total semivariance)×100.
b Spatial dependence was defined as strong, moderate, or weak for nugget to sill ra

model r2b0.50.
c The effective range is the model range parameter multiplied by 1.0, 3.0, or 1.7
Based on the skewness and kurtosis, most of the variables
were satisfactorily described by the normal distribution (Table 1)
and did not require transformation. Three possible exceptions
were silt, PAW, and CI. The high skew in these variables was
caused by two sample locations that were inside a small
ctivity (Ksat); bulk density (BD); porosity; soil water capacity (SWC) at −33 and
rvals examined

Nugget to sill ratioa [%] Spatial dependenceb Effective rangec [m]

0.1 strong 81
0.1 strong 79
43 moderate 112
49 moderate 168
50 moderate 390
0.2 strong 76
0.2 strong 64
95 weak –
96 weak –
0.1 weak –
0.1 strong 86
3 strong 75
0.04 strong 63
31 moderate 411
50 weak –
99 weak –
98 weak –
100 weak –
100 weak –
50 weak –

11 91 weak –
2 0.1 strong 70
2 47 weak –
12 94 weak –
1 15 strong 92

95 weak –
0.1 strong 70
50 weak –
94 weak –
15 strong 94
0.1 strong 81
0.1 strong 94
25 strong 365
21 strong 496
49 weak –
0.04 strong 83
0.3 strong 77
0.2 strong 75
50 moderate 224
50 weak –
0.1 strong 73
26 moderate 110
26 moderate 354
39 moderate 356
37 moderate 352
47 moderate 342
45 moderate 113
50 moderate 411
50 weak –

d linear) were considered. The best-fit model is indicated.

tios b25, 25 to 75, or N75, respectively, and weak if the best-fit semivariogram

3 for spherical, exponential, and Gaussian models, respectively.



Table 3
Unstructured covariance mixed model analysis for the effects of soil map unit (Soil), depth, and their interaction for percentage sand, silt, clay; saturated hydraulic
conductivity (Ksat); bulk density (BD); total porosity; soil water content (SWC) at −33 and −1500 kPa; plant available water (PAW); and cone index

Sand Silt Clay Ksat BD Porosity SWC at −33 kPa SWC at −1500 kPa PAW Cone Index (CI)

Soil *** * * NS NS NS * * NS ***
Depth *** *** *** ** *** *** *** *** *** ***
Soil×depth ** *** ** NS NS NS *** ** *** ***

NS=not significant.
*, **, and *** Significant at p≤0.05, 0.01, and 0.001, respectively.
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depression. However, for these soil properties, the mean and
median values were similar, with the median either equal to or
less than the mean despite skewness of the distribution. This
showed that the outliers did not dominate the measure of central
tendency. Shukla et al. (2004) also reported a similarity of means
and median for several soil physical, chemical, and biological
properties.

Coefficients of variation (Table 1) for most of the soil
properties exceeded 20%, indicating considerable spatial
variability. For many soil properties, the CVs were similar to
those previously reported by Warrick and Nielsen (1980) and
fell within the same CV ranges that they characterized as low,
medium, and high variation. For example, BD had the lowest
CV (8%), particle size distribution and SWC had medium CVs
(15 to 44%), and Ksat had the highest CV (102%). Kvaerno and
Deelstra (2002) also reported high variability of Ksat in a silty
clay loam in southeastern Norway, and high CVs for Ksat have
also been documented by other investigators (Jury, 1989; Tse-
gaye and Hill, 1998; Webb et al., 2000; Shukla et al., 2004).

The results of the geostatistical analyses (Table 2) suggested
that the soil properties fell into two general categories. The first
group consisted of particle size distribution (sand, silt, and
clay), SWC, PAW, and CI. These properties had moderate to
strong spatial dependence especially between 0 and 27 cm
(Table 2). When soil properties show strong spatial dependence,
Table 4
Mixed model analyses testing the significance of soil map units at five depth intervals
saturated hydraulic conductivity (Ksat); bulk density (BD); total porosity; soil water
index

