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[1] Environmental scientists today enjoy an ever-increasing array of geostatistical
methods to analyze spatial data. Our objective was to evaluate several of these recent
developments in terms of their applicability to real-world data sets of the soil field-
saturated hydraulic conductivity (Ks). The intended synthesis comprises exploratory data
analyses to check for Gaussian data distribution and stationarity; evaluation of robust
variogram estimation requirements; estimation of the covariance parameters by least-
squares procedures and (restricted) maximum likelihood; use of the Matérn correlation
function. We furthermore discuss the spatial prediction uncertainty resulting from the
different methods. The log-transformed data showed Gaussian uni- and bivariate
distributions, and pronounced trends. Robust estimation techniques were not required, and
anisotropic variation was not evident. Restricted maximum likelihood estimation versus
the method-of-moments variogram of the residuals accounted for considerable differences
in covariance parameters, whereas the Matérn and standard models gave very similar
results. In the framework of spatial prediction, the parameter differences were mainly
reflected in the spatial connectivity of the Ks field. Ignoring the trend component and
an arbitrary use of robust estimators would have the most severe consequences in this
respect. Our results highlight the superior importance of a thorough exploratory data
analysis and proper variogram modeling, and prompt us to encourage restricted maximum
likelihood estimation, which is accurate in estimating fixed and random effects.
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1. Introduction

[2] Environmental scientists today enjoy an ever-
increasing array of methods to choose from to analyze
spatial data. New techniques are constantly developed that
aim to combine physical laws, observations and process
knowledge for modeling the variability of environmental
variables, both in space and time [Heuvelink and Webster,
2001]. Geostatistics, which predominantly uses observa-
tions to describe the spatial variability of, for instance, soil
properties, has come a long way since its introduction to
soil science in the 1980s. Improvements relevant to soil
hydrology include new variogram estimation techniques
[Pardo-Igúzquiza, 1998; Lark, 2000b; Minasny and
McBratney, 2005], robust estimation [Cressie and Hawkins,
1980; Dowd, 1984; Genton, 1998; Lark, 2000a], scale
effects in variogram estimation [Skøien and Bloeschl,
2006], trend modeling [Leuangthong and Deutsch, 2004;
Lark et al., 2006], model selection [Geiler et al., 1997;
Lark, 2000a, 2000b], sample size requirements for estimat-
ing variograms [Webster and Oliver, 1992; Gascuel-Odoux

and Boivin, 1994], and variogram uncertainty for the
method-of-moments variogram [Marchant and Lark,
2004]. Although incomplete, this list hints at the consid-
erable number of aspects the user of geostatistics, e.g., the
soil hydrologist, should consider. By implication, this short
list also hints at various pitfalls the unsuspecting user of
geostatistics may encounter. To our knowledge, however,
there has been no soil-hydrological study that evaluates
some of those new developments within a geostatistical
framework. This lack prompted us to attempt such an
assessment, using real-world data sets of soil field-saturat-
ed hydraulic conductivity (Ks from here on). We measured
Ks under different land covers to characterize its spatial
and temporal variation in the tropical montane rainforest of
southern Ecuador. For this study, we selected three data
sets, which are composed of measurements at three soil
depths under an old fallow regenerating from antecedent
pasture use. Our assessment is based on answering the
following research questions:
[3] 1. Do soil hydraulic data satisfy the assumption of

stationarity of the mean?
[4] 2. Do we need robust estimation techniques?
[5] 3. Do we have to account for anisotropic variation?
[6] 4. In which manner do different variogram estimation

techniques, e.g., restricted maximum likelihood versus
method-of-moments estimation, contribute to variations in
the estimated covariance parameters?
[7] 5. Should we use the flexible Matérn function, which

helps to avoid misspecification of the covariance model?
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[8] 6. How can we get a reasonable estimate of the nugget
variance?
[9] 7. In which manner do the variations in the

estimated covariance parameters (items 4–6) influence
spatial predictions?
[10] 8. Does the existing literature regarding Ks spatial

variability allow for any general statements about, for
example, a dependence on certain environmental conditions?
[11] The answers to these questions form the basis for

recommendations regarding the geostatistical analysis of
soil hydraulic properties in particular, and environmental
data in general.

2. Study Area

[12] Embedded in the Eastern Cordillera of the Andes of
south Ecuador, our study area (Figure 1) is located in the
Reserva Biósfera de San Francisco around the Estación
Cientı́fica San Francisco (ECSF) (3�5801800S, 79�404500W,
1860 m a.s.l.). Steep slopes (30–50�) covered with ‘‘Lower
Montane Rain Forest’’, which gradually changes to ‘‘Lower
Montane Cloud Forest’’ on higher ground [Bruijnzeel and
Hamilton, 2000], characterize the north-facing slopes,
where there are no signs of recent human intervention. In
contrast, the south-facing slopes have been subject to
human influence for decades.
[13] Mean annual precipitation (1998–2005) amounts

to 2273 mm [Rollenbeck et al., 2007], and mean annual
air temperature (1999–2002) is 15.5 �C [Motzer et al.,
2005]. A drier period is between November and January,
and May and June are the wettest months [Motzer et al.,
2005].
[14] The bedrock consists mainly of weakly metamor-

phosed Palaeozoic schists and sandstones with some quartz
veins [Wilcke et al., 2003], which belong to the Chiguinda
unit (Mapa geológico del Ecuador; Instituto Geográfico de
Militar y Ministerio de Energı́a y Minas). Soils are classi-
fied as Inceptisols and Histosols [Soil Survey Staff, 1999;
Schrumpf et al., 2001] with a large percentage of silt.

[15] For this study, we selected a plot of 50 by 70 meters
in an old fallow situated at the south-facing valley side such
that the x-coordinate approximately follows the contour
line. Main elevation differences occur in main slope direc-
tion (i.e., in direction of increasing y-coordinate), but there
is also a topographic gradient following the contour line, as
the left side of the plot is located near a gully and the right
side on a ridge. After a recovery of at least 10 years from
antecedent pasture use, the fallow is covered by bracken
(Pteridium aquilinum), which is very abundant in the
pasture areas of this region, and succession vegetation.
Among the most abundant succession plant families are
Orchidaceae, Asteraceae, Ericaceae, Melastomataceae,
Poaceae, Rosaceae, Gleicheniaceae, Lycopodiaceae,
Bromeliaceae, and Myrsinaceae.

