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Summary 

 

During the past four decades, computer based mathematical hydrological models have 

been widely used for a variety of applications. These models are based on general 

mathematical descriptions of the hydrological processes that transform natural forcings 

(e.g. rainfall over the landscape) into response (e.g. runoff in the river). The user of a 

hydrological model must specify the model parameters before the model is able to 

properly simulate the hydrological behaviour that it describes. In general, there are two 

main approaches to estimating model parameters. The first (a-priori approach) 

estimates model parameters by relying on theoretical or empirical relationships that 

relate such parameters to observable (measurable) characteristics of the model area (e.g. 

soil and vegetation properties, topography, …). The second approach (model 

calibration) adjusts model parameter values such that the model input-output (e.g. 

rainfall-runoff) response closely matches the observed (measured) input-output response 

for some historical period for which data has been collected. Ever since the 

development of these models, studies have shown the large complexity of estimating 

these parameter values, either by the a-priori or model calibration approaches. The main 

reason for this is the fact that our model equations and their respective parameters are 

idealised representations of real world processes. Furthermore, there are a variety of 

errors in the model structure and uncertainties in the data used for parameter estimation, 

which introduce considerable inaccuracy into model behaviour. These factors have 

made it difficult to develop reliable procedures for model parameter estimation, and to 

provide suitable estimates of uncertainties in the model predictions.  

 

The parameter estimation problem for unsaturated zone modelling forms the central 

research topic of this PhD dissertation. After a general introduction, the set-up of a field 

experiment that was carried out on a hillslope in the sandy-loam belt of Belgium is 

described. Soil samples were taken from profile pits along the hillslope. On these 

samples, the soil hydraulic parameters needed for unsaturated zone modelling were 

estimated in the laboratory. On top of that, in-situ measurements using a single ring 

pressure infiltrometer prior to the start of the experiment were carried out. Based on 

these measurements, a mathematical procedure was developed resulting in more robust 
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estimates of the field-saturated hydraulic conductivity than the classical approach. 

Parameter estimates as a result of the laboratory measurements together with the field 

saturated hydraulic conductivity estimated were considered as prior information in the 

a-priori approach.  

 

The importance of each of the soil hydraulic parameters for simulating water content 

profiles on the hillslope was evaluated using two different sensitivity analyses. 

Resulting important parameters were consequently incorporated in the SCE (Shuffled 

Complex Evolution) automatic calibration routine and their ‘effective’ values were 

estimated. The ‘effective’ parameter set is the result from the autocalibration routine 

and yields the best fit of the model to the observed soil moisture content on the 

hillslope. Initially, no use was made of the prior information in the inverse modelling or 

autocalibration technique. It was concluded that for the hillslope, ‘effective’ parameter 

values and the prior measured parameter values differed significantly. Furthermore, the 

use of this prior information in an a-priori context, i.e. as model parameters in the 

model, resulted in very poor model fits. These conclusions raised questions about the 

relevance of measuring prior information since the parameters needed by the model 

(=’effective parameters’) to give the best fit to the observed data, are significantly 

different.  

 

To investigate the relevance of the prior information, a methodology for the 

incorporation of this prior parameter information in two different parameter estimation 

strategies, SCE and GLUE (Generalised Likelihood Uncertainty Estimation) was 

developed. It was shown that incorporating prior information in the SCE algorithm 

resulted in more ‘realistic’ parameter estimates and reduced the goodness-of-fit of the 

model negligibly. Incorporating prior information in the GLUE algorithm resulted in 

more behavioural parameter sets and uncertainty bounds that comprised the observed 

data better. Hence, it was concluded that the developed methodology of combining 

inverse modelling with prior parameter estimations was ‘superior’ to the case when both 

were applied individually, i.e. the direct use of prior information in the model (a-priori 

approach) and inverse modelling without the incorporation of prior information 

(calibration approach). Finally, a procedure for the incorporation of rainfall intensity 

into daily rainfall records was developed and tested using a synthetic hillslope model 
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set-up. Using this procedure, it was shown that the temporal resolution of rainfall 

affected the values of the effective parameters significantly.  
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Samenvatting 

 

Gedurende de laaste 40 jaar worden numerieke hydrologische modellen gebruikt voor 

een brede waaier van toepassingen. Deze modellen zijn gebaseerd op algemene 

wiskundige beschrijvingen van hydrologische processen die natuurfenomenen (vb. 

regen) tranformeren in een respons (vb. afvoer naar rivier). De gebruiker van een 

hydrologisch model moet de modelparameters specifiëren alvorens het model het 

gesimuleerde hydrologisch process correct kan beschrijven. Het schatten van parameters 

kan grosso modo opgedeeld worden in twee benaderingen. De eerste (a-priori aanpak) 

schat de modelparameters op basis van theoretische of empirische relaties. Deze 

benadering relateert modelparameters aan observeerbare (meetbare) karakteristieken 

van het modelgebied (vb. bodem en vegetatie eigenschappen, topografie, ...). De tweede 

aanpak (model calibratie) past modelparameters aan zodat de model input-output (vb. 

regen-afvoer) respons overeenstemt met de geobserveerde (gemeten) respons voor een 

historisch opgemeten tijdreeks. Sinds het ontstaan van deze modellen hebben 

verschillende studies gewezen op de enorme complexiteit die gepaard gaat met het 

schatten van deze parameters, dit voor beide benaderingen. De belangrijkste reden voor 

deze complexiteit is het feit dat  model vergelijkingen en hun respectievelijke 

parameters geidealiseerde representaties zijn van ‘echte wereld’ processen. Bovendien 

zijn fouten in model structuur niet uit te sluiten en  bestaan er onzekerheden in de data 

gebruikt voor parameter schatting, die een aanzienlijke onzekerheid introduceren in 

model gedrag. Deze factoren bemoeilijken het ontwikkelen van betrouwbare procedures 

voor parameter schatting en schatting van onzerheidsintervallen voor 

modelvoorspellingen.  

 

Het probleem van de parameter schatting voor modellen, die zich focussen op de 

onverzadigde zone (= bodem van maaiveld tot grondwatertafel), vormt het centraal 

onderzoeksthema van deze doctoraatsthesis. Na een algemene inleiding wordt er een 

beschrijving gegeven van het veldexperiment uitgevoerd op een hellend proefveld in 

Rillaar, België. Er werden onverstoorde bodemstalen genomen in 3 profielputten 

langsheen de helling. De bodemhydraulische parameters, vereist voor onverzadigde 

zone modellering, werden geschat aan de hand van metingen in het laboratorium op de 
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onverstoorde stalen. Bovenop deze metingen, werden er ook in-situ metingen 

uitgevoerd gebruik makende van enkele-ring druk infiltrometers. Gebruik makend van 

deze metingen werd een wiskundige inverse optimalisatie procedure ontwikkeld die 

resulteert in meer robuste in-situ hydraulische conductiviteit schattingen dan de 

klassieke analyse methode. Parameter schattingen uit het laboratorium en de in-situ 

hydraulische conductiviteit schattingen werden beschouwd als prior informatie in de a-

priori aanpak.  

 

Het belang van elk van bodemhydraulische parameters voor het simuleren van 

bodemvochtgehalte profielen werd geëvalueerd met behulp van 2 verschillende 

gevoeligheidsanalyses. Belangrijke parameters werden vervolgens geïncorporeerd in het 

SCE (Shuffled Complex Evolution) algoritme. Dit resulteerde in schattingen van de 

effectieve waarden van de belangrijke parameters. De set van effectieve 

modelparameters is het resultaat van een calibratie of in dit geval een autocalibratie 

(SCE) die resulteert in de beste overeenkomst tussen geobserveerde en gesimuleerde 

data. In dit onderzoek werden bodemvochtgehalte profielen gebruikt om deze 

overeenkomst na te gaan. Initieel werd er geen gebruik gemaakt van de prior informatie 

in de inverse modellering of autocalibratie techniek. Er werd aangetoond dat voor het 

hellend proefveld, effectieve parameter waarden significant verschillen van hun 

gemeten waarden. Bovendien resulteerde het gebruik van de prior informatie als 

rechtstreekse parameter input in het model in een slechte overeenkomst. Deze besluiten 

deden vragen rijzen over de relevantie van het meten van prior informatie aangezien de 

parameters die het model nodig heeft voor de beste overeenkomst (effectieve 

parameters) significant verschillen van hun gemeten waarden.  

 

Om de relevantie van het meten van prior informatie te onderzoeken, werd een 

methodologie voor het incorporeren van deze prior informatie in twee verschillende 

parameter schatting strategiën, SCE en GLUE (Generalised Likelihood Uncertainty 

Estimation), ontwikkeld. Er werd aangetoond dat het incorporeren van de prior 

informatie in het SCE algorithme resulteerde in meer ‘realistische’ effectieve parameter 

schattingen terwijl de model overeenkomst met de geobserveerde bodemvochtprofielen, 

slechts verwaarloosbaar verminderde. Incorporeren van prior informatie in het GLUE 

algorithme resulteerde in meer ‘behavioural’ parameter sets en de onzekerheidsgrenzen 



Preface  

 xiv 

bevatten de geobserveerde bodemvochtprofielen beter. De ontwikkelde methodologie 

van het combineren van invers modelleren met prior parameter informatie werd beter 

bevonden dan de toepassing van beiden apart, met name het direkt gebruik van prior 

informatie in het model (a-priori aanpak) en invers modelleren zonder de inbreng van 

prior informatie (calibratie aanpak). Om te besluiten werd er een procedure ontwikkeld 

en getest op een synthetisch hellend veld model voor het in rekening brengen van 

regenintensiteit in dagelijkse regenhoeveelheden. Gebruik makende van deze procedure 

werd er aangetoond dat de temporele resolutie van de neerslag een significant effect 

heeft op de waarden van de effectieve modelparameters.  
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Notation 

 

In some places throughout the text, same symbols are used for different variables to 

have a notation in correspondence with the general notation in literature. The exact 

meaning of the symbol should be clear from the context in which the variable is used. 

The dimensions of the symbols can be found throughout the text in square brackets ([ ]) 

and are copied in the following tables. In these tables, the paragraph in which the 

symbol first occurred or is defined, is also given.  

 

Latin symbols 
Symbol Definition Units Paragraph 

ia  Parameter to be optimised in the 

analysis of single ring pressure 

infiltrometer measurements (related 

to Kfs at each location i) 

T-1 3.2.2.3 

aint Chosen integer (Morris design) - 5.3.2 

A Cross sectional area  L² 2.2.1 

b  Parameter to be optimised in the 

analysis of single ring pressure 

infiltrometer measurements (related 

to field αm) 

L 3.2.2.3 

C Soil water capacity  L-1 2.2.1 

C0 Nugget variance   3.2.3 

C1 Empirical parameter of the 

Kristensen and Jensen 

evapotranspiration model 

- 4.2.1.2 

C2 Empirical parameter of the 

Kristensen and Jensen 

evapotranspiration model 

- 4.2.1.2 

Cs Co-variance contribution or sill 

value 

- 3.2.3 
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Symbol Definition Units Paragraph 

d Depth between the A- and B-

horizon 

L 5.2 

d() Elementary effect of the ith 

component (Morris design) 

- 5.3.2 

dr Depth of insertion of the ring of a 

single-ring pressure infiltrometer 

L 3.2.2.1 

E Model Efficiency - 7.4.2 

Eat Actual transpiration LT-1 4.2.1.2 

Ep Potential evapotranspiration LT-1 4.2.1.2 

Es Soil evaporation  LT-1 4.2.1.2 

F Objective function value   2.2.2 

Fagg Aggregated objective  6.3.2 

G Dimensionless parameter - 3.2.2.1 

h Soil pressure head L 2.2.1 

H Height of the ponded head L 3.2.2.1 

hg Flow depth above the ground 

surface 

L 4.2.1.3 

hl Lag distance class L 3.2.3 

j Number of intensity classes  - 7.3 

K Hydraulic conductivity  LT-1 2.2.1 

k Number of parameters (Morris 

design) 

- 5.3.2 

Kfs Field saturated hydraulic 

conductivity  

LT-1 3.1 

Ks Saturated hydraulic conductivity  LT-1 2.2.1 

Kx - Strickler coefficient x direction L-3T-1 4.2.1.3 

Ky- Strickler coefficient y direction L-3T-1 4.2.1.3 

l Length  L 2.2.1 

L Likelihood measure   6.3.3 

m Empirical fitting parameter of van - 2.2.1 
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Genuchten-Mualem hydraulic 

functions 

Symbol Definition Units Paragraph 

m 

No. of points in each complex (SCE 

algorithm) 

- 4.3.3.3 

M() Model function   3.2.2.3 

mj Rainfall intensity LT-1  

n Empirical fitting parameter of van 

Genuchten-Mualem hydraulic 

functions 

- 2.2.1 

N Empirical fitting parameter of 

Averjanov conductivity curve 

- 2.2.2 

n Number of … -  

O Observed data vector  3.2.2.3 

p Set of parameters  3.2.2.3 

P Feasible parameter space  - 4.3.2.2 

p No. of complexes (SCE algorithm) - 4.3.3.3 

P Significance level in the 

Kolgomorov-Smirnov test 

- 5.3.1 

P Vector containing the transformed 

parameters 

 6.3.2 

Pi Rainfall record on day i L  

pmin 

Minimum No. of complexes 

required as the search proceeds 

(SCE algorithm) 

- 4.3.3.3 

Q Flow capacity L³T-1 2.2.1 

Q Infiltration rate LT-1 3.1 
⊗
∞0q  Theoretical perturbed infiltration 

rate 

LT-1 3.2.2.2 

q 

No. of points in a sub-complex 

(SCE algorithm) 

- 4.3.3.3 

q0∞ Steady flow rate LT-1 3.2.2.1 
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r Number of trajectories (Morris 

design) 

 5.3.2 

ra Practical range L 3.2.3 

Symbol Definition Units Paragraph 

rd Ring radius of a single-ring 

pressure infitrometer 

L 3.2.2.1 

Ri,obs Observed (reference) daily hillslope 

runoff 

L 7.4.2 

Ri,sim Simulated daily hillslope runoff. L 7.4.2 

Sfx Friction slopes in x direction - 4.2.1.3 

Sfy Friction slopes in y direction - 4.2.1.3 

t Time  T 2.2.1 

T Test statistic in the Kolgomorov-

Smirnov test 

 5.3.1 

tij duration of the j’th part of daily 

rainfall 

T  

u Flow velocities in x direction LT-1 4.2.1.3 

v Flow velocities in y direction LT-1 4.2.1.3 

x Horizontal coordinate (width) L 3.2.1 

X Sample in the Kolgomorov-

Smirnov test  

 5.3.1 

x Vector in the parameter space 

(Morris design) 

 5.3.2 

X Untransformed variable  6.3.1 

x* Base value of x (Morris design)  5.3.2 

X1, X2 Limits of X  6.3.1 

xi Component of x (Morris design)  5.3.2 

xlower,i Lower limit of xi (Morris design)  5.3.2 

xupper,i Upper limit of x, (Morris design)i  5.3.2 

y Horizontal coordinate (length) L 3.2.1 

Y Transformation of X  6.3.1 

y(x) Output as a result from simulation  5.3.2 
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with x as input parameters (Morris 

design) 

z Vertical coordinate L 2.2.1 

Z Vector of standard normal variables  6.3.1 

Symbol Definition Units Paragraph 

z(xi) Measured sample values at point xi,   3.2.3 

zg Ground surface level L 4.2.1.3 

)(ˆ ixz  Predicted (krigged) value at 

location xi 

 3.2.3 

 

Greek symbols 
Symbol Definition Units             Paragraph 

α Empirical fitting parameter of van 

Genuchten-Mualem hydraulic 

functions 

L-1 2.2.1 

α 

No. of offsprings generated by each 

sub- complex (SCE algorithm) 

- 4.3.3.3 

αm Measure of the relative 

contributions of gravity and 

capillary forces to water movement 

in an unsaturated soil 

L-1 3.1 

β 

No. of evolution steps taken by 

each complex before shuffling 

(SCE algorithm) 

- 4.3.3.3 

γ  Estimated semivariance  - 3.2.3 

δ  Dimensionless parameter in the 

Morris design 

- 5.3.2 

∆ Dimensionless parameter in the 

Morris design 

- 5.3.2 

ε Transformation constant - 6.3.2 

φm Matric flux potential L2T-1 3.1 

θ Volumetric water content L3L-3 2.2.1 
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θF Volumetric water content at field 

capacity 

L³L-³ 4.2.1.2 

θobs  Mean observed daily moisture 

content 

 

L3L-3 5.3 

Symbol Definition Units Paragraph 

θr Residual water content L3L-3 2.2.1 

θs Saturated water content  L3L-3 2.2.1 

θsim  Mean simulated daily moisture 

content 

L3L-3 5.3 

θW Volumetric moisture content at 

wilting point  

L³L-³ 4.2.1.2 

ω Weighting factor - 6.3.2 

ψ Soil potential  L 2.2.1 

 

Mathematical and statistical symbols 
Symbol Definition Units Paragraph 

CDF  Normal cumulative distribution 

function with sample mean and 

standard deviation taken from Y(X) 

 6.3.1 

F(X) Cumulative distribution functions 

of sample X 

 5.3.1 

)(Fg  Transformation function of F  6.3.2 

Np(µ, ∑) p-dimensional normal density   6.3.1 

µ Mean    

S Lower triangular (Choleski) 

decomposition of Σ  

 6.3.1 

S(Y) Empirical cumulative distribution 

function of Y(X)  

 6.3.1 

σ Standard deviation   

U Johnson Transformation   6.3.1 

Σ  Variance-covariance matrix   6.3.1 
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A  Determinant of matrix A   

A  Mean of matrix A   

∆x Difference operator for variable x   

 

Acronyms 
Symbol Definition Units Paragraph 

CD Coefficient of Determination  7.2 

CI Confidence Interval  2.2 

GLUE Generalized Likelihood Uncertainty 

Estimation 

 4.4.2.1 

LAI Leaf Area Index  4.2.1.2 

MC Monte Carlo  5.5.2.1 

ME Mean of the reduced Error vector  3.2.3 

MRE Mean squared Reduced Error  3.2.3 

MSE Mean Squared Error   6.3.3 

RE Reduced Error vector  3.2.3 

res   residual  5.3 

RMSE  Root Mean Squared Error  5.3 

SA Sensitivity analysis  4.3.1 

SCE Shuffled Complex Evolution  4.3.3.3 

SSR Sum of squared residuals  3.2.2.3 

STD Standard Deviation  5.3 

UB Uncertainty bound  6.4.3 
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Chapter 1 

 

Introduction  
 

ABSTRACT 

 

In this Chapter, a general introduction to the parameter estimation problem in 

hydrological modelling is given. Based on the problems discussed in this introduction, 

the objectives of the PhD research are formulated and the structure of this document 

explained.  

 

1.1. The parameter estimation problem in hydrological 

modelling 

 

The increasing frequency of inundations all over the world (e.g. in Belgium in 1993, 

1995, 1998, 1999 and 2002), has as effect that the society starts questioning about the 

effect of spatial ordering, land use and the warming up of the earth on hydrology, more 

in particular on the rainfall-runoff process. Not only concern about water quantity but 

also water quality, as a result of increasing industrial and agricultural activities, is 

increasing. In order to find adequate solutions, the government requires scientific 

grounded instruments that allow the set-up and implementation of sustainable and 

techno-economic feasible measures and policies.  

 

Lumped hydrological models treat catchments and sub-catchments as uniform entities. 

This means that it is generally impossible to predict the effect of spatially non-uniform 

measures on the hydrology. The same is true if the effect of the spatially non-uniform 

precipitation distribution, especially during storms, on the runoff process is to be 

modelled. Since nowadays, more and more questions about the spatial ordering and its 

effects on catchment hydrology arise, one is obliged to use hydrological models that 
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treat input and area characteristics as spatially distributed. The amount of parameters in 

this context is generally a multiple of the amount of parameters needed by lumped 

models.  

 

Empirical models are models based on empirically derived equations, i.e. relations 

established on the basis of experimental data. The best-known hydrological empirical 

‘model’ is probably the Curve Number method, which divides the total amount of 

rainfall into runoff and infiltration on the basis of a curve number [USDA, 1985]. These 

curve numbers were empirically deducted from rainfall-runoff experiments on different 

hillslopes with different vegetation types, average slopes, soil types and antecedent soil 

moisture conditions. On the contrary, physically based models are based on 

mathematical representations of the physical processes taken place in the catchment. In 

general, physically based models need much more parameters than empirical models. 

Because these parameters have a physical meaning, in theory it should be possible to 

measure or estimate them using in-situ experiments or on representative samples in the 

laboratory.  

 

From the above, it is obvious that physically based models that are capable of treating 

the total area in a distributed way, need a vast amount of parameters to describe all 

processes taking place at different locations within a catchment. Although in theory all 

parameters are measurable, in practice this is impossible. Impossible not only because 

of the huge amount of time and money it would cost to measure all parameters at all 

locations, but also because the effective parameter values needed by the model may 

differ from the measurements. The effective parameter values correspond to those 

parameter values that result in the most accurate model prediction. This difference can 

be due to the ‘scaling’ problem, i.e. the scale at which the measurements are made 

differs from the scale at which the hydrological processes are described by the model. A 

well-described example of this ‘scaling’ problem is the estimation of a hydraulic 

conductivity value for a larger area needed by the model. It is well known that hydraulic 

conductivity is a heterogeneous parameter and might differ between adjacent places as 

close as a few meters [Mertens et al., 2002b]. Not only is the hydraulic conductivity an 

extremely heterogeneous parameter but another important factor largely influencing 

hydraulic conductivity is sample size. Sample size here must been considered as the 

volume on which the hydraulic property is measured. By many authors it was found that 
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the hydraulic conductivity and its variability tends to increase as sample volumes 

decreases [e.g. Lauren et al., 1988; Mallants et al., 1997a]. Though using different 

measurement techniques even at the same scale (or sample size) can yield different 

conductivity estimates [e.g. Reynolds et al., 2000; Herman et al., 2003]. Two different 

‘strategies’ can be thought of in an attempt to estimate effective parameters needed by 

the model.  

 

The first ‘strategy’ is to try and measure parameters at the scale needed by the model. 

This can be done by improving existing measurement techniques and ‘upscale’ 

measured parameters or by the development of new techniques suited for the 

measurement of parameters at the scale needed by the model. The term ‘upscaling’ is 

used for research that focuses on finding area representative parameters based on local 

measurements performed at a smaller scale [Bierkens et al., 2002]. Although ‘upscaling’ 

research is nowadays a ‘hot’ issue, it remains an extremely difficult subject and 

generally accepted ‘upscaling’ techniques do not yet exist. In literature, research 

concerning the amelioration of existing measurement techniques or the development of 

new measurement techniques at different scales is scarce. A major drawback of this 

‘strategy’ remains that even if a suitable measurement technique exists, be it either a 

direct measurement technique at the scale needed by the model or after upscaling of 

locally measured parameters, the measurement of parameters remains highly time- and 

money- consuming.  

 

The second ‘strategy’ is called ‘inverse modelling’, ‘autocalibration’ or ‘inverse 

optimisation’ and has become more and more popular. Main reason for its success is the 

increase in computer power over the last decades. The objective of these techniques is 

finding one or more parameters sets (= effective parameters sets) that provide the best 

fit with one or more observation types over some period of time, e.g. river discharge or 

groundwater levels over a few years. All methods have in common that many model 

evaluations are needed. The result of each model evaluation (= parameter set) in terms 

of goodness-of-fit against the observations is saved. Thereafter, a new parameter set to 

be evaluated is selected based on the results of parameter sets already evaluated. Model 

evaluations stop if no improvement in the goodness-of-fit to the observations can be 

found, i.e. when an effective parameter set has been reached. In principle, parameter 

measurements are not required for these parameter estimation techniques. Only lower 
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and upper parameter bounds, in between which new parameter sets to be evaluated can 

be selected. These bounds can either be based on minima and maxima obtained from 

literature or from parameter measurements (in-situ or in laboratory). A major drawback 

of this second ‘strategy’ is that different parameter sets might yield a comparable 

goodness-of-fit making it impossible to choose the optimal one. This is called the 

parameter identifiability problem. In some cases, the effective parameter sets may even 

be situated at different locations in the parameter space. Since the value of the effective 

parameter set may be anywhere in parameter space, its value can be questioned in terms 

of its correspondence with measured parameter values (even at the same scale). In other 

words, since effective parameters can have very different values, it is possible that the 

link with their measured equivalent (if available from measurements in-situ or in the 

laboratory) does not exist.  

 

It is well known that effective parameters depend on the quality and quantity of the 

calibration data used for the calculation of the objective function used by the inverse 

optimisation algorithm [Freer et al., 1996]. Not only the type and quality of the 

calibration data but also the informativeness of the time series used for calibration 

influences the effective parameters obtained from inverse modelling. Informativeness or 

the variability within a time series (e.g. presence of winter and summer periods, warm 

and cold, …) is found to be equally important than the length of the calibration data as 

such [Gupta et al., 1998]. It is generally accepted that a time series of 10-30 years is 

necessary to calibrate a rainfall-runoff model so that sufficient ‘extreme’ events are 

included in the calibration data. Very little research investigating the effect of using 

different input time series (e.g. rainfall and potential evapotranspiration) on effective 

model parameters has been carried out. In Vazquez and Feyen (2003) the effect of using 

different potential evapotranspiration calculation methods on effective parameter 

estimation is found to be significant. To our knowledge, no literature is available 

discussing the influence of the temporal resolution of rainfall or evapotranspiration on 

effective parameter estimation. Although no literature dealing with this problem can be 

found till now, we believe that it can play a dominant role in the inverse optimisation 

process and have a significant effect on the value of the estimated effective parameters. 
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1.2. Objectives of the study 

 

The overall objective of this PhD research is to gain new insights in the parameter 

identifiability problem in unsaturated zone modelling, more particular in soil 

moisture content modelling.  

 

In order to do so different steps can be distinguished. All steps aim at developing and 

comparing strategies to gain new insights in the parameter identifiability problem in 

unsaturated zone modelling and the robust estimation of effective parameter values: 

 

i. Collection of an experimental data set containing soil hydraulic parameter 

estimates on the basis of laboratory and in-situ measurements as well as time 

series of the soil moisture content at different locations and depths on a hillslope. 

This data set forms the basis of the numerical analysis performed in this study. 

ii. Amelioration of the existing mathematical analysis for the estimation of the 

field-saturated hydraulic conductivity on the basis of in-situ single ring pressure 

infiltrometer measurements. 

iii. Development of a 1-D unsaturated zone model that allows the simulation of the 

soil moisture content over time at different depths at the local scale. 

iv. Identification of the soil hydraulic parameters dominating the simulation of soil 

moisture content over time using different techniques (sensitivity analyses) and 

comparing them. 

v. Inverse optimisation of the dominating hydraulic parameters to estimate their 

effective values that yield the best fit with the observed soil moisture content 

time series at the different depths and locations.  

vi. Investigation of the difference in goodness-of-fit between a model run using the 

effective parameter sets and a model run using the parameter measurements 

(laboratory or in-situ) as model input and the examination of the difference 

between effective parameter values and their measured equivalents. 

vii. Development of methodologies that allow the incorporation of measured 

parameter values in the two different parameter estimation strategies. Model fits 

as well as effective parameters are compared to the case where inverse 

optimisation is performed without the incorporation of parameter measurements. 
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The relation between the new obtained parameter sets and their measured 

equivalents can then be examined. 

viii. Investigation of the effect of the temporal resolution of rainfall on effective 

parameter estimates and the development of a procedure for the incorporation of 

rainfall intensity into daily rainfall records.  

 

1.3. Outline of the study 

 

In Chapter 2, the set-up of a rainfall-runoff experiment is described and 

recommendations for future similar experiments are given. For the measurement of the 

soil hydraulic parameters, a hillslope was selected in the sandy loam region of Belgium. 

Soil samples were taken from three profile pits along the hillslope. Using laboratory 

measurement techniques, the soil hydraulic parameters needed for unsaturated zone 

modelling were estimated. The description of the rainfall-runoff experiment set-up is 

consequently described.  

 

Chapter 3 discusses the in-situ measurements of the field-saturated hydraulic 

conductivity using single ring pressure infiltrometer measurements prior to the start of 

the experiment. Since this technique is a relatively new technique [Elrick et al., 1989], 

its possibilities in the estimation of the field-saturated hydraulic conductivity using the 

classical mathematical approach were examined thoroughly. Additionally, the 

sensitivity of the estimated field-saturated hydraulic conductivity to small measurement 

errors was investigated. Based on these results, a new mathematical procedure was 

developed resulting in more robust estimates of the field-saturated hydraulic 

conductivity. Finally, the spatial correlation scale of the field-saturated hydraulic 

conductivity on the experimental hillslope was estimated.  

 

Chapter 4 presents a brief literature review on the current state-of-the-art with respect to 

hydrological modelling in a general sense. In particular and in more detail, it focuses on 

the problem of the determination of effective parameters using inverse modelling 

techniques. A review of the most common optimisation algorithms (inverse modelling) 

applied in hydrology is presented. A detailed description of the Shuffled Complex 

Evolution (SCE) algorithm used throughout this research is thereafter given. Two 
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different approaches to the parameter identifiability problem are presented in detail 

because they are applied further in the research: the GLUE approach and the Pareto-

Optimality approach. Finally the MIKE-SHE model set-up, as used in both Chapters 5 

and 6, is described.  

 

In Chapter 5, the importance of each of the soil hydraulic parameters when simulating 

water content profiles on the hillslope is evaluated. The suitability of the SCE algorithm 

as an efficient automatic calibration method for the estimation of effective parameter 

values is thereafter investigated. In this Chapter, no use is made of the prior measured 

(laboratory and in-situ) parameter values in the inverse modelling technique. Very wide 

upper and lower optimisation bounds were selected based on literature. The model fit 

using the prior measured parameters as input parameters is compared to the model fit 

with the effective parameters as input parameters. To conclude, the relation between 

effective parameter values and the prior measured parameter values is examined.  

 

In Chapter 6, methodologies for the incorporation of prior parameter information in two 

different effective parameter estimation strategies, SCE and GLUE, are presented. 

Thereafter, the relevance of this prior information in the calibration of soil hydraulic 

parameters is examined. The combination of inverse modelling with prior parameter 

estimations is compared to the cases where both are applied individually, i.e. (i) inverse 

modelling without the incorporation of prior information, and (ii) the direct use of prior 

information in the model. 

  

Chapter 7 investigates the effect of the temporal resolution of rainfall records on 

effective model parameters. Therefore, the importance of the temporal resolution of 

rainfall on model simulations is first investigated. The necessity of a procedure to 

incorporate rainfall intensity into daily rainfall records is examined. Thereafter, such a 

procedure is developed and tested. Using this procedure, the influence of the temporal 

resolution of rainfall on effective parameter estimation using the SCE algorithm is 

examined.  

 

Chapter 8 summarises in short this research and formulates the general conclusions 

based on the conclusions of the different Chapters. It examines whether the conclusions 

are able to provide answers to the questions raised and fulfil the objectives stated in this 
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Chapter. In addition, it discusses the shortcomings and limitations of the approaches 

used throughout this doctoral research. After the discussion of the innovative aspects of 

this research, an opinion is formulated on the important aspects to be studied in future 

research.  



Chapter 2 
 

Rainfall runoff experiment on a hillslope 
 

ABSTRACT 

 

The purpose of this chapter is the explanation of the hypotheses, the design of a field 

experiment and the collection of field data within the objective to derive representative 

parameters for physically based distributed hydrologic models. The field experiment 

integrated measurement devices to record different hydrological variables (water 

content, soil water head, (sub)surface runoff, precipitation) on a field plot with a length 

of 80 m and a width of 20 m on a hill slope (mean slope of 6 %), situated in the sandy-

loam region of Belgium. The system allowed the simultaneous measurement of water 

contents at 81 locations using an automated TDR-system and a continuous monitoring 

of precipitation and runoff using tipping buckets. Drains, installed at two depths, 

collected the subsurface runoff. Soil water heads at 54 locations were measured 

manually on a weekly basis. Soil hydraulic properties were measured in the laboratory 

on 115 soil samples taken from three soil profile pits along the hillslope. Additionally, 

single ring pressure infiltrometer measurements were carried out at 120 locations in the 

field using single ring pressure infiltrometers. The chapter concludes summarising the 

difficulties encountered, such as lack of (sub)surface runoff, problems with tensiometer 

measurements, electricity cuts and computer and datalogger failures. Recommendations 

for similar future experiments are consequently suggested. 

 

2.1. Hypotheses and objectives 

 

Nowadays, the simulation of different hydrological processes (e.g., infiltration and 

redistribution of precipitation into the soil, (sub)surface runoff, groundwater and river 

flow, …) relies more and more on spatially distributed mathematical models instead of 
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the lumped modelling approach. As a consequence, identification and quantification of 

essential variables and model parameters for such models are becoming more and more 

important. To proceed in this research topic, it is essential that experimental 

measurements are combined with a numerical analysis based on models [Weiler et al 

(1998); Dunne and Leopold, 1983; Faeh et al., 1997]. Otherwise, the danger exists, as 

clearly stated by Grayson et al. (1992a, b), that the link with reality disappears when 

numerical techniques are applied without experimental verification.  