Soil depth interval

4–12 cm 19–27cm

Model F-test Model F-test

Sand Sph NN ** Gau NN **
Silt Gau NN NS Gau NN NS
Clay Gau NN NS Sph NN **
Ksat iid NS iid NS
BD iid NS Sph NN NS
Porosity iid NS Sph NN NS
SWC at −33 kPa Exp NN * Sph NN *
SWC at −1500 kPa Gau NN † Sph NN ***
PAW Exp NN NS Exp NN NS
Cone index Sph N NS iid ***

The models that best fit the covariance structure are indicated: no-nugget spherical (Sp
traditional non-spatial model assuming independent and identically distributed error
NS=non-significant.
†,*, **, and *** Significant at p≤0.1, 0.05, 0.01, and 0.001 respectively.
NA=not available.
it may indicate that the variability in these properties is con-
trolled by intrinsic variation in soil characteristics (Cambardella
et al., 1994). Similar to the findings of Cambardella and Karlen
(1999), the degree of spatial dependence for these soil prop-
erties decreased with increasing soil depth (Table 2). The ef-
fective ranges of spatial correlation generally increased with
depth, varying from 63 to 94 m in the plow layer and from 112
to 496 m at deeper depths. The second category consisted of
Ksat, BD, and total porosity. These soil properties showed weak
to no spatial dependence (nearly horizontal linear semivario-
grams, i.e., pure nugget effect) over most of the depth intervals
examined (Table 2). Babalola (1978) found that large variations
in Ksat within a 0.3-ha plot relative to a 92-ha field were caused
by local changes in particle size distribution and bulk density. In
addition, extrinsic variations, such as tillage, may control the
variability of these weakly spatially dependent parameters
(Cambardella et al., 1994). The notable exceptions to the weak
spatial dependence were BD and total porosity at the second
depth interval (19–27 cm), where they were strongly spatially
dependent.

3.2. Spatial variation and soil map units

The relationship between soil physical properties and soil
map units was analyzed using an unstructured mixed model
(4–12, 19–27, 34–42, 49–57, and 64–72 cm) for percentage sand, silt, and clay;
content (SWC) at −33 and −1500 kPa; plant available water (PAW); and cone

34–42 cm 49–57 cm 64–72 cm

Model F-test Model F-test Model F-test

Exp NN † Exp N NS Exp NN NS
Gau NN NS Sph NN † Sph NN NS
Sph NN NS iid * Gau NN NS
iid NS iid NS Exp NN NS
Exp NN NS iid NS Exp NN NS
Exp NN NS iid NS Exp NN NS
Gau N * Gau N NS Sph N NS
Sph NN * Exp NN NS Gau NN NS
Exp NN NS Exp NN NS Gau N NS
iid NS Exp NN * NA NA

hNN), no-nugget Gaussian (Gau NN), no-nugget exponential (Exp NN), and the
s (iid); n=60.



Fig. 2. Variation of soil physical characteristics among the three soil types and the five depth intervals: percentage (a) sand, (b) silt, (c) clay; (d) saturated hydraulic
conductivity (Ksat); (e) bulk density; (f) total porosity; soil water content (SWC) at (g) −33 kPa and (h) −1500 kPa; and (i) plant available water. Error bars indicated
the standard error of the mean.
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approach that ignored the possible presence of spatially cor-
related errors but allowed for tests of both main and interaction
effects. This ANOVA (Table 3) grouped the soil physical
properties into the same two categories as the semivariogram
analysis (Table 2). For the first category, which consisted of the
soil parameters that displayed moderate to strong spatial depen-
dence (particle size distribution, SWC, PAW, and CI; Table 2),
soil map units captured a significant proportion of the spatial
variability (Table 3). This was indicated by either a significant
soil map unit by depth interaction or a significant soil map unit
effect. In the second category, which consisted of parameters
that had little to no spatial dependence (Ksat, BD, and porosity;
Table 2), soil map unit did not capture the variability that existed
in these data (Table 3). This ANOVA also indicated that there
were significant differences among all the soil characteristics
among depths.