3. Methods

3.1. Field Measurements and Sampling Strategy

[16] We measured the field-saturated hydraulic conduc-
tivity in situ in the mineral soil at the depths of 12.5, 20 cm
and 50 cm with an Amoozemeter, which is a Compact
Constant-Head Permeameter [Ksat Inc., Raleigh; Amoozegar,
1989a]. The procedure required that we auger a cylindrical
hole with radius r to the desired depth, establishing a constant
headH such thatH/r� 5, andmonitoring the outflow from the
device until a steady-state flow rate is attained; at which point
Ks can be calculated via the Glover solution [Amoozegar,
1989b, 1993]. In a comparison of Ks computed in this manner
withKs based on different Alpha parameter values [Elrick and
Reynolds, 1992], the Glover equation gave results that were
comparable to the results obtained by the fixed Alpha value
approach (A. Amoozegar, personal communication, 1992).
[17] We used a combined design- and model-based sam-

pling design to satisfy the requirements both for the intra-site
spatial analysis presented here, and for inter-site compar-
isons to be published elsewhere. First we chose the location
of the measurement plot such that its x-axis corresponded to
a contour line of the investigated hillslope (Figure 2). We
then superimposed a grid consisting of grid cells of a size of
2 m2; a total of 30 grid cells was then included in our sample
using a random selection algorithm. Within each selected
cell we placed five fixed measuring points (Figure 2). The
spacing among those points was based upon experience
from a former study in the Brazilian Amazon, where spatial
patterns of Ks emerged only at a high sampling resolution
(i.e., short lag distances) [Sobieraj et al., 2004]. Hence we
emphasized small separation distances, starting with the
smallest possible point distance of 0.25 m (Figure 2). This
distance emerged from field trials which showed that yet
smaller distances would cause prior measurements to inter-
fere with subsequent ones.
[18] The described procedure resulted in an irregular

sampling scheme with a sample size of 150 per soil depth,
and somewhat less at 50 cm depth where augering was not
possible in all places because of a large percentage of
stones. We chose this sample size in reference to Webster
and Oliver [1992] and Gascuel-Odoux and Boivin [1994]
who recommended to sample at some 150 to 200 points in
an area to estimate the variogram of that area.

Figure 1. Location of the study area.
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3.2. Data Analysis

[19] For all data analysis except robust variogram esti-
mation we used the language and environment of R,
version 2.2.1. [R Development Core Team, 2004]; many
of the geostatistical methods were implemented in the
libraries geoR [Ribeiro and Diggle, 2001] and gstat
[Pebesma, 2004]. We used the Fortran-code of Rousseeuw
and Croux [1993] to calculate experimental variograms
with the estimator proposed by Genton [1998].
3.2.1. Exploratory Data Analysis
[20] We first checked the univariate distribution of the Ks

data by means of diagnostic plots (boxplots, quantile-
quantile plots, histograms), and used the Box-Cox transfor-
mation [Box and Cox, 1964] to find the most appropriate
transformation for achieving Gaussian behavior. We also
produced h-scattergrams [Webster and Oliver, 2001], which
are scatterplots of point pairs separated by a fixed distance
to scrutinize the data for outlying values.
[21] We used diagnostic plots (plots of the spatial data,

which were divided into quintiles; plots of the data versus
the coordinates) to explore the data for non-stationarity of
the mean that may be caused by local trends according to

z xð Þ ¼ m xð Þ þ e xð Þ; ð1Þ

where z(x) is the observed variable at location x, m(x) is the
local mean, i.e., it represents a deterministic drift of the
variable at location x, and e(x) is the random component at
location x that should be normally distributed with zero
mean and that satisfies the second-order stationarity
required for the geostatistical analysis. Hence we
calculated the residual values e(x) at every location
x and used them for the subsequent geostatistical
analyses of the method-of-moments variogram if the
F-test [Fisher, 1972] showed that the trend
coefficients were significantly different from 0 (a = 0.05).

3.2.2. Geostatistical Analysis
3.2.2.1. Experimental Variogram Estimation
[22] As a first step in the variogram analysis, we calcu-

lated isotropic experimental variograms using the ‘‘classi-
cal’’ variogram estimator of Matheron [1962]

2ĝM hð Þ ¼ 1

N hð Þ
XN hð Þ

i¼1

z xið Þ � z xi þ hð Þf g2; ð2Þ

where z(xi) is the observed value at location xi, N(h) are the
pairs of observations that are separated by lag h.
[23] The inspection of diagnostic plots cannot totally rule

out the presence of extreme values, because data can qualify
as ‘‘spatial outliers’’ when compared to their close neigh-
bors even though they do not appear unusual in a histogram
of the whole data set [Lark, 2002]. Hence we also produced
robust experimental variograms with estimators proposed
by Cressie and Hawkins [1980], Dowd [1984], and Genton
[1998]. The Cressie-Hawkins’ estimator is given by:

2ĝCH hð Þ ¼

1

N hð Þ
XN hð Þ

i¼1

z xi � z xi þ hð Þðj j
1
2

( )4

0:457þ 0:494

N hð Þ þ
0:045

N 2 hð Þ

: ð3Þ

[24] The Dowd estimator is

2ĝD hð Þ ¼ 2:198 median yi hð Þj jð Þf g2; ð4Þ

where yi(h) = z(xi) � z(xi + h), i = 1,2,. . ., N(h); and
Genton’s estimator is given by

2ĝG hð Þ ¼ 2:219 yi hð Þ � yj hð Þ
�� ��; i < j

� �
H

2

� �
0
@

1
A

2

; ð5Þ

Figure 2. Sampling grid.
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with yi(h) defined as for equation (4) and H = integer part
(n/2) + 1, n = N(h).
[25] For an in-depth discussion of the efficiency and

robustness of robust estimators we refer to Lark [2000a].
[26] Since our sampling was highly irregular we had to

define lag classes, which are groups of different individual
lag distances between point pairs, such that every compar-
ison constitutes one estimate only; i.e., every possible point
pair is used in one particular lag class only. This procedure
is somewhat arbitrary, so we used different lag classes to
compute the experimental variograms, and we then com-
pared their influence on the theoretical variogram models.
On the one hand, we calculated experimental variograms
using lags in accordance with the unsystematic sampling
design. That is to say, the lag classes mirror the sampling
emphasis on small separation distances and hence, are
narrower for small compared to large lags (‘‘unevenly
spaced experimental variograms’’). On the other hand, we
chose 25-cm lags if the minimum number of point pairs was
at least 30 (‘‘evenly spaced experimental variograms’’).
[27] We also checked our data for anisotropy by calcu-

lating the experimental variograms in four different direc-
tions, one representing the contour line (the x-coordinate,
see Figure 2), one the slope (the y-coordinate, see Figure 2)
and the other two are in between those two extremes, i.e., in
45� and 135�, respectively.
3.2.2.2. Estimation of Covariance Parameters
[28] To determine the need for robust estimation techni-

ques, we fitted three standard theoretical variogram models
(exponential, Gaussian, spherical) to the unevenly spaced
experimental variograms derived from the ‘‘classical’’
Matheron and the three robust estimators by ordinary least
squares. The ‘‘best’’ model was chosen by the minimum
sum of squares from the fit, which is a conventional
measure for the goodness-of-fit in a least-squares fitting
procedure. We then adopted the approach of Lark [2000a]
who compared the variograms derived from all above-
mentioned estimators by cross-validation or with a valida-
tion subset using a statistics q(x) defined as

q xð Þ ¼
z xð Þ � Ẑ xð Þ

� �2

s2
K;x

; ð6Þ

where z(x) is the observed value at location x, Ẑ(x) is the
kriged estimate and sK,x