 

With this in mind, a field experiment was designed to allow – in combination with a 

computer-based methodology - the characterisation of hydraulic catchment parameters 

on the level of a grid cell, taking into account the spatial and temporal variability of 

these properties. Based on the combination field experiment – computer-based 

methodology, it was the original objective to find the minimum required field 

measurements necessary for deducting representative information on the area (scale) of 

the gridcell. It had to be applicable on hillslopes with varying characteristics, and be 

applied in different time periods of the year. It had to offer the opportunity to measure 

in the field, in a relatively simple manner, properties which after being processed by 

inverse use of appropriate models result in representative grid information. These 

objectives actually coincide with the upscaling issue discussed in Chapter 4. In the next 

paragraphs, the underlying ideas for the experimental set-up and the subsequent steps in 

the data collection and interpretation are concisely described.  

 

The experimental site was a hillslope in the sandy loam belt of Belgium. The field was 

divided in 27 grid cells (each 60m²). In each gridcell, the topography, infiltration 

characteristics, soil moisture retention functions, hydraulic conductivity functions and 

the moisture content and soil water head of the soil under natural climatologically 

conditions were measured. Hydraulic properties of the soil were determined on 

undisturbed ring samples taken from the different soil horizons in a soil profile. For the 

infiltration characteristics, single-ring pressure infiltrometers were used. To study the 

evolution of the moisture content, TDR-probes (Time Domain Reflectometry), inserted 

at many locations and depths, monitored automatically the soil moisture content. The 

surface and subsurface runoff was measured by an interception gutter and drains, 

respectively, all equipped with a measuring device at the bottom of the field.  
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The main expected experimental outcomes of this set-up were (1) a detailed spatial 

characterizing of relevant hydrological properties of the field and (2) input-output 

hydrographs of the precipitation system, respectively drainage system. The 

experimental set-up foresaw that more information was measured than necessary for the 

description of the rainfall-runoff process. This was done deliberately to be able to define 

step by step the minimum required number of measurements, out of the excess of 

measurements, necessary to reconstruct the process measured in the field adequately. 

The analysis and interpretation start with a 2-D or 3-D reconstruction of the geometry 

and the properties of the hillslope, based on the hill-slope characterisation. During the 

reconstruction, all available measured information was used e.g. the spatial distribution 

of the hydraulic properties. Via the model analysis, insight could be gained in how the 

spatial variability of the field properties could be described quantitatively. Simplifying 

this complex model would indicate the minimum number of measurements and 

procedures required to accurately up-scale the local measurements to representative 

field-scale (grid-scale).  

 

However, as observation data became available and the quality of the data investigated, 

it became obvious that the experimental field set-up as described below (2.2 and 2.3) 

would have been successful in fulfilling the original objectives if fewer problems were 

encountered in the data acquisition. Because of the many difficulties encountered, the 

objectives of this PhD research were reformulated to those presented in Chapter 1. 

Recommendations for similar future experimental research are described in section 2.4.  

 

2.2. Soil physical characterisation  

 

2.2.1. Water movement in the unsaturated zone 

 

The flow capacity Q [L³T-1] through a particular cross sectional area A [L²] of a 

saturated soil is proportional to the potential gradient ∆ψ [L] occurring over the length 

of flow l [L]. The relation is given by the Darcy equation and the proportionality factor 

is generally defined as the saturated hydraulic conductivity Ks [LT-1]:  
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l
AKQ s

ψ∆
=           (2.1) 

 

In unsaturated soils, water is less mobile because the matric forces strongly reduce the 

water flow. The magnitude of the soil water head h [L] exerted by the soil matrix 

depends on the water content θ [L3/L-3]. At low water contents, water is retained in only 

the smallest pores, and high suctions (soil water heads) hold the water in the soil. 

Largest pores are the last to be filled when a soil becomes saturated. These soil suctions 

and the fact that only the filled pore volume is available for water flow, lead to reduced 

conductivities for unsaturated flow. Therefore, the Darcy equation (Eq. 2.1) cannot 

describe unsaturated matrix flow, which plays an important role in soil-water-

movement. It is possible to relate Q to the soil water head difference (∆h) for 

unsaturated soils as done in the Darcy equation but the proportional factor then becomes 

the unsaturated hydraulic conductivity K(h) which is a function of the soil water head h. 

The equation is then called the Darcy-Buckingham equation. By combining the Darcy-

Buckingham equation with a continuity criterion, an equation describing flows in terms 

of the soil water head (h) is obtained. The one-dimensional Richards’ equation 

Richards, 1931] is written as: 

 

z
hK

z
hhK

zt
hhC

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂ )())(()(        (2.2) 

 

with 
h

C
∂
∂

=
θ           (2.3) 

 

where z is the distance along the flow path [L], t is time [T], K(h) is the unsaturated 

hydraulic conductivity [LT-1] and C is the soil water capacity [L-1] and θ the volumetric 

water content [L3L-3]. 

 

The hydrodynamic properties of unsaturated soils, which define their hydraulic 

behaviour, are characterised by the soil hydraulic functions: 

 

- the soil water retention curve θ(h) defines the volumetric water content θ as a function 

of the soil water head h; and 
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- the hydraulic conductivity curve K(θ) or K(h) relates the hydraulic conductivity K to 

the soil water head h or water content θ. 

 

The wetting and drying processes in soils are not identical, with the result that the soil 

water retention curve is usually hysteric, i.e. water contents at the same soil water head 

are higher during drying than during wetting. The hysteric effects are however small 

compared to the uncertainties associated with the estimated soil hydraulic functions. 

[Faeh, 1997]. Hysteresis is therefore neglected in this study. It is not necessary to have 

the soil hydraulic functions defined as analytical expressions for their implementation in 

numerical simulation models. It is equally easy to insert a series of points of K(θ) and 

h(θ) and let the model interpolate for values of θ in between. Though, analytical 

expressions are useful when an analytical solution of the Richards equation is desired or 

in inverse modelling. As this study deals with inverse modelling, the van Genuchten 

(1980) θ(h) model is used to describe the soil moisture retention curve:  
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where θs and θr are, respectively, the saturated and residual water content [L3L-3], α    

[L-1], n and m [-] are shape parameters. Assuming: 

 

n
m 11−=            (2.5) 

 

the water retention characteristic, Eq. 2.4, combined with the statistical pore-size 

distribution model for the hydraulic conductivity of Mualem (1976) results in following 

relative hydraulic conductivity curve: 
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Sand and clays represent two extremes for the soil water hydraulic functions. With 

sandy soils, soil water heads only increase (higher suctions) when water contents are 

substantially less than those at saturation. For clay soils on the other hand, a rapid 

increase in soil water head can be induced by a small water content change. However, 

as less water is lost for a specific water head increase in clay soils, their unsaturated 

conductivities show less rapid decrease than those of sandy soils in the region near 

saturation [Faeh, 1997]. 

 

2.2.2. Unsaturated zone parameter estimation 

 

A total of 115 undisturbed soil samples (100-cm3 rings with a length of 5.1 cm and a 

diameter of 5.0 cm) were taken horizontally and vertically in the different horizons of 

three profile pits (Fig. 2.1) along the hillslope. In each soil horizon, an average of 5 

horizontal and 5 vertical undisturbed samples were taken. For each of the 115 

undisturbed soil samples, the saturated hydraulic conductivity Ks [LT-1] and the 

desorption branch of the water retention curve, θ(h), were determined. Ks was measured 

using a constant head permeameter [Klute, 1986] and θ(h) was measured in three 

consecutive steps [Hillel, 1980]: (1) desorption on a sand box apparatus for pF values of 

0, 0.5, 1, 1.5, and 2 (pF = log10(-h), h in cm), (2) desorption in a low pressure chamber 

(pF 2.3 and 2.8), and (3) desorption in a high pressure chamber (pF 3.4 and 4.2). The 

soil cores were undisturbed for step (1) and (2), and for step (3) the soil samples were 

turned into saturated homogenized paste and put in 3.5 cm diameter and 1 cm high 

rings.  
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Figure 2.1 Taking of undisturbed soil samples in the profile pit at the very top of the hillslope 

 

The measurements of the moisture retention curve (moisture content θ versus soil water 

head h) were subsequently used in a non-linear least squares optimisation context to 

obtain the van Genuchten (1980) parameters: θs, θr, α, n. Using the optimisation toolbox 

of MATLAB [N.N., 1996], a Levenberg (1944)-Marquardt (1963) optimisation 

algorithm was set-up with objective function (F): 

 

( )
29
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i

ipredmeasi xhhxF θθ        (2.8) 

 

where i = 1,2…9 corresponds to the soil water head (h) or pF values (0, 0.5, 1, 1.5, 2, 

2.3, 2.8, 3.4 and 4.2) at which moisture content was measured (θmeas), θpred is the 

predicted water content using the van Genuchten (1980) equation (Eq. 2.5) and x = {θs, 

θr, α, n} the vector containing the unknown parameters. Optimisation boundaries were 

set between 0 and 1 for θs and θr [L3L-3], 0 and 10 for n [-], and 0 and 100 for the α [L-1], 

parameter.  
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It is believed that global optima are found for each of the 115 optimisations because 

different initial parameter estimates resulted in the same best parameter sets. As shown 

in Fig. 2.2, a very good fit (R² = 0.98) is observed between the measured and predicted 

soil moisture content values over all 115 locations and all 9 measured applied heads. 

Fig. 2.2. shows that the van Genuchten (1980) equation has more problems getting a 

good fit close to saturation than near the dry end of the retention curve, i.e. more scatter 

at high moisture contents. This ‘limitation’ of the van Genuchten (1980) model has been 

well described in literature. Some authors therefore suggest to fit bimodal or even 

trimodal retention curves to the measured moisture contents in order to get a better fit 

near saturation [Durner, 1994; Mallants et al., 1997b].  
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Figure 2.2 Measured against predicted moisture content for all soil cores 

 

In order to get an idea about how well the van Genuchten (1980) equation is suited for 

the fitting a single water retention curve, a good and bad fit are shown in Fig. 2.3. The 
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bad fit still yields a R² value of 0.94. Though, the fit of the van Genuchten (1980) 

equation to the measured water retention curve for this particular soil core is not good, 

especially close to saturation. The good fit results in a value of R² of 0.99 and shows 

that for this soil core, the van Genuchten (1980) equation is able to predict the measured 

soil moistures content values from saturation to the dry end of the retention curve.  
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Figure 2.3 Comparison between a good and bad fit of the van Genuchten (1980) equation to the measured 

soil moisture contents at the applied soil moisture heads. 

 

The difference in goodness-of-fit between the good and bad fit as illustrated in Fig. 2.3, 

is also reflected in the width of the 95% confidence intervals around the estimated van 

Genuchten (1980) parameters shown in Table 2.1. The confidence intervals were 

calculated using the RETC software [van Genuchten et al., 1991] and the calculation is 

based on the Jacobian matrix calculated in the optimum. Confidence intervals are rather 

small for the good fit while for the bad fit, they are wide for all of the parameters. The 
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lower 95% confidence interval for bad fit of the α and n parameter is even below zero, 

which is physically impossible. The wide confidence interval indicates that for this 

particular soil core, the uncertainty on the estimated van Genuchten (1980) parameters 

is large. Important to note is that for most of the 115 soil cores, the fit was observed to 

be rather good and this is reflected in the overall R² value of 0.98 as indicated on Fig. 

2.2.  

 

Table 2.1 Estimated van Genuchten (1980) parameters for the bad and good fit shown in Fig. 2.3 and 

their corresponding 95% confidence intervals  

  95% Confidence Interval 

Variable Estimated value Lower Upper 

θs (good fit) 0.40 0.39 0.42 

θs (bad fit) 0.42 0.37 0.46 

θr (good fit) 0.06 0.03 0.09 

θr (bad fit) 0.12 -0.06 0.30 

α (good fit) 0.04 0.02 0.09 

α (bad fit) 0.009 -0.009 0.03 

n (good fit) 1.58 1.36 1.80 

n (bad fit) 1.51 0.4 2.6 

 

The hydraulic conductivity curve K(θ) is estimated following to Mualem (1976) model 

(Eq. 2.5 to Eq. 2.7) at each of the 9 measured moisture contents. The MIKE-SHE model 

[Refsgaard and Storm, 1995] used in this study uses the Averjanov (1950) K(θ) model 

to describe the hydraulic conductivity curve:  
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where N [-] is a shape parameter. This N parameter was estimated for each of the 115 

soil samples through the use of a similar non-linear least squares optimisation method as 

described above and with objective function (F): 
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where i = 1,2…9 corresponds to the 9 measured moisture content values, mualemiK )(θ  

the corresponding hydraulic conductivity value K of the Mualem (1976) model (Eq. 2.5 

to 2.7) and Averjanovi xK ),(θ  the predicted hydraulic conductivity value K using the 

Averjanov model (Eq. 2.9) and x = {N} the vector containing the unknown N parameter 

[-]. Optimisation boundaries for N were set between 0 and 100 and global optima were 

reached for each of the 115 soil samples.  

 

After the deletion of outliers on the basis of visual scatter plots of the estimated 

parameters and only considering soil samples taken in the A or B-horizon, 84 estimated 

parameter sets were retained and divided in 35 A and 49 B-horizon parameter estimates 

according to the soil horizon they were taken from. Table 2.2 presents the mean, 

standard deviation, minimum and maximum of the estimated soil parameters from the 

laboratory measurements. A Kolgomorov-Smirnov test reveals that on a 5 % 

significance level θr, α, n and N significantly differ between the A- and B-horizon. 

From the visual observations in the three profiles pits as described in 2.3.1, a significant 

difference in saturated hydraulic conductivity between the colluvium A-horizon and the 

texture B-horizon was expected but is not observed. This might be due to different 

reasons: (i) the difference in hydraulic conductivity is indeed very small, (ii) the 

measurement error involved in estimating saturated hydraulic conductivity in the 

laboratory on small soil samples using a constant head permeameter, and (iii) the large 

variation in the measurements, i.e. large standard deviations may make it impossible to 

observe a significant statistical difference.  
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Table 2.2 Mean, standard deviation, minimum and maximum of the estimated soil parameters from 

laboratory measurements 

Parameter Mean St. Dev. Min Max 

Ks_A (ms-1) 9.74E-06 1.78E-05 4.56E-08 7.01E-05 

θs_A (-) 0.40 0.02 0.35 0.45 

θr_A (-) 0.02 0.03 2.19E-07 0.11 

α_A(m-1) 1.95 1.19 0.29 5.77 

n_A(-) 1.30 0.10 1.15 1.62 

N_A(-) 12.59 3.32 6.68 21.58 

Ks_B (ms-1) 1.57E-05 2.63E-05 4.37E-09 8.72E-05 

θs_B (-) 0.39 0.03 0.33 0.45 

θr_B (-) 0.05 0.03 1.80E-04 0.13 

α_B(m-1) 1.87 1.54 0.26 5.79 

n_B(-) 1.44 0.21 1.15 1.98 

N_ B(-) 9.97 3.71 4.87 21.84 

 

Figure 2.4 shows the 95 % confidence intervals of the soil water retention curves (Fig. 

2.4(a)) and hydraulic conductivity curves (Fig. 2.4(b)) measured in the laboratory on the 

soil samples from the A- and B-horizon. From Fig. 2.4 it is not possible to classify the 

B-horizon as more clayey in terms of hydraulic properties than the A-horizon. Water 

retention curves of the B-horizon show more variability than the A-horizon water 

retention curves while hydraulic conductivity curves for both horizons are very similar. 

From the observations in all three profile pits larger differences between hydraulic 

properties of both horizons were expected. In situ-field hydraulic saturated hydraulic 

conductivity (Kfs) is also estimated in 120 locations on the field plot using a single ring 

pressure infiltrometer [Reynolds and Elrick, 1990; Mertens et al., 2002] and is 

described in detail in chapter 3. 
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Figure 2.4 95 % confidence intervals of the soil water retention curves (a) and hydraulic conductivity curves 

(b) measured in the laboratory on soil samples from the A- and B-horizon 
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2.3. Experimental layout 

 

2.3.1. Experimental hillslope 

 

For the location of the experiment, a representative hillslope located in the Fruit 

Research Centre of the Katholieke Universiteit Leuven in Rillaar, Belgium (Fig. 2.5) 

was chosen. The entire hillslope has an area of 4000 m² and a mean slope of 10% (Fig 

2.6) and is located in the sandy-loam belt (Luvisol) of Belgium. Before September 

1999, it was covered with apple trees for fourteen years. In September 1999, the apple 

trees were removed. Augering was performed in order to get an idea of the depth to the 

B-horizon all over the hillslope. The location of an experimental field plot within the 

hillslope was chosen on the basis of these augerings. The depth to the B-horizon within 

the selected field plot varies between 0.12 and 2.24 meters. In most locations however, 

the Bt horizon was found within 1 meter from the surface while at some locations clear 

demarcation between the E and Bt horizon was difficult. Depth to the B-horizon 

decreases going uphill the experimental field though this should not be generalized: a 

lot of local exceptions exist. The experimental field plot has a mean slope of 6 % (Fig. 

2.7), a width of 20 m and a length of 80 m. The plot was hydrologically isolated from 

the neighbouring area through the insertion of a plastic foil over a depth of 2 meters.  

 

Before the start of the experiment, three profile pits were dug along the hillslope: one at 

the bottom of the hillslope, one in the middle and one at the top (Fig 2.1 and Fig. 2.6). 

In each of these pits, the different soil horizons were identified. The profile at the 

bottom of the hillslope shows a textural B-horizon (more clayey layer) at variable depth 

from 85 cm onwards. It is covered by colluvium. At the top of the profile, an Ap horizon 

rich in humus and containing the roots of the grass was observed. Below the textural B-

horizon, a C or mother material is found which is tertiary sandy clay material, called 

Diestiaan.  

 

On top of the textural B-horizon, some ‘pseudo’gley was observed. This ‘pseudo’gley is 

due to fluctuating groundwater levels. When groundwater level decreases, the iron 

oxidizes and precipitates resulting in a reddish colour. The profile pit in the dug in the 
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middle of the hillslope shows the textural B-horizon at a depth of about 65 cm. On top 

of it, an eluvial E horizon is observed. On top of this E horizon, colluvium is found 

underneath a thin Ap horizon. On top of the B-horizon some signs of ‘stagnoggley’ were 

found, i.e. this is gley due to a temporary hanging water table on top of the textural B-

horizon. The profile pit at the very top of the hillslope showed in some places a 

truncated textural B-horizon at the top of the profile covered by only a very thin Ap 

horizon. Below the truncated textural B-horizon, a layer of glauconite was observed 

covering the tertiary Diestiaan material. 

 

 
 

Figure 2.5 Location of the Fruit Tree Research Centre in Rillaar within Belgium 
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Figure 2.6 Experimental hillslope in sandy-loam soil belt of Belgium (area 4000 m², slope = 10%) 

 

 
 

Figure 2.7 Relative height above the lowest point of the selected experimental field plot 
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2.3.2. Installing drains and surface gutter 

 

At the bottom of the field, a trench of 2 m depth was dug and drains were installed at 

two different depths (Fig. 2.8). The first drain was installed on top of the texture B-

horizon at approximately 85 cm depth in order to capture the lateral flow on top of this 

horizon downslope. It was believed that lateral subsurface runoff would occur as 

augerings during the winter period had shown a ‘hanging’ water table on top of this B-

horizon. A second drain was installed at the top of the Tertiary ‘Diestiaan’ at a depth of 

1.8 meter in order to capture possible lateral subsurface runoff downslope. Just 

underneath each drain a plastic foil was inserted horizontally to avoid the percolation of 

lateral subsurface runoff originating from the soil profile above the installed drain.  

 

 

Figure 2.8 Installing drains in trench at bottom of experimental plot 

 

After filling up the trench with sandy material, a gutter was installed over the whole 

width of the field (=20 m) to collect surface runoff. To avoid precipitation to fall 

directly in the gutter, the gutter was covered with a roof. The water from the two drains 

and surface gutter is guided to a deep pit of which the sides are made out of wood. The 

pit is covered with a plastic roof to prevent rain entering the pit. Inside the pit, the 
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discharge rate of drains and gutter are automatically registered by tipping buckets. In 

order to avoid mud and insects entering the tipping bucket, a reservoir was installed in 

front of the tipping bucket. The reservoir is filled with a constant level of water and is 

covered with a lid to prevent evaporation. Water entering this reservoir from the surface 

gutter makes the reservoir run over into the tipping bucket device while dirt remains in 

the reservoir.  

 

2.3.3. Soil moisture content measurements 

 

2.3.3.1. Time Domain Reflectometry 

 

Time Domain Reflectometry (TDR) is a well-established method for measuring soil 

water content in both the laboratory and the field. [Baker and Allmaras, 1990; 

Heimovaara and Bouten, 1990; Herkelrath et al., 1991; Topp and Davis, 1985; 

Heimovaara et al., 1995; Ferré et al., 1996]. Like the neutron moderation and gamma 

density methods, TDR offers non-destructive, in-situ monitoring of water contents. 

Unlike these methods TDR does not use a radioactive source. TDR relies on the 

measurement of the propagation velocity of a guided electromagnetic wave through the 

soil. The propagation velocity is controlled by the dielectric permittivity of the medium. 

Due to the large relative dielectric permittivity of water (81) compared to that of air (1) 

and soil particles (3-5) [Ferré et al., 1990], the apparent relative dielectric conductivity 

of a soil is highly correlated with the volumetric water content.  

 

Standard TDR probes are composed of two or three small diameter parallel rods. A high 

step voltage generator creates a fast rise time electromagnetic pulse. Shielded parallel 

cables or coaxial cables transmit the energy to the rods. At any point where the 

propagating step voltage encounters a change in impedance, caused by changes in the 

water content of the medium near the rods or in the configuration of the cable or rods, a 

portion of the energy is reflected back towards the source. The elapsed time between the 

partial reflection of the wave as it leaves the coax cables to enter the TDR probes and 

the total reflection from the end of the probe can be deduced from the measured 

reflected waveform. For a probe of known length, this travel time defines the average 
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velocity of propagation along the probes, which is used to calculate the average 

apparent relative dielectric permittivity over the length of the rods. An empirical 

relationship relates the measured apparent dielectric permittivity to the volumetric water 

content for a wide range of mineral soils [Topp et al., 1980]. As the wave travels along 

the coax cables, energy is reflected both from changes in the line impedance and 

dissipated through electrical conduction. The maximum useable cable length of TDR 

probes is often limited by excessive energy losses resulting in insufficient energy 

remaining to identify the reflection from the end of the probe. Reflections in the 

waveforms have smaller amplitudes and slopes and are therefore harder to detect. 

Heimovaara (1993b) concludes that the longer the TDR probe used, the longer cable 

length can be used. A maximum coax cable length of 33 m gave satisfying results for 

probes of 20 cm.  

 

2.3.3.2. Field set-up of TDR system 

 

On a grid of 10 by 10 meters (Fig. 2.9), a total 81 Time Domain Reflectometry (TDR) 

probes were installed. At each of the 27 locations, three TDR probes were installed very 

close to each other. Each probe was installed vertically into the soil and has a length of 

25 cm. At each location, soil moisture content is measured at 3 depths: at the surface 

(between 0 and 25 cm), at a depth of 30 (between 30 and 55 cm) and 60 cm (between 60 

and 85 cm). TDR probes were attached to coax cables that in their turn were attached to 

Campbell’s SDMX50-Series Multiplexers (Fig. 2.10(a)).  
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Figure 2.9 Field layout: location of TDR probes, tensiometers, surface gutter, drains and single-ring 

pressure infiltrometer measurements 
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The SDMX50-series multiplexers are eight-channel coaxial switching devices used in 

our TDR system. Three levels of switching allows up to 512-soil water content 

measurements. Because of the maximum cable length limit, two different and 

independent TDR systems had to be installed to cover the field. In this way, maximum 

cable length was limited to 33 m. In the first system, 6 multiplexers are controlled by a 

CR10 datalogger making automated measurements possible. The CR 10 datalogger 

controls multiplexers as well as the Tektronix 1502B cable tester (Fig. 2.10(b)) that is 

responsible for sending the electromagnetic signal and the capturing of the waveform. 

The 6 remaining multiplexers (total of 12) are controlled by a Campbell’s CR10X 

datalogger that also controls a Campbell’s TDR100 reflectometer (replaces the 

Tektronix 1502 B cable tester).  

 

 

Figure 2.10 (a) Campbell’s multiplexer, capable of multiplexing 8 TDR probes and (b) Campbell’s 

CR10 datalogger and Tektronix 1502B cable tester  

 

Both CR10 and CR10X dataloggers are capable using the incorporated Campbell’s 

software for finding the travel time required for the electromagnetic wave to propagate a 

distance through the soil. From the travel time, the apparent relative dielectric 

conductivity is deduced and related to volumetric soil water content (θ) using Topps 

equation [Topp et al., 1980]. The problem encountered was that using cable lengths 

longer than 15 meter made it impossible for the internal Campbell’s software to 

‘auto’detect reflections in the waveforms and hence resulted in unreliable soil moisture 

content measurements. Visually investigating the form of the waveform resulting from a 

33 meters cables indeed revealed weakened reflection points. Though, in order to be 

 (a)  (b) 
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able to still detect these reflection points, the datalogger was programmed to convert 

each waveform to 251 points and save those to an ASCII file.  

 

Six hourly soil moisture content measurements were performed at each location 

resulting in a large amount of data points to be stored inside the datalogger. As data 

storage inside the CR10 and CR10X dataloggers is limited, the dataloggers were 

programmed to send the data as soon as collected to a connected computer. As there 

were two systems, two computers were installed close to the field and on-line connected 

with each of the dataloggers. Weekly data was copied from these computers to 

diskettes. 

 

A MATLAB code was developed which made it possible to detect ‘weakened’ 

reflection points from these ASCII files saved by the datalogger. The code was based on 

the description of the waveform analysis described by Heimovaraa 1993b with some 

minor modifications.  

 

 

Figure 2.11 (a) Automated waveform analysis in MATLAB of a TDR probe with a cable length of 4 m 

and (b) automated waveform analysis in MATLAB of a TDR probe with a cable length of 33 m 

 

Figure 2.11 compares the result of the analysis of the MATLAB code for a TDR 

waveform collected with a cable length of 4 m (a) and a cable length of 33 m (b). The 

waveform collected from a 33 m cable length has less distinct reflection points, i.e. 

(a) (b) 
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smaller amplitudes and slopes. Though as indicated by the tangent lines and crosses in 

Fig. 2.11, the MATLAB code still succeeds to detect these points while the intern 

software of the CR10 and CR10X could not. 

 

2.3.4. Soil water head measurements 

 

Next to the 3 TDR probes at each of the 27 locations (Fig 2.9 and Fig. 2.11(a)), two 

tensiometers were installed: one at 45 cm depth and one at 75 cm depth. The 

tensiometers are the ‘Thies’ type with an unglazed ceramic cup sealed to a frost-

resistant transparent hollow tube (Fig. 2.12 (b)), with the upper end sealed by a rubber 

septum in a screw cap. Tensiometers were installed vertically, in a hand-augered hole, 

to the required depth. After insertion of the tensiometer in the hole, the hole was filled 

with a mix of soil and water to enhance the contact of the porous cup with the 

surrounding soil. The porous cup is filled with water that is in equilibrium with the soil 

matrix potential. Every week, the soil water head (h) was read using a pressure-

transducer sensor, inserted through the septum by a needle (Fig. 2.12(b)). The suction in 

the tensiometer was displayed on a digital read-out on the sensor, which was recorded 

on a field sheet. Tensiometers were filled with a mix of water (75%) and ethanol (25%) 

in order to prevent freezing of the water during winter [de Vos, 1997].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 (a) Location of TDR multiplexers, tensiometers and tipping bucket (b) Tensiometer (porous 

cup, septa, lid) and tensiometer readout machine  

 (a)  (b) 
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2.3.5. Climatogical data 

 

A tipping bucket is installed in the field at a height of 40 cm above ground level (Fig. 

2.12(a)). It is attached to the CR10 datalogger that is programmed to accumulate rainfall 

data in 10 minutes and send it to the connected computer. Next to the field plot, at the 

top of the hillslope, a climatogical weather station of The Royal Meteorological Institute 

(Belgium) is located. Daily rainfall data and minimum and maximum temperature is 

measured. Comparing 10 minutes rainfall with the daily measured values reveals that 

they are within 10% of each other, which in terms of rainfall is considered as good. 

Daily potential evapotranspiration rates are calculated using the FAO Penman-Monteith 

method [Allen et al., 1998] from the daily minimum and maximum temperatures 

measured at the local meteorological station using the ET0 software [Raes, 2002]. 

 

2.4. Difficulties encountered and recommendation for 

future similar experimental research 

 

At the beginning of the experiment, no surface runoff leaving the gutter was measured. 

Therefore, it was believed that spraying the grass dead and, thus leaving the soil bare all 

year through, would result in surface runoff as surface roughness decreased. Pitiful, this 

did not help in the generation of runoff. Only negligible amounts of runoff were 

registered making it impossible to distinguish whether it was actual runoff or just water 

entering the gutter between the small gaps in the wooden cover of the gutter. In general, 

rainfall intensities in Belgium are not high enough for the generation of vast amounts of 

runoff. In our experiment, on top of the low rainfall intensities, two other reasons for 

lacking surface runoff are: (i) the gentle slope of the hillslope and (ii) the high 

infiltration capacity of the topsoil.  

 

Subsurface runoff was expected to occur on the experimental field from the visual 

observations of the textural B-horizon made in the profile pits as described above. Not 

only the visual observations in the profile pits but also augering after a long period of 

heavy rain revealed water ponding on top of this textural B-horizon. Therefore drains 

were installed to capture this lateral subsurface runoff. Yet, no subsurface runoff was 
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captured by the drains throughout the year. One could argue that the gentle slope of the 

experimental field or the bad installation of the drains could partly explain the lack of 

subsurface runoff. Though, it is believed that in contrast with the visual observations of 

the textural B-horizon and the augering observations, the textural B-horizon is more 

permeable than visually observed. As elaborated in 2.2.2, a significant difference in 

saturated hydraulic conductivity between the colluvium A-horizon and the texture B-

horizon was not observed from the laboratory measurements on the Kopecky rings.  

 

The lack of surface and subsurface runoff measurements is an essential gap when 

aiming to fulfil the original objectives stated above in 2.1. Therefore, a reformulation of 

the objectives was necessary and is presented in Chapter 1. Another major problem 

encountered were the tensiometer measurements. Drying out of the tensiometers and 

fracturing of the porous cups were the largest difficulties encountered. The tensiometer 

system needs constant care and weekly visits were not sufficient to prevent drying out 

and breaking down of the tensiometers. The installation of tensiometers needs lots of 

experience because the tensiometer has to be properly embedded so that it is in full 

contact with the soil. Therefore a mix of water and mud was used to fill up the hole after 

the insertion of the tensiometer. Still, some tensiometers were not working properly 

directly after installation. It is believed that the tensiometer system could work properly 

under laboratory conditions where constant care and follow up can be guaranteed. Last 

but less crucial problem is the existence of gaps in the soil moisture content data and the 

10 minutes rainfall measurements. These gaps exist due to power cuts, computer crashes 

and lightning. Strong lightning broke down the communication port of the computers 

necessary for the reception of data from the dataloggers; even though the system was 

earthed.  

 

From the poor perceptions made and problems encountered in this study, some 

recommendations for future experimental research are suggested. The most important 

recommendation deals with the selection of the experimental field plot. A steeper 

hillslope than the 6 % hillslope used in this study is recommendable under natural 

Belgian climatological conditions. Artificial precipitation through the use of a sprinkler 

irrigation system could compensate the need for a steeper hillslope. The installation of 

such an irrigation system is expensive and time-consuming. Additional problem is that 

water has to be available in vast quantities (e.g. lake, river or well) in the direct 
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neighbourhood. Finally, a good overlap of the different sprinklers so that even spreading 

of the artificial precipitation over the entire field plot is guaranteed is not 

straightforward. If subsurface runoff is desired, detailed laboratory and preferably in-

situ measurements of the saturated hydraulic conductivity of both A- and B-horizons is 

necessary before the installation of drains. Not only visual observations of the B-

horizon on top of which subsurface runoff is expected are needed but a significant 

difference in measured saturated hydraulic conductivity is a must. Proper installation of 

the drains also needs experience but it is believed that the installation of drains at the 

bottom of the experimental field plot as described in 2.3.1, was successful.  

 

The TDR system presented in 2.3.2 worked more than satisfactory. If possible of 

course, shorter cable lengths are always advisable so that the internal software in the 

CD10 and CD10X dataloggers can detect inflection points itself. If so, there is no need 

for a constant connection with computers because soil moisture content data can directly 

be stored in the datalogger. Data gaps due to computer crashes and lightning can hence 

be avoided. On top, power cuts can also be avoided as datalogger and Tektronix 1502B 

or TDR100 work on 12 Volt and hence can be powered by a battery. The tensiometer 

system used in this study was found to be unsuitable for weekly measurements of soil 

water head for a long period. Tensiometers will perform acceptable when more attention 

can be given to its maintenance, e.g. in short duration experiments when maintenance 

can be done on a daily basis. If interested in weekly soil water head measurements, a 

different system is advisable, e.g. a mobile system which can be taken along after the 

weekly measurements.  