Because many of these data were spatially dependent, a
second mixed model analysis was conducted (Table 4) that
specifically allowed for spatially correlated errors within each
depth interval sampled. This method was expected to result in
better soil map unit mean estimations and separation of those
estimates (Fig. 2) (Cressie, 1993; Littell et al., 1996; Hong et al.,
2005). Results of this analysis (Table 4) were consistent with
those shown in Table 3. The best-fit models differed by depth,
indicating that the covariance structure was not consistent across
depths or soil physical properties. For example, percentage sand,



Table 5
Correlations between soil physical characteristics: percentage sand, silt, and clay; saturated hydraulic conductivity (Ksat); bulk density (BD); total porosity; soil water
content (SWC) at −1500 and −33 kPa; plant available water (PAW); and cone index (CI); n=300

Variables Sand Silt Clay Ksat BD Porosity SWC −33 kPa SWC −1500 kPa PAW CI

Sand 1
Silt 0.44** 1
Clay 0.76** 0.25** 1
Ksat 0.35** 0.03ns 0.36** 1
Bulk density 0.26** 0.18** 0.16** 0.46** 1
Porosity 0.26** 0.18** 0.16** 0.46** 1.00** 1
SWC at −33 kPa 0.77** 0.21** 0.98** 0.38** 0.19** 0.19** 1
SWC at −1500 kPa 0.81** 0.01ns 0.86** 0.42** 0.36** 0.36** 0.89** 1
PAW 0.59** 0.27** 0.44** 0.34** 0.46** 0.46** 0.46** 0.82** 1
Cone index (CI) 0.17* −0.14 −0.08ns −0.32** 0.45** −0.45** −0.11ns 0.18** 0.2** 1

ns=non-significant.
*, **, and *** Significant at p=0.05, 0.01, and 0.001, respectively.

Fig. 3. Cone index for the three soil map units for 12 depth intervals that spanned
the core sampled depths. Error bars represent the standard error of the mean.
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silt, and clay at most soil depths were best fit by no-nugget
spherical, Gaussian, or exponential models, while Ksat at most
depths showed no spatial covariance and was best fit by the
traditional iid model. This was consistent with the variography
results (Table 2) that showed particle size distribution to be
strongly spatially dependent especially at the shallower depths,
and Ksat to be weakly spatially dependent. Results of these two
mixed model analyses are described in detail below.

3.2.1. Particle size distribution
Sand content differed by map unit for the two surficial depth

intervals, but not for the two deepest intervals (Table 4, Fig. 2a).
The results for surficial sand content provide an important
example for interpreting the spatial mixed model analyses
(Table 4) in the context of the variography results (Table 2). The
mixed model F-test indicated that map units captured a sig-
nificant proportion of the variability of surficial sand content.
However, the best-fit was not the iid model but one incor-
porating a spatial covariance adjustment (Table 4), indicating
that map units failed to capture all of the strong spatial de-
pendence of surficial sand content (Table 2). The same con-
clusions could be drawn for other parameters producing similar
results, e.g., SWC to 42-cm depth (Table 4). Such results
suggest that improved survey procedures or analyses incorpo-
rating appropriate spatial covariates such as remotely sensed
data might prove useful in accounting for the spatial variability
not captured by current map units.

Silt content was not different among map units, while clay
differed among map units at the 19- to 27- and the 49- to 57-cm
intervals (Table 4, Fig. 2b and c, respectively). Sand content of
the Lynchburg soil remained fairly constant over depth (Fig. 2a),
while sand in the Goldsboro and Norfolk soils decreased. At the
two shallowest depth increments (b27 cm), Lynchburg had
significantly lower sand content and tended to have higher
percentage silt and clay than the Goldsboro or Norfolk soil map
units (Fig. 2b, c). At deeper depths (N34 cm), all soil map units
had similar sand content, but Norfolk tended to have lower
percentage silt and higher percentage clay than the other map
units. Clay content increased with depth in all soils, but this
increase was especially marked in the Norfolk soil. Over all
samples, there was a moderate negative correlation between clay
and sand, with progressively weaker negative correlations of silt
with sand and of silt with clay (Table 5).