2 the kriging variance. If kriging
errors follow a Gaussian distribution, q(x) will be distributed
as c2 with one degree of freedom. Since the median of the
standard c2 distribution with one degree of freedom is
0.455, the median of q(x) is also 0.455 when a correct
variogram is used to interpolate intrinsic data. A sample
median significantly less than 0.455 suggests that kriging
overestimates the variance whereas one which is greater
than 0.455 underestimates the variance. In the former case,
this may be due to the effects of outliers on the variogram,
and in the latter case due to the effect of non-normality on a
robust estimator. In order to compute confidence limits for
the median of q(x), Lark [2000a] quotes standard texts for
the distribution of the sample median of a large sample of
2n + 1 data, which are random variables of median ~y and
probability density function f(~y); hence, ~y is a normally

distributed variable drawn from a population with variance
s~y
2 where

s2
~y ¼

1

8n � f ~yð Þ2
: ð7Þ

[29] In the framework of the statistic q(x), f(~y) is the pdf
of the c2 distribution with 1 d.f., the median of which is
0.455.
[30] At this point the confidence limits can be computed

by

0:455� 1:96 �
ffiffiffiffiffi
s2
~y

q
: ð8Þ

[31] We used cross-validation to compare the classical
and robust variogram estimators. For the soil depths of 12.5
and 20 cm (n = 150), the upper and lower 95% confidence
limits for the median of q(x) were calculated as 0.286 and
0.624, respectively; for the 50 cm depth (n = 105) they were
0.251 and 0.659, respectively. Lark [2000a] proposed to
select the estimator with the median value of q(x) closest to
0.455, if the median of q(x) indicates that Matheron’s
estimator (which otherwise is the estimator of choice
because of its efficiency) is significantly influenced by
outliers. If all robust estimates are similar, then he recom-
mended Genton’s, because of its efficiency.
[32] If the median of q(x) ruled out the presence of

influential extreme values and hence supported using the
Matheron estimator, we compared two lines of geostatistical
analysis, one of which is based on fitting a theoretical model
to an experimental variogram whereas the other uses max-
imum likelihood, which estimates the covariance parame-
ters directly from the data.
[33] In the former case, we fitted the model by least

squares (LS) to the unevenly spaced experimental vario-
gram both over the whole (abbr. LS1) and over half the
separation distance (abbr. LS2), and to the evenly spaced
experimental variogram (abbr. LS3); in case of significant
trend coefficients we used the residuals of the regression
model for the calculation of the experimental variograms.
We again used the above-mentioned standard variogram
models (exponential, Gaussian, spherical) and goodness-of-
fit criterion, and two different weights: equal weights
(ordinary least squares, abbr. OLS), and weights which
correspond to the number of point pairs in each lag class
(weighted least squares, abbr. WLS).
[34] The principle of maximum likelihood estimation of

variogram parameters is as follows: n observed data are
assumed to be from a multivariate Gaussian distribution
with a mean vectorm of length n and a covariance matrixS;
the joint probability density of the data is

g zð Þ ¼ 2pð Þ�n=2 Sj j�1=2
exp � 1

2
z�mð ÞTS�1 z�mð Þ

� �
: ð9Þ

[35] The vector z contains the n data, and the vector p
contains the parameters of the covariance matrix S. If the
mean m and the covariance S are unknown and depend on
parameter vectors m and p, respectively, one can regard z as
fixed and g(z) as a function of m and p, which is called the
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likelihood function L(m, p). Maximizing the likelihood, or
minimizing the negative log-likelihood �log L(m, p) yields
the parameter estimates. If a trend is apparent, the joint
determination of the trend and the covariance parameters are
prone to bias. The solution to this problem is to use
restricted maximum likelihood (REML) to estimate the
variance parameters, because it removes the dependence
of the estimates on the nuisance parameter m. Next, a mixed
modeling procedure is used to estimate the fixed effects
(e.g., the coefficients of a trend model), the random effects

(the spatially dependent random variation), and the random
error (nugget variation). For a detailed mathematical
description of the method we refer to Lark et al. [2006].
[36] Within the framework of likelihood estimation, we

also used the Matérn model in addition to the three standard
correlation functions. The semivariance of this model is
given by

g hð Þ ¼ c0 þ c1 1� 1

2n�1G nð Þ
h

r

� �n

Kn
h

r

� �� �
; ð10Þ

where h is the separation distance, c0 is the nugget variance,
c0 + c1 is the sill variance, n is the smoothness parameter
(n > 0), G is the gamma function, r is the distance parameter,
and Kn is a modified Bessel function of the second kind of
order n. The greater flexibility of the Matérn model
compared with standard models is based on its smoothness
parameter n, which represents several theoretical models;
examples are given by Minasny and McBratney [2005].
They stated that n implies the ‘‘roughness’’ or ‘‘smooth-
ness’’ of the spatial process (n ! 0: rough spatial process;
n ! 1: smooth spatial process). They concluded that n
should be estimated by restricted maximum likelihood
because a weighted nonlinear least-squares estimation could
give misleading results. Lark et al. [2006] stated that REML
estimates are consistent as they converge in probability to
the parameters to be estimated with less bias than both
maximum likelihood estimates and method-of-moment
estimates obtained from residuals of a fitted trend.
[37] REML estimation explicitly assumes a multivariate

normal distribution, which cannot be verified because we
only have one realization of the full joint distribution of a
variable [Pardo-Igúzquiza, 1998]. Among others, Lark et al.
[2006] discussed this problem in the context of spatial
prediction of soil properties. Chilès and Delfiner [1999]
suggested, in the framework of Gaussian simulation, that at
least the bivariate distributions of the (transformed) data
could be checked, e.g., via those h-scattergrams which we
already used for outlier detection. These plots ought to be
elliptical when the point pairs are auto-correlated, or circular
in the uncorrelated case; deviations from the normal distri-
bution can be easily detected (Figure 3).