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 
 

Characterisation of the field-saturated hydraulic 
conductivity on a hillslope: in-situ single ring 
pressure infiltrometer measurements* 

 

ABSTRACT 

 

Spatial variability of surface hydraulic properties is an important factor for infiltration 

and runoff processes. At 120 locations in an experimental plot on a hillslope, steady-

state infiltration rates were measured at two applied pressure heads with a single-ring 

infiltrometer. The solution of two steady-state infiltration equations for each location 

(the simultaneous-equation approach, SEA) yielded 41 negative αm-values, 79 positive 

αm values and 120 positive Kfs-values. The sensitivity of Kfs and αm to small 

measurement errors was estimated using Monte-Carlo simulation (MC). Results of this 

MC simulation showed that the uncertainty on αm is extremely high while the 

uncertainty on Kfs is fairly small. Hence, although the pressure infiltrometer technique 

as applied here is useful to estimate Kfs at each measurement location, it is not suited for 

the estimation of an αm-value at each measurement location. A new procedure is 

proposed for the simultaneous estimation of one overall ‘field αm’ and the 79 Kfs values 

of measurement locations having a positively calculated αm using SEA. Using this ‘field 

αm’, Kfs values for the other locations with a negative αm are hence determined. Finally, 

the spatial correlation of Kfs on the hillslope is examined. Ranges of ln(Kfs) between 

2.85 and 3.8 m were observed, respectively, for the omnidirectional case and the y 

direction along the hillslope. Comparing in-situ Kfs estimates with the laboratory Ks 

                                                 

* Adapted from Mertens, J., Jacques, D., Vanderborght, J. and J. Feyen , 2002. 
Characterisation of the field-saturated hydraulic conductivity on a hillslope: in situ 
single ring pressure infiltrometer measurements. Journal of Hydrology, 263, 217-229 
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estimates reveals that they are significantly different. Although a robust method for the 

determination of Kfs is presented in this chapter, care must always be taken interpreting 

K estimates at different (model)scales.  

 

3.1. Introduction 

 

Field investigations of the hydraulic properties of the unsaturated (vadose) zone are 

becoming increasingly important elements in hydrogeological and geotechnical studies. 

The properties of the unsaturated zone control the generally slow downward seepage of 

potential groundwater contaminants as well as the amount of direct runoff [Elrick et al., 

1989]. A number of field techniques have been used to measure the hydraulic properties 

of soils in the unsaturated zone [Angulo-Jaramillo et al., 2000]. Infiltration based 

methods are recognised as valuable tools to investigate hydraulic and transport soil 

properties. In particular, three complementary methods appear to be interesting in the 

study of unsaturated and-near saturated hydrological soil behaviour. They are the 

confined one-dimensional pressure double ring infiltrometer, the unconfined three-

dimensional single ring pressure infiltrometer and the unconfined three-dimensional 

tension disc infiltrometer.  

 

In this chapter, we examine infiltration data measured with a constant head single-ring 

pressure infiltrometer method. This technique is useful in the estimation of the in-situ 

Kfs [LT-1] (“field saturated” hydraulic conductivity) and φm [L2T-1] (matric flux 

potential). The term “field saturated” is used because, under field conditions, a certain 

amount of air is usually entrapped in the soil during the infiltration process [Reynolds et 

al., 1983; Elrick et al., 1989]. This can result in lower estimates of the “saturated” 

hydraulic conductivity compared to measurements in completely saturated soils 

[Stephens et al., 1987]. The flux potential, φm, is defined as [Gardner, 1958]: 
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where h is the soil water head and hi the initial soil water head [L]. Equation. 3.1 shows 

that φm is function of the initial soil water head. φm is the surface below the K(h) curve 

and K(h) values very small for very negative h. Therefore, the surface under the K(h) 

from h-∞ to hi is negligible if hi is very negative or in other words if the initial soil is dry. 

Hence, when starting the single-ring pressure infiltrometer measurements on an initially 

dry soil, φm can be considered constant and not a function of the initial soil water head.  

It is for this reason that the single-ring pressure infiltrometer measurements in this 

study, were carried out in summer during a long dry period. Bagarello and Provenza 

(1996) showed that if the initial soil condition is not dry, the estimation of Kfs is 

influenced by the initial soil water head. φm is independent of the applied head for the 

pressure infiltrometer method and is related to αm [L-1]: 

 

m

fs
m

K
φ

α =           (3.2) 

 

The αm parameter is a measure of the relative contributions of gravity and capillary 

forces to water movement in an unsaturated soil. The smaller the αm value, the larger 

the capillary forces relative to gravity. The value of αm measured in the field using 

ponded infiltration techniques is determined primarily by soil structure, particularly 

when macropores are present [Elrick et al., 1989; Elrick et al., 1995].  

 

Constant head conditions have traditionally been used because constant head devices 

are easy to maintain experimentally and because the analysis is relatively simple. A 

difficulty with this approach is that insufficient information is obtained from the 

measurement of steady-state flow under one constant head to evaluate both Kfs and φm 

[Elrick et al., 1995]. Either one of the two parameters (or the αm-value), must be 

measured or estimated independently [Elrick et al., 1989] or steady-state flow 

measurements are needed for two or more ponded heads. If αm is estimated 

independently however, some error can result. If steady-state measurements are taken at 

two or more heads, soil heterogeneity can cause a large percentage of invalid (i.e. 

negative) and unrealistic Kfs and φm values [Elrick et al., 1995].  
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The fixed αm value approach as suggested by Elrick et al. (1989), requires only one 

flow rate measurement. However, individual αm-values for soils are generally not 

available. Based on structural and textural information, Elrick et al. (1989) classified 

soils into four categories and suggested choices of αm for each category. They proposed 

values of αm ranging between 0.01 cm-1 (compacted clays, e.g. landfill caps and liners, 

lacustrine or marine sediments, etc.) and 0.36 cm-1 (coarse and gravely sands; may also 

include some highly structured soils with large cracks and macropores). 

 

In this study, only constant head infiltration measurements were performed for two 

heads at each measurement location. This was done because of the simplicity of 

measuring the infiltration and because of the belief that the procedure presented in this 

study allows the achievement of good estimates of Kfs. Kfs and αm are calculated from 

the observed infiltration rates (Q1 and Q2 [LT-1]) corresponding to the applied heads (H1 

and H2 [L]) using the classical constant head approach (or Simultaneous Equations 

Approach, SEA) [Reynolds and Elrick, 1990]. Philip (1985) concluded that negative 

values of Kfs and αm imply that solutions for Kfs and αm are too strongly dependent on the 

ratio of the observed infiltration rates (Q2/Q1). He gave two numerical examples how a 

random measurement error and some mild heterogeneity could cause negative Kfs or αm 

estimates. Elrick et al. (1989) report three error sources that could cause negative Kfs or 

αm when using the Guelph permeameter method: (i) non-attainment of true steady-state 

flow; (ii) errors in the experimental measurements of Q1 and Q2 because of air bubble 

size and reading errors in the permeameter; and (iii) entrapment of air in the soil due to 

water redistribution during filling of the permeameters and restarting of infiltration. 

These three error sources exist also for the single-ring pressure infiltrometer 

measurements since the only difference is the borehole and its preparation. We 

minimised these error sources during measurements by (i) increasing measurement 

time, (ii) using small air inlet tubing and (iii) making the reservoir large enough to make 

measurements at two heads possible without refilling [Ankeny et al., 1988]. 

Nevertheless Kfs and αm are very sensitive to the Q2/Q1 ratio [Wu et al., 1993]. 

Preferential flow in macropores (vertical and lateral cylindrical pores, cracks) not 

activated in one infiltration measurement at a specific head becomes activated in the 

other infiltration measurement with the second applied head, can change the Q2/Q1 ratio, 

depending on the geometry and locations of the macropores. The activation or not of 
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macropore flow depending on the potential is well known in the unsaturated domain 

[Elrick and Reynolds, 1992]. In the ideal case where macropores would be 

homogeneously spread out over the soil volume, no artefacts can be encountered. When 

the saturated bulb is so small that no macropores are within the bulb for the smaller 

pressure head but are in the saturated bulb for the subsequently applied pressure head, 

the flow may increase dramatically due to the expansion of the bulb and the activation 

of macropores. 

 

The objectives of this chapter were to: (i) examine the possibilities of the single-ring 

pressure infiltrometer measurements in estimating Kfs and αm using the classical constant 

head approach for two heads at each measurement location, (ii) analyse the sensitivity 

of Kfs and αm to small measurement errors, (iii) develop a procedure for the estimation of 

one overall ‘field αm’ using an inverse optimisation technique and (iv) estimate the 

spatial correlation scale of Kfs measured on the experimental hillslope.  

 

3.2. Materials and Methods 

 

Infiltration was measured using single ring pressure infiltrometers at 120 locations on 

the 80 by 20 m field plot located on the hillslope described in detail in Chapter 2. The 

single ring pressure infiltrometer measurements were conducted in August 2000 before 

the start of the rainfall-runoff experiment. 

 

3.2.1. Measurements 

 

To estimate field-saturated conductivity (Kfs), we measured the steady-state infiltration 

rate from a ring under a constant positive pressure head (H) using a single ring pressure 

infiltrometer (Fig. 3.1). Water is supplied to the soil surface at a positive head through a 

sealed top lid by a Mariotte bottle with a moveable air tube allowing a wide range of H. 

The set-up is similar to the Guelph Permeameter reservoir [Reynolds et al., 1985; 

Reynolds and Elrick, 1990; Vauclin et al., 1994; Angulo-Jaramillo et al., 2000]. The 

ring (Fig. 3.1) has a diameter of 95 mm and can be driven into the ground to a 

maximum depth of 57 mm. The ring was carefully driven into the ground without 
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removing the short grass; no special surface preparation was needed. The grass was not 

removed as we were interested in the in-situ natural infiltration characteristics.  

 

At each location, steady-state infiltration rates were measured manually at two different 

pressure heads applied in a sequence at a single location. The supplied pressure heads 

were slightly different for each location, but in all cases, the measurements started at the 

smallest value. The supplied pressure heads ranged from +6 cm to a maximum of +25 

cm. Steady-state was reached after an average of 90 minutes per head. The criterion 

used for attaining steady-state infiltration was that the 5 minutes infiltration volume 

during a 30 minutes record remained constant. All measurements were done during a 

long dry period since, as also explained above, the initial water content of the soil may 

influence the estimation of Kfs [Bagarello and Provenza, 1996]. The measurement 

campaign was limited in time thereby minimising the risk of temporal changes in soil 

structure that may affect the saturated conductivity [Russo et al., 1997]. In this case, no 

prior rainfall-runoff experiments were performed and the measurement campaign was 

two weeks long. No precipitation was recorded during that period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Single ring pressure infiltrometer set-up 
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The total number of measurement locations was 120 and the measurement scheme is 

shown in Fig. 3.2. The scheme layout was designed in order to obtain enough pairs for 

the estimation of semi-variograms at different lag distances in both the x- and y-

direction. An accurate estimation of the semi-variograms requires a minimum of 30-50 

pairs [Journal and Huijbregts, 1978]. To estimate directional variograms, measurements 

were done on lines parallel and perpendicular to the hillslope. The testing of the layout 

was performed using the GSLIB program [Deutsch et al., 1992]. 

 

 

Figure 3.2  A scheme of the hillslope showing the 120 measurement locations  
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3.2.2. Derivation of Kfs and αm 

 

3.2.2.1. Simultaneous-Equations Approach (SEA) 

 

An analysis of steady, ponded infiltration from a single ring which takes into account 

the soil hydraulic parameters, ring radius, depth of ring insertions, and depth of ponding 

was published by Reynolds and Elrick (1990). The following equation for three-

dimensional steady flow of water from the ring was given: 

GrGr
HKq

d

m
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fs π

φ
π

++=∞ )1(0         (3.3) 

 

where q0∞ [LT-1] is the steady flow rate, Kfs [LT-1] is the field saturated hydraulic 

conductivity, H [L] is the height of the ponded head, rd [L] is the ring radius, φm [L2T-1] 

the matric flux potential and G [-] a dimensionless parameter: 
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where dr [L] is the depth of insertion of the ring in the soil. The first term of the right-

hand side of Eq. 3.3 represents the gravitational effect, the second one corresponds to 

the influence of the ponded head, H, and the third term represents the contribution of the 

capillary forces to the soil water flow [Angulo-Jaramillo et al., 2000]. When the steady-

state infiltration rates are measured at two positive hydraulic heads H1 and H2 at the 

same location, Kfs and φm are obtained by solving the resulting two equations Eq. 3.3, 

(Simultaneous-Equations Approach). On each measurement location, two hydraulic 

heads were applied and the corresponding steady-state infiltration rate measured. This 

allows the simultaneous solving of two equations for Kfs and φm (or αm) per 

measurement location.  
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3.2.2.2. Sensitivity analysis 

 

A rigorous analysis of the uncertainties of the single-ring pressure infiltrometer 

measurements is beyond the scope of this study. Instead, a simple error analysis using 

Monte Carlo simulations (MC-simulations) was performed here to assess the 

propagation of uncertainties in measured inflow rates on the values of Kfs and αm. A 

random error on the steady-state infiltration rate is assumed. The error is assumed 

equivalent to a possible reading-off error of mean 0 mm and standard deviation 0.5 mm 

(normal distribution) on the value read-off the reservoir. The error is randomly added to 

read-off values for both applied pressure heads. Inflow rates (Q1 and Q2) are calculated 

and the assumed error in this experiment results in a standard deviation on Q1 and Q2 of 

0.0034 cm min-1. Mean of Q1 and Q2 over all measurements is 0.2 cm min-1so the mean 

error on the inflow rates is about 1.7 %. Consequently Kfs and αm values are calculated 

using the SEA for each random error. 1000 simulations per measurement location or 

120000 simulations were performed and the statistical properties derived. 

 

A second sensitivity analysis is performed in order to examine the effect of an increase 

of the number of pressure head levels per location on the uncertainty of Kfs and αm. This 

analysis is done for three pressure heads and corresponding infiltration rate per 

measurement location. Monte-Carlo simulations were performed using the same 

probability distribution on the inflow rate as described above, but assuming three 

pressure head levels. Three Kfs values (0.005, 0.03 and 0.09 cm min-1) and six αm values 

(0.01, 0.02, 0.05, 0.1, 0.2, and 0.5 cm-1) are arbitrarily chosen though keeping in mind 

the range of αm proposed by Elrick et al. (1989). For each pair of Kfs and αm, three q0∞ 

values were calculated for three different H’s (10, 20 and 30 cm) using Eq. 3.3. Then a 

measurement error is added to q0∞ and a regression through the new (H, ⊗
∞0q ) is 

performed ( ⊗
∞0q = theoretical perturbed infiltration rate). Three pressure head levels 

require regression through the three pairs (H, ⊗
∞0q ) while when using only two levels, 

simultaneously solving of Eq. 3.3 for both pairs was sufficient. Three pairs are hence 

expected to result in smaller standard deviations of Kfs and αm but are more time 

consuming when taking the field measurements.  
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3.2.2.3. Inverse optimisation technique 

 

The calculation of best fit parameters (e.g. Kfs and αm) in general requires minimisation 

of the following objective function [Bard, 1974]: 
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where SSR is the sum of squared residuals, M(p) is the model function with a set of 

parameters p, and O is a vector of no data points (observed).  

 

We propose here a new procedure using an optimisation technique. The procedure 

optimises simultaneously one overall ‘field’ αm and n Kfs values (one at each 

measurement location). The optimum is reached when the SSR is minimal, i.e. when the 

sum of squared differences between observed Q and simulated q0∞ values for each 

location is minimal. Considering only one αm, Eq. 3.3 can be rewritten as: 
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1 , Qi,1, Qi,2 and Hi,1 , Hi,2 correspond respectively to the 

first and second measured steady-state infiltration rate (Q0∞) and head (H) at each 

measurement location i.  

 

Equation 3.6 is the model with parameter ai and b. Note that Eq. 3.6 is in fact a non-

linear model because of the second term. Lower limits for Kfs and αm were set to 0 while 
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upper limits were set to infinity for all parameters. The initial estimates of Kfs were 

arbitrarily set at 0.25 cm min-1 and the initial estimate αm was set at 0.01 cm-1. 

 

3.2.3. Statistical and geostatistical methods 

 

Since only one field αm value is considered in this study, only Kfs is considered in the 

geostatistical analysis. Prior to the spatial analysis of Kfs, it is convenient to examine the 

data of Kfs by means of simple conventional statistical methods. The Lilliefors test 

[Conover, 1980] is used as normality check of ln Kfs. The Lilliefors test is similar to the 

Kolmogorov-Smirnov test, but adjusts for the fact that the parameters of the normal 

distribution are estimated from the Kfs values rather than specified in advance. Using the 

theory of the regionalized variables [Cressie, 1993], the spatial correlation structure of 

Kfs is investigated. The semivariance is defined as: 
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where )( lhγ is the estimated semivariance for lag distances class hl, z(xi) and z(xi+hl) are 

the measured sample values at point xi and xi + hl respectively, and n(hl) is the total 

number of sample pairs for the interval hl. The omnidirectional and directional 

variograms along x and y axis are calculated using the GSLIB program [Deutsch et al., 

1992]. An exponential model was visually fitted to the variograms: 
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where C0 is the nugget variance and Cs is the (co)variance contribution or sill value, hl 

the lag distance [L] and ra is the practical range, that is the distance at which the 

variogram value is 95% of the sill. The model was checked by cross-validation, testing 

for the absence of systematic errors and the consistency of the kriging variance and 

error. In particular, following Jury et al. (1987) and Russo and Jury (1987), we checked 

the following criteria: 
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where ME is the mean of the reduced error vector RE, MRE is the mean square reduced 

error, n is the sample size, )( ixz  and )(ˆ ixz  are the measured and predicted (krigged) 

values at location xi, where i varies from 1 to n.  

 

3.3. Results and Discussion 

 

3.3.1. Simultaneous-Equations Approach 

 

As discussed above, an important limitation of the single ring pressure infiltrometer 

measurements is the potential for negative values of the estimated Kfs and/or αm [Heinen 

and Raats, 1990; Elrick and Reynolds, 1992; Wu et al., 1993; Russo et al., 1997]. The 

SEA approach (Eq. 3.3 and Eq 3.4) can only yield positive values for Kfs if Q2>Q1, but 

can yield both positive and negative values for αm. That is why all 120 calculated Kfs 

values of our data set were found to be positive. Table 3.1 shows the basic statistical 

properties of the calculated Kfs and αm values using the SEA procedure. 79 out of 120 

calculated αm values were positive. A negative value of αm is physically impossible 

since this would mean that either Kfs or φm is negative. The 41 negative αm values make 
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that the overall average αm of all positive and negative αm values was negative. Values 

of αm down to -10 cm-1 were obtained. The mean Kfs for locations where αm > 0 is half 

(0.032 cm/min) of the mean Kfs for all locations (0.073 cm/min) and only one fifth of the 

mean Kfs where αm <0 (0.152 cm/min). Standard deviation on Kfs when taking only 

negative values into account is 8 times larger than the one of Kfs where only positive αm 

values are considered. Table 3.1 suggests that negative αm values generally correspond 

to higher Kfs values. Examining the single measurements reveals that this is not true for 

all since distributions of Kfs values for positive αm and for negative αm overlap partly, 

although the overlap is minor.  

 

Table 3.1 Descriptive statistics of Kfs (cm min-1) and α (cm-1) calculated using the SEA and in 

comparison with the statistics of the ‘optimised’ values 

  N. Avg. Min. Max. Std.Dev. 

All measurements (SEA) 

Kfs  120 0.0734 0.0010 1.4544 0.1555 

αm  120 -0.0126 -9.5796 8.2911 1.1739 

Location of positive αm values (SEA) 

Kfs  79 0.0324 0.0010 0.1320 0.0350 

αm 79 0.1864 0.0006 8.2911 0.9298 

Location of negative αm values (SEA) 

Kfs  41 0.1526 0.0051 1.4544 0.2445 

αm 41 -0.3958 -9.5796 -0.0249 1.4784 

All measurements (optimisation) 

Kfs  120 0.0293 0.0020 0.1516 0.0292 

αm, opt 1 0.0300 / / / 

 

As studied by Wu et al. (1993) preferential flow in macropores changes the Q2/Q1 ratio 

which may lead to negative αm values. Since macropore flow is only gravity driven and 

barely influenced by capillary forces, the third term in Eq. 3.3 is very small (i.e. due to 

its large positive αm). Therefore measurement errors which are propagated in the 

intercept of the q versus H relation (sum of first and third term), may result in a negative 

third term in Eq. 3.3 (i.e. negative αm). This matches the finding of this study that 
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locations where αm is calculated negative, generally have high Kfs values. Preferential 

flow indeed increases hydraulic conductivity values [Bouma, 1981; Beven and 

Germann, 1982; Edwards et al., 1988; Logsdon et al. 1990]. However, we will 

demonstrate in the next section that measurement errors result in erroneous and 

uncertain estimates of αm values for all types of soils.  

 

3.3.2. Sensitivity analysis 

 

The aim of this part of the study is to examine the effect of small fluctuations in 

‘measured’ inflow rate on Kfs  and αm. Only those observations where αm was found 

positive using the SEA (79 locations) were used in the sensitivity analysis in order to 

avoid the effect of negative αm values. Monte Carlo simulations (1000 simulations for 

each of the 79 locations) result in model output statistics for Kfs and αm. Figure 3.3 

shows the simulated mean value and standard deviation for Kfs (a) and αm (b). The 

standard deviation of αm is very high (notice the log scale) for all measurement 

locations and a trend of increasing standard deviation with increasing αm values is 

observed. The sensitivity of αm to small variations in inflow rate is extremely high and 

small input fluctuations in measured infiltration rates result in a large range of αm 

values: from –1000 cm-1 up to +2000 cm-1. This exercise reveals that the αm value 

calculated using the SEA from single-ring pressure infiltrometer measurements with 

only two pressure head levels is meaningless. This conclusion must at this stage be 

restricted to our conditions (e.g. initial soil moisture content and soil type,…). As stated 

above, negative αm values do not necessarily imply high Kfs values (or preferential 

macropore flow) but as shown in the Monte Carlo simulations, negative αm values could 

also be the result of small variations in the measured infiltration rate due to e.g. 

measurement errors. The standard deviation of Kfs is nearly constant for all 

measurement locations i.e. no trend of increasing standard deviation with increasing Kfs 

values can be noticed, and standard deviations remain reasonably small for all 

measurement locations. Kfs is not very sensitive to these infiltration rate measurement 

errors. In conclusion, single-ring pressure infiltrometer measurements using only two 

pressure head levels at each location is a suitable method for the in-situ derivation of Kfs 

but unsuitable for estimating αm.  
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Figure 3.3 Result of the Monte Carlo simulations with two applied pressure heads. (a) Kfs and standard 

deviation of Kfs (b) αm and standard deviation of αm 
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The result of the second sensitivity analysis (3 theoretical heads applied) in which three 

Kfs values (0.005, 0.03 and 0.09 cm min-1) and six αm values (0.01, 0.02, 0.05, 0.1, 0.2, 

and 0.5 cm-1) are arbitrarily chosen and Monte Carlo simulations performed as 

explained above, is presented in Fig. 3.4. As shown in Fig. 3.4(a), standard deviations of 

Kfs again remain quite constant and reasonably small over the range of Kfs for all 

considered αm values. Six Monte-Carlo simulations (1000 runs each) were performed 

for each of the three considered Kfs levels, i.e. one simulation for each value of αm. 

Fluctuations in infiltration rate over the considered range of αm and Kfs values do not 

influence standard deviation of Kfs.  Figure 3.4(b) reveals that even when considering 

three pressure head levels, the estimated αm values remain very sensitive to 

measurement errors in the infiltration rate over the considered range of αm. 

 

A trend of increasing standard deviation with increasing values of αm can again be 

observed. This trend can be explained physically: low αm values correspond to soils in 

which capillary forces are relatively important compared to gravity forces. This means 

that in these soils, the third term in Eq. 3.3 is relatively large and hence αm or φm has a 

large influence on the value of q0∞. In other words, q0∞ is sensitive to the value of αm or 

αm can be determined quite well. On the other hand, when αm increases (gravity forces 

more important than capillary forces), the third term becomes very small compared to 

the first two terms of Eq. 3.3, which implies that αm does not contribute a lot to the 

value of q0∞ (or q0∞ is insensitive to the value of αm) and can hence not be determined 

with great certainty.  

 

It is obvious from Fig. 3.4(b), that single-ring pressure infiltrometer measurements, is 

not a suitable method to estimate αm, even when using three pressure head levels. Here, 

the conclusion that calculated αm values using SEA are meaningless can be extended to 

a large number of other soils having a wide range of αm and Kfs values. Since small 

infiltration variations (or measurement errors) do not have a large effect on the 

estimation of Kfs, it is a stable method for the in-situ estimation of Kfs.  
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Figure 3.4 Result of the Monte Carlo simulations of fictive pressure head infiltrometer data using three 

pressure head levels (a) Kfs and standard deviation of Kfs (b) αm and standard deviation of αm 
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3.3.3. Inverse optimisation technique 

 

As discussed above, a single-ring pressure infiltrometer measurement is a good tool for 

the estimation of Kfs in-situ. A problem remains that the estimation of Kfs is a function 

of αm. However, the sensitivity analysis showed that it is impossible to obtain a 

meaningful estimation of αm from the steady-state infiltration rate measurements. As 

stated above, Elrick et al. (1989) suggested a fixed αm value method. However, 

individual αm values for soils are generally not available. 

 

One solution for the choice of the αm value could be to consider the average of the 79 

positive α values as the ‘overall’ αm. Following this, an overall αm of 0.19 cm-1 can be 

calculated. Recalculating all Kfs values with the overall αm value would finally result in 

two Kfs values per measurement location (or 240 Kfs) and one overall αm. Finally, the 

average of both Kfs values at each measurement location can be considered as the best 

estimate. Another and statistically more sound solution is to take the average of all α 

values as the ‘overall’ αm. Statistically speaking, including all α values (including the 

negative ones) is expected to middle out the individual errors associated with each α 

estimate so the mean is close to the ‘real’ α value as its error is close to zero. Though in 

our case, due to a few outliers this results in a negative value of – 0.0126 which is 

physically impossible.  

 

An alternative, more robust way of estimating the ‘overall’ αm value is proposed in this 

study. In the sensitivity analysis, it was proven to be impossible to get an accurate 

estimate of local αm values using the SEA. It also revealed that Kfs is less sensitive to 

measurement errors and also to an erroneous αm estimate or that αm can be completely 

out of the normal range while the estimate of Kfs is still acceptable. That’s why the 

authors believe that it makes sense to suggest a fixed αm for all measurement locations. 

Using this fixed αm value, an error is made due to the fact that the local αm might differ 

from the optimised one but this error only has a very small impact on the estimation of 

the local Kfs.  
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Again, only locations where αm was positive (SEA) are taken into consideration. The 

optimisation of Eq. 3.6 aims at finding 79 a values (equivalent to 79 Kfs values) and 1 

overall b value (related to αm) by minimising the sum of the squared residuals. Several 

sets of initial parameters were used; all leading to the same optimised parameter set. 

This means that the optimised parameter set does not correspond to a local minimum in 

the objective function but corresponds to the overall minimum or optimum. Compared 

to the case in which the average of the positive αm values is taken as the overall αm, this 

optimisation procedure results in a value of αm which is based on all measurements 

where αm is positive simultaneously.  

 

The sensitivity analysis learned that negative αm values can be the result of 

measurement errors. Though positive αm values do not imply that measurement errors 

are negligible, negative αm values are for sure an indication of ‘large’ uncertainty; hence 

it makes sense (first reason) to exclude these negative αm locations. It must be stressed 

that the actual αm value using SEA is meaningless, though in this study, its sign decides 

whether it is to be used in the optimisation procedure or not.  

 

When the Levenberg-Marquardt optimisation procedure was applied for all locations, 

including the negative αm sites, the optimised αm value always reached the top of the 

upper bound set in the optimisation procedure, even when this bound reached extreme 

values of 100 cm-1. This is because the optimising procedure looks for one overall αm 

which is negative but αm is not allowed to become negative by its lower bounds (set to 

0). Therefore, the optimising procedure increases the value of αm in order to decrease 

the third term of Eq. 3.3 in the same way a negative αm does. Hence, (second reason) 

the optimisation procedure was limited to the locations having a positive αm value.  

 

Figure 3.5 shows the result of the optimising procedure: simulated (‘optimised’) and 

measured infiltration rates are very close (R2 = 0.9961) and no trend was found in the 

residuals. The overall αm or αm,,opt was 0.03 cm-1 and the optimised Kfs values are shown 

in Fig 3.6. The large difference between average positive αm’s using SEA (0.18 cm-1) 

and the optimised αm (0.03 cm-1) is due to a few outliers (e.g. one αm of 8.29 cm-1) in the 

result of the SEA calculation and the large uncertainty on αm as shown in the sensitivity 
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analysis. Comparing this αm,,opt of 0.03 cm-1 with the values proposed by Elrick et al. 

(1989) indicates that this value lies within the range of the ‘unstructured fine textured 

soils’, in which the soil found at the measurement site can be classified. Optimised Kfs 

values are generally not as high as the originally calculated Kfs values using the SEA, 

although this is certainly not true for all measurement locations.  
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Figure 3.5 Result of inverse optimisation: measured infiltration rate compared to optimised (simulated) 

infiltration rate 
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Figure 3.6 Optimised Kfs values at locations with an originally calculated positive α compared to originally 

calculated Kfs using the SEA method 
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Figure 3.7 Kfs values based on αm,opt at locations with an originally calculated negative αm 
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At locations where αm was found negative, we solved Eq. 3.3 for Kfs using αm,,opt and 

obtained two Kfs estimates at each location, one for each applied pressure. The average 

of these two estimators (= Kfs,avg) is considered to be the in-situ measured Kfs for that 

location. Fig. 3.7 shows the originally calculated Kfs values using the negative αm, the K 

values from Eq. 3.3 for each H (using αm,,opt) and the averaged Kfs, which is considered 

to be the in-situ estimated Kfs for that location. Furthermore, Fig. 3.7 reveals that the 

Kfs,avg is again lower than the originally calculated Kfs using negative αm values, and that 

for all measurement locations. This is quite obvious because an increase in the third 

term of Eq. 3.3 (αm from a negative to a positive value) has to be compensated by a 

decrease in Kfs for equal q values.  

 

Advantage of the optimising technique compared to calculating Kfs according to SEA is 

that in this technique, all measurements (at least where αm was found to be positive with 

the SEA) are involved in finding the optimum 79 Kfs values and the overall αm value 

simultaneously. No posterior averaging (except for the negative αm values) of Kfs values 

compared to the method proposed by Elrick et al. (1998) is needed. The statistics of the 

Kfs for all locations using the overall αm value are shown and compared with the Kfs 

values calculated using the SEA in Table 3.1.  

 

3.3.4. Comparison Kfs and Ks measured in laboratory 

 

The value of Kfs is the result of the hydraulic soil properties of the A-horizon as well as 

of the B-horizon. The influence of the B-horizon will be larger at locations where the B-

horizon is closer to the surface. Figure 3.8 compares the cumulative distributions of the 

Ks values measured in the laboratory on the soil samples (after deletion of outliers)  

taken from the profile pits (A- and B-horizon) and the Kfs values measured by the single 

ring pressure infiltrometer measurements (for both the SEA approach and the inverse 

optimisation approach as discussed in this chapter). In addition, Fig. 3.8 reveals that the 

range of Kfs is significantly smaller than the ranges of Ks for both the A- and B-horizon 

(even after the deletion of outliers, cfr. Chapter 2). A Kolgomorov-Smirnov test shows 

that on a 5 % significance level, the distributions of Kfs (for both approaches) are 

significantly different from both the A- and B-horizon Ks distributions. This test is based 
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on the maximum difference between the distributions and because the standard 

deviation of Ks is much larger than for Kfs, the test reveals a significant difference. 

Average values of both Ks and Kfs are comparable: mean Kfs value is slightly lower than 

the mean of Ks for both horizons while the mean is slightly higher. A larger difference 

between mean Ks and Kfs was to be expected since under field conditions, a certain 

amount of air is usually entrapped in the soil during the infiltration process. Lower 

estimates of the ‘saturated’ hydraulic conductivity compared to measurements in 

completely saturated soils (e.g. lab estimates) can hence be expected [Stephens et al., 

1987].  

 

 
 

Figure 3.8 Comparison between field saturated hydraulic conductivity from single ring pressure infiltrometer 

measurements and A- and B-horizon  soil core hydraulic conductivity estimates in the laboratory 

 

From literature, it is known that different measurement techniques at different scales 

and even at the same scale, can result in different parameter estimates. In Reynolds et al. 

(2000) a comparison is made between tension infiltrometer, pressure infiltrometer, and 

soil core estimates of saturated hydraulic conductivity. It is concluded that parameters 
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from the different measurement techniques are significantly different even though they 

were measured at similar scales. In the summer of 2002, in-situ tension-infiltrometer 

measurements followed by in-situ single ring pressure infiltrometer measurement at the 

same location and same scale were carried out for a transect along the hillslope 

[Herman et al., 2003]. Thereafter, soil core were taken with similar dimensions and Ks 

estimated in the laboratory. Same conclusions can be drawn: Ks estimates are 

significantly different between different measurement techniques even when measured 

at similar scales.  