The significant relationship between soil particle size dis-
tribution and map units at the shallower depth increments
(b27 cm) is visualized in the kriged maps (Fig. 4a, b, and c).
Areas of low sand content and high clay and silt were pre-
dominantly contained within the Lynchburg polygon. One ex-
ception to this generalization was along the north-central edge
of the field where soil physical properties that appeared to be
characteristic of Lynchburg soils were classified primarily as
Goldsboro and to a lesser degree as Norfolk. This might be due
to a map unit misclassification, or to an area in the field where
these physical properties did not correlate well with the defining
characteristics of these map units. In either case, this was one



Fig. 4. Spatial distribution of soil physical properties over the two 4- to 27-cm depth intervals (plow layer): (a) sand, (b) silt, (c) clay, (d) saturated hydraulic
conductivity (Ksat), (e) bulk density, (f) total porosity, soil water content (SWC) at (g) −33 kPa and (h) −1500 kPa, (i) plant available water, and (j) cone index.
Go=Goldsboro, Ly=Lynchburg, and No=Norfolk soil map units. Five “smart quantiles” (ESRI, 2004) are displayed for each variable.
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example where the Lynchburg soil map unit did not well capture
the combination of lower sand and higher silt and clay content.

3.2.2. Saturated hydraulic conductivity, bulk density, and total
porosity

There were no significant differences in Ksat, BD, or total
porosity among the three soil map units at any depth (Table 3,
Fig. 2d, e, and f). These three physical properties did vary with
soil depth. Lower Ksat and total porosity and higher BD were
observed at the 19- to 27-cm depth increment across all soil map
units. This was likely due to the formation of a tillage pan at that
depth, which was consistent with the highest CI values
occurring at 25 cm (Fig. 3), and with the spatial correlation in
BD and porosity at 19- to 27-cm depth as mentioned above. The



Table 6
Individual and cumulative percentage of total variance explained by each
principal component (PC) for soil physical characteristics (percentage sand, silt,
and clay; saturated hydraulic conductivity; bulk density; porosity; soil water
content at −33 and −1500 kPa; plant available water; and cone index), averaged
over two depth intervals: plow layer (Ap: 4 to 27 cm) and full profile (4 to
72 cm)

Principal
component

Variance explained (%)

Individual Cumulative

4- to 27-cm depth
PC 1 61.8 61.8
PC 2 14.7 76.5
PC 4 6.2 90.3
PC 5 5.3 95.6

4– to 72-cm depth
PC 1 51.1 51.1
PC 2 17.2 68.3
PC 3 12.3 80.6
PC 4 7.6 88.3
PC 5 6.1 94.4

Table 7
Variable loading coefficients for the first two principal components (PC) for
percentage sand, silt, and clay; saturated hydraulic conductivity (Ksat); bulk
density; porosity; soil water content (SWC) at −33 and −1500 kPa; plant
available water (PAW); and cone index (CI)

Soil properties PC 1 PC2

4- to 27-cm depth
Sand −0.38 −0.10
Silt 0.35 −0.07
Clay 0.32 0.38
Ksat 0.20 −0.27
Bulk density −0.29 0.53
Porosity 0.29 −0.52
SWC at −33 kPa 0.39 0.04
SWC at −1500 kPa 0.35 0.30
PAW 0.30 0.08
CI −0.25 −0.34

4- to 72-cm depth
Sand −0.35 0.34
Silt 0.14 −0.69
Clay 0.34 0.40
Ksat 0.24 0.06
Bulk density −0.36 0.08
Porosity 0.36 −0.08
SWC at −33 kPa 0.42 0.13
SWC at −1500 kPa 0.34 0.39
PAW 0.32 −0.042
CI −0.21 0.26

Principle components were calculated for the total variance of all soil physical
characteristics for data averaged over two depth intervals: plow layer (Ap: 4 to
27 cm) and full profile (4 to 72 cm).

336 M. Duffera et al. / Geoderma 137 (2007) 327–339
lack of relationships of Ksat, BD, or porosity with soil map units
is apparent in the kriged maps (Fig. 4d, e, and f).