Figure 3. Examples of h-scattergrams. These are plots of
all pairs of the measured variable at locations x separated by
a certain distance; the value at the start of the distance
vector h, z(x), is called the tail value, and the value at the
end of the distance vector, z(x + h), is the head value. The
vertical and horizontal red lines correspond to the popula-
tion mean. (A) Uncorrelated point pairs of a population that
consists of two sets of randomly generated data of
distribution N(0, 1), where N(m, s2) denotes a normal
distribution of mean m and variance s2. (B) Correlated point
pairs of a population that consists of two sets of randomly
generated data, one of which is set 1 from Figure 3A
and the other is the sum of the two sets of Figure 3A.
(C) Uncorrelated point pairs of a population that consists
of two sets of randomly generated data of distribution
N(0, 1), each of which comprises a 10% contamination of
a population with distribution N(2, 1).
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[38] Since we wanted to evaluate the parameters of the
variogram models that were derived by the described
methods, we calculated the effective range in each case to
allow for comparability of the correlation lengths indepen-
dent of the model type. The effective range for the spherical
model coincides with the distance parameter; for the expo-
nential model, the effective range is approximately the
distance parameter times 3, and for the Gaussian model it
is estimated by the distance parameter times the square root
of 3 [Webster and Oliver, 2001]. For the Matérn model we
estimated an effective range at 95 % of the sill.
[39] As to how to deal with the nugget, Minasny and

McBratney [2005] proposed to fix the nugget to the vari-
ance at the shortest possible separation distance (the small-
est lag) due to difficulties to simultaneously estimate the
nugget variance of the Matérn model with REML if the
spatial process is rough. We adopted this proposal and tried
both approaches within the REML estimation framework:
estimating the nugget simultaneously, and fixing it to the
semivariance at our shortest lag of 0.25 cm, which was
calculated according to equation (2) (Matheron estimator).
3.2.2.3. Spatial Prediction
[40] In order to evaluate the influence on spatial predic-

tion of the differences in variogram parameters involved in

the described estimation techniques, we first produced maps
by kriging. To this end, we interpolated the residual values
via simple kriging to account for any trends, and then added
the trend coefficients back to the interpolated residuals
[Goovaerts, 1997]. We furthermore calculated the differ-
ences between kriged Ks-values that arose because of two
different variogram models. For this purpose, we chose one
covariance model as the reference against which the other
models are compared.
[41] We then performed 100 conditional sequential

Gaussian simulations, again using all different variogram
models. For every model, we post-processed the 100
simulations to summarize the spatial uncertainty informa-
tion. We displayed the outcome in probability maps: at each
simulated grid node, the probability of exceeding a given
threshold is evaluated as the proportion of the 100 simulated
values that exceed that threshold [Goovaerts, 1997]. To
assess the hydrological consequences of the spatial structure
of Ks, e.g., the spatial distribution of possible impeding
layers, we calculated for every grid node the probability that
Ks is exceeded by some location estimate of local rainfall
intensities. We extracted these intensities from ten-minute
rainfall records for the period October 2005 to September
2006 (unpublished data T. Peters, Erlangen) of a climate
station located some 100 meters away from our plot. From
this data set, we calculated maximum 30-minute rainfall
intensities of rainfall events that were separated from
another by a dry period of at least 2 h. Location estimates
of those intensities (e.g., median, upper quartile, maximum)
can serve as ‘thresholds’: where they exceed simulated Ks
values, impeding layers are likely to exist.

4. Results

4.1. Exploratory Data Analysis

[42] The Box-Cox transformations revealed that taking
logarithms is the most appropriate transformation for the
right-skewed Ks data, which corresponds to a multitude of
other studies of Ks (see Table 1 for examples from the
literature).
[43] Significant trends exist for the log-transformed data

at the three soil depths, which appear to be a first-order
polynomial on the x- (12.5, 20 cm depth) or the y-coordinate
(50 cm depth, respectively (Figure 4). Thus they can easily
be removed by linear regression. At the shallow soil
depths, Ks decreases from the left to the right side of
the plot (i.e., from gully to ridge), which we attribute to
topography-dependent differences in soil depth and vege-
tation cover. At the 50 cm depth, larger Ks characterize the
lower parts of the plot; however, this trend is not as
consistent as it is for the topsoil. In summary, a trend
denotes a local feature of our data and may be an effect of
either selecting too small an extent [Skøien and Bloeschl,
2006] or of a structured variability that in turn is a
fingerprint of the landscape organization, in our case slope
affecting soil formation.
[44] Consequently we performed all subsequent analyses

with the residuals of the linear regression or estimated the
trend coefficients as fixed effects within the REML estima-
tion of the covariance function, respectively. The univariate
distribution of the residuals appears approximately Gaussian
with a somewhat larger coefficient of skewness at 50 cm

Figure 4. (left) Plots of the log-transformed data divided
into quintiles (greater point sizes indicate higher Ks) and
(right) linear regression of the transformed data with the
respective coordinate as the independent variable.
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soil depth (Figure 5). H-scattergrams display bivariate
normal distributions and do not reveal any outlying values
(Figure 6). They also indicate weak and very short auto-
correlations at 12.5 cm depth; the linear correlation coeffi-

cient is only 0.35 for lags between 0.25 and 0.9 meters, and
measurements only 1.1 meter apart are uncorrelated. Auto-
correlations are more pronounced at the 20-cm and 50-cm
depths, but vanish after a few meters.

Figure 5. Univariate distribution of the residuals from regression for the (top) 12.5 cm, (middle) 20 cm,
and (bottom) 50 cm soil depth.

Figure 6. Bivariate distributions of the residuals for the (top) 12.5 cm, (middle) 20 cm, and (bottom)
50 cm soil depth; r is the Pearson correlation coefficient.
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[45] We did not encounter problems in trend decomposi-
tion, such as heteroscedastic variance of residuals or linear
constraints on the residuals [Leuangthong and Deutsch,
2004].

4.2. Geostatistical Analysis

4.2.1. Experimental Variogram Estimation
[46] Robust and classical (Matheron) variogram estima-

tion differed considerably with respect to both the selected
model and the theoretical variogram parameters nugget, sill
and range at all depths (Table 2). Since the variograms
depend strongly on the selected lag classes, we were not
able to delineate any systematic features of the several
estimators. The median of q(x) always remains within the
confidence limits when using the Matheron estimator, and
likewise for the robust estimators in most instances. Thus
the Matheron estimator can be used for all data sets, and
robust estimation is not required at all.
[47] Anisotropic behavior is not evident (Figure 7).

Obviously, if calculating directional variograms for the
log-transformed data containing the trend component one
could assume zonal anisotropy (Figure 8); this is particu-
larly conspicuous at the shallow soil depths, where the
strongest spatial correlation (without reaching a sill due to

the unbounded variance) coincides with the direction of the
trend component.
4.2.2. Estimation of Covariance Parameters
[48] Greatest variations in the estimated covariance

parameters characterize the 50 cm depth, where the spatial
autocorrelation is strongest, in contrast to the other soil
depths where all models suggest a very short correlation
(Table 3 and Figure 9). At the 20 cm depth, the models of
the evenly spaced experimental variograms have compara-
tively short ranges, but only the WLS model of the
unevenly spaced experimental variogram, which was fitted
over half the maximum lag, appears out of range compared
to most of the models. At this depth, it was impossible to fit
the Matérn model because of a flat likelihood function that
does not reach a distinctive maximum. The most pro-
nounced features at the 50 cm depth include (1) the
somewhat larger sill of the REML models, which is cer-
tainly due to the different estimate of the trend coefficients
compared to those of the linear regression, (2) the similarity
between the Matérn and the respective standard model, and
(3) the similarity of the ML models of the residual data with
the LS models of the evenly spaced experimental vario-
grams. The largest deviation from the bulk of models is