 

3.3.5. Statistical and geostatistical results 

 

The normal probability of the ln(Kfs) values calculated based on αm,opt is visualised in 

Fig. 3.9. The Lilliefors test did not reject the null (normal) hypothesis at the 0.05 level 

of significance, meaning that Kfs is log-normally distributed as shown in several other 

studies [Jury, 1985; Russo et al., 1997; Zavattaro et al., 1999; Mohanty et al., 1994; 

Jacques, 2000]. Figure 3.10(a) shows the omnidirectional variogram of ln(Kfs), Fig. 

3.10(b) the directional variogram in the x-direction or orthogonal to the hillslope and 

Fig. 3.10(c) the directional variogram in the y-direction or along the hillslope. In 

addition, the fitted exponential model through each variogram is shown in Fig. 3.10. 
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Figure 3.9 Normal probability plot of ln(Kfs). Straight line represents the theoretical cumulative normal 

probability function 

 

The three parameters of the exponential model (Eq. 3.7) were estimated by visual fitting 

and are shown in Table 3.2. Cross validation using the model parameters fitted to the 

omnidirectional variogram, resulted in a mean of the reduced error vector (ME) of –

0.045 a mean square reduced error (MRE) of 1.056. As these values are ideally 0 and 1 

respectively, the fitted model was found to be suitable. 

 

Table 3.2 Estimated parameters of the exponential semivariogram models 

  Nugget (C0) Sill (Cs) Range in m (ra) 

Omnidirectional 0.4 0.65 2.85 

Directional (x) 0.2 0.7 3.2 

Directional (y) 0.7 0.5 3.8 
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Figure 3.10 Experimental semi-variograms (circles) and fitted models of ln(Kfs) (a) omnidirectional 

semivariogram (b) directional semivariogram along x axis and (c) directional semivariogram along y axis.  



In-situ single ring pressure infiltrometer measurements 

 61 

Examining the semi-variograms reveals that some spatial pattern is present in all three 

semi-variograms. A range of ln(Kfs) of 2.85 m (omnidirectional) to 3.8 m (along the 

hillslope) is observed. Russo et al. (1997) found a range of ln(Kfs) between 0.6 m and 

2.5 m which is in the same order of magnitude as the values found here. The quite high 

nugget values also suggest that the local variation between adjacent locations is high. As 

shown above, the uncertainty of measurement errors on the Kfs is reasonably small so 

this rather short correlation distance or range could be caused by several other factors. 

The field plot used to be an orchard of which the roots have created preferential flow 

pathways resulting in the shortening of the range. Worm- or moleholes can be another 

factor resulting in big differences between adjacent measurements. 

 

3.4. Conclusions 

 

In situ measurements of discharge-head (Q,H) pairs were used to estimate the field 

saturated hydraulic conductivity Kfs, and the parameter αm [Gardner, 1958] at 120 

locations on a hillslope (80 meters long, 20 meters wide) by means of a single-ring 

pressure infiltrometer. Only the steady-state infiltration rate was used for further 

analysis and using the classical SEA approach, seventy-nine of these (Q,H) pairs 

yielded positive αm while all pairs resulted in positive Kfs values. The SEA approach 

showed that locations where αm was negative, generally have high Kfs values. The 

negative αm values might be the result of the domination of macropore flow in the 

infiltration process at that location. Negative αm values do not imply that preferential 

macropore flow (or higher Kfs) is the case as shown in the sensitivity analysis. This MC 

analysis reveals that the sensitivity of αm on measurement errors using the constant head 

SEA with two or three pressure head levels is enormous. Therefore, negative αm values 

can be the result of a small measurement error instead of macropore flow. Sensitivity of 

Kfs to measurement errors is very low and constant over the range of Kfs and αm. Based 

on this sensitivity analysis, it is believed that single-ring pressure infiltrometer 

measurements using two or three pressure head levels at each location is a suitable 

method for the in-situ derivation of Kfs but unsuitable for the estimation of αm. A new 

technique using the inverse optimising of 120 Kfs values and only 1 αm value using all 

infiltration measurements was proposed. The technique allows a robust method for the 
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derivation of that αm value which is generally not known for a given location. The 

inverse optimising converged successfully and optimised and measured infiltration rates 

are very close. The spatial analysis revealed ranges of ln(Kfs) between 2.85 and 3.8 m 

omnidirectional and along the hillslope (y-axis), respectively. Though a robust method 

for the derivation of field saturated hydraulic conductivity is presented in this chapter, 

care must be taken interpreting the measured Kfs values. Lots of different methods for 

estimating hydraulic conductivity exist, all having their specific advantages and 

disadvantages at different scales. For the same soil and even at the same scale, different 

techniques might yield different Ks estimates [Reynolds et al., 2000, Herman et al., 

2003]. Hence, it is impossible to know the ‘real’ conductivity. It can be doubted 

whether ‘real’ conductivity exists, as it is most likely that conductivity is a function of 

the scale. In most studies, one is not even interested in the ‘real’ conductivity but in an 

‘effective conductivity’ for the (model)scale one is working with. It is hence doubtful 

that measured K, independent from the technique and scale it was measured at, coincide 

with the ‘effective’ K needed by the model used. In the next chapters, it is investigated 

how much different the K estimates (laboratory and in-situ) are from the ‘effective’ ones 

needed by the MIKE-SHE model. In Chapter 5, the difference between ‘effective’ and 

‘measured’ parameters is not only investigated for K but for all other unsaturated zone 

parameters. In chapter 6, the relevance of measuring a priori laboratory of in-situ 

parameter estimates for the estimation of effective parameters is questioned.  



Chapter 4 
 

Hydrological modelling: model selection, 
parameterisation and calibration 
 

ABSTRACT 

 

This Chapter presents a brief literature review with respect to hydrological modelling. 

In particular the chapter focuses on the problem of the determination of effective 

parameters using inverse modelling techniques. After a general introduction, a 

discussion on the model selection and the scaling issue is elaborated. Consequently, the 

difference between local and global sensitivity analyses is discussed and their relevance 

in the effective parameter estimation issue shown. After the discussion of the 

advantages and disadvantages of manual and automatic calibration of hydrological 

models, the history of the most common optimisation algorithms (inverse modelling) as 

used in hydrology is presented. Optimisation algorithms are divided in global and local 

search methods. A detailed description of the Shuffled Complex Evolution algorithm as 

used in Chapter 5, 6 and 7 is thereafter given. Problems of inversed modelling are 

discussed in detail and divided in two main categories: (i) problems related to the 

quantity and quality of the calibration data and (ii) problems related to the parameter 

identifiability. Two different approaches to the parameter identifiability problem are 

presented in detail because they are applied further in this research: the GLUE approach 

and the Pareto-Optimality approach. Differences in philosophies and methods between 

both are only briefly discussed because their applications in Chapter 6 provide more 

details. Finally, The MIKE-SHE model set-up as used in Chapters 5 and 6 is described.  
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4.1. Introduction 

 

The reliance on models as hydrological tools is increasing as hydrologists examine 

emerging problems and exploit new data sources [Sooroshian and Gupta, 1995]. 

Models enable us to study very complex problems and to synthesize different kinds of 

information. However, model results are only as reliable as the model assumptions, 

inputs, and parameter estimates. Therefore, two problems are faced: (i) the selection of a 

suitable model to represent the study site and (ii) the selection of values for the model 

parameters (= ‘effective’ model parameter values) so that the model closely simulates 

the behaviour of the study site. The process by which the parameters are selected is 

called model ‘calibration’. A brief literature review on both problems is presented 

below, though the review focuses on the calibration problem. The SCE algorithm [Duan 

et al., 1992] is discussed in more detail because it is this inverse modelling technique 

that is used as automatic calibration strategy throughout this research. The SCE set-up 

and parameters used throughout this research are also discussed. At the end of the 

Chapter, the unsaturated zone, evapotranspiration and overland flow modules of the 

MIKE-SHE hydrological model [Refsgaard and Storm, 1995] are highlighted because 

these components are applied throughout this study.  

 

4.2. Model selection and scaling issue 

 

Lots of hydrological models exist, all having different conceptual backgrounds and 

types of application. Generally speaking, there are two main model categories; 

empirical models and physically based models. A third category, conceptual models 

describes those that are somewhere between the two, i.e. they contain some parts that 

are empirically derived and some that are based on mathematical representations of the 

physical processes. The two main types of models have distinct advantages and 

disadvantages inherent to the structure of those models. Empirical models, due to their 

simplistic nature, require only a few input parameters. However, the data sets for each 

of the parameters need to be recorded over long periods to reliably calibrate the model. 

Physically based models require maybe less input data for calibration, but generally 

have a much larger range of parameters. Distinction between lumped and spatially 
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distributed models is based on the way they treat hydrological catchments. Lumped 

models treat catchments and sub-catchments as uniform entities; this means that it is 

generally impossible to predict the effect of spatially non-uniform measures on the 

hydrology. Spatially distributed models divide the study area usually in smaller entities 

using uniform (rectangular grid cells) or non-uniform (grid cells with variable 

geometry) units [Abbott and Refsgaard, 1996]. The advantages of the spatially 

distributed models are in practice to a certain extent overshadowed by a number of 

important disadvantages, as there are: (i) the lack of required area characteristics and 

model input on the level of the gridcell in which the area is divided, (ii) the lacking of 

standardised measuring techniques to measure area characteristics on the level of the 

gridcell, and (iii) the available limited knowledge and experience concerning upscaling 

techniques which should in principle allow to extrapolate properties measured in points 

to gridcell representative information [Wood et al., 1998]. It is evident that the smaller 

the area of the gridcells in which the catchment is divided, the easier it is to take point 

measurements as representative for the gridcell. As the area of the grid increases, the 

uncertainty concerning the extrapolation increases exponentially. On the other hand, 

calculation time increases exponentially if the area of the grid decreases [Refsgaard and 

Butts, 1999].  

 

There has been a strong increase in the use of distributed modelling over the last decade. 

This has partly been because the increase in computer power, programming tools and 

digital databases has made the development and use of such models so much easier. 

There are also very good scientific reasons underlying the increased use of these 

models. One is the need for distributed predictions of flow pathways as a basis for other 

types of modelling, such as the transport of sediments or contaminants. Another is the 

need for prediction of the impacts of land use and other changes, as argued above, only 

possible using physically based, distributed models [Beven, 2002]. On the other hand, 

their complexity, requirement of huge amount of resources, (e.g. measurements with 

high temporal and spatial resolution), computer capacity and the vast parameter set 

involved, has lead to a large amount of reviews and discussions of the advantages, 

limitations and potentials of physically based distributed models [e.g. Beven, 1989; 

Grayson et al., 1992; Smith et al., 1994; Beven, 1996; Refsgaard, 1997; Franks et al., 

1998; Beven, 2002; Christiaens and Feyen, 2002]. The hydrological scientific 

community nowadays focuses on two big issues in the use of physically based models: 
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(i) they are only representative for the original scales and conditions at the time of the 

derivation of the equations and (ii) a relatively large parameter unidentifiability problem 

compared to conceptual or empirical models due to the excess of model parameters. The 

scaling issue is elaborated below. For a discussion on the parameter unidentifiability 

problem, the reader is referred to 4.4.2. 

 

The ‘scaling issue’ has gained increasing attention in the hydrological scientific 

community during the last ten years [Blösch and Sivapalan, 1995; Christensen, 1997; 

Boulet et al., 1999; Bierkens et al., 2000]. A nice review is published by Bierkens et al. 

(2000). An attempt is made to classify the wealth of different upscaling and 

downscaling methods in a number of limited categories and for each category, examples 

are provided. Decision rules as to which method to use for a specific problem facilitate 

in the choice of the up- or downscaling method. The reason a problem of scale transfer 

exists is ‘heterogeneity’. It is stated that if the parameters modelled and observed were 

homogenous, i.e. would not vary in space and time, they would be scale invariant. It is 

accepted that the physically based equations used in physically based models are 

representative for the original scales and conditions at the time of derivation of the 

equations [Beven, 1989; Grayson et al., 1992; Refsgaard and Butts, 1999; Christiaens 

and Feyen, 2002]. Hydraulic property upscaling is a process that incorporates a mesh of 

hydraulic properties defined at the measurement scale into a coarser mesh of 

“effective/average hydraulic property” that can be used in large scale (e.g. basin scale, 

watershed scale) modelling of hydrological processes [Zhu and Mohanty, 2002]. The 

need for hydraulic property upscaling results from the disparity between the scales at 

which measurements are made and the scales more appropriate to the numerical 

simulations of hydrological processes. Soil hydraulic properties have been studied 

extensively at the core scale (measurement scale) but applications to large 

heterogeneous fields are scarce. As discussed in Chapter 2, the main original objectives 

of the field experiment were on the ‘upscaling’ issue. After reorientation of the study, 

the ‘scaling’ issue remains important in this PhD study (cfr. chapter 3, 5,6 and 7) though 

is no longer the dominant research topic of the research. 

 

The hydrological model used throughout this research is the spatially distributed 

physically based MIKE-SHE model [Refsgaard and Storm, 1995]. Therefore, it is 

described in more detail below.  
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4.2.1. MIKE-SHE model  

 

The MIKE-SHE model incorporates the different components of the hydrological cycle 

on a catchment scale (Fig. 4.1). The modelling code can be classified as a deterministic 

model using a continuous time scale and with a finite difference numerical solution. The 

code is not only capable of simulating water transport but also accommodates solute 

transport and transformation. Different options are offered to allow for simple model 

approaches in case the data is insufficient to apply the physically based equations or the 

highest level of detail is not desirable. This model was selected because it was readily 

available at the laboratory and it incorporates the processes encountered in this study, 

i.e. 1D unsaturated zone flow (Chapters 5, 6 and 7), evapotranspiration (Chapters 5, 6 

and 7), and overland flow (Chapter 7). The way MIKE-SHE incorporates these three 

processes is described below.  

 

 
 

Figure 4.1 Schematic representation of the MIKE-SHE model (after DHI Water and Environment) 
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4.2.1.1. Unsaturated zone component 

 

This component plays a key role in the water movement of MIKE-SHE because all 

other components depend on the boundary data from the UZ component. Water flow is 

considered to be one-dimensional (vertical flow in a soil column bordered by the grid), 

a simplification that is based on the assumption that horizontal subsurface flow is 

negligible to vertical flow in the unsaturated zone. The Richards’ equation for one-

dimensional vertical flow is implemented [Richards, 1931]: 
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where h is the soil water pressure head [L], t is time [T], z is the soil depth [L], K is the 

hydraulic conductivity [LT-1], Quz is the source/sink term (i.e. root extraction) [L-3T-1], 

and C is the soil water capacity [L-1] approximated by the slope (dθ/dh) of the soil water 

retention curve (Eq. 4.2) and θ the volumetric water content [L3L-3]. The only type of 

source/sink used in MIKE-SHE is a term describing water extraction by roots and soil 

evaporation. More details can be found in Refsgaard and Storm (1995). Two hydraulic 

functions are required as input in order to simulate water flow in the soil profile. These 

functions are the moisture retention curve θ(h), and the hydraulic conductivity curve 

K(θ). In this study the van Genuchten (1980) θ(h) model for the soil water retention and 

the Averjanov (1950) K(θ) model for the hydraulic conductivity is used. Both models 

and their parameters are discussed in 2.2.2. Knowledge about the soil physical 

properties in terms of the moisture retention and hydraulic conductivity curve is subject 

to research in this study.  

 

4.2.1.2. Evapotranspiration  

 

A part of the precipitation will be subject to interception by vegetation and subsequent 

loss to the atmosphere by evaporation. The remainder of the precipitation will reach the 



Hydrological modelling: model selection, parameterisation and calibration 

 69 

soil surface, resulting in surface runoff (to another grid cell) or infiltrate to the 

unsaturated zone. Some of the infiltrating water is evaporated from the upper part of the 

root zone or transpired by the plants. The evapotranspiration component is based on the 

empirical Kristensen and Jensen (1975) model and interacts with the overland and 

channel flow component and the unsaturated zone component. In this way, it provides 

net rainfall and evapotranspiration loss rates based on soil water conditions in the root 

zone. As in this research only bare soils are encountered, plant transpiration must not be 

modelled. Therefore only the soil evaporation part of the Kristensen and Jensen (1975) 

model is discussed below, more details can be found in Refsgaard and Storm (1995).  

 

Soil evaporation (Es) occurs from the upper part of the unsaturated zone and consists of 

a basic amount of evaporation, Ep⋅f1(θ), plus additional evaporation from excess soil 

water as the soil saturation reaches field capacity. This can be described by the 

following function: 

 

( ) ( )(LAI)f-1)(f )(f E - E - E + )(f E = E 1patpps θθθ 322      (4.3) 

 

where Ep is the potential evapotranspiration, Eat is the actual transpiration (= 0 in this 

research) and the function f1(LAI) expresses the dependency of the transpiration on leaf 

area index of the plant by: 

 

LAICCLAIf 121 )( +=         (4.4) 

 

where C1 and C2 are empirical parameters [-]. C1 is a plant dependent parameter. For 

agricultural crops and grass, C1 has been estimated to be about 0.3. C1 influences the 

ration between soil evaporation to transpiration. For smaller C1 values, the soil 

evaporation becomes larger relative to the transpiration. For higher C1 values, the ratio 

approaches the basic ration determined by C1 and the input value of LAI. For 

agricultural crops and grass, grown on clayey loamy soils, C2 has been estimated to 

about 0.2. Similar to C1, C2 influences the distribution between soil evaporation and 

transpiration. In this research the C1 and C2 have been set to the recommended values. 

Actually, the value of C1 is not important at all in this study as LAI = 0.  
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 The functions f2(θ) and f3(θ) are given by: 
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where θF is the volumetric moisture content at field capacity [L³L-³], θW is the 

volumetric moisture content at wilting point [L³L-³], θr  is the residual volumetric 

moisture content [L³L-³] and θ  is the volumetric moisture content [L³L-³]. In the absence 

of vegetation as is the case in this research, f1(LAI) and Eat can be set to zero in Eq. 4.3.  

 

 

r 
 

 

Figure 4.2 Soil evaporation Es in relation to Ep as a function of soil moisture content, θ, in upper layers in 

the case of LAI = 0. 
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This allows us to see how Es varies in relation to Ep for different values of θ. In this 

case, Eq. 4.3 can be simplified to: 

 

)()()()( 3232 θθθθ ffff
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E
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s −+=        (4.7) 

 

and is plotted in Fig. 4.2. In the MIKE-SHE model, soil evaporation is restricted to the 

upper node in the unsaturated zone, which should generally be less than 10 centimetres 

deep.  

 

4.2.1.3. Overland and channel flow component 

 

In case runoff is generated due to high intensity rainfall or when the groundwater table 

rises above the ground surface, water will start flowing over the land across grid 

boundaries. The topography governs flow routing. Flow quantity is determined by flow 

resistance, corrected for losses due to evaporation and infiltration along the flow path. 

The overland flow process is described by a diffusion wave approximation of the Saint-

Venant equation (conservation of mass, Eq. 4.8, and conservation of momentum Eq. 

4.9) in the two horizontal directions, whereby the Manning/Strickler equation (Eq. 4.10) 

is used to evaluate the friction slope: 
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where hg is the flow depth above the ground surface [L], zg the ground surface level [L], 

u and v the flow velocities in the two directions [LT-1], Sfx and Sfy the friction slopes in 
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the two directions [-] and Kx and Ky- the Strickler coefficients [L-3T-1] in the two 

directions  

 

4.3. Calibration framework 

 

During calibration, parameters are adjusted for optimisation of certain calibration 

criteria (objective functions). The process is repeated until a specified criterion is 

satisfied. For a manual calibration, this criterion is usually linked with a rather 

subjective acceptable goodness of fit of the model to the observations. In automatic 

calibration, this criterion may be a maximum number of evaluations, convergence of the 

objective function or convergence of the parameter set. Formulation of a proper 

framework for (automatic) calibration involves following key elements [Madsen, 2003]:  

 

• Model parameterisation and choice of calibration parameters, 

• Specification of calibration criteria, and 

• Choice of optimisation algorithm. 

 

4.3.1. Model parameterisation, sensitivity analyis and 

choice of calibration parameters 

 

The challenge is to formulate a relatively simple model parameterisation in order to 

provide a well-posed calibration problem but at the same time keep it sufficiently 

distributed in order to capture the spatial variability of key model parameters. In the 

initial model parameterisation process, sensitivity analysis can be conducted to 

investigate the sensitivity of model responses to its parameters, and hence to identify 

those which should be further refined via calibration.  

 

A definition of sensitivity analysis (SA) is given by Saltelli et al., (2000): “SA is the 

study of how the variation in the output of a model (numerical or other) can be 

apportioned, qualitatively or quantitatively, to different sources of variation, and of how 

the given model depends upon the information fed into it.” SA is used to increase the 
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confidence in the model and its predictions, by providing an understanding on how the 

model response variables respond to changes in the inputs i.e. calibration data, model 

structures or parameters. In this study, SA is applied prior to the calibration exercise to 

investigate the importance of each parameter, i.e. to identify a candidate set of important 

parameters for calibration. This is important since the difficulty of calibrating models 

against field or laboratory data increases with the number of processes to be modelled 

and hence the number of parameters to be estimated. It allows for a dimensionality 

reduction of the parameter space in which the calibration/optimisation is performed. 

Different SA techniques suited for this objective exist, each having their strengths and 

weaknesses. Local SA concentrates on the local impact of the parameters of the model 

and is usually carried out by computing partial derivatives of the output functions with 

respect to a given parameter set. Global SA apportions the output uncertainty to the 

uncertainty in the parameters, described typically by probability functions that cover the 

parameters’ ranges of existence. In Chapter 5, two different global SA are used with as 

objective the characterisation of the parameters that the MIKE-SHE model as set up in 

this study is sensitive to. In other words, of the most and least important parameters are 

characterised with respect to changes in the output of the MIKE-SHE model set-up as a 

result of changes in their parameter value (input).  

 

4.3.2. Specification of calibration criteria 

 

The way calibration criteria are specified is different between a manual and an 

automatic calibration. Therefore, they are discussed individually. 

 

4.3.2.1. Manual calibration 

 

To manually calibrate a model, some aspect of the hydrological behaviour to which the 

model must be matched is to be selected. In this study daily soil moisture content values 

are selected. In manual calibration, a trial and error procedure of parameter adjustments 

is used. After each parameter adjustment is made, the simulated and observed output 

variables (e.g. hydrographs, piezometric data, soil moisture content, …) are visually 

compared to see if the match has improved. With training and a good deal of 
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experience, it is possible to obtain very good model calibrations using the manual 

approach [Madsen, 2003]. Though even for the experienced user, manual calibration 

can be a rather frustrating and time-consuming exercise. This is mainly because the 

logic by which parameters should be adjusted to improve the match is difficult to 

determine due to compensating effects that the model parameters generally have in the 

model output. The main weakness of manual calibration is that the absence of generally 

accepted objective measures of comparison makes it difficult to know when the process 

should be terminated, i.e. whether the best possible fit has been obtained. Different 

persons may also obtain very different parameter values because manual calibration 

involves a great deal of subjective judgment [Sorooshian and Gupta, 1995].  

 

4.3.2.2. Automatic calibration: inversed modelling 

 

The inverse problem is concerned with the estimation of variable model ‘parameters’ 

which do not have a physical significance or have a physical significance but are 

difficult to measure. The development of computer based methods for automatic 

calibration of hydrological models has been motivated by Sorooshian and Gupta 

(1995): 

 

• the need to speed up calibration. This is not always the case as most automatic 

calibration techniques are time-consuming because lots of model evaluations are 

generally needed. Though because it is automated, one is not obliged to a trial 

and error procedure, i.e. time becomes available while the computer does the 

job, 

• the fact that there are few model calibration experts available, and 

• the need to assign some measure of objectivity to the parameter estimates and 

model predictions. 

 

Early attempts to develop automatic calibration methods were reported by Dawdy and 

O’Donnell (1965), Nash and Sutcliffe (1970) and Ibbitt (1970) amongst others. These 

researchers set the stage by bringing the vast body of research on statistical regression 

and model fitting techniques to bear on the calibration problem. Since these beginnings, 

a great deal of progress has been made. In 1995, Sorooshian and Gupta (1995) stated 
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that automatic calibration methods had not yet matured to the point that they can 

entirely replace manual methods. Though, recent papers that compare manual and 

automatic procedures show that automatic calibration performs at a level of skill 

comparable to manual procedures [Gupta et al., 1999; Madsen et al., 2002; Madsen, 

2003]. Though, care should always be taken when interpreting the estimated effective 

parameters. Boyle et al. (2000) state that parameter estimates resulting from automatic 

calibrations can be unacceptable and present a hybrid approach that combines the 

strengths of both manual and automatic calibration. Inverse problems are likely to occur 

whenever mathematical models are used to explain or enhance observations 

[McLaughin and Townley, 1996]. Examples can be found in fields as diverse as 

astronomy, medicine, meteorology, quantum mechanics and hydrology.  

 

The automatic calibration scheme involves optimisation of numerical measures 

(objective functions) that compare observations of the state of the system with 

corresponding simulated values. In a multi-objective context, model calibration can, in 

general, be performed on the basis of [Madsen, 2003]: 

 

• Multi variable measurements, i.e. groundwater level, river runoff and water 

content in the unsaturated zone. 

• Multi site measurements, i.e. several measurements of the same variable 

distributed within the catchment. 

• Multi response modes, i.e. objective functions that measure various responses of 

the hydrological processes such as e.g. the general water balance, peak flows 

and low flows. 

 

When using multiple objectives, the calibration problem can be stated as follows:  

 

{ } PppFpFpF
pn ∈,)(),...(),(min 21        (4.11) 

 

where Fi(p), i = 1, 2 …np are the objective functions. The optimisation problem is 

constrained in the sense that p is restricted to the feasible parameter space P. These 

limits are chosen according to physical and mathematical constraints, information about 

physical characteristics of the system, and from modelling experiences. Most important 
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decisions to be made in an automatic calibration routine are the choice of the objective 

function(s) and the optimisation algorithm (cfr. 4.4).  

 

Objective function(s) 

 

Generally, the objective function is a measure for the difference between the model-

simulated and the observed hydrological state variable (e.g. soil moisture content, 

hydrograph, piezometric data, ..). Hence the purpose of an automatic calibration is 

therefore to find those values of the model parameters that optimise (minimise or 

maximise) the numerical value of the objective function. In general the choice of the 

objective function measure can be divided in two categories: least squares measures or 

maximum likelihood measures. Least squares measures only account for the difference 

between observed and measured data and in general squares and sums this difference in 

the calculation of the measure. Least squares measures cannot account for 

autocorrelation (non-independence) or changing variance in data errors as they 

implicitly assume that the joint probability of the errors over the available data record is 

Gaussian with mean zero and that the errors are independent of each other. If these 

assumptions do not hold, a maximum likelihood measure is necessary (only independent 

events required). For more details about both categories and different possible measures 

within each category, the reader is referred to Sorooshian and Gupta (1995).  

 

In Chapter 5, the Root Mean Squared Error, RMSE, is selected as goodness-of-fit 

measure. Since only soil moisture measurements are available, we are dealing with a 

single-objective optimisation. In Chapter 6, a penalty term is included in the objective 

function next to the goodness-of-fit measure. This term penalises deviations between 

model parameters and prior measured parameters. This is not the traditional way of 

incorporating prior information in an optimisation problem. The most common way is 

by setting the lower and upper bounds of the feasible parameter space to the minimum 

and the maximum of measured or estimated parameters. The feasible parameter space 

can also be defined as a hyperellipsoid by using the prior knowledge about the 

distribution of the different parameters and their correlation. New in this research is the 

incorporation of prior information directly in the objective function. In this way, some 

kind of multi-objective calibration problem is faced. Traditionally, the objectives are 
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either different variables, variables measured at different sites or different responses. In 

this study, the second objective is related to the prior parameter information. 

 

4.3.3. Choice of optimisation algorithm 

 

The surface described by the objective function in the parameter space is called the 

‘response’ surface. An optimisation algorithm is a logical procedure that is used to 

search the response surface, constrained to the allowable parameter ranges, to find the 

‘optimum’ (minimum or maximum) of the objective function value. In the following, a 

brief overview of the different optimisation strategies is elaborated and it is assumed 

that the objective function must be minimized. They have in common that they begin 

with an initial guess of the solution and then iteratively try to improve that guess 

according to their corresponding strategy scheme. In the following, they are categorised 

into ‘local’ and ‘global’ search methods.  

 

4.3.3.1. Local Search Methods 

 

Local search methods are designed to efficiently find the minimum of ‘unimodal’ 

functions. These are functions for which any strategy that seeks to continuously proceed 

downhill (improving function value) must eventually arrive at the location of the 

function, irrespective of where in the parameter space the search procedure is started. 

Therefore, a local search procedure involves thee main decisions: (i) which direction to 

move, (ii) how far to move in that direction, and (iii) how to decide that no further 

improvement is possible. The different local strategies differ in the methods by which 

these decisions are made and can be further classified as ‘direct search’ methods and 

‘gradient’ based methods.  

 

Direct search methods 

A direct search optimisation strategy uses only function value information in the 

decision process. Typically these methods start at an initial point and select some 

direction and step size and evaluate the function at the new point. Based on the 

differences in function values, a prediction is made of which is the best direction to 
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move to improve the function and how large a step should be taken in that direction. If 

the new point has a lower function value that the previous point, it replaces the old one 

and the procedure is repeated. If the new point turns out to be worse than the previous 

point, the step size is reduced and another try is made at a new location. The search 

stops when the strategy is unable to find a direction in which improvement is possible. 

According to Sorooshian and Gupta (1995) most popular methods used in the 

calibration of hydrological models have been the “Rosenbrock method” [Rosenbrock, 

1960], the Pattern Search method [Hooke and Jeeves, 1961], and the “Simplex method” 

[Nelder and Mead, 1965]. This latter is used in the global Shuffled Complex Evolution 

optimisation method used in this study, which is briefly explained in section 4.3.3.3.  

 

Gradient based methods 

The only difference with the direct search methods is that a gradient based search 

optimisation strategy uses information about both the function value and function 

gradient in the decision process. At the end point of the optimisation, the gradient value 

will be numerically very close to zero. Gradient-based techniques have been widely 

applied in groundwater modelling. These methods have the advantage that they are able 

to estimate the uncertainty of the parameters making some statistical assumptions. This 

is done through a quadratic approximation of the response surface in the region of the 

best parameter values. It is questionable whether the statistical assumptions are ever 

fulfilled, probably assumptions hold in the case of steady state groundwater modelling. 

Few gradient-based search strategies have been tested for their effectiveness and 

efficiency in calibrating hydrological models. The ones tested were found not to be 

effective for highly non-linear models such as conceptual Rainfall-Runoff models and 

the unsaturated zone model used throughout this research.  

 

4.3.3.2. Limitations of local search methods 

 

The reason that local search methods have not generally given satisfactory results is that 

in most practical problems involving calibration of non-linear hydrological models have 

response surfaces that are multi-modal, i.e. there are several locations of the parameter 

space where the value of the function is a ‘local’ minimum. In such cases, the points 

where a local search algorithm terminates will depend on the location where it is started. 
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Therefore, it is impossible to know with certainty if the procedure has located the actual 

global optimum of the function. Typically, several different starting points were tried, 

and each search attempt terminated in a different location. There local search 

optimisation strategies are inappropriate for calibration of hydrological models (except 

for groundwater modelling), instead strategies designed for “global” search of the 

parameter space must be employed.  

 

4.3.3.3. Global Search Methods 

 

These are designed to efficiently discover the minimum of multi-modal functions. Such 

strategies fall in three categories: deterministic, stochastic or a combination of both. 

Deterministic strategies require that certain criteria related to the continuity of the 

function and its derivatives be satisfied to guarantee convergence to the global solution. 

These conditions are usually not met in the case of calibration of non-linear 

hydrological models [Sorooshian dan Gupta, 1995].  

 

Random search methods 

Random (stochastic) search methods use random number generators to randomly 

sample the parameter space in search of points with improved function values. The 

samples are generated according to some probability distribution applied to the feasible 

parameter space. In ‘pure’ random search, the sampling is done using a uniform 

distribution. This assumes no prior knowledge of where in the feasible space the best 

parameter set exists. However, because pure random search does not make use of the 

function value obtained during optimisation to guide the search, it is not very efficient. 

Therefore, other random search methods have been developed. These methods 

adaptively adjust the probability distribution used for the sampling based on the 

function value information obtained during the search. One such strategy is the 

Adaptive Random Search (ARS) proposed by Masri et al. (1978) and modified by 

Pronzato et al. (1984). More details can be found in Sorooshian and Gupta (1995).  

 

Multi-start algorithms 

In these methods, several trials of local search (deterministic) optimisation methods 

from randomly selected starting points in the feasible parameter space are performed 
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[Johnston and Pilgrim, 1976]. In Duan et al. (1992) it was demonstrated that a multi-

start procedure based on the non-linear simplex method (Multi Start Simplex, MSX) 

worked well on a simple hydrological watershed model.  

 

Shuffled Complex algorithms: Shuffled Complex Evolution algorithm 

The Multi Start Simplex (MSX) strategy has certain desirable properties that enable it to 

overcome some of the difficulties encountered in the calibration of hydrological models. 

However, a source of inefficiency in the method is that each simplex search operates 

completely independently, with no sharing of information. The Shuffled Complex 

Evolution algorithm (SCE) [Duan et al., 1992] is based on the notion of sharing 

information and on the concepts (genetic algorithm) drawn from natural biological 

evolution [Wang, 1991]. The genetic algorithm is a search procedure based on the 

mechanics of natural selection and natural genetics, which combines an artificial 

survival of the fittest with genetic operators abstracted from nature [Holland, 1975; 

Wang, 1991]. The SCE strategy combines the strengths of the simplex procedure 

[Nelder and Mead, 1965] with the concepts of controlled random search [Price, 1987], 

competitive evolution [Holland, 1975] and the developed concept of complex shuffling 

by Duan et al. (1992).  