3.2.3. Soil water content and plant available water
Consistent with the Lynchburg soil having lower sand but

higher silt and clay content at the shallower depth increments
(b27 cm), SWC at −33 and −1500 kPa were significantly
higher in the Lynchburg soil at these depths than in the other
two map units (Fig. 2g and h). Over all samples, the strongest
correlations among the soil physical characteristics were
positive correlations of SWC at −33 and −1500 kPa with
clay and corresponding negative correlations of these with sand
(Table 5). The PAW of the Lynchburg soil tended to be higher
than the other soils, but no significant differences were found,
due probably to the higher inherent variability of PAW
calculated as the difference between two measurements, SWC
at −33 and −1500 kPa. These soil water relationships were also
apparent in the kriged maps of SWC (Fig. 2g, and h), and to a
lesser degree in the map of PAW (Fig. 2i). As occurred with soil
particle size distribution, the Lynchburg polygon failed to
capture the area of higher SWC and PAW along the north-
central edge of the field. At the deeper depth increments
(N34 cm), the Norfolk soil map unit (which tended to have the
highest clay content at those depths) tended to have higher SWC
at both −33 and −1500 kPa. However, this did not translate into
higher PAW, and at these soil depths all three soil map units had
similar PAW (Fig. 2i). Over all samples, PAW exhibited its
strongest positive correlation with SWC at −33 kPa, followed
by SWC at −1500 kPa, and its strongest negative correlation
with sand (Table 5).

3.2.4. Cone index
Cone index measurements provide information that allows

comparisons of mechanical impedance or relative hardness of a
given soil. Variables known to affect CI are bulk density, soil
texture, and soil moisture (Cassel, 1982). Significant differences
in CI occurred between soil map units at the 19- to 27- and 49-
to 57-cm depths (Table 4, Fig. 3), and among depths (Table 3).
The CI results provide a contrasting example to those detailed
above for surficial sand content. Cone index exhibited moderate
spatial dependence that was accounted for by map units.
However, in contrast to the results for surficial sand content, the
best-fit for CI was the iid model, indicating that map units
accounted well for the spatial variability of CI.

Cone index varied from a low of 0.45 MPa at the shallowest
depth for all soils to a high of 3.6 MPa in Norfolk at 25-cm
depth. Sojka et al. (1990) studied the relationship between CI
and sunflower growth. A soil strength corresponding to a
penetrometer resistance of 2 MPa produced some root
restriction, and a resistance of 3 MPa created a total barrier to
root elongation. Murdock et al. (1995) suggested a penetrometer
reading of 2.07 MPa was indicative of severe compaction for
Kentucky soils. According to Taylor and Gardner (1963), a CI
of N2 MPa can negatively affect crop yields. At a depth of 20 to
30 cm, CI values N2 MPa were recorded for the Goldsboro and
Norfolk soil map units (Fig. 3), which is likely to have adverse
effects on crop growth. Busscher et al. (2000) observed wheat
and soybean yield decreases of 1.5 to 1.7 and 1.1 to 1.8 Mg
ha−1, respectively, per MPa increase in mean profile CI for CI
ranging from ∼0.8 to 2.2 MPa in a Goldsboro soil in South
Carolina, USA.

Consistent with the results discussed above, cone index
values also indicated the presence of a plow pan spanning ∼15-
to 35-cm depth and centered at 25-cm in all soil map units, but
with greater CI values and thickness in the Goldsboro and



Fig. 5. (a) First and (b) second principal component (PC) maps for the 4- to 27-
cm depth interval. Five “smart quantiles” (ESRI, 2004) were displayed.
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Norfolk soils (Fig. 3). Cassel (1982) reported a tillage-induced
pan at 25-cm depth for Norfolk loamy sand due to its struc-
tureless characteristics. The kriged map of CI at 25-cm depth
(Fig. 4j) showed the relationship between the lower CI and the
Lynchburg soil in this field, and delineated areas especially in
the Goldsboro and Norfolk soils where crop growth would
likely be adversely affected. As in the particle size distribution,
SWC, and PAW maps, an exceptional area where this rela-
tionship breaks down can be seen along the north-central field
edge.

3.3. Principal component analysis

Soil property data were averaged for the two surficial (4 to
27 cm) depth intervals (plow layer, Ap), and principal com-
ponents (PC) analysis was used to investigate which soil vari-
ables or clusters of variables might explain the majority of
spatial variability in this field. Principle component 1 explained
61.8% of the total variance (Table 6) and was dominated by
SWC and particle size distribution (Table 7), with a negative
loading for sand. Consequently, the kriged map of PC 1
(Fig. 5a) was very similar to the maps of these characteristics
and the inverse of sand content (Fig. 4a), and likewise, tended to
delineate Lynchburg from the other two soils with the exception
of the area in the north-central portion of the field. The second
PC explained an additional 14.7% of the total variance (Table 6)
and was dominated by BD and total porosity (Table 7). Because
BD and porosity were not related to soil map unit (Table 3), the
map of PC 2 (Fig. 5b) also showed no correlation with map units.