Table 2. Results of Robust Estimation

Soil depth
(cm) Estimatora Modelb Nugget Partial sillc Sill Range Nugget/sill *100 (%) Median of q(x) Mean of q(x)

12.5 M Exp 0.43 0.16 0.58 3.24 72.83 0.457 1.00
D Exp 0.36 0.29 0.64 3.24 55.53 0.535 1.08
CH Exp 0.45 0.16 0.61 3.24 73.68 0.433 0.97
G Exp 0.53 0.07 0.60 17.82 88.32 0.505 1.03

20 M Gau 0.40 0.34 0.75 8.10 54.05 0.483 1.15
D Exp 0.33 0.50 0.83 6.48 39.85 0.534 1.19
CH Exp 0.40 0.40 0.81 4.86 50.02 0.477 1.00
G Exp 0.46 0.22 0.68 4.86 68.29 0.423 0.97

50 M Exp 0.23 0.27 0.49 9.72 45.56 0.426 1.04
D Gau 0.17 0.28 0.45 11.34 37.11 0.755 1.75
CH Exp 0.26 0.30 0.56 21.05 46.70 0.445 1.06
G Exp 0.36 0.16 0.52 6.48 68.60 0.350 0.77

aExperimental variogram estimators proposed by Matheron (M), Dowd (D), Cressie-Hawkins (CH), and Genton (G).
bSelected theoretical variogram model, Exp: exponential; Sph: spherical; Gau: Gaussian.
cSill variance less the nugget variance.

Figure 7. Directional variograms of the residuals: 90� follows the direction of the contour line (i.e., the
x-coordinate) and 0� is the direction of the slope. Angle tolerance is 22.5�.
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associated with the OLS1 estimate, which composes a
comparatively large range and sill. This is due to the fact
that this model fits with equal weights to all points of the
unevenly spaced experimental variogram (Figure 9); i.e., the
large semivariance at the largest lag (possibly an edge
effect) has to be incorporated in the estimate.
[49] The median of q(x) does not appear to be a sensitive

indicator of the above differences since it shows only small
and insignificant variation; moreover, its optimum in the
sense of being closest to the expectation does not corre-
spond to the model that gives the minimum sum of squares
or the largest likelihood, respectively (Table 3). When

considering the mean of q(x), however, a somewhat clearer
picture emerges since it is always very close to the expec-
tation for the likelihood models (Table 3). A systematic
behavior emerges at least at 50 cm depth, where the mean of
q(x) exceeds the expectation for the models of the unevenly
spaced experimental variograms and falls below it for those
of the evenly spaced experimental variograms (not shown).
4.2.3. Spatial Prediction
[50] Because of the rather weak spatial structure at the

shallow soil depths, we focus in the following on the
prediction for the 50 cm soil depth.

Table 3. Summary of the REML Models

Parameters and evaluation
of REML models

Soil depth (cm)

12.5 20.0a 50.0

Modelb Mat Sph (Exp) Gau (Gau) Mat Exp/Sphc(Gau)
Nuggetd 0.17 (0.39) 0.11 (0.39) 0.44 (0.50) 0.14 (0.16) 0.11/0.12 (0.16)
Partial sille 0.41 (0.22) 0.47 (0.22) 0.30 (0.28) 0.37 (0.35) 0.40/0.38 (0.34)
Sill 0.58 (0.61) 0.58 (0.61) 0.74 (0.78) 0.51 (0.51) 0.51/0.50 (0.50)
Range (m) 0.03 (0.70) 0.76 (1.15) 4.85 (4.88) 1.30 (1.04) 1.92/3.84 (1.60)
Effective rangef (m) �0.6 (�2) 0.76 (3.45) 8.40 (8.45) �4.5 (4) 5.76/3.84 (2.77)
Nugget/Sill 0.29 (0.64) 0.19 (0.64) 0.59 (0.64) 0.24 (0.31) 0.22/0.24 (0.32)
ng 44.16 (0.83) - - 0.86 (1.26) -
LogLh �162.6 (�163.5) �162.5 (�163.5) �167.6 (�168.1) �89.83 (�89.87) �89.87/�89.87 (�89.95)
b0

i 2.4807 (2.4414) 2.4836 (2.4396) 2.3717 (2.3733) 1.0984 (1.0907) 1.1237/1.0601 (1.0515)
b1

i �0.0425 (�0.0419) �0.0425 (�0.0420) �0.0410 (�0.0411) �0.0034 (�0.0033) �0.0040/�0.0025 (�0.0024)
b2

i �0.0026 (�0.0021) �0.0026 (�0.0021) �0.0105 (�0.0104) �0.0169 (�0.0168) �0.0171/�0.0166 (�0.0165)
qmedij 0.480 (0.457) 0.474 (0.437) 0.505 (0.443) 0.432 (0.402) 0.431/0.446 (0.382)
Deviance E{qmedi}k (%) 2.5 (0.2) 1.9 (�1.8) 5 (�1.2) �2.3 (�5.3) �2.4/�0.9 (�7.2)
qmeanl 1.026 (0.931) 0.974 (0.929) 0.991 (0.882) 0.989 (0.972) 0.990/1.008 (0.985)
Deviance E{qmean}m (%) 2.6 (�6.9) �2.6 (�7.1) �0.9 (�11.8) �1.1 (�2.8) �1.0/0.8 (�1.5)

aImpossible to fit the Matérn model.
bCorrelation function: Ma, Matérn; Sph, spherical; Exp, exponential; Gau, Gaussian.
cIndifferent log-likelihood.
dValues in parentheses refer to the estimated parameters when the nugget was fixed to the semivariance of the first separation distance.
eSill variance less the nugget variance.
fFor exponential model: range*3; for Gaussian model: range*30.5; for Matérn model: implied visually at 95 % of the sill.
gSmoothness parameter of the Matérn function.
hMaximized log-likelihood.
iFixed effects.
jMedian of the q-statistics.
kDeviance from the expectation of the median of q(x).
lMean of the q-statistics.
mDeviance from the expectation of the mean of q(x).