 

In this study, the Shuffled Complex Evolution (SCE) algorithm is adopted for the 

optimisation of the UZ soil parameters in the MIKE-SHE model [Madsen, 2002]. In the 

following, a description of the steps used in the SCE algorithm is given. For a detailed 

description of the SCE algorithm, the reader is referred to Duan et al. (1992).  

 

The SCE algorithm comprises 4 steps [Madsen, 2002]: 

 

(1) Initialisation: an initial sample of parameters sets is randomly generated from the 

feasible parameters space. For each parameter set, the objective function (F) is 

calculated. The initial sample has the size s = p× m where p is the number of complexes 

(= group of a number of parameter sets) and m is the number of points in each complex.  

(2) Partitioning into complexes: the s points are ranked in order of increasing objective 

function value (F1 ≤ F2≤ …≤ Fs). The s points are then partitioned into p complexes, 

such that points corresponding to function values ⎨F1, Fp+1, …, F(s-1)p+1⎬ form the first 
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complex, points corresponding to function value ⎨F2, Fp+2, …, F(s-1)p+2⎬ form the second 

complex, etc. 

 

An example taken from Duan et al. (1994) is presented in Fig. 4.3 and Fig. 4.4. Figure 

4.3a shows how a sample population containing s = 10 points is divided in p = 2 

complexes. Each complex contains m = 5 points which are marked by (•) and (*), 

respectively. The contour lines in Fig. 4.3 and Fig. 4.4 represent a function surface that 

has a global optimum located at (4,2) and a local optimum located at (1,2).  

 

(3) Evolution: A sub-complex of size q is formed from the complex by randomly 

choosing q points from the m points in the complex. A triangular probability distribution 

is used for assigning the probability of a point to be included in the sub-complex (i.e., 

larger probability for points with smaller objective function value). The sub-complex is 

evolved (offspring generation) according to the simplex algorithm [Nelder and Mead, 

1965] and β evolution steps are taken by each complex.  

 

In Fig. 4.4, the black dots (•) indicate the locations of the points in a complex before the 

evolution step is taken. A sub-complex containing q = 3 points (i.e., forms a triangle in 

this case) is selected according to the prespecified triangular probability distribution to 

initiate the evolution step. The symbol (*) represents the new points generated by the 

evolution steps. There are three types of evolution steps: reflection, contraction and 

mutation. Figures 4.4a, 4.4b and 4.4d illustrate the "reflection" step, which is 

implemented by reflecting the worst point in a sub-complex through the centroid of the 

other points. Since the reflected point has a lower criterion value than the worst point, 

the worst point is discarded and replaced by the new point. Thus an evolution step is 

completed. In Fig. 4.4c, the new point is generated by a "contraction" step (the new 

point lies half-way between the worst point and the centroid of the other points), after 

rejecting a reflection step for not improving the criterion value. 
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Figure 4.3 Illustration of the Shuffled Complex Evolution (SCE) Method with s = 10 points and p = 2 

complexes after Duan et al.( 1994) 

 

In Fig. 4.4e, a "mutation" step is taken by randomly selecting a point in the feasible 

parameter space to replace the worst point of the sub-complex. This is done after a 

reflection step is attempted, but results in a point outside of the feasible parameter 

space. Another scenario in which a mutation step is taken is when both the reflection 

step and the contraction step do not improve the criterion value. Figure 4.4f shows the 

final complex after β = 5 evolution steps.  

 

Figure 4.3b shows the locations of the points in the two independently evolved 

complexes at the end of the first cycle of evolution. It can be seen that one complex (*) 

is converging toward the local optimum, while the other (•) is converging toward the 

global optimum. 
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Figure 4.4 Illustration of the Evolution steps taken by each Complex after Duan et al. (1994) 
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(4) Complex shuffling: the new sample of s points is shuffled and new complexes are 

formed as specified in step (2). 

 

Figure 4.3c displays the new membership of the two evolved complexes after shuffling 

and Fig. 4.3d exhibits the two complexes at the end of the second cycle of evolution. It 

is clear that both complexes are converging to the global optimum at the end of the 

second cycle.  

 

Steps (2) – (4) are repeated until a stopping criterion is met. In general, three stopping 

criteria can be defined [Madsen and Kristensen, 2003]:  

 

• Maximum number of model evaluations, 

• Convergence in the objective function space. In this case the optimisation 

terminates if the objective function of the best parameter set has not changed 

more than a defined minimum value in a given number of shuffling loops, and 

• Convergence in parameter space. In this case the optimisation terminates if the 

range of parameter values of the entire population in the parameter space is less 

than a given value.  

 

The algorithmic parameters of the SCE algorithm to be specified by the user are 

presented in Table 4.1. The most important algorithmic parameter is the number of 

complexes p. Sensitivity tests have shown that the number of parameters compromised 

in the optimisation procedure, is the primary factor determining the proper choice of p. 

In general, the larger the value of p, the higher the probability of converging into the 

global optimum but at the expense of a larger number of model simulations. Kuczera 

(1997) suggested setting p equal to the number of parameters included in the 

optimisation to avoid premature convergence of the SCE algorithm. This may, however, 

require a large number of model evaluations, and hence imply an unacceptable 

computational burden. In practical applications, one should choose p to balance the 

trade-off between the robustness of the algorithm and the computing time [Madsen and 

Kristensen, 2003].  
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Table 4.1 Algorithmic parameters for the SCE algorithm (n = no. of calibration parameters) and 

recommended values given by Duan et al. (1994) and Kuczera (1997).  

Parameter Description Range Recommended 

   value 

p No. of complexes p ≥ 1 n 

m No. of points in each complex m ≥ 2 2n+1 

q No. of points in a sub-complex 2 ≤ q ≤ m n+1 

α No. of offsprings generated by each sub-  α ≥ 1 1 

 Complex   

β No. of evolution steps taken by each  β ≥ 1 2n+1 

 complex before shuffling   

pmin Minimum No. of complexes required as  1≤ pmin ≤ p p 

 the search proceeds   

 

In this study, the SCE algorithm is adopted for calibration of the MIKE-SHE integrated 

modelling system. p was set to 5 on the basis of preliminary optimisation runs having 

different number of complexes (2, 5, 8 and 13). This revealed that more than 5 

complexes did not result in different optimum solutions and more simulations were 

needed to reach the optimum. In the case of only 2 complexes, a local optimum was 

found which was only slightly worse than the global optimum. Other SCE control 

parameters were set to the ones recommended by Duan et al. (1992) and Kuczera 

(1997) as presented in Table 4.1. The stopping criteria for the optimisation routine were 

either (i) change of the best objective function less than 0.1% within 5 loops, or (ii) a 

maximum number of model evaluations of 2000.  

 

4.4. Problems of inverse modelling 

 

This paragraph discusses the main problems encountered with inverse modelling. They 

can be divided in three classes: (i) the observed calibration data, (ii) optimisation 

algorithms and (iii) the equifinality problem.  
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4.4.1. Observed Calibration data 

 

It is generally accepted that proper choice of the calibration data can do much to reduce 

the difficulties encountered during calibration of a hydrological model. The critical 

issues here are (i) how much data are necessary and sufficient for calibration and (ii) 

what kind of data will give the best results, i.e. the most precisely specified parameter 

estimates [Sooroshian and Gupta, 1995]. 

 

4.4.1.1. Quantity of data 

 

It has been common practice to use as much data as available for the calibration, after 

setting aside part of the data set for verification. Verification of the model is to test the 

performance of the calibrated model on a selected portion of the data that were not used 

for the calibration. This is often referred to as a ‘split sample’ test, i.e. part of the data 

record is used for calibration and the remaining part for verification. It is common for 

the calibrated model to fit the calibration data very well, but then be found not 

performing well on the validation data period. When such behaviour is observed, it may 

be necessary to critically examine the entire calibration procedure to determine if certain 

assumptions are appropriate or valid and if necessary to revise the procedure. 

 

4.4.1.2. Quality of data 

 

The quality of the data is dependent on the information contained in the data and the 

noise (errors) in the data. It is hoped that the information content is as large and the 

noise as small as possible. An informative data set is one that contains or represents 

enough variability in watershed behaviour that the different modes of operation of the 

hydrological processes are properly represented. For example, if the data selected are 

from a relatively dry year, certain runoff processes may not be activated. Therefore the 

model response will be insensitive to some of the model parameters that determine the 

partitioning of water between the various subsurface and overland flow components. In 

this research, observed daily moisture content for the year 2001 is incorporated in the 

inverse modelling. Hence, a winter and summer period are included suggesting that the 
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dataset has enough ‘hydrological variability’. Research into data requirements has led to 

the understanding that the informativeness of the data is equally important than the 

amount used for model calibration [e.g. Kuczera, 1982; Sooroshian et al., 1983; Gupta 

and Sorooshian, 1985; Yapo et al., 1996 and Gupta et al., 1998]. Though, when the 

model is used for predicting extremes, the amount of data used for calibration becomes 

important, as the occurrence of these events in the data has to be sufficient.  

 

The presence of measurement and logging errors causes the data quality to deteriorate, 

thereby resulting in less confidence in the parameters estimated. In this research data 

errors in the observed soil moisture content may originate from freezing, datalogger and 

computer failures and transfer of data problems. It is believed that the data errors on the 

soil moisture content do not contain biases and are in the order of ± 0.01 cm³/cm³. 

Biases are generally accepted in the case of precipitation data measurements that tend to 

underestimate the actual amount of rainfall. Before incorporating the observations in the 

optimisation algorithm, the observed data, were analysed for obvious measurement 

errors (numerical impossible values of soil moisture contents) and outliers were deleted. 

Chapter 7 briefly describes the quality of calibration data and its influence on the 

calibration process. In particular, the influence of the temporal resolution of rainfall data 

on (i) model fit and (ii) effective parameter estimations are investigated.  

 

4.4.2. Parameter identifiability 

 

In Duan et al. (1992), a detailed study was conducted on a simple six-parameter 

conceptual model (SIXPAR) using synthetic data to identify clearly the nature of the 

difficulties encountered in conceptual model calibration. The study found that, despite 

the simple model structure and the absence of model structural error or input data error, 

the parameter estimation problems are not trivial. Duan et al. (1992) summarized these 

problems as a list of five features (see Table 4.2). The primary conclusion of Duan et al. 

(1992) was that the optimisation techniques commonly used before are not powerful 

enough to deal with the response surface conditions encountered in model calibration. 

They were designed to solve single-optimum problems and were not able to deal 

effectively with all of the problems listed in Table 4.2. The SCE method presented was 

found to be both effective and efficient compared with other existing global methods, 
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including the ARS method and the multi-start Simplex method [Duan et al., 1992; 

Sorooshian et al., 1993]. A comparison of SCE and simulated annealing also shows the 

superiority of the SCE algorithm [Thyer et al., 1999]. Numerous case studies have 

demonstrated that the SCE algorithm is consistent, effective and efficient in location the 

optimal model parameters of a hydrological model [Duan et al., 1992, 1993; 

Sorooshian et al., 1993; Luce and Cundy, 1994; Gan and Biftu, 1996; Kuczera, 1997; 

Boyle et al., 2000] 

 

Table 4.2 Summary of the five major characteristics complicating the optimisation problem in conceptual 

Rainfall Runoff model calibration [Duan et al., 1992] 

1. Regions of attraction More than one main convergence region 

2. Minor local optima Many small ‘pits’ in each region 

3. Roughness Rough response surface with discontinuous derivatives 

4. Sensitivity Poor and varying sensitivity of response surface in region of 

optimum and non-linear parameter interaction 

5. Shape Non-convex response surface with long curved ridges 

 

While considerable attention has been given to the development of automatic calibration 

methods, much less attention has been given to a realistic assessment of parameter 

uncertainty in hydrological models. Estimates of hydrological model parameters are 

generally speaking subject to errors because the observed data contain measurement 

errors and because the model never perfectly represents the system or exactly fits the 

data. Although the SCE optimisation algorithm can reliably find the global minimum in 

parameter space, it remains difficult, if not impossible to find a unique best parameter 

set whose performance measure differs significantly from other feasible parameter sets. 

Such poor identifiability may result in considerable uncertainty in the model output and, 

makes it virtually impossible to relate these parameter values to easily measurable soil 

or land-surface characteristics [Vrught et al., 2002; Mertens et al., 2003]. Two 

approaches are currently dealing with this problem of unidentifiability of parameters. 

One approach is the concept of the ‘equifinality’ of parameter sets within the 

Generalized Likelihood Uncertainty Estimation (GLUE) first described by Beven and 

Binley (1992). This is different from the concept of Pareto-optimality, which refers to 

the multi objective equivalence of parameters sets [Gupta et al., 1998; Yapo et al., 
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1998; Madsen et al, 2003]. Concepts of both approaches are briefly described below 

and both strategies are applied in Chapter 6.  

 

4.4.2.1. Equifinality: GLUE approach 

 

Beven and Binley (1992) reject the idea of an optimum parameter set in favour of the 

idea of ‘equifinality’ of parameter sets (models). This equifinality arises due to effects 

of error and uncertainty in the modelling process, resulting from error in the model 

representation of hydrological processes and catchment characteristics and error in the 

boundary conditions of the simulation, which can never be known perfectly [Freer et 

al., 1996]. It also appears that the good simulations may be distributed across a wide 

range of parameter values, leading to the conclusion that it is the combined set of 

parameters that is important.  

 

The GLUE (Generalised Likelihood Uncertainty Estimation) methodology ranks the 

parameter sets according to some likelihood value. Some models can certainly be 

rejected as ‘non-behavioural’. One model will give the best result to some period of 

calibration data, but there will be many other that will be almost equally good. Many of 

these will be in very different parts of the parameter space. It is also very likely [Freer 

et al., 1996] that if a second period of data is considered, that the rankings of these 

possible models will change and the best model found for the first period will not 

necessarily be the best of the second. Calibration is hence no longer a search for the best 

parameter set, but targets the demarcation of parameters resulting in an acceptable 

description of the system to be modelled. Consequently, the acceptable or behavioural 

models result in a range of possible behaviours of model predictions. In the GLUE 

approach these are weighted according to their calculated likelihood’s from the 

calibration period and the weights used to formulate a cumulative distribution of 

predictions from which uncertainty quartiles can be calculated. GLUE requires 

considerable computing resources. Thousands of model realization are generally 

necessary to characterise the parameter space adequately, while the results of each 

retained simulation must be stored to calculate the uncertainty bounds. It has been 

applied to both fully distributed physically based models [Beven and Binley, 1992; 

Christiaens and Feyen, 2002] and other more conceptual models [Freer et al., 1996; 



Chapter 4 

 90 

Lamb et al., 1998; Beven and Freer, 2001; Bashford et al., 2002]. In general, the GLUE 

procedure has three requirements: (i) specification of a sampling range for each 

parameter considered, (ii) specification of a sampling methodology and (iii) a definition 

of a likelihood measure and the criteria for acceptance and rejection of models. This last 

requirement is a subjective choice and GLUE results in terms of the amount and identity 

of ‘behavioural’ parameters sets as well as the width of uncertainty bounds are very 

sensitivity to this choice [Freer et al., 1996].  

 

Another GLUE shortcoming is the fact that only parameter uncertainty is taken into 

account in the estimation of the uncertainty bounds. Uncertainty in the simulated time 

series is not only a result of parameter uncertainty but comprises also model structure 

uncertainty and input uncertainty (e.g. uncertainty in rainfall and evapotranspiration). It 

is shown that for conceptual rainfall runoff models, input uncertainty of rainfall can take 

up to 40 or 50 % of the total uncertainty on the model results [Willems, 2000]. Willems 

(2000) also found that for lumped conceptual rainfall-runoff models, the parameter 

uncertainty will be small in comparison with the model-structure uncertainty. It is 

expected that the reverse will be valid for a distributed physically-based rainfall-runoff 

model as used in this study: model-structure uncertainties will be much smaller than the 

parameter uncertainties. Parameter uncertainties will indeed largely increase as a result 

of the increasing number of parameters and the corresponding parameter identifiability 

problem. In Chapter 6, the GLUE procedure is applied with and without the 

incorporation of prior information in the sampling procedure. This made it possible to 

evaluate the relevance of prior measured information in the estimation of the amount 

and identity of the behavioural parameter sets as well as on the width of the uncertainty 

bounds.  

 

4.4.2.2. Pareto-optimality: Multi-Objective calibration 

 

Gupta et al. (1998) state that the GLUE approach has still weaknesses that need to be 

addressed (e.g. the selection of prior parameter distributions, the likelihood criterion and 

the cutoff thresholds). They state that such approaches represent a bold attempt to 

introduce some much-needed new thinking into a field that is in grave danger of 

becoming intellectually sterile. Only recently, an automated procedure for multi-
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objective calibration has been introduced by Gupta et al. (1998). The ideas presented in 

Gupta et al. (1998) have similarities and notable differences from the GLUE approach. 

The major difference is the focus on the inherent multi-objective nature of the model 

calibration problem. Application of automatic procedures has mainly been based on a 

single overall objective measure of comparison (e.g. Root Mean Squared Error between 

observed and simulated values). The use of a single measure is often inadequate to 

properly measure all the important characteristics of the system that are reflected in the 

observations which are used by the hydrologist to evaluate the quality of the calibrated 

model for the specific model application being considered [Madsen, 2000]. In a multi 

objective context, parameter combinations exist that are “equally good” due to trade-

offs between the different objectives. For instance, one may find a set of parameters that 

provide a very good simulation of high flows but a poor simulation of low flows and 

vice versa. Points having the smallest value of both objectives are unique called ‘Pareto’ 

optimal points and are said to be situated on the Pareto’ front. Moving along the Pareto 

front results in smaller values of one objective (better fit) but at the expense of the value 

of the second objective. The trade-off between both objectives is very informative: a 

significant trade-off between the two objectives means that a very good calibration of 

one objective provides a bad fit to the other objective and vice versa.  

 

It must be noted that this rationale for multi-objective equivalence of several parameter 

sets is different from the rationale of what Beven and Binley (1992) call ‘equifinality’ of 

parameter sets. The arguments used here are based on the multiple ways in which the 

best fit of a model to the data can be defined and not on the probabilistic representation 

of parameter uncertainty as in the GLUE methodology. Pareto-optimal parameter sets 

may overlap with the behavioural parameter sets defined in a GLUE procedure but will 

in general not be equivalent. It is important to emphasise the difference here. The GLUE 

concept assesses the parameter uncertainty from a statistical point of view, according to 

some likelihood measure which is in general based on a single aggregate objective 

measure. Multi-objective equivalence is related to the trade-off between the different 

objectives which are related to model structural problems, i.e. if the model was perfect 

one would find a unique optimum no matter which objective function was defined. As 

explained above, some kind of multi-objective calibration is performed in Chapter 6. 

One objective is the classical root RMSE while the second objective is the distance of 

the evaluated parameter set from the measured parameter distributions on the soil cores. 
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As shown in Chapter 6, a trade-off (Pareto front) between the goodness of fit to the 

observations and the coincidence with prior measured parameter distributions is 

encountered.  



Chapter 5 
 

Sensitivity of soil parameters in unsaturated zone 
modelling and the relation between effective, 
laboratory and in-situ estimates* 
 

ABSTRACT 

 

The soil moisture content at 27 locations and three different depths (at the surface, at 30 

and 60 cm depth) were measured on a 80 by 20 m plot on a hillslope during the year 

2001. Soil hydraulic functions were estimated in the laboratory on 100 cm³ undisturbed 

soil cores. These soil cores were collected at 115 locations situated in two horizons in 

three profile pits along the hillslope. In-situ field saturated hydraulic conductivity was 

estimated at 120 locations making use of single-ring pressure infiltrometer 

measurements. Sensitivity of the 6 parameters per horizon plus the depth (d) from the 

surface to the B-horizon or a total number 13 soil physical parameters (Saturated 

hydraulic conductivity (Ks), saturated moisture content (θs), residual moisture content 

(θr), inverse of the air-entry value (α), van Genuchten shape parameter (n), Averjanov 

shape parameter (N) for both horizons and depth (d) from surface to B-horizon) in a 

two-layer single column 1-D MIKE-SHE model based on Richards’ equation was 

investigated. A Monte Carlo based sensitivity analysis was compared with Morris’ One-

At-a-Time design sensitivity analysis. In both analyses, N of both horizons were found 

to be the least sensitive parameters, so 11 out of the 13 parameters were withheld and 

incorporated into an inverse optimisation using the Shuffled Complex Evolution 

algorithm. Ks of both horizons, θs of the A-horizon and d were found to be the most 

                                                 

* Adapted from Mertens, J., Madsen H., Kristensen M., Jacques, D., and J. Feyen, 2003. 

Sensitivity of soil parameters in unsaturated zone modelling and the relation between 

effective, laboratory and in-situ estimates. Submitted to Hydr. Proc. 
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sensitive parameters. At each location, 11 effective parameters were estimated. 

Distributions over all locations of these 11 effective parameters were compared with the 

estimated soil physical parameters from the undisturbed soil samples and the single-ring 

pressure infiltrometer estimates. All distributions were found to be significantly 

different at a 5 % level except for the inverse of the air-entry value of the A-horizon and 

the saturated hydraulic conductivity and saturated moisture content of the B-horizon. 

These differences are due to scale effects, problems with the measurement techniques, 

model errors and uncertainty in the observations.  

 

5.1. Introduction 

 

Soil moisture is of fundamental importance in hydrological processes. How much water 

infiltrates, is lost by evapotranspiration, and recharges the subsurface depends on the 

soil moisture content [Rodriguez-Iturbe, 2000, Bashford et al., 2002]. Given the 

importance of soil moisture to earth system processes, the quantification of its spatial 

and temporal behaviour is receiving increased attention from the hydrological scientific 

community (from the hill slope and small watershed scale to the global scale [Grayson 

et al., 1997; Famiglietti et al., 1998]). However, this task is not trivial since soil 

moisture exhibits a high degree of variability, in both time and space. This study 

investigates which parameters dominate the modelling of in-situ 1-D water flow and 

focuses on how to estimate them.  

 

Simulation of soil moisture content profiles requires ‘effective’ soil hydraulic 

parameters which yield the best fit with observations. As explained in de detail in 

Chapter 4, this is usually done through manual or automatic calibration (inverse 

modelling) of soil hydraulic parameters which are impossible or too difficult to measure 

in-situ or in the laboratory. Before calibration, it is useful to conduct a sensitivity 

analysis (SA) to determine which parameters the model response is sensitive to, and to 

which parameters the model response is not sensitive. Different SA techniques exist, 

each having their strengths and weaknesses. Local SA concentrates on the local impact 

of the parameters of the model and is usually carried out by computing partial 

derivatives of the output functions with respect to a given parameter set. Global SA 

apportions the output uncertainty to the uncertainty in the parameters, described 
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typically by probability functions that cover the parameters’ ranges of existence [Saltelli 

et al., 2000]. In this chapter, two different SA are carried out and compared. Both are 

global SA: the first one is based on a Monte-Carlo analysis (MC) [Spear and 

Hornberger, 1980], while the second one is a One-At-a-Time (OAT) design or 

screening method [Morris, 1991].  

 

Based on the SA, the most important parameters can subsequently be incorporated in 

the inverse optimisation or calibration process. Traditionally, calibration of hydrological 

models has been performed manually using a trial-an-error parameter adjustment 

procedure. The process of manual calibration, however, may be very tedious and time 

consuming, depending on the number of model parameters and their interaction. 

Furthermore, due to the subjectivity involved, it is difficult to explicitly assess the 

confidence of the model simulations. As presented in Chapter 4, a great deal of research 

has been directed to the development of more efficient and more objective automatic 

calibration procedures. A large number of studies have been conducted that compare 

different optimisation algorithms [e.g. Duan et al., 1992; Gan and Biftu, 1996; Cooper 

et al., 1997; Kuczera, 1997; Franchini et al., 1998, Thyer et al., 1999, Madsen et al., 

2002]. The main conclusion from these studies is that the global population-evolution 

based algorithms are more effective than multi-start local search procedures, which in 

turn perform better than pure local search methods. This study uses the SCE (Shuffled 

Complex Evolution) algorithm [Duan et al., 1992] explained in detail in chapter 4 

which is a population-evolution-based global optimisation method.  

 

In this chapter, the soil moisture content profiles measured on an experimental hillslope 

plot are used as observations. Using the MIKE-SHE hydrological modelling system 

[Refsgaard and Storm, 1995], numerical 1-D soil columns are set-up at each 

measurement location. The objectives of this chapter are: (i) to present two 

complementary sensitivity analyses for the evaluation of important soil hydraulic 

parameters for simulating water content profiles on a hillslope; (ii) to investigate the use 

of an efficient automatic calibration method for estimation of their ‘effective’ values; 

and (iii) to analyse the relation between ‘effective’ parameter values and parameter 

values estimated in the laboratory and in-situ. 
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5.2. Field Layout, observations and numerical modelling 

 

The site description, field layout and observations are presented in detail in Chapter 2. 

The spatially distributed physically based MIKE-SHE model [Refsgaard and Storm, 

1995] is briefly described in Chapter 4. The processes encountered in this chapter i.e. 

1D unsaturated zone flow and evapotranspiration are described in more detail in 

Chapter 4. The particular model set-up used in this chapter is explained below.  

 

For each of the 27 measurement locations where soil moisture and matrix head were 

measured, an UZ model was built up consisting of a single-column (1 m²). The lower 

boundary condition was considered to be a constant watertable at 6 m depth, i.e. a 

groundwater independent model. Based on the observations of the auger measurements, 

two soil layers (referred to as A and B hereafter) are incorporated. The entire soil 

column is discretised into 86 calculation nodes over the 6 m. Nodes are not evenly 

spaced, closer spacing was set near the surface (first 65 nodes spaced only 2 cm apart) 

and spacing increases with depth. As the depth (d) between the A- and B-horizon is also 

considered as a parameter, d should be an even number and can vary between 0 and 1 m 

as explained below. Rainfall and potential evapotranspiration measurements for the year 

2001 are given as daily time series.  

 

In this chapter, daily time series of the soil moisture content between 0 and 25 cm, 30 

and 55 cm and 60 and 85 cm depth at 27 locations are studied as output variables. The 

soil moisture output of the MIKE-SHE model over the TDR probe (25 cm) is 

considered to be the average of the output moisture content of all calculation nodes 

within the respective 25 cm. As the depth between A- and B-horizon (d) is allowed to 

vary between 0 and 1 meter, simulated soil moisture content at each of the three depths 

might refer to either the A- or B-horizon or a combination of both.  

 

5.3. Parameter sensitivity analysis 

 

The classical statistical approach for assessing parameter uncertainty is based on a 

multinormal approximation of the probability density function of the model parameters 
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around the estimated optimum. However, as shown by Duan et al. (1992) the 

multinormal approximation is often insufficient to describe the standard deviations and 

correlation structure of the estimated model parameters. Therefore, two sensitivity 

analyses are performed in this study, a sampling based (Monte Carlo) sensitivity 

analysis [Spear and Hornberger, 1980] and a screening method or a One-At-a-Time 

design [Morris, 1991].  

 

For each of the two soil layers A and B, the sensitivity of the MIKE-SHE model to 6 

UZ parameters is evaluated: Ks, θs, θr, α, n and N. The depth d [L] to the B-horizon is 

also considered in the analysis and hence the sensitivity of in total 13 parameters is 

evaluated. Upper and lower limits (taken as the 95 % confidence interval) of the 

recommended distributions by Meyer et al. (1997) of the Sandy Loam soil type (A-

horizon) and of the Silty Clay type (B-horizon) are calculated. In the SA as well as in 

the optimisation procedure described below, it was chosen to use the same upper and 

lower bounds for the A- and B-horizon parameters as the bounds have a very large 

overlap and no prior information was to be included. The minima and maxima from 

both soil types were chosen as respective lower and upper bounds for both horizons and 

are presented in Table 5.1.  

 

Table 5.1 Lower and upper bounds used in the sensitivity analysis and in the parameter optimisation  

Parameter Lower Bound Upper Bound 

Ks (m s-1) 7.1e-10 7.8e-5 

θs (-) 0.23 0.59 

θr(-) 0.0173 0.102 

α(m-1) 0.11 20.20 

n(-) 1.06 2.21 

N(-) 6 15 

d(m) 0.1 1 

 

For a particular parameter set, the soil moisture content at the three depths is extracted 

from the simulation results. Thereafter, Root Mean Squared Error (RMSE) and Standard 

Deviation (STD) is calculated against the observed moisture content for the year 2001: 
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where n = 365 is the number of days, θi,obs is the mean observed daily moisture content, 

θi,sim is the mean simulated daily moisture content, and resi = θi,obs -θi,sim. is the residual. 

The RMSE is a measure of the overall goodness-of-fit which can be divided into a bias 

term and a term that measures the goodness-of-fit of the dynamics (STD). Therefore in 

addition to RMSE, STD was also calculated for each parameter combination to evaluate 

which parameters have an important influence on the dynamics (STD) as well as on the 

overall fit (RMSE). 

 

5.3.1. Monte Carlo based sensitivity analysis 

 

The first method is based on Monte Carlo (MC) sampling where a number of parameter 

sets are randomly generated (uniform distribution) within their respective feasible 

regions and the corresponding model output evaluated [Spear and Hornberger, 1980; 

Madsen, 2000]. In this study, 20000 parameter sets are randomly generated and the 

corresponding model evaluated. The parameter sets are thereafter sorted with respect to 

the objective function value and two subsets are formed consisting of the best and worst 

parameters sets. The distributions of the two samples (X1 and X2) are compared using 

the two-sample Kolgomorov-Smirnov test. The test statistic (T) is given by: 

 

T = ( ))X()X(max 21 FF −          (5.3) 

 

where F(X1) and F(X2) are the sample cumulative distribution functions of X1 and X2, 

respectively. The larger the test statistic, the higher the probability that the two samples 

have different distributions. The test statistic can be associated with a particular 
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probability level (P) (significance level) for a proper assessment of the significance of 

the sensitivity of the parameter [Conover, 1980].  

 

5.3.2. Morris’s One-At-a-Time design  

 

The One-At-a-Time (OAT) design proposed by Morris (1991) can be called a global 

sensitivity experiment, because it covers the entire space over which the parameters 

vary [Saltelli et al., 2000]. The method estimates the main effect of a parameter by 

computing a number (r) of local sensitivities, at different points x1, x2 …xr in the 

parameter space and then takes their averages. This reduces the dependence on the 

specific point that a local experiment has. In addition, the variability of the local 

sensitivities provides a measure of the interaction between the parameters and the 

existence of non-linear effects. The r values are selected in such a way that each 

parameter is varied over its feasible interval. The method is particularly suited for use 

with expensive (in computer time/power) computational models or models which have a 

large number of parameters. The number of computer runs needed by this design is 

proportional to the number of parameters (k). The method is used to determine which 

parameters have (a) negligible effects, (b) linear and additive effects, or (c) non-linear 

or interaction effects. The design is composed of individual randomized Once-At-a-

Time designs, in which the impact of changing the value of each of the parameters is 

evaluated in turn. The key idea of the Morris design is the following: 

 

1. A ‘base’ value x* is randomly chosen for the vector x, each component xi being 

sampled from the set xlower,i + [0, 1/(aint -1), …, 1-∆]*[xupper,i - xlower,i] where aint is a 

chosen integer, ∆ = aint /[2 * (aint-1)], xlower,i is the lower limit of xi, and xupper,i is the 

upper limit of x,i. 

 

2. One of the k components (or parameters) is randomly selected (component i of x*) 

and  is increased or decreased by δi = ∆ * [ xupper,i - xlower,i]  such that a vector x(1) results 

that is still in the parameter space, 
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3. The estimated elementary effect (d(xi)) of the ith component of x(1) is: 

 

∆
−

=
*)()()(

)1(
)1( xyxyxdi  if x(1) has been increased by δi, or 

 

∆
−

=
)()()(

)1(*
)1( xyxyxdi if x(1) has been decreased by δi,    (5.4) 

 

where y is the output (in this case either RMSE or STD). 

 

4. Randomly choose a new component j different from i and form a new vector x(2) 

which differs from x(1) for component j with δj = ∆ * [xupper,j - xlower,j], i.e. either  

jjj xx δ−= )1()2(  or jjj xx δ+= )1()2( . The elementary effect of parameter j is then 

calculated from Eq. 5.4.  

 

Step 4 is repeated in such a way that a succession of k+1 (k = number of parameters) 

input vectors x*, x(1), x(2), …, x(k) is produced with two consecutive vectors differing in 

only one component. Furthermore, any component (i) of the base vector x* is selected 

exactly once to be changed by δi to estimate one elementary effect for each parameter. 

Steps 1-4 are repeated r times, each with a different randomly generated base vector. 

Hence the number of runs needed for the Morris sensitivity analysis is equal to r *  

(k+1).  