These findings supported the geostatistical and ANOVA
results and indicated that the spatial variability in the upper
27 cm in this field was dominated by two factors. The first
factor was driven by soil particle size distribution, showed
strong spatial dependency, and was fairly well defined by the
distinction between the finer (Lynchburg) and coarser (Gold-
sboro and Norfolk) soil map units. The second factor, which
described considerably less of the variability in this field, was
dominated by BD and total porosity. The latter had weak to no
spatial dependence and showed no relationship with soil map
units, except for the 19- to 27-cm depth interval which showed
the strongest expression of the tillage pan.

When the soil physical properties were averaged across all
depths (4 to 72 cm), PC 1 explained 51.1% of the total variance
(Table 7). This first PC was dominated by SWC at −33 kPa,
porosity/BD, sand, clay, and SWC at −1500 kPa. The second
PC accounted for 17.2% of the total variance and was domi-
nated by silt, clay, SWC at −1500 kPa, and sand. The spatial
distribution of soil particle size distribution, SWC, and PAW
differed between the 4- to 27-cm, and 34- to 72-cm depths
(Fig. 2). Consequently, it is not surprising that when averaged
across all depths, no single physical property or logical cluster
of physical properties explained the majority of spatial
variability in this field.

With respect to the potential inadequacies of PC analysis for
the non-transformed compositional particle size distribution
data, for both depth intervals examined, the loadings of PC1 for
clay and sand were consistent with the (non-compositional)
parameters with which they were most strongly correlated,
SWC at −33 kPa and SWC at −1500 kPa, respectively.
However, this was not the case for PC2, indicating that a log
linear contrast PC analysis might yield a better result.

4. Summary and conclusions

Our objectives were to describe the field-scale spatial vari-
ability of soil physical properties in relation to soil map units in a
southeastern U.S. coastal plain field, and to identify the im-
portant soil variables or clusters of variables that defined most of
this spatial variability. The soil physical properties we measured
fell into two general categories. Those in the first category
(particle size distribution, SWC, PAW, and CI) showed spatial
correlation, which was especially strong in the two surface
intervals, and spatial variability that was captured by soil map
units. However, there was a significant difference in how these
physical properties were distributed across soil depths among
map units. For example, at shallow soil depths, the Lynchburg
soil had lower sand content, higher percentage silt and clay, and
consequently a tendency for higher PAW compared to the other
two map units. At deeper depths, differences between map units
were dominated by the Norfolk soils, which had significantly
different silt and clay content compared to the other two soils.
However, these differences in particle size distribution at the
deeper depths did not result in significant differences in PAW.
The second category consisted of Ksat, BD, and porosity, which
had no relationship to soil map unit and little to no spatial
dependence except for BD and porosity at 19- to 27-cm depth,
where strong spatial dependence was likely associated with the
tillage pan centered at 25-cm depth.

If soil particle size distribution, PAW in the upper 27 cm, and
the degree to which a plow pan has developed are assumed to be
important to the development of crop management zones, then
our findings support using soil map units to delineate these
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zones in coastal plain soils of the southeastern USA. This would
especially be the case where soil map units delineate differences
between loamy sands or sandy loams (Goldsboro and Norfolk)
and finer-textured loams (Lynchburg). However, even with an
intensive soil survey (1:2400), map units appeared not to clas-
sify correctly at least one area of the field (i.e., the north-central
edge). This inclusion was greater than 25% of the containing
map unit, the U.S. Soil Survey target for dissimilar nonlimiting
inclusions (Soil Survey Division Staff, 1993). Principle com-
ponents analysis (Fig. 5) indicated that the best method for
developing management zones might be to map particle size
distribution directly, and that this approach could potentially
capture about 62% of the variability in the field.
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