Figure 8. Directional variograms of the log-transformed data before trend decomposition: 90� follows
the direction of the contour line (i.e., the x-coordinate) and 0� is the direction of the slope. Angle
tolerance is 22.5�.
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[51] In general, the differences among the kriged maps
are restricted to certain locations within the plot, that is to
say, to the left-lower corner and a cluster near the right
upper corner (Figure 10). Because of the similarity of the
Matérn and the standard REML models, the kriging pre-
dictions do not differ much, with some locally larger
deviations for the spherical model. The latter is also true
for the ML and the LS estimates of the evenly spaced
experimental variogram but here some clusters exist with
more severe over- or underestimation compared to the
REML-Matérn reference model. Largest deviations are

associated with the LS models of the unevenly spaced
experimental variograms both for those that were fitted over
the whole as well as over half the separation distance. The
kriging map based on a model with a linear trend shows a
completely different spatial pattern, in addition to the
absolute deviations.
[52] The assessment of the spatial uncertainty revealed

that the average number of Ks values in every of the 5
probability classes is quite similar regardless of the respec-
tive model (Table 4). For instance, between 25 and 32 % of
the simulated values are subject to a very small probability

Figure 9. Fitted variogram models. Estimation methods are restricted maximum likelihood (REML),
maximum likelihood (ML), ordinary least squares (OLS), and weighted least squares. OLS1 and WLS1
were fitted to an unevenly spaced (i.e., according to the sampling design) experimental variogram over
the whole separation distance, OLS2 and WLS2 are based on the same experimental variogram fitted
over half the separation distance, and OLS3/WLS3 are fitted to the evenly spaced experimental
variograms (one lag every 25 cm). Red squares show the unevenly spaced experimental variogram.
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(i.e., below 20 %) of being exceeded by the median of the
maximum 30-minute rainfall intensities. Hence, in our
example, model differences are insignificant for the mean
probability. However, the spatial arrangement, e.g., the
existence or nonexistence, respectively, of connected
patches of similar permeability, clearly depends on the

covariance parameters used (Figure 11). Because of the
comparatively long range of the OLS1 model, it simulated
pronounced clusters of high or low probabilities, suggesting
an impeding layer at the upper left corner and an area of
unrestricted percolation in the lower left parts of the plot.
Smaller but still pronounced clusters were produced by the

Figure 10. Differences between kriged Ks-values due to differences between the estimated covariance
parameters at 50 cm soil depth. We chose the REML-Matérn model as the reference with which the other
models are compared. These are (from left to right and from top to bottom) the REML-exponential, the
REML-spherical, the ML-Matérn, the ML-Gaussian, the OLS model fitted to a unevenly spaced
experimental variogram over the whole separation distance (OLS1), the WLS model fitted to a unevenly
spaced experimental variogram over the whole separation distance (WLS1), the OLS model fitted to a
unevenly spaced experimental variogram over half the separation distance (OLS2), the WLS model fitted
to a unevenly spaced experimental variogram over half the separation distance (WLS2), the OLS model
fitted to the evenly spaced experimental variograms (OLS3), the WLS model fitted to the evenly spaced
experimental variograms (WLS3), and a REML-Matérn model without fixed effects (i.e., no trend
elimination).

Table 4. Probability That the Median of the Maximum 30�Minute Rain Intensities Exceeds Ks

Methoda

Number of predicted Ks values/class (%): mean±standard deviation

Classb 1 ‘‘very unlikely’’ Class 2 ‘‘unlikely’’ Class 3 ‘‘indifferent’’ Class 4 ‘‘likely’’ Class 5 ‘‘very likely’’

REMLMat/REMLSph 25.8 ± 0.7 43.1 ± 1.2 28.2 ± 0.8 2.8 ± 0.7 0.1 ± 0.1
MLMat/MLGau 24.1 ± 0.3 46.7 ± 1.7 27.5 ± 1.1 1.6 ± 0.3 0.1 ± 0.0
OLS1/WLS1 28.7 ± 11.2 43.7 ± 11.1 22.8 ± 6.8 4.9 ± 6.6 0.0 ± 0.0
OLS2/WLS2 32.3 ± 1.3 38.8 ± 1.7 23.3 ± 0.1 5.5 ± 0.4 0.1 ± 0.1
OLS3/WLS3 23.3 ± 0.4 48.0 ± 0.7 27.0 ± 0.2 1.7 ± 0.1 0.1 ± 0.0

aModel are summarized regarding the estimation method: REML/ML: Matérn and a standard model estimated by REML/ML; OLS1/WLS1 & OLS2/
WLS2: ordinary and weighted least squares models, whole and half distance fit, resp., of visually selected experimental variograms; LS3: LS models of
regular exp. variograms.

bProbability classes: 1: 0 � < 2, 2: > = 2 � < 4, 3: > = 4 � <6, 4: > = 6 �< 8, 5: > = 8 � < 10.
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LS2 models, whereas the WLS1 model resulted in a
complete random pattern, which is, by and large, also true
for the ML and LS3 estimates. The REML models take a
middle position with some connected patches; in addition,
the probability map again mirrors the small differences
between the Matérn and the standard covariance models.
[53] In summary, the predictions reproduced the differ-

ences in the covariance parameters. The unevenly spaced
experimental variogram based on lag distance groups and
the resulting smoothing, yielded a fundamentally different
pattern, in our case the existence of a spatially explicit
impeding layer. The kriging maps (Figure 11) confirm the
simulation results, and local deviations between them can be
as high as 50 mm/h.
[54] Since we also wished to assess the importance of

various parts of the variogram analysis for application
purposes, we calculated, by way of one example, differ-
ences among kriging maps, for which we considered three
cases: (1) different model estimation, (2) ignoring the trend
component, and (3) using the robust Cressie-Hawkins
estimator (Figure 12). Not surprisingly, the violation of
the intrinsic hypothesis is most crucial for the shallow soil,
where the linear trend was particular strong. At both soil
depths, also the use of the robust instead of the classical
estimator has severe consequences for kriging. This com-
parison highlights the outstanding importance of a thorough

exploratory data analysis, and the risk of arbitrarily using
robust estimation techniques.

5. Discussion

5.1. Exploratory Data Analysis

[55] There are several approaches to check the assump-
tion of stationarity. We used diagnostic plots and evaluated
apparent trends by testing the significance of the regression
slope estimate. Within the framework of REML estimation
Lark et al. [2006] used the Wald statistics to evaluate the
null hypothesis that the fixed effects are zero. If the user
chooses REML estimation, this approach can be adopted in
addition to the visual diagnostics. Although it is established
that the sill variance should not be equated to the sample
variance [e.g., Barnes, 1991], a comparison between these
measures can be used as a control. The comparison depends
on boundary conditions that Barnes [1991] summarized in a
rule-of-thumb: the data must be somewhat evenly distrib-
uted over an area with an extend greater than three times the
range of the variogram. Since the rule-of-thumb is valid in
our case, sill and sample variance of our data should
approximately agree. Table 5 shows the exact match of
those measures when the trend is taken into account, and the
discrepancy between them when the trend is ignored. In the
latter case, the continuously increasing semivariance with

Figure 11. Probability maps displaying the probability that the median of the maximum 30-minute rain
intensities exceeds the soil permeability at 50 cm soil depth. All fitted covariance models were used to
run the conditional simulations. Please refer to Figure 10 for abbreviations.
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increasing lag in direction of the trend component (Figure 8)
yields estimates of the sill variance that exceed the sample
variance (Table 5).