 

The mean (µ) and standard deviation (σ ) of the distribution of elementary effects for 

the ith input parameter provides information about the influence of the ith parameter on 

the output. A high mean indicates that the ith parameter has an overall influence on the 

output while a high standard deviation indicates either a parameter interacting with 

other parameters or parameters whose effect is non-linear. In this study, the Morris 

method was implemented in MATLAB and r was selected to be 14 and k + 1 = 14 (k = 

13 parameters considered in the sensitivity analysis), so in total 336 MIKE-SHE runs 

were needed. aint was chosen to be 4 which results in ∆ = 2/3. The choice of ∆ and r was 

based on the examples presented in Saltelli et al. (2000) and Morris (1991). 
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5.4. Automatic calibration procedure 

 

In this study, the Shuffled Complex Evolution (SCE) algorithm (Chapter 4) is adopted 

for the optimisation of the Unsaturated Zone (UZ) soil parameters in the MIKE-SHE 

model [Madsen, 2003]. The SCE control parameters used are presented in Chapter 4. At 

each location; the same upper and lower bounds as the ones used in the sensitivity 

analysis are set in the SCE algorithm (Table 5.1). Two out of 27 locations were not 

considered in the optimisation since the TDR probes at those locations broke down after 

some time. Preliminary optimisation runs were performed using different objective 

functions, e.g. total RMSE or STD (sum of the RMSE or STD for the 3 depths), and 

combinations of both. Effective parameter sets obtained using different objective 

functions differ but the overall goodness of fit was found to differ only slightly between 

different objective functions. Differences in the number of evaluations necessary to 

reach the optima were also very small for the different objective functions. Hence, total 

RMSE was used as objective function used for the optimisation. Preliminary 

optimisation runs were also performed to see whether putting more weight on the 

surface RMSE (because there are more dynamics at the surface) resulted in a better 

overall match. These test runs showed some improvement in the surface match of 

observed and simulated moisture content but introduced bias in the 30 and 60 cm 

observations, and hence it was decided to put equal weights on the three RMSE 

measures. The stopping criteria for the optimisation routine were either (i) change of the 

best objective function less than 0.1% within 5 loops, or (ii) a maximum number of 

model evaluations of 2000.  

 

5.5. RESULTS AND DISCUSSION 

 

5.5.1. Laboratory and in-situ parameter estimates 

 

The left part of Table 5.2 shows the mean, standard deviation, minimum and maximum 

of the UZ soil parameters as estimated from the lab and in-situ measurements (cfr. 

Table 2.1).  
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Table 5.2 Mean, standard deviation, minimum and maximum of the considered UZ soil parameters as 

measured in laboratory and Kfs as measured by the single-ring pressure infiltrometer in-situ compared with 

the optimised or ‘effective’ parameters obtained from the automatic calibration 

 Parameters from lab. and in-situ Kfs Optimised or effective parameters

Parameter Mean St. Dev. Min Max Mean St. Dev. Min Max 

Ks_A (ms-1) 9.74E-06 1.78E-05 4.56E-08 7.01E-05 9.24E-08 2.78E-07 7.10E-10 1.37E-06

θs_A (-) 0.40 0.02 0.35 0.45 0.36 0.03 0.32 0.43 

θr_A (-) 0.02 0.03 2.19E-07 0.11 0.07 0.02 0.04 0.10 

α_A (m-1) 1.95 1.19 0.29 5.77 2.60 2.06 0.11 8.35 

n_A(-) 1.30 0.10 1.15 1.62 1.20 0.14 1.06 1.56 

N_A(-) 12.59 3.32 6.68 21.58 - - - - 

Ks_B (ms-1) 1.57E-05 2.63E-05 4.37E-09 8.72E-05 1.26E-05 2.09E-05 8.94E-09 7.80E-05

θs_B (-) 0.39 0.03 0.33 0.45 0.41 0.08 0.31 0.56 

θr_B (-) 0.05 0.03 1.80E-04 0.13 0.09 0.04 4.24E-03 0.14 

α_A (m-1) 1.87 1.54 0.26 5.79 3.93 3.90 0.11 14.00 

n_B(-) 1.44 0.21 1.15 1.98 1.67 0.29 1.17 2.17 

N_ B(-) 9.97 3.71 4.87 21.84 - - - - 

Kfs (m s-1) 4.88E-06 4.87E-06 3.33E-07 2.53E-05 - - - - 

d 0.76 0.48 0.12 2.24 0.79 0.21 0.26 1 

 

When measuring soil physical properties on small-undisturbed soil samples, cracks near 

the borders of the ring or wormholes can affect parameter estimation and therefore 

outliers were deleted from the lab estimates. Outliers were defined as soil cores showing 

very large apparent conductivities indicating the presence of preferential pathways (i.e. 

cracks or worm or root holes) all the way through the soil core. In general, it shows that 

wide ranges were measured for all parameters. Comparing measured ranges with the 

ranges set in sensitivity analysis and the optimisation from literature [Meyer et al., 

1997] reveals that measured ranges are comparable to the ranges set in the optimisation 

(see Table 5.1 and 5.2). In most cases, the measured range is within the bound sets in 

the optimisation or if not, very close to the upper or lower limit.  
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5.5.2. Parameter sensitivity analysis 

 

5.5.2.1. Monte Carlo based sensitivity analysis 

 

The Monte Carlo analysis was performed for one of the locations (x = 10, y = 2). The 

Kolmogorov-Smirnov test was performed for 8 different cases i.e. comparing best (X1) 

and worst (X2) parameter sets for the surface RMSE and surface STD, 30 cm RMSE and 

30 cm STD, 60 cm RMSE and 60 cm STD and total RMSE and total STD. Different 

sample lengths of X1 and X2, varying between 50 and 1000 (50, 100, 250 and 1000) 

were analysed. Only minor differences were found between the Kolmogorov-Smirnov 

tests using different sample lengths. Hence, the sample length did not seem crucial in 

the decision whether or not the distributions are significantly different. The cumulative 

distributions of the 250 best and worst parameter sets when ranked according to the total 

RMSE for the A- and B-horizon are shown in Fig. 5.1a and 5.1b, respectively. A clear 

conclusion from these figures is that the distributions of the best and worst parameter 

sets for N coincide for both horizons. The Kolgomorov-Smirnov test shows indeed that 

the distribution of the best and worst parameter sets do not significantly differ for N at a 

5% significance level. For all other parameters, the test showed that the best and worst 

parameter distributions differ at least in one of the considered depths. All of this 

indicates that the model output is not ‘sensitive’ to the absolute value of N. However, 

care must be taken here when interpreting the results, theoretically speaking, we can 

only state that it is equally likely to get a good or bad simulation with a certain value for 

N when all other parameters are allowed to vary. Interpreting the results becomes more 

difficult when high correlations amongst parameters exist. In this study, correlations 

amongst the best parameter sets were found to be rather low, between 0 and 0.6, the 

same is true for correlations amongst the worst parameters sets.  

 

In Table 5.3, parameters are ranked according to their significance level (= probability 

that the two samples have the same distributions) with total RMSE and total STD as 

objective function. Differences in ranking are observed when parameter sets are ranked 

according to the overall RMSE or overall STD. Although, these differences are rather 

small and most and least sensitive parameters coincide for both analyses.  
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Figure 5.1 Cumulative distribution of the 250 'best' (-) and 'worst' (--) parameter sets for the Monte Carlo 

SA sorted according to total RMSE (a) parameters of the A-horizon and (b) parameters of the B-horizon 

and d = depth to B-horizon 

(a) 

(b) 
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Table 5.3 Comparison between the ranking of parameters according to their sensitivity level (high to low 

sensitivity) or significance level as a result of the Monte Carlo sensitivity analysis (MC) and the Morris 

design with both total RMSE or STD as objective functions (* T statistic not significant at a 5 % 

significance level) 

MC RMSE MC STD Morris RMSE Morris STD 

θs_A (-) θs_A (-) Ks_A (ms-1) Ks_A (ms-1) 

Ks_A (ms-1) α_A(m-1) θs_A (-) n_A(-) 

n_A(-) n_A(-) θr_A (-) α_A (m-1) 

θr_A(-) Ks_A (ms-1) α_A (m-1) θs_A (-) 

Ks_B (ms-1) θs_B (-) d(m) Ks_B (ms-1) 

n_B(-) Ks_B (ms-1) Ks_B (ms-1) α_B (m-1) 

d(m) d(m) θs_B (-) d(m) 

α_A (m-1) n_B(-) n_A(-) n_B(-) 

θr_B (-) θr_A (-) α_B (m-1) θs_B (-) 

α_B(m-1) α_B (m-1) N_A(-) θr_A (-) 

θs_B (-) θr_B (-) θr_B (-) N_A(-) 

N_A(-)* N_A(-) N_B(-) θr_B (-) 

N_B(-)* N_B(-)* n_B(-) N_B(-) 

 

Comparing significance levels in both analyses shows that the most sensitive parameters 

are: Ks, θs, and n of the A-horizon, Ks, and n of the B-horizon and depth (d) from the 

surface to the B-horizon. However, parameters become more sensitive when other 

objective functions than the total RMSE or STD are used, e.g. the surface, at a depth of 

30 or 60 cm RMSE/STD. In general, the B-horizon parameters are less sensitive when 

considering the surface RMSE/STD and the A-horizon parameters less sensitive when 

considering the 30 and 60 cm RMSE/STD. However, for the 30 and 60 cm RMSE/STD, 

surface parameters still seem to be quite sensitive as they control how much water 

infiltrates to the B-horizon.  

 

Since N of the A- and B-horizon are found to be insensitive parameters (with respect to 

all 8 objective functions considered) and are not correlated with any of the other 
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parameters, it can be concluded from this analysis that N should not be considered in the 

automatic calibration. 

 

5.5.2.2. Morris’s One-At-a-Time design  

 

Estimated means (µ) and standard deviations (σ) of the distribution of the elementary 

effect of each parameter against the total RMSE are shown in Fig. 5.2. Absolute values 

of µ (⏐µ⏐) are plotted in Fig. 5.2 making it easier to visualize overall sensitivity of the 

parameters. Plotting the distribution of the elementary effect of each parameter against 

the total RMSE yields comparable but not the same results as shown in Table 5.3. The 

sensitivity of parameters in the Morris method cannot be quantified, only a qualitative 

ranking of importance of parameters with respect to overall importance and interaction 

with other parameters or non-linear effects can be performed. Objective ranking can be 

performed against µ or σ yielding an idea about which parameters have the largest 

overall effect (µ) or which parameters have high interaction with other parameters and 

non-linear effects (σ).  

 

The ranking in Table 5.3 is based on a combination of both µ and σ and hence is rather 

subjective (from high to low sensitivity). As in the Monte Carlo SA, this sensitivity 

analysis shows that N of both horizons have a very small overall important influence on 

the output (small µ) and that neither seem to have important interactions with other 

parameters or significant non-linear effects (small σ). Other graphs which show the 

elementary effects against surface, 30 and 60 cm RMSE or STD all reveal that N of both 

horizons have small µ and σ, generally smaller than µ  and σ  of all other parameters. 

 

Differences exist between the exact position of parameter ranking with respect to RMSE 

or STD as objective function as shown in Table 5.3. However, in general both rankings 

give the same overall picture of parameter sensitivity. Most sensitive parameters are: Ks, 

θs, θr, and α of the A-horizon, Ks of the B-horizon and the depth d to the B-horizon 

since they have high overall importance on the output and/or important interactions with 

other parameters or significant non-linear effects.  
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In general, B-horizon parameters have smaller elementary effects on the surface 

RMSE/STD and A-horizon parameters smaller elementary effects on the lower 

RMSE/STD. However, as observed in the Monte Carlo SA, A-horizon parameters have 

relatively high elementary effects even when plotted against 30 or 60 cm RMSE/STD. 

Again from this sensitivity analysis, it can be concluded that N should not be included in 

the automatic calibration because its overall importance and interactions with other 

parameters or non-linear effects are negligible. 
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Figure 5.2 Estimated means ⏐µ⏐ and standard deviations (σ) of the distributions of elementary effects of 

all parameters against overall RMSE for the Morris SA 

 

5.5.2.3. Comparison of Sensitivity Analyses  

 

Exact ranking positions of importance of parameters between both sensitivity analyses 

differ but most and least sensitive parameters coincide as shown in Table 5.3. General 

conclusions and implications for the incorporation of parameters in the automatic 
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calibration are the same for both analyses. Hence it is decided that in the optimisation 

procedure presented below, N of A- and B-horizon are fixed to an initial value of 9. In 

both analyses the B-horizon parameters have smaller impact on the surface RMSE/STD 

and A-horizon parameters have smaller impact on lower RMSE/STD. However, the A-

horizon parameters have, in general, higher impact on the 30 and 60 cm RMSE than the 

B-horizons have on the surface RMSE. Overall importance of the A-horizon parameters 

with respect to total RMSE or STD compared to the B-horizon parameters is also 

obvious from both analyses. The reasons for this is that A-horizon parameters dominate 

how much water infiltrates (to the B-horizon) and that the observed moisture content 

near the surface is much more dynamic and hence total RMSE/STD is quite dominated 

by the surface RMSE/STD.  

 

The main advantage of the Morris method is the relatively low computational cost 

compared to the Monte Carlo SA. The Morris design requires a total number of runs 

that is a linear function of the number of examined parameters. Another advantage of 

the Morris method is that it gives a ‘qualitative’ idea about the individual interactions 

amongst parameters, i.e. parameters can be ranked according to their degree of 

interaction or non-linear effects, although this cannot be quantified. The Monte Carlo 

based technique requires much more computer time but has the advantage that 

sensitivity can be quantified. On the other hand, the Monte Carlo statistics are univariate 

statistics that do not properly account for parameter correlations. It is believed that both 

techniques are complementary and on the basis of both, sound conclusions concerning 

the parameter sensitivity can be drawn.  

 

As reported by Radwan (2002), the possibility exists that parameter ranking depends on 

the chosen range between which the parameters are allowed to vary. It is important that 

the parameter ranges are comparable amongst the parameters i.e. when wide parameter 

ranges are chosen for one parameter, one should try to estimate corresponding ranges 

for all other parameters in the SA. If for one parameter a large range while for the 

second parameter only a small range is chosen, it is obvious that the parameter having 

the large range will show most important (as long as the sensitivity is not that different 

for both parameters). This problem can be expected to be particularly important in the 

Morris design SA as ∆ (or the amount a parameter is increased or decreased) is a 
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function of the parameter range. It is believed that in our study, comparable ranges are 

chosen for each parameter as upper and lower limits are taken as the 95 % confidence 

interval of the recommended distributions by Meyer et al. (1997). 

 

5.5.3. Automatic calibration 

 

At most locations, the optimisation was stopped after 2000 simulations and in these 

cases the objective function was not improved in at least the last two loops. At some 

locations, optimisation stopped before because the objective function value had not 

changed in 5 loops. The mean, standard deviation, minimum and maximum of the 

optimised parameters are shown in Table 5.2.  

 

Comparing minima and maxima of optimised parameters (over the 25 locations) with 

the upper and lower bounds set [Meyer et al., 1997] in the optimisation, reveals that in 

very few locations the upper and lower bounds were ‘hit’ in the optimisation procedure. 

Mean of the optimised parameters is for all parameters well within the prior range. 

‘Effective’ or optimised parameter ranges are found to be much smaller than the prior 

ranges suggesting that the ‘effective’ parameter range over the field is quite well 

delineated within the prior bounds. Examples of observed and simulated soil moisture 

content at the three considered depths, after optimisation of the 11 parameters, are 

shown in Fig. 5.3. Figure 5.3a shows the best correspondence (smallest total RMSE) 

between simulated and observed soil moisture content (x = 10, y = 2) and Fig. 5.3b the 

worst (x = 5, y = 78). As explained in Chapter 2, gaps in the observed soil moisture 

measurements are due to power cuts, lightning (break down of the communication port 

of the computers) and frost periods (bad functioning of the TDR probes). The SCE 

algorithm succeeded in finding parameters for the MIKE-SHE model that simulate the 

soil moisture at the different depths at each location quite well. Water balance errors 

were also checked and found in all cases to be less than 1 %. Total optimisation time for 

each location equivalent to 2000 MIKE-SHE runs was about 25 hours on a 2 Ghz 

processor.  
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Figure 5.3 Observed and simulated soil moisture content at different depths for the year 2001 at (a) 

location with the best fit ( x = 10 and y = 2 and (b) location with the worst fit (x = 5 and y = 78)  

(a) 

(b) 
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5.5.4. Comparison between ‘effective’ and in-situ and 

laboratory estimates  

 

Figure 5.4 shows a comparison between the cumulative distributions of the ‘effective’ 

or optimised parameter sets, the parameters estimated in the laboratory and in-situ 

estimated Kfs [cfr. Chapter 3 and Mertens et al. (2002)]. A Kolgomorov-Smirnov test 

was applied and distributions compared. All distributions were found significantly 

different at the 5 % significance level except for α of the A-horizon and Ks and θs of the 

B-horizon. From this figure and the comparison presented also in Table 5.2, it is 

concluded that, in general, optimised or ‘effective’ parameters do not correspond to the 

ones estimated in the laboratory or in-situ.  

 

The effect of this significant difference between most measured and effective 

parameters on the soil water retention curve and the hydraulic conductivity curve of the 

A-horizon is shown in Fig. 5.5. 95 % confidence intervals of the measured soil water 

retention curves (Fig. 5.5a) and hydraulic conductivity curves (Fig 5.5b) in the 

laboratory are compared to the 95 % confidence intervals of the effective soil water 

retention curves (Fig. 5.5a) and hydraulic conductivity curves (Fig 5.5b). The effective 

soil water retention curves at low potentials are comparable to the measured ones but as 

the potential rises, they show more variability than the measured ones. 

 

Effective hydraulic conductivity curves are lower over the whole range of soil moisture 

content values. This was to be expected as shown in Fig. 5.4, where the effective Ks is 

significantly lower than the measured Ks of the A-horizon. Effective retention curves for 

the B-horizon show even more variability than the measured ones whereas the effective 

hydraulic conductivity curves are comparable to the measured ones. It is well known 

that even small differences in retention and hydraulic conductivity curves yield large 

variability in soil moisture content simulations [Durner, 1994]. 
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Figure 5.4 Cumulative distribution of the measured (-) and 'effective' (--) parameter sets sorted for the (a) 

A-horizon and (b) B-horizon. Cumulative distribution of field saturated hydraulic conductivity (Kfs) is also 

shown in (a) and (b) 
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Figure 5.5 95 % confidence intervals of the measured soil water retention curves (a) and hydraulic 

conductivity curves (b) in the laboratory compared to the 95 % confidence intervals of the effective soil water 

retention curves (a) and hydraulic conductivity curves (b)   
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Knowing that effective parameters differ from their measured equivalents, it was 

investigated how much poorer model fits are obtained when using the measured 

parameter values rather than their effective equivalents. First of all, 350 combinations of 

measured parameters on soil samples from the A-horizon with parameters measured on 

soil samples from the B-horizon were randomly selected. After simulation of all 350 

parameter combinations, 95 % confidence intervals (CI) on the simulated moisture 

content were calculated. For comparison, mean and 95 % confidence intervals (CI) of 

the observed moisture content over the 25 locations were calculated. 
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Figure 5.6  Mean observed moisture content over all 25 locations, 95% confidence interval of the observed 

moisture content over these 25 locations and 95 % confidence interval of simulated moisture content using 

parameters measured in the laboratory at the different depths 

 

In Fig. 5.6 the CI for all three depths are compared. The simulations show larger 

variability at all three depths than the observations. However, although the simulated CI 

are wider, they do not always include the measured CI, especially during the dry 

summer period. Again this indicates that the measured laboratory parameters are not 
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capable of simulating a reasonable fit to observed moisture content observations in the 

field. 

 

In general, different reasons can be thought of to explain these differences between 

‘effective’ and measured parameters. The first and probably most important is the 

‘scaling problem’. In the last two decades, a vast amount of literature about upscaling 

and downscaling studies emerged [e.g. Blöschl and Sivapalan, 1995; Finke et al., 1998; 

Heuvelink and Pebesma, 1999; Bierkens et al., 2000]. The reason that the problem of 

scale transfer exists is the heterogeneity of soil properties. If the modelled and observed 

parameters or variables were homogenous (in space and time), they would be scale 

invariant [Bierkens et al., 2000]. In this study, heterogeneity in space and time is present 

in all parameters used for the description of the soil moisture content. Heterogeneity of 

hydraulic conductivity in space and time is probably the most studied [e.g. Russo and 

Jury, 1987; Vauclin et. al., 1994; Russo et. al., 1997]. Hence, ideally, physical 

properties should be measured at the same scale as characterized by the processes 

described by the model. Scale differences in this study are obvious: laboratory 

measurements are carried out on undisturbed soil samples which have a volume of 100-

cm3, single ring pressure infiltrometer measurements on a surface of 25 cm². Parameters 

from both measurement techniques are compared to effective parameters estimated 

using a model domain with a surface of 1 m² and a depth 6 m.  

 

In this respect, studies that compare hydraulic conductivity values measured at different 

scales are important to mention [eg. Lauren et al., 1988 and Mallants et al., 1997a]. It is 

known that values of hydraulic conductivity measured in the laboratory on open-ended 

columns, decrease with increasing column size. Not only the value of the hydraulic 

conductivity decreases but also the Coefficient of Variation (CV) decreases with 

increasing column size. In Mallants et al., 1997a, it is shown average hydraulic 

conductivity decreases from 13.9 cm/h for measurements on 5 cm long and 5 cm 

diameter columns, to 5.28 for measurements on 20 cm long and 20 cm diameter 

columns to 0.49 cm/h for measurements on 100 cm long and 30 cm diameter columns. 

Coefficient of Variation decreases correspondingly from 619 % to 217% to 105%. In 

this research, it is observed that mean effective Ks of the A horizon, is 100 times smaller 

than the corresponding measured Ks on the 100 cm³ undisturbed soil samples (cfr. Table 

5.2). The reason for the increase in Ks values and variability with decreasing size is most 
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likely the presence of open-ended macropores (i.e. macropore from top till bottom 

through the soil column) in combination with a small sampling volume. The same is 

true for this study: effective parameters of the A horizon are estimated on 1 m² surfaces 

with variable depth and compared to parameters measured on 100-cm³ undisturbed soil 

samples. Hence, the ‘scaling issue’ is probably the dominating reason causing the big 

gap between effective and measured parameters.  

 

A second possible reason responsible for the large gap between effective and measured 

parameters may have to do with the different measurement techniques used in this 

study. Reynolds et al., 2000 and Herman et al., 2003 found that using different 

measurement techniques even at the same scale (or sample size) can yield different Ks 

estimates. These authors show that Ks estimated from tension-infiltrometer 

measurements, single-ring pressure infiltrometer measurements and laboratory 

measurements on undisturbed soil samples all at the same scale, may well be 

significantly different. There is not only uncertainty involved in the parameter values 

estimated using different techniques but also in the observed time series. In this study, 

time series of daily soil moisture content values, measured using the TDR system 

described in 2.3.3, are used in the inverse modeling exercise. Therefore, any uncertainty 

in the observed time series is propagated in the estimation of the effective parameters.  

 

A third possible reason for the big gap is the question whether the global optimum of 

the objective function has been reached by the autocalibration algorithm. In this study, 

the risk of missing the global optimum has been minimised by the use of a global 

optimisation method, i.e. the Shuffled Complex Evolution algorithm. Therefore, we 

have confidence that the SCE algorithm discovered the global optima for all locations.  

 

A last possible reason that can help explain differences between effective and measured 

parameters has to do with the uncertainty inherent to any kind of modeling exercise. 

This uncertainty can be further divided in three main categories of uncertainty: (a) 

parameter uncertainty, which is the main topic of this PhD research, (b) model structure 

uncertainty and (c) input uncertainty (e.g. uncertainty in rainfall and 

evapotranspiration). As already briefly discussed in Chapter 4, it is shown that for 

conceptual rainfall runoff models, input uncertainty of rainfall can take up to 40 or 50 % 

of the total uncertainty on the model results [Willems, 2000]. In this study, similar 
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rainfall data have been used as in the work of Willems (2000). Therefore, it can be 

expected that the order of magnitude of the rainfall-input uncertainty will be comparable 

when interested in runoff volumes or peak flows. In this study, daily soil moisture 

content values are simulated and as shown in Chapter 7, the temporal resolution of 

rainfall used for the simulation of daily soil moisture values is not important. Therefore, 

it is believed that in this study, input uncertainty of the rainfall will be much smaller 

than 40 or 50% of the total uncertainty.  

 

Willems (2000) also found that for lumped conceptual rainfall-runoff models, the 

parameter uncertainty will be small in comparison with the model-structure uncertainty. 

It is expected that the reverse will be valid for the physically-based MIKE SHE model 

used in this study: model-structure uncertainties will be much smaller than the 

parameter uncertainties. Parameter uncertainty increases with the increasing number of 

parameters generally needed by physically-based models because of the parameter 

identifiability problem. Two main possible model structure uncertainties for the MIKE 

SHE model setup in this study can be thought of: (a) hysteresis in the pressure head, 

water content and hydraulic conductivity relationships during wetting and drying cycles 

is not taken into account and (b) preferential flow is not incorporated. It is not easy to 

estimate the importance of both processes on our experimental hillslope. The possibility 

exists that decayed fruit tree roots (the site used to be a fruit tree orchard) have created 

macroporosity in the soil. Though, preferential flow only becomes important under 

saturated conditions or during heavy rains after a long dry period. These conditions are 

rarely encountered in natural circumstances i.e. no ponding nor surface runoff observed 

on the hillslope. Additionally also surface roughness and constrictions (e.g. partial 

filling of pores) will reduce flow rates in macropores under natural conditions [White, 

1985]. Therefore, it is believed that preferential flow is not dominating the infiltration 

process on the hillslope and can hence be excluded from the model structure. On top of 

that, no data is available from the field experiment to estimate parameters for both the 

hysteresis and the preferential flow process. Therefore, incorporating these processes in 

our model structure would have increased the parameter identifiability problem and 

corresponding parameter uncertainty even more.  

 

Under different physical (soil type, slope, etc.) and climatic conditions, by using other 

observation types (e.g. runoff, soil water heads), and by applying other numerical 
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models, it is possible that differences between measured and effective parameters are 

smaller or larger than observed in this study. Though, as argued above, we believe that a 

difference between measured and effective parameters is likely to exist in any 

hydrological model to a smaller or larger extent.  

 

5.6. Conclusions 

 

Measured soil moisture content for the year 2001 in 25 locations at three different 

depths on a hillslope were used as observations for the inverse optimisation of soil 

hydraulic parameters for the Richards’ equation. Prior Monte Carlo SA of the 1-D 

model revealed that soil moisture content is not sensitive to the Averjanov N parameter. 

A One-At-a-Time (OAT) SA (Morris’ design) showed comparable conclusions to the 

Monte Carlo SA and hence N, for both horizons, was excluded from the inverse 

optimisation. Both SA show that Ks and θs of the A-horizon, Ks of the B-horizon and the 

depth d between the A- and B-horizon are the most important parameters in this study. 

The main advantage of the Morris method is the relatively low computational cost 

compared to the Monte Carlo SA and its ability to generate a ‘qualitative’ idea about the 

individual parameter interactions (or non-linear effects). Both techniques are 

complementary and on the basis of both, sound conclusions concerning the parameter 

sensitivity can be drawn.  

 

The Shuffled Complex Evolution (SCE) algorithm was adopted for the optimisation of 

the UZ soil parameters in the MIKE-SHE model. The SCE algorithm succeeded in 

finding optimal parameter sets for the MIKE-SHE model which simulate the soil 

moisture time series at the different depths at each location quite well. Effective or 

optimised parameter sets are compared to their measured equivalents and all parameter 

distributions were found significantly different at the 5 % significance level except for α 

of the A-horizon and Ks and θs of the B-horizon. Knowing that effective parameters 

differ from their measured equivalents, it was investigated how much poorer model fits 

are obtained when using the measured parameter values rather than their effective 

equivalents. First of all, 350 combinations of measured parameters on soil samples from 

the A-horizon with parameters measured on soil samples from the B-horizon were 



Sensitivity and relation between effective and measured parameters 

 119 

randomly selected. After simulation of all 350 parameter combinations, 95 % 

confidence intervals (CI) on the simulated moisture content were calculated. For 

comparison, mean and 95 % confidence intervals (CI) of the observed moisture content 

over the 25 locations were calculated.  

 

Four different possible reasons were discussed that help explain the big gap between the 

effective parameters and the measured parameters: (a) probably most important reason 

is the ‘scaling problem’; (b) uncertainty in estimated parameters using different 

measurement techniques (even at the same scale) as well as uncertainty involved in the 

measurement of the observed time series; (c) has the global optimum of the objective 

function been reached by the autocalibration algorithm? and (d) uncertainty inherent to 

any kind of modelling exercise (parameter uncertainty, model structure uncertainty and 

input uncertainty). Under different physical and climatic conditions, by using other 

observation time series, and by applying other numerical models, differences between 

effective and estimated (measured) parameters may be smaller or larger than observed 

in this study. Though, we believe that a difference between measured and effective 

parameters is likely to exist in any kind of hydrological model.  

 

From this Chapter, one could question why measure parameters (in-situ or in 

laboratory) if they differ from the ‘effective’ parameters needed by our models? It could 

be argued that measuring parameters is useless and we better use the available computer 

power to autocalibrate the parameters within wide literature ranges. In the next chapter, 

an answer to this question is searched for and the usefulness of the estimated parameters 

as prior information in effective parameter estimation is investigated. Next to the SCE 

approach, the GLUE approach is also applied [Beven and Binley, 1992; Beven, 2001; 

Christiaens and Feyen, 2002] in which the algorithm is not looking for the ‘best’ 

parameter set but targets the demarcation of parameters resulting in an acceptable 

description of the system to be modelled. The relevance of including prior measured 

parameters in both (SCE and GLUE) parameter estimation strategies is investigated.  
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Chapter 6 
 

Including prior information in the estimation of 
effective soil parameters in unsaturated zone 
modelling* 
 

ABSTRACT 

 

The soil moisture content was measured at 25 locations along three transects and at 

three different depths (surface, 30 and 60 cm) on an 80 × 20 m hillslope for the year 

2001. Soil cores were collected in 84 locations situated in three profile pits along the 

hillslope. Moisture retention curve and hydraulic conductivity curve parameters were 

estimated after measurements in the laboratory on undisturbed soil cores. A joint 

probability distribution of these estimated parameters is here used as prior information 

combined with soil moisture measurements for the estimation of effective soil hydraulic 

parameters. A two-horizon single column 1-D MIKE-SHE model, based on the 

Richards’ (1931) equation, was set-up for 9 soil moisture measurement locations along 

the middle transect of the hillslope. At each of these 9 locations, the Shuffled Complex 

Evolution (SCE) algorithm was applied to estimate ‘effective’ model parameters using 

wide parameter ranges. Effective parameters from a SCE optimisation without prior 

information were found significantly different from the prior parameters. A SCE 

optimisation where prior information is incorporated produces a comparable (only 

slightly worse) goodness-of-fit to the SCE where no prior information is incorporated 

but the effective parameter estimates are much more realistic in terms of prior parameter 

estimates. A Generalized Likelihood Uncertainty Estimation procedure (GLUE) was 

                                                 

* Adapted from Mertens, J., H. Madsen, L. Feyen, D. Jacques, and J. Feyen, 2003. 

Including prior information and its relevance in the estimation of effective soil 

parameters in unsaturated zone modelling. Submitted to Journal of Hydrology 
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subsequently performed for the estimation of uncertainty bounds on the model output. 

GLUE with the incorporation of prior information resulted in more and more realistic 

(closer to prior estimates) behavioural parameter sets available for the estimation of the 

uncertainty bounds. On top of that, uncertainty bounds better comprised the 

observations. Incorporating prior information in GLUE reduces the amount of model 

evaluations needed for the same amount of behavioural parameter sets. It is concluded 

that prior information is useful information in both SCE and GLUE parameter 

estimation strategies.  

 

6.1. Introduction 

 

Manual or automatic calibration (inverse modelling) aims at finding a parameter set 

(‘effective’ parameter set) that yields the best fit with the observations with respect to 

some goodness-of-fit criteria. This chapter presents two methods of incorporating soil 

hydraulic parameter estimates based on the soil core measurements from the laboratory 

as prior information in the estimation of effective parameters needed by the model. The 

relevance of including the prior information in the calibration is investigated.  

 

As discussed in detail in Chapter 4, traditional methods of calibration of hydrological 

models have aimed at finding an optimal set of parameter values within some particular 

model structure. The limitations of the optimal parameter set concept have been 

discussed by Beven and Binley (1992) and Beven (1993; 2001), who suggest that there 

may be many parameter sets that are equally acceptable in simulating the system, and 

that these may often come from very different regions in the parameter space. On top of 

that, different acceptable model structures may exist. Within these model structures, 

again different parameters sets exist that are equally acceptable. Given the observations 

available, there may be no rigorous basis for differentiating between these parameter 

sets. Beven and Binley (1992) introduce the term ‘equifinality’ to address the problem of 

existence of different parameter sets that result in a comparable model output. The most 

important implication of the ‘equifinality’ problem is hence the non-uniqueness of the 

solution found by the inverse modelling or calibration process.  
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One response to equifinality has been to seek and develop more robust optimisation 

algorithms. A large number of studies have been conducted that compare different 

optimisation algorithms for calibration of hydrological models [e.g. Duan et al., 1992; 

Gan and Biftu, 1996; Cooper et al., 1997; Kuczera, 1997; Franchini et al., 1998; Thyer 

et al., 1999; Madsen et al., 2002]. The main conclusion from these studies is that the 

global population-evolution based algorithms are more effective than multi-start local 

search procedures, which in turn perform better than pure local search methods. This 

study uses the SCE (Shuffled Complex Evolution) algorithm [Duan et al., 1992], 

described in detail in Chapter 4.  