5.2. Geostatistical Analysis

5.2.1. Experimental Variogram Estimation: Robust
Estimation Requirements
[56] Robust estimation coincides with considerable differ-

ences in the covariance parameters nugget, sill, and range.
In our case, the Matheron estimator shows both a median
and a mean of the q-statistics which are very close to the
expectation. This is also true for the Cressie-Hawkins
estimator, whereas the other two robust estimators per-
formed worse regarding this criterion, particularly the
Genton estimator. The absences of extreme values that
may negatively affect the classical estimator were confirmed
by the univariate and bivariate distributions (see Figures 5
and 6). Hence our study corroborates the proposal by Lark
[2000a] that the q-statistics may qualify as a criterion to

choose between classical and robust estimation. The arbi-
trary use of a robust estimator instead of the classical one
might be disadvantageous, first because robust estimators
all assume an underlying distribution that is multivariate
normal and second because they are less efficient than
Matheron’s estimator [Lark, 2000a] in the absence of out-
liers. Another drawback of robust estimation is the limited
comparisons with other studies where the classical estimator
has been used.
[57] In summary, our results confirm the usefulness of the

statistic q(x). In this study, we used a rather rough approach
because the confidence limits for the median of q(x) ignore
spatial dependence between the locations. For this reason
Lark [2002] developed a method to compute Monte Carlo
confidence intervals in the framework of modeling soil
properties as contaminated regionalized variables.
5.2.2. Estimation of Covariance Parameters
[58] Fitting parametric models to experimental vario-

grams remains the method of choice in dealing with the
spatial variability of environmental variables (see Table 1
for examples concerning saturated hydraulic conductivity),
although some authors encourage estimation of the covari-
ance model by restricted maximum likelihood [e.g., Pardo-
Igúzquiza, 1998; Stein, 1999; Lophaven et al., 2002],
especially for unsystematic sampling [Lark, 2000b]. Regard-
ing hydrological modeling, Unlu et al. [1990] and Russo et
al. [1997] used REML to estimate the covariance functions
of parameters of some hydraulic properties including Ks. In
the former study, REML estimates of the sill and range
turned out more accurate and consistent than the
corresponding OLS- and ML-based estimates. Because
there is no objective ‘‘test’’ criterion that ‘‘proves’’ the
advantage of the REML procedure (the q-statistic is a rather
rough measure because it ignores correlation between the
separate validation points), we discuss the basis for our
preference in the spatial modeling of our Ks data in the
following.
[59] Maximum-likelihood techniques allow the estima-

tion of covariance parameters directly from the data, where-
as least-squares techniques rely on an experimental
variogram. A related criticism of maximum likelihood
estimation is that the sampling scatter directly influences
the parameter estimation [Chilès and Delfiner, 1999]. Least-
squares methods frequently use lag classes to calculate the
experimental variogram; hence, a semivariance estimate for
a particular lag bin is an average of all contributing point
pairs within it. This ‘‘averaging effect’’ is of major impor-
tance when broader or unequal lag distance classes are used.
In our case, this is true for the unevenly spaced experimen-
tal variograms, which reflect the unsystematic sampling and
which hence use lag classes that are narrower for short

Figure 12. Boxplots of the absolute differences between
predicted Ks-values that are due to different aspects of the
variogram analysis denoted by the numbers 1–4 below the
x-axis. The REML-Matérn model serves as the reference,
which is compared to (1) the best standard REML model
(selection criterion: largest maximized likelihood), (2) the
best least-squares model (selection criterion: median of
q(x)), (3) the best standard REML model without fixed
effects (i.e., no trend elimination), and (4) the ordinary least
squares model for the experimental variogram of the
Cressie-Hawkins estimator (see Table 2 for parameters).

Table 5. Comparison of Sample Variance and Sill Variance

Soil depth (cm) Variancea of lgKs Varianceb of residuals Sillc Silld

12.5 0.8 0.6 1.8 0.6
20 0.9 0.7 1.2 0.7
50 0.5 0.5 0.6 0.5

aSample variance of the log�transformed Ks data.
bSample variance of the residuals of the linear trend.
cSill variance of REML model when trend is ignored.
dSill variance of the REML-Matérn model.
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separation distances than for longer ones. Although the
dependence of the experimental variogram on the choice
of the lag classes is a well-known fact, there is no general
rule for this choice (except that they should not overlap).
Hence this step in the variogram analysis is always arbitrary,
and especially so when the sampling is unsystematic. At any
rate, it is questionable if point measurements should be
summarized in classes which are then used for modeling
even though the subsequent prediction or simulation is
again based on very small units, e.g., a grid cell in a
prediction grid. Another aspect is the generally greater
number of point pairs in some, in our case the middle, lag
classes, which leads to a decrease of scatter in the respective
region of an experimental semivariogram.
[60] The simultaneous estimation of fixed effects is a

further benefit of REML since the variogram of the resid-
uals of the linear regression is a biased estimate of the
variogram of the random component of spatial variation
[Cressie, 1993]. Nevertheless, the residuals should be com-
puted for exploratory purposes, e.g., to check their bivariate
distribution and to assess the plausibility of the effective
range. The h-scattergrams (Figure 6) indicated that the
correlation lengths are within the range of a few meters.
Thus the large and small effective ranges, respectively, of
the LS-fitted models for the whole-distance variogram at
50 cm depth appear rather implausible according to these
scattergrams in contrast to the effective ranges of the REML
models. That is to say, h-scattergrams help to at least
roughly estimate the correlation length.
[61] In summary, our results provide convincing evidence

for the gains associated with the use of restricted maximum
likelihood to estimate fixed and random effects in geo-
statistical modeling (referred to as the ‘‘REML-E-BLUP’’
approach by Lark et al. [2006]), so long as the bivariate
distributions are approximately normal.
5.2.3. Role of the Nugget Value
[62] Cambardella et al. [1994] proposed that the strength

of spatial dependence can be characterized by the nugget-to-
sill ratio. For instance, a ratio smaller than 25 % suggests a
strong spatial dependence. Our criticism regarding this
approach derives from a theoretical point of view: because
the nugget is usually estimated by extrapolation from a
covariance model, it cannot be verified by the data. Our
results for the REML models (Table 3) illustrate what this
means practically: at the 12.5-cm depth, the nugget-to-sill
ratio indicates strong spatial dependence, whereas for the
20-cm depth one would claim a moderate spatial depen-
dence at best. Since the h-scattergrams (Figure 6) did not
reveal a stronger correlation of point pairs separated by the
smallest separation distance for the 12.5-cm depth com-
pared to the 20-cm depth, it is questionable if the strength of
the autocorrelation differs much between these depths.
Fixing the nugget to the semivariance at the shortest lag
yields more plausible nugget-to-sill ratios. The notion that it
may be advantageous to fix the nugget instead of estimating
it simultaneously was also put forward by Minasny and
McBratney [2005] who reported difficulties in nugget
estimation when using the Matérn model with a small
smoothness parameter. In addition, our results (Table 3)
show that n can heavily depend on the nugget value, as well
as the other parameters of the covariance function. Because
of the very short-ranging autocorrelation at the shallowest