 

Another response to the equifinality problem is the GLUE (Generalized Likelihood 

Uncertainty Estimation) approach, discussed also briefly in Chapter 4. GLUE accepts 

that it may not be possible to distinguish between different parameter sets and aims at 

ranking the parameter sets based on some likelihood scale. In the GLUE approach it is 

believed that many parameter sets will be almost equally good. These parameter sets are 

classified as the so-called ‘behavioural’ parameter sets. Simulation results based on the 

‘behavioural’ parameter sets are weighted according to their respective calculated 

likelihood values to form a cumulative distribution of predictions from which 

uncertainty quantiles can be calculated. The likelihood values correspond to a goodness-

of-fit measure between the model output and the observations. Thousands of model 

realizations are generally necessary to characterize the parameter space adequately, 

while the results of each retained simulation must be stored to calculate the uncertainty 

bounds. GLUE hence requires considerable computing resources.  

 

In this chapter, the measured soil moisture content profiles are again used as observed 

data. Using the MIKE-SHE hydrological modelling system [Refsgaard and Storm, 

1995], numerical 1-D soil columns were set-up at 9 measurement locations along the 

middle hillslope transect (x = 10, cfr. Fig. 2.7). In the previous chapter, sensitivity 

analyses were carried out to identify the most important parameters that were 

subsequently incorporated in an inverse optimisation algorithm. At each location, a set 

of 11 ‘effective’ parameters that yielded the best fit with the local soil moisture content 

observation was computed. Distributions of these 11 ‘effective’ parameters over all 

locations were compared with the corresponding measured soil hydraulic parameters 

from undisturbed soil samples and in-situ single-ring pressure infiltrometer estimates. 
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Eight out of the 11 considered distributions of ‘effective’ and ‘measured’ parameters 

were found to be significantly different at a 5 % level and the study concluded that 

estimated parameters from soil cores or in-situ measurements does not correspond to the 

‘effective’ parameter values resulting from model calibration. The objectives of this 

chapter are based on the conclusion of Chapter 5 [Mertens et al, 2003a]: (i) develop 

methodologies for incorporating prior information in two different effective parameter 

estimation strategies: SCE and GLUE, and (ii) investigate the relevance of this prior 

information in the calibration of soil hydraulic parameters. 

 

6.2. Field layout, observations, numerical modelling and 

sensitivity analysis 

 

The site description, field layout, observations as well as the MIKE-SHE model 

[Refsgaard and Storm, 1995] are presented in detail in Chapter 2. The same particular 

model set-up and studied output variables as described in Chapter 5 are used in this 

Chapter. As described in Chapter 5, a Monte Carlo based sensitivity analysis [Spear and 

Hornberger, 1980; Madsen, 2000] and a Morris’s One-At-a-Time [Morris, 1991] 

design produced similar results and consequences for the incorporation of parameters in 

the SCE automatic calibration procedure. Ks, θs, θr, α and n of both horizons, and the 

depth d from the surface to the B-horizon were found to be important parameters, while 

model results were found to be insensitive to the value of N in the A- and B-horizon. 

Hence, the value of N in the A- and B-horizon was fixed to a value of 9.  

 

6.3. Parameter estimation strategies: SCE and GLUE 

 

Two methods for the incorporation of prior information in two different parameter 

estimation strategies (SCE and GLUE) are presented below. Both methods incorporate 

the same kind of prior information through the use of a joint probability distribution of 

the parameter estimates from the laboratory, marginal distributions as well as the 

measured correlation between them are incorporated. In the SCE algorithm, prior 

information is incorporated through the use of a penalty term in the objective function 

penalising deviations from the prior joint probability distribution. In the GLUE 
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algorithm, the measured joint probability distribution is used to generate the parameter 

sets evaluated.  

6.3.1. Prior joint probability distribution  

 

The first step in the development of a joint probability distribution [Carsel and Parrish, 

1988] for the soil hydraulic parameters was to obtain the set of best fitting distributions 

that would adequately approximate the estimated distributions of the individual 

parameters of the laboratory measurements. For each parameter, a mathematical 

transformation was sought that would produce a normally distributed variable. The 

transformations applied to each of the measured parameter distributions were: Y= X, Y 

= ln(X), Y = 1/X, Y = X2, Y =X0.5, Y = X0.33. Additionally, the Johnson transformations 

[Johnson and Kotz, 1970; Johnson, 1987; Carsel and Parrish, 1988] were also applied: 

Y = ln[(X- X1) /(X2-X)], Y = sinh-1[U], where U = (X- X1)/( X2- X1), ln denotes natural 

log, and X denotes an untransformed variable with limits of variation from X1 to X2 

(X1<X< X2). In this study, X corresponds to Ks_A ,  θs_A,  θr_A, α_A,  n_A, Ks_B, θs_B, 

θr_B, α_B, n_B, and d as estimated from the laboratory and in-situ augering. For each 

parameter, all transformations were tested for their normality using a single sample two-

sided Lilliefors hypothesis test of normality [Conover, 1980]. Let S(Y) be the empirical 

cumulative distribution function (c.d.f.) estimated from the transformed measured 

parameter distributions Y(X) and CDF be a normal c.d.f. with sample mean and standard 

deviation taken from Y(X). The Kolgomorov-Smirnov test statistic (T) is:  

 

T = max|S(Y) - CDF|                                                                                                    (6.1) 

 

The transformations resulting in the smallest T-statistic were selected for all parameters 

and are shown in Table 6.1. Normal probability plots were also made to visually check 

the normality of the transformations. All selected transformations resulted in an 

acceptance of the null hypothesis that Y(X) is normally distributed at a significance level 

of 0.05. After transformation, a normal distribution was fitted to the transformed 

distribution and the mean and variance were estimated (Table 6.1). Table 6.2 shows the 

correlations between the transformed parameters that were estimated from the 

undisturbed soil samples. Comparing the absolute values of correlations observed in this 
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study with values found in the literature reveals that they are similar [Meyer et al., 

1997; Mallants et al., 1996].  

 

The multivariate normal distribution is characterized in terms of marginal distribution 

means and variances and pair-wise covariances in the form of a covariance matrix. For 

more details about multivariate normal distributions, the reader is referred to Appendix 

A and the statistical handbook ‘Applied Multivariate Statistical Analysis’ by Johnson 

and Wichern, 1992. The p-dimensional normal density Np(µ, ∑) for the random vector Y 

= [y1, y 2, …, y p]’ can be written as: 

 

[ ]2/)()(exp
)2(

1)( 1
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µµ
π

−∑−−
∑

= − YYYf T
p

                                                     (6.2) 

 

where p is the number of variables and the elements of Y (- ∞ < yi < + ∞) are random 

variables with mean µ and variance-covariance matrix Σ ; Σ  denotes the determinant 

of the variance-covariance matrix Σ . 

 

Table 6.1 Mean and standard deviation of the considered soil hydraulic parameters as estimated from 

laboratory measurements, the transformation applied and the corresponding normal distribution N(µ,σ) 

after transformation 

 Estimated Transformation 
Parameter Mean St. Dev. Type Normal Distribution after 

Transformation 
Ks_A (ms-1) 9.74E-06 1.78E-05 Y = ln(X) N(-13.17, 2.03) 

θs_A (-) 0.4 0.02 Y= X N(0.40, 0.02) 
θr_A (-) 0.02 0.03 Y = X0.33 N(0.23,0.14) 

α_A (m-1) 1.95 1.19 Y = ln(X) N(0.49,0.61) 
n_A(-) 1.3 0.1 Y = 1/X N(0.77,0.05) 

Ks_B (ms-1) 1.57E-05 2.63E-05 Y = ln(X) N(-12.95, 2.94) 
θs_B (-) 0.39 0.03 Y= X N(0.39, 0.03) 
θr_B (-) 0.05 0.03 Y= X N(0.05, 0.03) 

α_B (m-1) 1.87 1.54 Y = ln(X) N(0.28,0.86) 
n_B(-) 1.44 0.21 Y = 1/X N(0.70,0.09) 

d(m) 0.76 0.48 Y = ln(X) N(-4.69,6.43) 
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It is assumed that A- and B-horizon parameters are independent and that d is 

independent of both the A- and B-horizon parameters. Random deviates from a 

correlated multivariate normal distribution are obtained by first generating a vector Z of 

independent standard normal deviates and then applying a linear transformation of the 

form: 

ZSY T+= µ                                                                                                                  (6.3) 

 

where µ represents the vector of means, Z is a vector of standard normal variables and S 

is the lower triangular (Choleski) decomposition of Σ , such that Σ  = STS. This joint 

probability distribution is considered as prior information in both the GLUE and the 

SCE algorithms.  

 

Table 6.2 Correlations between the transformed parameters (i.e. to normal distribution) estimated from the 

undisturbed soil samples 

 Ks_A (ms-1) θs_A (-) θr_A (-) α_A (m-1) n_A(-) 

Ks_A (ms-1) 1.00     

θs_A (-) 0.37 1.00    

θr_A (-) -0.41 -0.47 1.00   

α_A (m-1) 0.21 0.52 -0.49 1.00  

n_A(-) 0.26 0.05 -0.36 0.59 1.00 

 Ks_B (ms-1) θs_B (-) θr_B (-) α_B (m-1) n_B(-) 

Ks_B (ms-1) 1.00     

θs_B (-) 0.61 1.00    

θr_B (-) -0.19 -0.11 1.00   

α_B (m-1) 0.68 0.45 -0.46 1.00  

n_B(-) -0.29 0.10 -0.36 -0.03 1.00 

 

6.3.2. SCE optimisation algorithm  

 

For a detailed description of the SCE algorithm, the reader is referred to Chapter 4. The 

SCE algorithm was applied for 9 locations along the x = 10 transect (cfr. Fig. 2.7), with 
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and without the incorporation of the prior information. In addition, SCE optimisations 

were carried out using the mean daily-observed moisture content over all 25 locations in 

the calculation of the objective function. The stopping criteria for the SCE optimisation 

routine were either (i) improvement of the objective function less than 0.1% within 5 

loops, or (ii) a maximum number of model evaluations of 2000.  

 

In case no prior information is incorporated, the objective function (F1) is chosen to be 

equal to the total RMSE and the parameter optimisation bounds are taken from literature 

for a sandy loam [Meyer et al., 1997] for both A- and B-horizon parameters. As shown 

in Table 6.3, these parameter bounds from literature are very wide, and for almost all 

parameters much wider than the estimated lower and upper parameter values from the 

laboratory measurements (after deletion of outliers). For the d-parameter, the bounds are 

estimated from the in-situ measurements and are allowed to vary only between 0 and 1 

meter (most of measurements within this range, except for few outliers). The same 

parameter bounds are used when prior information is included. The prior information is 

incorporated by including a penalty term in the objective function: 

 

( ) ( )TPPF µµ −∑−= −1
2                      (6.4) 

 

where P is a vector containing the evaluated transformed parameters. This function 

penalises deviations from the average measured (transformed) parameters and weights 

this penalty by the measured transformed covariance matrix. The weighting using this 

covariance matrix relates the difference between the evaluated and the prior parameter 

to the variance of that parameter as well as the covariance (correlation) with other 

parameters.  

 

Since the objective function is now made up of two objectives (F1 and F2), we are 

dealing with a multi-objective calibration problem. In this case, objective F1 evaluates 

the goodness-of-fit of the model and the other objective F2 evaluates the deviations of 

the evaluated parameter set from the prior information. The result of a multi-objective 

calibration is not a single unique set of parameters but will consist of the so-called 

‘Pareto set’ of solutions [Gupta et al., 1998; Madsen, 2003]. In the simplest case of two 

objectives as is the case here, points on the Pareto front have the characteristic that no 
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other points have both a smaller value of F1 and a smaller value of F2. This Pareto front 

corresponds to the trade-offs between the different objectives, i.e. a point on the Pareto 

front having a better fit to the observations (lower RMSE) will have relative large 

deviations from the prior information.  

 

Table 6.3 Lower and upper bounds from literature [Meyer et al. 1997] and bounds estimated from 

laboratory measurements after deletion of outliers (* = estimated parameter value outside literature range) 

 Meyer et al. 1997 Laboratory estimates 

Parameter Lower 

bound 

Upper 

bound 

Lower 

bound (A)

Upper 

bound (A)

Lower 

bound (B) 

Upper 

bound (B) 

Ks (ms-1) 7.10E-10 7.80E-05 6.97E-08 5.85E-05 3.79E-08 0.0001465*

θs  (-) 0.23 0.59 0.3599 0.4315 0.3458 0.4375 

θr (-) 0.0173 0.102 0.0001132* 0.1034* 0.01041* 0.09482 

α (m-1) 0.11 20.2 0.597 4.445 0.3263 5.384 

d(m)     0.12 2.24 

 

The multi-objective calibration problem is solved by aggregation of the two objectives 

into one measure. To compensate for differences in magnitude between the RMSE term 

and the penalty term, the two objectives are transformed to a common distance scale 

[Madsen, 2003]. From the initial population in the SCE algorithm, the transformation 

functions are deducted. Both objective functions are first normalised and then 

transformed to having the same distance from the origin to the optimum of the initial 

sample. The transformation function is given by: 

 

i
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where Fi is the objective function of the i-th objective, σi is the standard deviation of the 

i-th objective function of the initial sample, and εi is a transformation constant given by: 
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The aggregated objective function is given by: 

 

)()1()( 2211 FgFgFagg ωω −+=                     (6.7) 

 

where ω is a weighting factor. If ω = 0.5 both objectives are given the same weight and 

the SCE optimisation provides a balanced optimum [Madsen, 2003]. In this study, the 

Pareto front is calculated by performing several individual SCE optimisations using 

different weights (0 ≤ ω ≤ 1).  

 

6.3.3. GLUE analysis  

 

The GLUE procedure basically has three requirements: a sampling range must be 

specified for each parameter considered, a sampling methodology for the parameter 

space must be developed, and a likelihood measure has to be defined such that a better 

model response results in a higher value for the likelihood measure. In this study, the 

GLUE methodology is performed using two different sampling strategies. The first 

strategy is a GLUE analysis without prior information that uses a Monte Carlo analysis 

with uniform random sampling using the lower and upper parameter bounds for a sandy 

loam soil type from literature. In the second strategy the GLUE analysis incorporates 

the laboratory measurements as prior information in the Monte Carlo analysis by 

sampling the parameter sets to be evaluated from their joint probability distribution. 

Hence, not only the marginal distributions of the measured parameters are incorporated, 

but also the correlation between the measured parameters is taken into account. In both 

GLUE analyses, the average of the daily-observed moisture content over all 25 

locations for each respective depth is used in the calculation of the objective function. 

To be consistent with the SCE analysis, the total RMSE is also taken as objective 

function in both GLUE analyses.  

 

As likelihood measure (L), the inverse of the Mean Squared Error (MSE) is chosen: 

 

2

11
RMSEMSE

L ==                                                                                                     (6.8) 
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Choosing the inverse of the MSE and not the inverse of the RMSE gives relatively more 

weight to the best parameter sets. The likelihood measure is assigned to the behavioural 

parameter sets with RMSE smaller than a certain defined cut-off value. The likelihoods 

are rescaled so their sum equals one, and these rescaled likelihoods are then multiplied 

with their corresponding daily-simulated water content to form a cumulative distribution 

of daily soil moisture contents from which uncertainty quantiles can be calculated. 

 

6.4. Results and Discussion 

 

6.4.1. Direct use of prior information  

 

As discussed in Chapter 5, effective parameters differ from their measured equivalents 

(cfr. Fig. 5.6). It was also investigated how much worse model fits are obtained when 

using the measured parameter values rather than their effective equivalents. Conclusion 

was that the measured laboratory parameters are not capable of simulating a reasonable 

fit to observed moisture content observations in the field and hence the measured 

laboratory parameters are useless as direct information in the model. The following 

paragraphs investigate how and whether it is relevant to incorporate this prior 

information in parameter estimation. 

 

6.4.2. Including prior information in the SCE optimisation 

algorithm  

 

The estimated Pareto front for the location x = 10, y = 2 is presented in Fig. 6.1. In the 

multi-objective framework as it is applied within this study, three ‘key’ points on the 

Pareto front can be easily deducted. The first point is the result of the SCE optimisation 

without prior information corresponding to using a weight of zero to the penalty term 

(or ω = 1) in the objective function Eq. 6.7. The second point or the balanced optimum 

is the result of the SCE optimisation with the incorporation of prior information and 

using equal weights (or ω  = 0.5) for both objective terms. The third point is the result 
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of a model run with the prior mean transformed parameters as input parameters. This 

model run results in a penalty function of zero. These three Pareto key points are 

indicated on Fig. 6.1 as triangles. The other points of the Pareto front are shown on Fig. 

6.1 as circles were the result of SCE optimisations using different weights for both 

objective functions. Four additional SCE optimisation were carried out with ω  = 0.2, 

0.33, 0.66, and 0.8. Hence, for the estimation of the Full Pareto front a total of 6 SCE 

optimisations or a 12000 model evaluations are performed. 
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Figure 6.1 Estimated Pareto front for the location x = 10, y = 2 indicating the trade-off between goodness-

of-fit to the observations (Total RMSE) and deviations from the prior measured parameters (Penalty 

Function) 
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The three key points are important because they determine the shape of the Pareto front. 

Therefore, they were calculated for all 9 locations along the transect and are shown in 

Fig. 6.2. It is the shape of the Pareto front that reveals the importance of the trade-off 

between the goodness-of-fit to the observations and the deviations from the prior 

information. The sharp Pareto front observed for all locations, indicates a significant 

trade-off between goodness-of-fit to the observations and deviations from the prior 

information. However, the sharp structure of the front reveals that including prior 

information provides only a minor decrease of the goodness-of-fit to the observations 

and an effective parameter set much closer to the prior parameters. 

 

 
 

Figure 6.2 Estimated Pareto key points for all 9 locations along the transect x = 10 

 

Figure 6.3 presents the cumulative distributions of the A-horizon parameters of the 9 

‘effective’ parameter sets (along the transect) obtained from the SCE optimisations with 

(balanced optimum) and without incorporating prior information and the cumulative 

distribution of the prior information. As was expected, incorporating prior information 

through the use of a penalty term is successful in narrowing the gap between effective 
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parameters and prior information (except for α_A). Effective distributions from a SCE 

with the incorporation of prior information show a much smaller parameter range or 

variance than effective parameters resulting from SCE without prior information. Same 

conclusions hold for the B-horizon parameters.  
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Figure 6.3 Cumulative distributions of the 9 ‘effective’ parameter sets (along the transect) obtained from the 

SCE optimizations with and without incorporating prior information and the cumulative distribution of the 

prior information for the A-horizon 

 

Figure 6.4 shows the simulated moisture content as a result from SCE with and without 

prior information and the measured moisture content at the location x = 10, y = 2 for the 

year 2001 at all depths. Although a slightly higher RMSE is calculated for the SCE 

optimisation with the prior information incorporated, differences in simulated moisture 

content as a result from SCE optimisation with and without prior information are small. 

Small differences in simulated moisture content are observed over all 9 locations.  

 

From this, it can be concluded that including prior information in the SCE algorithm is 

useful: effective parameter sets are obtained close to the measured prior information 
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which have a comparable goodness-of-fit to the observations than the effective 

parameter sets resulting from a SCE optimisation without prior information (very sharp 

Pareto front). These parameter sets are believed to be more realistic as they are the 

result of an inverse modelling that combines in-situ soil moisture content observations 

and measured parameters in the laboratory. 
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Figure 6.4 Simulated moisture content as a result from SCE with and without prior information and the 

measured moisture content at the location x = 10, y = 2 for the year 2001 at all depths 

 

6.4.3. Model validation 

 

As discussed in Chapter 4, it has been common practice to use as much data as available 

for the calibration, after setting aside part of the data set for verification. This is often 

referred to as a ‘split sample’ test. In this calibration, only soil moisture measurements 

of the year 2001 were used. Hence, the soil moisture measurements from 1 January till 

29 July 2002 are available for our verification or validation of the model. The model 

verification was only performed for the 9 locations along the middle transect (x = 10). 



Chapter 6 

 136 

Simulated moisture content using the effective parameters from the SCE with and 

without prior information is shown in Fig. 6.5 for both the calibration and the validation 

period at the location x = 10, y = 10. The same figures for each of the 9 locations along 

the x = 10 transect, are shown in Appendix B. Figure 6.6 shows the Pareto key points 

for all 9 locations for the calibration, validation and the total period (calibration + 

validation).  

 

 
 

Figure 6.5 Simulated moisture content at three different depths using the effective parameters from the SCE 

with and without prior information for both the calibration and the validation period at the location x = 

10, y = 10 

 

As shown in Fig. 6.6, differences between RMSE of the calibration and the validation 

period are very small. Therefore, it can be concluded that the model behaves well during 

the validation period (cfr. figures in Appendix B). As expected, RMSE values of the 

validation period are higher that the RMSE values obtained for the calibration period, 

though only slightly. The RMSE values of the total period are hence found in between 

the RMSE of the calibration and validation for all locations. This is true both for model 
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simulations using the effective parameters obtained with and without the prior 

information.  

 

 
 

Figure 6.6 Pareto key points for all 9 locations for the calibration, validation and the total period 

(calibration + validation).  

 

During the calibration period (Fig. 6.2), the effective parameters with the incorporation 

of the prior information resulted in slightly higher RMSE values than the model 

simulations using the effective parameters obtained without the incorporation of prior 

information. As shown in Fig. 6.6, the same is true for the validation period. Although 

slightly higher RMSE values are found using the effective parameters with the prior, the 

dynamics of the model simulations for most locations seem better (cfr. Appendix B). 

For example, the dynamics of the soil moisture content at all depths for the location x = 

10, y = 10 shown in Fig. 6.5 are represented better with the prior than without the prior 

information. In the case without the prior information, no dynamics at all are observed 

during the winter period. During winter, moisture content is fixed at field capacity and 

no dynamic variability is simulated. This is also reflected in Fig. 6.7 where simulated 
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versus observed moisture content is plotted for surface simulation at the location x = 10, 

y = 10. A straight line is observed at θsim = 0.34 for the case with the prior. The increase 

in dynamics is a result of the higher effective conductivities obtained when 

incorporating prior information in the objective function.  

 

 
 

Figure 6.7 Simulated versus observed moisture content for the surface simulation using both effective 

parameters obtained with and without prior information at x = 10, y = 10 

 

6.4.4. GLUE analysis 

 

In the Generalized Likelihood Uncertainty Estimation (GLUE) analysis, 20000 

parameter sets were generated. The parameter sets were ranked according to their 

objective function (total RMSE). The most difficult and important choice to be made in 

the GLUE approach is the ‘cut-off-value’. This is the value that separates the parameter 
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sets into’ behavioural’ and ‘non-behavioural’. As explained below, the choice of this 

value has a significant impact on the calculated uncertainty bounds. Although no rules 

exist for the choice of this value, it was chosen with respect to the goodness-of-fit of the 

‘worst’ behavioural parameter set. Simulated moisture content using the worst 

‘behavioural’ parameter set was plotted against the mean measured moisture content. 

On the basis of this graph, acceptable goodness-of-fit was decided on and resulted in a 

cut-off value of 0.05 (i.e. behavioural parameter set if total RMSE < 0.05). In 

interpreting results from a GLUE analysis, one should always be aware of the sampling 

issue: it is hard to find out whether the parameter space has been sampled sufficiently. 

 

Table 6.4 Minimum total RMSE and amount of behavioural parameter sets of the GLUE analysis with 

and without prior information; minimum total RMSE of an SCE optimisation without prior information 

and the balanced optimum RMSE value of the SCE with prior information (both against average moisture 

content) 

GLUE GLUE SCE SCE 

with prior without prior with prior without prior 
   (Bal.Opt.)  

Minimal total RMSE 0.039 0.041 0.047 0.038 

# Behavioural parameter sets 68 17 / / 

 

In Table 6.4, the total RMSE of the best parameter set of the GLUE with and without 

prior information are presented as well as the minimum total RMSE of an SCE 

optimisation without prior information and the balanced optimum RMSE value of the 

SCE with prior information (both against average moisture content). The total RMSE of 

the behavioural GLUE parameter sets (total RMSE < 0.05) is close to the total RMSE of 

the SCE optima. This may be an indication that the parameter space was sufficiently 

sampled by the GLUE analysis but it is no guarantee at all. Rather than to investigate if 

the parameter space has been sampled sufficiently, the study aims at comparing the 

results of the GLUE analyses with and without prior information for the same number 

of model evaluations. Table 6.4 shows that including prior information in the GLUE 

analysis increases the amount of behavioural parameter sets from 17 to 68 using the 

same cut-off value in both analyses. Minimum RMSE is also lower in the GLUE 

analysis with prior.  
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Cumulative distributions of the behavioural parameter sets from the GLUE with and 

without prior information and the cumulative distribution of the prior information for 

the A-horizon parameters are compared in Fig. 6.8. As expected, the behavioural 

parameter sets obtained as a result of a GLUE with prior information, are much closer to 

the measured prior information. The same is true for the B-horizon parameters.  
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Figure 6.8 Cumulative distributions of the behavioural parameter sets obtained in the GLUE analysis 

with and without incorporating prior information and the cumulative distribution of the prior information 

for the A-horizon 

 

Figure 6.9 shows the goodness-of-fit to the observations (Total RMSE) and deviations 

from the prior measured parameters (Penalty Function) of the behavioural parameter 

sets from the GLUE analysis with and without prior information. The Pareto key points 

and the balanced optimum of the SCE optimisations against mean observed moisture 

content are also shown in Fig. 6.9. As expected, it shows that the penalty calculated for 

the behavioural parameters in the GLUE analysis with prior information is smaller than 

without the prior information. The SCE balanced optimum has a lower penalty term and 

a slightly higher RMSE value than the behavioural parameter sets from both GLUE 

analyses. SCE without the penalty results succeeds in finding the best model fit.  
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Figure 6.9 Goodness-of-fit to the observations (Total RMSE) and deviations from the prior measured 

parameters (Penalty Function) of the behavioural parameter sets from the GLUE analysis with and 

without prior information for the average moisture content, Pareto key points and balanced optimum of the 

SCE optimisations against mean observed moisture content are also indicated 

 

In Fig. 6.10, the mean observed moisture content over all 25 locations and the 95 % 

uncertainty bounds (UB) of the GLUE with and without prior information are plotted. 

Important to remark is that these uncertainty bounds are very sensitivity to the choice of 

the cut-off value. Allowing more behavioural parameters, i.e. increasing the cut-off 

RMSE value, results in wider uncertainty bounds and vice versa. Also the choice of the 

likelihood measure has an influence on the width of these bounds but its effect in this 

case was found to be less pronounced than the choice of the cut-off value. Since it is our 

objective to investigate the relevance of incorporating prior information in the GLUE 
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analysis, the absolute widths of these UB are of less importance than the difference 

between the UB resulting from GLUE with and without prior information. Uncertainty 

bounds for the soil moisture content at the surface when no prior information is 

incorporated do not always include the mean observations during the first half of the 

year and for short periods at the end of the year. Including prior information widens the 

UB all over the year so that it includes the mean observed soil moisture content. On the 

other hand, including prior information narrows the UB for the soil moisture content at 

30 and 60 cm depth, although they still contain the mean moisture content over the year. 

Hence, incorporating prior information through the use of a joint probability distribution 

in a GLUE analysis is useful as it (i) increases the amount of behavioural parameter sets 

the UB are estimated from and (ii) the UB better comprise the observed data.  
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Figure 6.10 Mean observed moisture content over all 25 locations, 95% uncertainty bounds corresponding 

to a GLUE analyses with and without prior information at the different depths 

 

The prior joint probability density distribution incorporates the correlation between the 

parameters. To investigate the importance of correlation, a GLUE analysis was 
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performed in which the measured parameter distributions were incorporated but 

correlation between parameters was not taken into account. This analysis resulted in 25 

behavioural parameter sets and a minimum RMSE of 0.0424. The amount of 

behavioural parameter sets in this analysis is hence between the GLUE analysis with 

and without prior information (Table 6.4) while the minimum RMSE is slightly higher 

than the GLUE without prior information. The UB resulting from this GLUE analysis 

comprise the observed data in the beginning of the year 2001 only partly. Hence, 

correlations between the parameters seem to be valuable information when 

incorporating prior information into a GLUE analysis. As explained in chapter 4, only 

parameter uncertainty is taken into account in the estimation of the uncertainty bounds. 

In Willems (2000), it is found that input uncertainty of rainfall can take up to 40 or 50 % 

of the total uncertainty on the amount of runoff simulated using a conceptual rainfall-

runoff model. In Chapter 7, it is shown that the temporal resolution of rainfall used for 

the simulation of daily moisture content as done in this study, is not very important (cfr. 

7.4.5). Therefore, it is believed that in this study, input uncertainty of rainfall will be 

much smaller than 40 or 50 % of the total uncertainty on the daily moisture content 

simulations.  

 

It is shown that a GLUE analysis sampling from a prior joint probability distribution has 

two major advantages: (i) it increases the amount of behavioural parameter sets the 

uncertainty bounds are estimated from and (ii) the uncertainty bounds better comprise 

the observed data. Both advantages refer to the sampling issue. If more model 

evaluations were performed for the GLUE analysis without prior information, similar 

results would be obtained In this case, the interesting question is how many more model 

runs would be needed by the GLUE without prior information to provide similar 

results? This would give us an idea about the gain of using prior information. If 

computer time would be free, incorporating prior information in a GLUE analysis 

would not seem beneficial because a large number of model evaluations could be 

performed. Although computer time has become cheaper and cheaper over the years, a 

GLUE analysis is still very expensive with respect to computer time. Hence, 

incorporating prior information in a GLUE analysis is worthwhile as more behavioural 

parameter sets are achieved with the same number of model evaluations. On top of that, 

behavioural parameter sets are more realistic in terms of measured parameters.  
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6.5. Conclusions 

 

Measured soil moisture contents for the year 2001 at three different depths (surface, 30 

and 60 cm) on a hillslope were used as observations for the estimation of effective soil 

hydraulic parameters for the Richards’ (1931) equation. Prior parameter estimations 

available from laboratory measurements were used in the development of a joint 

probability distribution. The study presented the incorporation of this joint probability 

distribution as prior information in an SCE optimisation and a GLUE analysis.  

 

The SCE algorithm was adopted for the optimisation of the UZ soil parameters in the 

MIKE-SHE model. At 9 locations along the middle transect of the hillslope, the SCE 

algorithm was applied with and without the incorporation of prior information. 

Including prior information in the SCE algorithm was realized by including a penalty 

term as a second objective function that accounts for the deviation of an evaluated 

parameter set from the measured prior parameters. A very sharp Pareto front was found 

for all locations. This means that incorporating prior information in the SCE algorithm 

can be achieved by relaxing only slightly on the goodness-of-fit to the observations. 

Effective parameter sets resulting from the SCE with prior information, are more 

reliable with respect to the prior information and hence may be more physically feasible 

to the field conditions than effective parameter sets from a SCE optimisation without 

prior information. An SCE optimisation with the incorporation of prior information as 

outlined in this work, efficiently utilizes all relevant information from different 

measurements, i.e. soil moisture content observations and parameter measurements.  

 

The validation of the model was proven successful as differences between RMSE of the 

calibration and the validation period are very small. This is true both for model 

simulations using the effective parameters obtained with and without the prior 

information. Similar to the calibration period, the effective parameters with the 

incorporation of the prior information resulted in only slightly higher RMSE values than 

the model simulations using the effective parameters obtained without the incorporation 

of prior information. Although slightly higher RMSE values are found using the 

effective parameters with the prior, the dynamics of the soil moisture content at all 

depths are represented better with the prior than without the prior information. The 
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increase in dynamics is a result of the higher effective conductivities obtained when 

incorporating prior information in the objective function.  

 

A GLUE analysis using a uniform random sampling strategy across the specified 

parameter range from literature and a GLUE analysis using the joint probability 

distribution of the measured laboratory parameters were compared. Including prior 

information into a GLUE analysis was found to be useful because (i) more parameters 

sets are classified as behavioural and hence are available for the estimation of the 

uncertainty bounds and (ii) the uncertainty bounds comprise the observed data better. 

On top of that, behavioural parameter sets are more physically feasible as they are much 

closer to measured parameters. Both, the prior measured parameter distributions as well 

as the correlation amongst parameters were found to be useful and beneficial to include 

in the GLUE analysis. The main advantage of including prior information in a GLUE 

analysis is a question about sampling. If computer time was not an issue, a GLUE 

analysis without prior information would be able to give comparable results to a GLUE 

with prior information in terms of uncertainty bounds and model predictions. 

Incorporating prior information in a GLUE analysis can reduce the amount of model 

evaluations needed for the same amount of behavioural parameter sets.  

 

From the previous chapter, it could be questioned why measure parameters if they differ 

from the ‘effective’ parameters anyway? It showed that effective parameters differ from 

the measured ones when doing a ‘blind’ optimisation, i.e. an inverse modelling with 

wide literature parameter bounds. This Chapter reveals that although the measured 

parameters are different from the effective ones resulting from a ‘blind’ optimisation, 

they are still useful as prior information in both an SCE and GLUE analyses as 

explained above. 