soil depth, where the difference between fixed and estimat-
ed nugget is most pronounced, the influence of those
differences on spatial prediction cannot be investigated. In
cases where the range allows for meaningful predictions and
where the estimated nugget considerably differs from the
fixed one, the decision as to which one to use may be
difficult and will depend on the user’s experience. Uncer-
tainty in the semivariance estimation at the shortest lag due
to a small number of contributing point pairs may encourage
the user to estimate the nugget by model extrapolation,
which is unavoidable if his or her sampling scheme does not
allow for a very short lag relative to the extent. At any rate,
a sampling design which allows for calculating the semi-
variance at short lags is highly advantageous. For instance,
estimating the parameters of the Matérn correlation function
requires short lags [Marchant and Lark, 2007].
5.2.4. Spatial Prediction
[63] Goovaerts [1997] argued that a-priori decisions, such

as the assumption of stationarity and the random function
model for modeling uncertainty, are far more consequential
for interpolation than the choice of a variogram model. This
is particularly true in situations where, for instance, the
intrinsic hypothesis does not hold (see, for example,
Figure 12 for the 12.5-cm depth), or where the choice of
simulation algorithm is not appropriate for a specific prob-
lem (e.g., Gaussian versus indicator simulation). However,
our results also show that the estimation method of the
covariance parameters can become important; both the
differences in spatial connectivity and in the absolute
deviations are likely to affect applications, e.g., the use of
the interpolated permeability values as an input for hydro-
logical models.

6. Comparison With Other Studies of Ks Spatial
Variability

[64] It is currently impossible to relate the spatial struc-
ture of soil permeability to some easily predictable or
measurable feature such as land use, soil texture, or soil
depth (Table 1). To complicate things even more, the choice
of a sample scale triplet (support, spacing, and extend, see
Bloeschl [1999]) relative to the scale of the underlying soil
variability affect the estimates of the variogram parameters;
e.g., apparent correlation lengths always increase when
increasing spacing, extent or support [Western and Bloeschl,
1999].
[65] Table 1 reveals that agriculture, for example, seems

to promote spatial patterns that are completely random, but
also strong and extensive autocorrelations; data from for-
ested land are still too rudimentary to allow any conclu-
sions. Deviations from the intrinsic hypothesis are found in
many cases (Table 1, column ‘‘Trend’’); hence, special
attention should be given to this part of the variogram
analysis. For the majority of the studies, the sample sizes
fall considerably below the recommended minimum of
150–200 for the method-of-moments variogram [Webster
and Oliver, 1992]. This shortcoming certainly influences the
results and hence this comparison. The required sample
sizes for REML estimation may differ from this recommen-
dation, or may even be smaller, but this has not yet been
addressed adequately.
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[66] Where spatial structure exists, it is attributed to a
well-developed and stable soil structure [Reynolds and
Zebchuk, 1996], to uniform texture and pore size distribu-
tion developed by long-term, no-tillage agricultural practi-
ces [Mohanty and Mousli, 2000], or to intrinsic variations in
soil texture and mineralogy [Shukla et al., 2004]. The
absence of spatial autocorrelation is presumably caused by
biogenic macroporosity, which overrides possible texture
and topography dependence [Sobieraj et al., 2002], by
uneven breaking of soil structure due to freezing and
thawing [Mohanty et al., 1991], or by surface tillage in
the upper horizons [Bosch and West, 1998]. Hence it
appears that a rather uniform soil texture and a stable soil
structure that does not undergo frequent disturbance may
favor the development of a predictable spatial structure of
saturated hydraulic conductivity. This interpretation applies
to our study as well, because the permeability of the surface

horizons, which have experienced disturbances such as the
compaction by cattle treading, exhibit less spatial structure
than deeper, unaffected horizons.

7. Conclusions

[67] We first summarize our results by answering the
research questions posed in the introduction.
[68] 1. Pronounced trends of the mean permeability exist

at every investigated soil depth, with particular importance
for the shallow soil. Ignoring it would produce misleading
results.
[69] 2. Robust estimation techniques are not required,

since the log-transformed data do not exhibit extreme values
in their univariate and bivariate distributions. This was
further confirmed using the approach of the q-statistic [Lark,

Figure 13. Proposed flowchart for spatial data analysis. The red boxes contain the most critical
decisions.

16 of 18

W10408 ZIMMERMANN ET AL.: ANALYZING SPATIAL DATA W10408

Mario
Resaltado

Mario
Resaltado



2000a] to assess the need for robust estimators. The
arbitrary use of robust estimators incurs the risk of lower
efficiency.
[70] 3. Anisotropic variations are not evident. The seem-

ing anisotropy in the non-detrended data associates the trend
component with an imaginary direction-dependent spatial
structure.
[71] 4. The estimated covariance parameters depend on

the estimation method and, in the case of least-squares
approaches, also on the chosen experimental variograms.
[72] 5. The differences between the Matérn and standard

models are rather small. It was not always possible to
estimate the parameters of the Matérn function.
[73] 6. Fixing the nugget variance potentially modifies all

parameters of the covariance function and may therefore
have an impact on spatial prediction. This should be
investigated further. In some cases, the estimated nugget
variance appeared to be too small.
[74] 7. As to prediction, the model differences do not

influence average values, e.g., the average probability that
rainfall intensities exceed the soil permeability. The spatial
arrangement, however, particularly the connectivity of
zones with large or small Ks, depends on the model used,
and local differences in kriging maps can be considerable.
[75] Generalizations regarding the spatial structure of

saturated hydraulic conductivity as a function of attributes
such as soil type, land use, and measurement techniques are
currently impossible. Limited earlier interpretations and our
results, however, suggest a dependence of its spatial struc-
ture on land use-controlled soil conditions.
[76] Our results permit some general recommendations.

First, the discussion of a plausible estimate of the nugget
variance emphasizes the advantage of a sampling design
which allows for calculating the semivariance at short lags.
Second, under bivariate normal conditions we encourage
estimation by restricted maximum likelihood, because it
does not require the arbitrary selection of lag classes. The
mean of the q-statistic for the REML models, which is very
close to the expectation, and their plausible effective range
further support their accuracy. If one chooses a robust
estimation technique, the variogram model should only be
fitted over half of the linear dimension of the maximum lag
to avoid edge effects. Third, in the framework of REML
estimation, we propose to use the Matérn correlation func-
tion when possible and to compare it to some standard
model (e.g., spherical), e.g., by means of the Akaike
information criterion.
[77] Figure 13 summarizes our recommendations for the

geostatistical analysis of environmental data. This flowchart
should be continuously updated to accommodate new
developments.
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