Chapter 6 

  

 



Chapter 7 
 

The effect of the rainfall time scale on effective 
soil parameters* 
 

Abstract 

 

Hydrological modelling often implies the use of rainfall data. Its quality and resolution 

directly affect the accuracy of the simulation results. This Chapter illustrates how a 

simple approach of incorporating rainfall intensity information in daily rainfall records 

significantly improves the simulation of surface runoff. The procedure is developed 

using a frequency analysis on rainfall data of the Royal Meteorological Institute of 

Belgium, collected with a resolution of 10-minutes and for a consecutive period of 61 

years. The frequency analysis of the data allowed the incorporation of rainfall intensity 

information into daily rainfall records. A hillslope rainfall-runoff model was set-up and 

daily runoff simulated for the year 1988 using different temporal rainfall resolutions: 10 

minutes observed rainfall data, daily observed rainfall data and disaggregated daily 

rainfall data. The daily rainfall data were disaggregated to minute rainfall data using a 

procedure based on a frequency analysis. Hydraulic soil parameters were randomly 

selected and daily runoff was simulated using the 10-minute observed rainfall data (= 

reference runoff). The use of daily rainfall data resulted in an annual runoff close to zero 

because the rainfall is spread out uniformly over 24 hours. Cumulative daily runoff 

using disaggregated rainfall data closely follows the reference runoff throughout the 

year. A Morris sensitivity analysis showed that the generation of runoff on a hillslope is 

highly sensitive to the value of the saturated hydraulic conductivity (Ks). Effective Ks 

was estimated using the Shuffled Complex Evolution optimisation algorithm with as 

                                                 

*Adapted from Mertens, J., Raes, D., Feyen, J., 2002. Incorporating rainfall intensity 
into daily rainfall records for simulating runoff and infiltration into soil profiles. 
Hydrological Processes, 16, 731-739 
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objective the closest possible fit to the reference runoff. Effective Ks using daily rainfall 

is only 2/3 of the Ks used for the generation of the reference runoff while effective Ks 

using disaggregated rainfall coincides with the reference Ks. The disaggregation 

procedure results in higher model efficiencies and more realistic effective parameters 

than the case where daily rainfall records are used. 

 

7.1. Introduction 

 

In the previous Chapters, research was focused on the estimation of effective soil 

hydraulic parameters and its effect on model results. No attention was given to the 

importance of the quality of the climatological input data (in our case: rain and potential 

evapotranspiration series). These input data determine the accuracy with which 

processes can be simulated. A large number of studies have been carried out to quantify 

the difference in simulation results by using different potential evapotranspiration 

calculation methods [Choisnel et al., 1992; Xu and Singh, 1998; Beyazgül et al., 2000; 

Xu and Singh, 2000; Kite and Droogers, 2000; Xu and Singh, 2001]. From all these 

studies it can be concluded that large differences exist between the different potential 

evapotranspiration estimation strategies. Since the evapotranspiration process plays a 

dominant role in infiltration and runoff, the choice of the potential evapotranspiration 

strategy is likely to have a significant effect on model simulation results. Very little 

research has been carried out trying to estimate the effect of different potential 

evapotranspiration methods on effective model parameters [Vazquez and Feyen, 2003]. 

In this study, only daily minimum and maximum temperatures were measured and used 

to estimate potential evapotranspiration [Allen et al., 1998]. It is hence impossible to 

investigate the effect of different potential evapotranspiration estimation strategies since 

they generally require more data as wind speed, sunshine duration, humidity, etc. 

Therefore this study is limited to the effect of the temporal resolution of rainfall records 

on model simulations and effective parameters. 

 

In this respect, models that disaggregate input rainfall data into a sequence of individual 

storms of a finer time scale are very useful [Gyasi-Agyei, 1999]. Former research on this 

subject [Richardson and Wright, 1984; Hersenhorn and Woolhiser, 1987; Econopouly, 

1987; Kihupi, 1990; de Lima and Grasman, 1999; Gyasi-Agyei, 1999] has in common 
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that sophisticated statistical techniques are used in the disaggregation procedure. Since 

these authors are interested in the characterisation of hydrological processes on a small 

temporal scale, the outlined procedures aim at disaggregating rainfall into storms that 

resemble the natural rainfall as closely as possible. This Chapter presents a simple 

procedure that is useful for simulating the effect of rainfall upon related hydrological 

processes over long time periods when only rainfall data on a daily basis are available 

and when a precise reconstruction of rain events is not required. Such processes could 

be the leaching of soil-applied pesticides into groundwater over several years or the 

prediction of the monthly or yearly volume of surface runoff in a catchment.  

 

When using daily rainfall records as input in a soil water flow model, no information on 

rainfall intensity is available. A hydrological model based on the Richards equation (i.e. 

physically based) will be unable to simulate surface runoff in a correct way because it 

will distribute the rainfall amount over the 24 hours of the day. When 10-minute rainfall 

data are provided as input, precise information on rainfall intensity becomes available 

and surface runoff can be estimated in a robust way. In the previous Chapters, daily 

rainfall was used for the simulation of daily soil moisture content. At the end of this 

Chapter, it is shown that the effect of the temporal resolution of rainfall on daily soil 

moisture content values is minimal. This is contradictory to its crucial importance in the 

simulation of surface runoff [Mertens et al., 2002].  

 

In cases where only daily rainfall is available, methods for predicting runoff such as the 

Soil Conservation Service (SCS) runoff curve-number approach [USDA, 1985] are often 

used. Although the SCS runoff equation can properly produce the direct runoff to the 

streamflow [Steenhuis et al., 1995], the approach will not always give satisfactory 

results because infiltration and surface runoff are processes that are very sensitive to 

rainfall intensity. Since rainfall intensity is not included in the SCS runoff curve-number 

approach the daily input data can hide some important features of the rainfall that can 

only be revealed when using more detailed data [Vanderborght et al., 2000]. Mertens et 

al. (2002) show that disaggregating the daily rainfall as proposed in this study is 

preferable to the SCS runoff curve-number method when rainfall characteristics are 

known for the area or can be quickly obtained from a measuring campaign. The 

procedure presented in this Chapter shows how additional information concerning 

rainfall intensity can be integrated in the daily rainfall records. Since temporal 
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resolution of rainfall has a large impact on the simulation of runoff, it can be expected 

that effective parameters, as a result from an optimisation against runoff, will be 

different and function of the temporal resolution of the used rainfall data.  

 

The objectives of this Chapter can be summarised as: (i) to study the importance of the 

temporal resolution of rainfall on simulated daily runoff using a physically based model; 

(ii) to develop and test a procedure for incorporating rainfall intensity into daily rainfall 

records with as objective a more robust simulation of the cumulative daily runoff over a 

year and (iii) to investigate the effect of the temporal resolution of rainfall records on 

effective model parameters. 

 

7.2. Analysis of rainfall intensity 

 

In this analysis, a precipitation dataset was used that was collected in the climatological 

park of the Royal Meteorological Institute (RMI) in Uccle (50°47’ N, 04°21’E, 100 m 

above sea level) near Brussels (Belgium). The precipitation was recorded by a 

Hellmann-Fuess recorder at a 10-minutes time interval, starting from May 1898 till 

present [Demarée et al., 1998]. The resolution of the rainfall data is 0.1 mm. Hence a 

very large and complete precipitation data set is available at the RMI. In this research, 

the 10-minute interval precipitation data between 1934 and 1994 were analysed.  

 

The mean annual rainfall observed over those 61 years is 801 mm. Total rainfall 

volumes are almost equally distributed throughout the year without any significant 

difference between the rainfall in any of the months. From the 61 years, i.e. 61 * 365.25 

(days) * 24 (hours) * 6 (10-minutes) = 3,208,356 observations, about 94% of all 

measurements were zeros [Demarée et al., 1998]. The non-zero measurements were 

divided into three intensity classes of 10-minute rainfall data: between 0.1 and 1 mm, 

between 1.1 and 2 mm and larger than 2.1 mm of rain per 10-minutes. The frequency of 

occurrence of rainfall in each intensity class was calculated for each month.  
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Figure 7.1 The percentage of monthly rainfall in different intensity classes (grey, between 0.1 and 1 

mm/10min; black, between 1.1 and 2 mm/10 min and white, larger than 2.1 mm/10 min)  

 

The percentage of monthly rainfall that falls in each intensity class is presented in Fig. 

7.1. Although total monthly rainfall amounts were found to be the same throughout the 

year, it is observed that the rainfall intensities in summer (June – August) are higher 

than in winter (November – February). In January only 1.6 % of the monthly 

precipitation falls in showers with intensities larger than 2.1 mm per 10-minutes while 

in July 24 % of the monthly precipitation falls on average with such intensity. For the 

61 years of observations, it was calculated in how may storms rainfall came down 

during a rainy day. Table 7.1 shows the average number of storms per rainy day for 

each month. The end of a storm is defined as a rainfall amount of zero mm during a 

period of ten minutes. The number of storms on a rainy day in August is only half of the 

amount of storms on a rainy day in January. Although total amount of monthly rainfall 
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is similar all over the year, it is clear that in summer rain falls in fewer storms with 

higher intensities.  

 

Table 7.1 Average number of storms per rainy day for each month 

Month Number of storms

January 6 

February, March, April 5 

May, June, July 4 

August 3 

September 4 

October 5 

November, December 6 

 

 
 

Figure 7.2 Mean rainfall amount for each of the three considered intensity classes (grey, between 0.1 and 1 

mm/10min; black, between 1.1 and 2 mm/10 min and white, larger than 2.1 mm/10 min) 
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The mean monthly rainfall intensities for each intensity class are plotted in Fig. 7.2. 

There is no clear difference over the year between the average values for the lower and 

middle intensity classes. Mean monthly rainfall intensity of the highest class is only 

about 3 mm/10 min in the winter months but 3.5 to 4.2 mm/10 min in the summer 

months. Hence, not only a higher percentage of the summer rainfall is found in the 

highest intensity class but also the mean intensity is higher in summer. The cumulative 

distribution of the rainfall intensity within each of the three intensity classes is presented 

in Fig. 7.3.  

 

 
 

Figure 7.3 Cumulative distribution of the rainfall intensity (mm/10min) within each of the three intensity 

classes 

 

Figure 7.3 shows that the distribution within the lowest intensity class (between 0.1 and 

1 mm/10min) is not even close to a normal distribution. More than half of the rainfall 

(53%) in this class fell with an intensity of 0.1 mm/10 min (= median) though the mean 

of the rainfall intensity within this class is 0.3 mm/10 min (cfr. Fig. 7.2). For the two 

higher intensity classes, differences between mean and median of the distributions are 
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small. Figures 7.1, 7.2 and 7.3 form the basis for the procedure described below. They 

are based on the analysis of 61 years of 10-minute rainfall observations. It is obvious 

that such a long and complete data set is often not available. Therefore, a sampling 

exercise was carried out to investigate the effect of a shorter observation period (2 and 5 

years randomly selected from the 61 years) on the monthly percentage of rainfall within 

each intensity class. 

 

 
 

Figure 7.4 The percentage of monthly rainfall that falls in the different intensity classes (grey, between 0.1 

and 1 mm/10min; black, between 1.1 and 2 mm/10 min and white, larger than 2.1 mm/10 min) when 

only (a) a 2-year period (1990-1991) and (b) a 5-year period (1990-1994) out of the 61 years 

observations was analysed 

 

Figure 7.4 presents the distribution of rainfall intensities over the three classes when 

only 2 (a) or 5 years (b) were randomly selected from the 61 years of rainfall and used 

in the analysis. Comparing Fig 7.1 and 7.4 indicates that relatively short measuring 

campaigns already reveal the general trend of the difference in rainfall intensities 

between the summer and winter months. Table 7.2 shows the correlation between the 

frequency distributions for each intensity interval between 2, 5 and 61 years of 

observation. High correlations are observed (> 90%) between each of the observed 

years and each intensity interval, except for the correlation between the 2 and 61 years 

period for the intensity class between 1 and 2 mm/10 min. The variances in each 

intensity interval are comparable over the years and no clear trend of decreasing 
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variances with increasing observation period can be noticed. Calculating the Coefficient 

of Determination (CD) between the 61-observation period values and the 2 and 5 years 

observation values results in CD values of 0.98 to 0.99.  

 

Table 7.2 Correlation between rainfall intensity distributions for the three considered classes (0-

1mm/10min, 1-2 mm/10min and > 2mm/10min) for rainfall data from 2 years(1990-1991), 5 years 

(1990-1994) and 61 years of observation. Variance over the months for each year and intensity class is 

also shown 

Years of observation 

Rainfall 

intensity 

distributions 

Years  

of  

observation 2 years 5 years 61 years

Between 0 and 1 mm/10min     

 2 years 1 0.72 0.95 

 5 years 0.96 1 0.96 

 61 years 0.95 0.96 1 

 variance 195.38 210.2 157.23

Between 1.1 and 2 mm/10min     

 2 years 1 0.72 0.4 

 5 years 0.72 1 0.74 

 61 years 0.4 0.74 1 

 variance 19.96 18.93 22.01 

Greater than 2 mm/10min     

 2 years 1 0.97 0.93 

 5 years 0.97 1 0.97 

 61 years 0.93 0.97 1 

  variance 150.02 122.94 65.66 

 

This suggests that a two or five years observation period already suffices the needs of 

the presented procedure making it very powerful and practical applicable as a relatively 

short measuring campaign is easily set up. It is obvious that the longer the measuring 

campaign the better the rainfall characteristics can be described. As the rainfall pattern 

in other regions might differ from the Belgian conditions, the number of observed years 
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that will be needed to get a representative image of the frequency distribution of the rain 

intensity might differ as well.  

 

7.3. Incorporating rainfall intensity into daily rainfall 

records  

 

The procedure mainly consists in splitting up the rainfall record Pi observed on day i  

into as many parts as intensity classes (j) are considered. The duration tij of the j’th part 

of daily rainfall, that has an intensity of mj, is given by: 

 

min10*
)100/(*

j

ji
ij m

IP
t =                                                           (7.1) 

 

The subscript i refers to the day number (from 1 to 365 or 366) and j refers to the 

rainfall intensity class (in this case from 1 to 3). To clarify the procedure, a diagram of 

the procedure for a rainy day is presented in Fig. 7.5. Ij is the percentage of the monthly 

rainfall that has an intensity corresponding with the one of class j. Hence, the value Ij 

varies throughout the year and was obtained from Fig. 7.1. The value of mj is not 

allowed to vary throughout the year for the low and middle intensity classes (m1 and m2) 

because it was observed from Fig. 7.2, that mean intensities for both intensity classes do 

not vary throughout the year. Though the mean for those two classes does not vary over 

the year, Fig. 7.3 shows that the distributions of the rainfall within the two lower 

intensity classes are very particular (especially true for the lowest intensity class). 

Therefore the distributions within both classes were incorporated in the procedure. To 

do so, a random number between 0 and 1 is generated on each rainy day and for each of 

the two intensity classes. To each random number a corresponding rainfall intensity is 

taken from the cumulative distribution shown in Fig. 7.3, and is applied as mj with j = 1 

or 2. The value of m3 corresponding to the highest intensity class is allowed to vary over 

the year and is set equal to the mean monthly rainfall intensity (cfr. Fig. 7.2) within this 

highest intensity class. For the highest intensity class, the distribution within the 

intensity class was not incorporated to keep the procedure simple, i.e. no need for the 

fitting of a distribution to the continuous distribution shown in Fig. 7.3.  
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Figure 7.5 Diagram of the procedure for a rainy day in August 

 

The number of intensity classes and their upper and lower bounds to be considered for 

the procedure depends on the variation of rainfall intensity one can expect in the region. 

For our region, the procedure was also tested using 4 and 5 intensity intervals with 

different lower and upper bounds but they did not result in more precise simulation 

results [Mertens et al., 2002]. It can be expected that for regions having rainy and dry 

seasons and regions where rainfall shows larger variations throughout the year, more 

intensity classes might be needed. In order to keep the procedure simple, some 

additional assumptions are made when the daily rainfall records are split up into minute 

input data. Although rainfall often comes in several showers (Table 7.1) at different 

moments of the day, it is assumed that all precipitation measured on a day falls in one 

single storm at the beginning of the day. The simplification is justified by the fact that 

the objective of the procedure is not to mimic daily rainfall, but to integrate information 

on the rainfall intensity in the daily rainfall records. The possible combinations of how 

the three rainfall intensities can succeed each other (scenarios) are listed in Table 7.3. 

Each time rain occurs, one of the six scenarios was selected randomly in the simulation 
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runs. Although, in general, a cold weather front produces a storm of an advanced type 

(High, Middle, Low), and the warm weather front a uniform or an intermediate pattern 

[Schwab et al., 1996], no preference was given to a particular scenario since the aim of 

the procedure is not to mimic single storms. 

 

Table 7.3 Succession of rainfall intensities for each scenario  

Scenario Number 

 

  

Succession of rainfall intensities (low = 0.1 to 1 mm/10 min.,  

middle = 1.1 to 2.1 mm/10 min. and high = greater than   

2.1 mm/10min 

1 Low Middle High 

2 High Middle Low 

3 Middle High Low 

4 Middle Low High 

5 High Low Middle 

6 Low High Middle 

 

In Mertens et al. (2002), this procedure is tested on 1D soil columns for three years: 

1947 (dry year), 1982 (normal year) and 1988 (wet year) and three soil types (clay 

loam, silt and sandy loam). The reference runoff – simulated surface runoff obtained by 

using the observed 10-minute rainfall records as input – is compared with the 

simulations whereby the daily rainfall records are split up into minute data according to 

the procedure presented above. It is concluded that the procedure performs very well 

and the simulated amount of water that infiltrates during a year deviated maximum 1.19 

% from the reference value. In this Chapter, the procedure is tested using a 2-D-artificial 

rainfall runoff model based on the hillslope described in Chapter 2.  
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7.4. Effect of temporal rainfall resolution on simulated 

hillslope runoff and effective parameters 

 

7.4.1. Model set-up 

 

A hillslope MIKE SHE model [Refsgaard and Storm, 1995] was set up including the 

unsaturated zone, evapotranspiration and overland flow component described in Chapter 

4. As explained in this chapter, the MIKE SHE model is capable of describing 1-D 

subsurface water flow combined with 2-D surface (overland) water flow. The 

dimensions (80 m by 20 m or 1600 m²) and topography (Fig. 2.7) correspond to the 

experimental field described in Chapter 2. The lower boundary condition was 

considered to be a constant watertable at 6 m depth, which means that the model is 

groundwater independent. To simplify the model, only 1 soil horizon is considered. 

Hence only 6 UZ zone parameters are needed to describe the UZ soil parameters: Ks, θs, 

θr, α, n and N. The entire soil column is discretised into 86 calculation nodes over the 

profile depth of 6 m. Nodes are not evenly spaced, closer spacing was set near the 

surface (first 65 nodes spaced only 2 cm apart) and spacing increases with depth. 

Potential evapotranspiration for the year 1988 is given as daily time series. The model 

was ‘hotstarted’, i.e. a similar model run was executed using the daily rainfall and 

evapotranspiration of 1987. The initial conditions for the model used in this study were 

set to the conditions simulated on the 31st of December 1987. Total cumulative runoff 

from the hillslope for the year 1988 is studied as output variable.  

 

7.4.2. Effect of temporal rainfall resolution on simulated 

hillslope runoff 

 

In order to simulate runoff on the rather flat hillslope, the detention storage (= water 

depth at which overland flow occurs) was set to 0 while the Strickler-Manning 

coefficient (cfr. Eq. 4.10) was chosen to be 10 m1/3s-1. A reference parameter set of the 6 

UZ soil parameters was chosen in between the ranges for a clayey soil from Meyer et al. 

(1997) and are presented in Table 7.4.  
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Table 7.4 Reference parameter values 

Parameter Reference value 

Ks (ms-1) 1.00E-07 

θs  (-) 0.46 

θr (-) 0.034 

α (m-1) 1.6 

n(-) 1.37 

N(-) 9 

 

Model simulations are performed using this reference parameter set and three different 

temporal resolutions of rainfall for the year 1988: (i) real 10-minute observed rainfall 

data obtained from the RMI; (ii) daily rainfall (= daily sum of the observed 10-minute 

data); and (iii) disaggregated rainfall according to the procedure described above. The 

simulation using the reference soil hydraulic parameters and the real observed 10-

minute rainfall data is called the reference simulation resulting in the reference runoff. 

The model efficiency (E) of the daily and disaggregated rainfall simulated runoff 

against the reference runoff is also calculated as:  
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with n = 365 is the number of days, Ri,obs is the observed (in this case reference) daily 

hillslope runoff, obsi,R  the mean observed daily hillslope runoff over the year 1988 and 

Ri,sim the simulated daily hillslope runoff. Simulated reference runoff instead of real 

observed runoff had to be used in this study because as explained in Chapter 2, no 

surface runoff was observed on the experimental hillslope. 
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Figure 7.6 Simulated hillslope runoff as a result from a model run with daily and disaggregated rainfall 

data compared to the reference runoff  

 

Figure 7.6 shows the cumulative daily runoff over the year 1988 as a result of the three 

different rainfall inputs. The reference runoff can be considered as the closest to reality, 

i.e. the observed 10-minute rainfall data are used which is the closest to the real rainfall. 

As also shown for 1-D soil columns in Mertens et al. (2002), the simulated cumulative 

runoff using the daily rainfall (and the reference soil parameters) is close to zero and 

hence far from the reference runoff. Actually the model efficiency is negative, E = -

2.02, suggesting that the model performs worse than when the average reference runoff 

is taken as simulated runoff throughout the year (in this case, E = 0). The reason for this 

is the fact that the model code distributes rainfall uniformly over the day, i.e. a low 

intensity rainfall lasting all day. This can be expected to generate very little or no 

surface runoff because the resulting modelled rainfall intensity is generally lower than 

the saturated hydraulic conductivity. Figure 7.6 shows that disaggregating the daily 

rainfall values according to the procedure described above results in a cumulative runoff 

close to the reference runoff (E = 0.88). As explained above, it was not the procedure’s 

aim to mimic single storm events but to improve cumulative daily runoff simulations 

over longer time periods when only daily rainfall data are available. The procedure is 
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successful in its aim because the difference between the reference runoff and the runoff 

as a result from the procedure is small. Concluding, it can be stated that the procedure 

succeeded in the disaggregation of daily rainfall so that simulated daily runoff is close 

to reality. This is only true in terms of cumulative volumes for which the procedure was 

developed, and will certainly not be the case when interested in extreme events.  

 

7.4.3. Sensitivity Analysis 

 

In this Chapter, the One-At-a-Time design [Morris, 1991] sensitivity analysis described 

in detail in Chapter 5 is carried out. The sensitivity of the MIKE-SHE model, more in 

particular, the sensitivity of runoff simulations to all 6 UZ parameters was evaluated: Ks, 

θs, θr, α, n and N. Upper and lower limits are taken as the 95 % confidence interval of 

the recommended distributions by Meyer et al. (1997) and were presented in Table 5.1. 

For a particular parameter set, the Root Mean Squared Error (RMSE) of the simulated 

runoff against the reference runoff for the year 1988 is calculated as:  
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where n = 365 is the number of days, Ri,obs is the observed (= reference) and Ri,sim the 

simulated daily hillslope runoff.  

 

In this Chapter, the number of trajectories r was selected to be 48 (more than the 14 

suggested in Chapter 5 because of short simulation time) and k + 1 = 7 (k = 6 

parameters considered in the sensitivity analysis), so in total 336 MIKE-SHE runs were 

needed. As in Chapter 5, aint was again chosen to be 4 which results in ∆ = 2/3. 

Estimated means (µ) and standard deviations (σ) of the distribution of the elementary 

effect of each of the 6 UZ parameters against RMSE are shown in Fig. 7.7. Absolute 

values of µ (⏐µ⏐) are plotted in Fig. 7.7 making it easier to visualize the overall 

sensitivity of the parameters. As explained in Chapter 5, the sensitivity of parameters in 

the Morris method cannot be quantified. Only a qualitative ranking of importance of 



Temporal resolution of rainfall data 

 163 

parameters with respect to overall importance and interaction with other parameters or 

non-linear effects can be performed. Objective ranking can be performed against µ or σ 

yielding an idea on which parameters have the largest overall effect (µ) or which 

parameters have high interaction with other parameters and non-linear effects (σ).  
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Figure 7.7 Estimated means ⏐µ⏐ and standard deviations (σ) of the distributions of elementary effects of 

all parameters against overall RMSE for the Morris SA  

 

The SA shows that only saturated hydraulic conductivity (Ks) seems to be an important 

parameter in the runoff generation. The other parameters have a minimal overall 

importance (⏐µ⏐) as well as very small interactions with other parameters or very small 

non-linear effects (σ). Since Ks determines the maximal infiltration capacity of a soil 

near saturation, it was to be expected that runoff would be highly sensitive to the value 

of this parameter. Although α and θs seem to be relatively more important in the 

generation of runoff than θr, n and N, their importance is negligible compared to Ks. The 

same is true for the estimated interactions or non-linear effects α and θs have. Therefore, 
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it was decided not to incorporate other parameters but Ks in the SCE optimisation 

algorithm presented below. 

 

As a test, an SCE optimisation algorithm incorporating all 6 UZ parameters was carried 

out. It was observed that significantly different ‘effective’ water retention and hydraulic 

conductivity curves resulted in similar runoff patterns throughout the year. Though, this 

was only true if their saturated hydraulic conductivity values were close. This finding 

confirmed the result of the Morris SA: simulated runoff is only sensitive to the saturated 

hydraulic conductivity (Ks) and the values of the other parameters (θs, θr, α, n and N) 

are not important in the runoff generation. 

 

7.4.4. Effect of temporal rainfall resolution on effective 

soil parameters 

 

The Shuffled Complex Evolution (SCE) algorithm is adopted for the optimisation of the 

UZ soil parameters in the hillslope MIKE-SHE model described above. The SCE 

control parameters presented in Chapter 4 are also used here, with the exception of the 

number of complexes that was set equal to two. Because only Ks is incorporated in the 

algorithm, the recommended value for the number of complexes is one (= equal to the 

number of parameters). However using only one complex, corresponding to a local 

search, would probably not have been very efficient for our purposes. The other 

parameter values were fixed to their reference value presented in Table 7.4. The 

optimisation bounds for the Ks parameter were set to [1e-9, 1e-5] with the reference Ks 

value (1e-7) within the optimisation bounds. The reference runoff shown in Fig. 7.6 was 

considered as being the observed runoff data in the inverse optimisation. The same 

objective function as in the sensitivity analysis was used (Eq. 7.3). The stopping criteria 

for the optimisation routine were either (i) change of the best objective function less 

than 0.1% within 5 loops; or (ii) a maximum number of model evaluations of 2000.  
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Figure 7.8 Simulated hillslope runoff as a result from the SCE algorithm using daily and disaggregated 

rainfall data compared to the reference runoff 

 

Figure 7.8 shows the result of the SCE algorithm for the daily rainfall and the 

disaggregated rainfall input compared to the reference runoff. The SCE algorithm 

succeeded in finding a Ks value that results in a total runoff of 58 mm per year using 

daily rainfall data where as the reference parameters simulated nearly no runoff at all 

(cfr. Fig. 7.6). A smaller effective Ks value than the reference one was to be expected as 

the optimisation algorithm had to increase runoff and was only allowed to do so by 

decreasing Ks. Effective Ks was found to be 6.47e-8 and hence about 2/3 of the reference 

Ks which was equal to 1.00 e-7. Inverse optimisation of the daily rainfall model resulted 

in a model efficiency (E) of 0.79. Although, simulated annual runoff is only 15 % lower 

than the reference annual runoff (69 mm) and a relatively high model efficiency is 

observed, the dynamics of the cumulative runoff throughout the year are far away from 

the dynamics of the reference simulation. In particular, the dynamics of the second half 

of the year are extremely poor, i.e. no dynamics at all are observed between day 160 and 

330.  
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Inverse optimisation of Ks using the disaggregated rainfall improves the model 

efficiency from 0.88 to 0.95. This improvement is rather small and this is also reflected 

in the value of the effective Ks that was found to be 1.07e-7 and thus very close to the 

reference Ks value of 1.00e-7. The dynamics of the cumulative runoff throughout the 

year still correspond very well to the reference runoff. The fact that only a slight model 

improvement is observed, shows that disaggregating the rainfall results in a realistic 

(close to reference) cumulative runoff without the need for optimisation. Additionally, a 

comparable effective Ks to the reference Ks is observed suggesting that effective 

parameters obtained using disaggregated rainfall are much more realistic (close to the 

reference) compared to the effective parameters estimated using daily rainfall input.  

 

As a conclusion, it can be stated that incorporating rainfall intensity into daily rainfall 

records improves simulation results before calibration and reduces the need for 

calibration. Additionally, if calibration is performed, higher model efficiencies can be 

expected than when daily rainfall records are used. Probably the largest contribution of 

the procedure is that effective parameters estimated using disaggregated rainfall are 

much closer to reality than when daily rainfall records are used. 

 

7.4.5. Effect of temporal rainfall resolution on simulated 

soil moisture content 

 

In Chapters 5 and 6, daily rainfall is used in the MIKE SHE model and daily moisture 

content at three different depths as output variable. Effective parameters are estimated 

using daily rainfall records. Hence, the possibility exists that estimated effective 

parameters are a function of the temporal resolution of the rainfall as shown above for 

the case runoff is studied as output variable. Figure 7.9 shows the simulated soil 

moisture content at three depths at the location x = 10, y = 2 using the effective soil 

parameters estimated in Chapter 5 for that location. The model is run using three 

different temporal resolutions of rainfall: observed 10-minute rainfall, observed daily 

rainfall and disaggregated rainfall for the year 1988. Only very small differences in 

simulated moisture content at all depths between the different temporal rainfall 
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resolutions exist. This is in contrast with Fig. 7.6 where big differences in simulated 

runoff are observed for different temporal rainfall resolutions.  

 

 
 

Figure 7.9 Simulated soil moisture content at the location x = 10, y = 2 for the year 1988 using three 

different temporal resolutions of rainfall: observed 10-minute rainfall, observed daily rainfall and 

disaggregated daily rainfall 

 

The large difference in the effect temporal rainfall resolution has on runoff and soil 

moisture content can be explained as follows. In a field saturated soil, if rainfall exceeds 

the infiltration capacity (Ks) the additional rainfall is considered to be runoff while soil 

moisture content stays constant, i.e. somewhere between saturation and field capacity. 

This means that for soil moisture content, the temporal resolution of the rainfall is not 

important because soil moisture content is close to saturation and does not change 

much. On the other hand, runoff generation is a function of rainfall intensity and thus of 

the temporal resolution of rainfall records. This also means that one would not expect 

the effective soil parameters obtained in Chapters 5 and 6 using daily rainfall records to 
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be significantly different if rainfall records of a finer temporal resolution would have 

been used.  

7.5. Conclusions 

 

The procedure described in this Chapter is an easy-to-use and powerful tool for 

hydrological studies trying to estimate infiltration and/or runoff volumes over long time 

periods when only daily precipitation data is available. An analysis of 10-minute data 

forms the basis of the precipitation frequency distribution into different interval classes. 

If one does not dispose of such data a measuring campaign for fine temporal resolution 

precipitation data of some years is required.  

 

A hillslope rainfall-runoff model was set-up using the MIKE-SHE software. Cumulative 

daily runoff over a year was simulated using rainfall with different temporal resolutions. 

Infiltration and runoff that were simulated using the disaggregation procedure on daily 

rainfall records were very similar to the reference with a model efficiency of 0.88. The 

reference consisted of a simulation whereby the observed 10-minute rainfall data were 

used as input. Simulated runoff using daily rainfall records was close to zero; a model 

efficiency of –2.02 was observed. The procedure described in this Chapter has the 

advantage that it is easily understandable and very easy to apply compared to 

disaggregation techniques that use very sophisticated statistical techniques. This study 

shows that such techniques are not required when one is interested in the simulation of 

cumulative hydrological variables over months/years.  

 

A sensitivity analysis showed that runoff is highly sensitive to the value of the saturated 

hydraulic conductivity Ks. Therefore, an SCE optimisation algorithm was set up for the 

estimation of Ks using different temporal rainfall resolutions. Root Mean Squared Error 

between simulated and reference runoff was used as objective function. The SCE 

succeeded in finding an effective Ks value that resulted in a model efficiency of 0.79 

using daily rainfall records (cfr. E = -2.02 before optimisation). Even though the 

relatively high model efficiency, the dynamics of the daily rainfall model are poorly 

mimicked with respect to the reference runoff. On the other hand, optimisation of the 

disaggregated rainfall model did not improve the model efficiency a lot (E from 0.88 to 

0.95) and dynamics closely matched the reference. Effective Ks is hence a function of 
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the temporal rainfall resolution. In particular, effective Ks using daily rainfall input 

records was found to be only 2/3 of the Ks used in the reference model. Disaggregation 

of the daily rainfall records resulted in an effective Ks very close to the reference Ks.  

 

It is believed that for catchment models with many parameters, an autocalibration using 

daily rainfall records can find an effective parameter set that produces an acceptable fit. 

Contrary to our simple model, for these models the dynamics might also be acceptable 

due to the large amount of parameters these models have. Since all these parameters 

have different effects on the simulated runoff, the masking of the effect daily rainfall 

records have on the simulated runoff, becomes easy. Still, it is believed that 

disaggregating the daily rainfall according to the procedure presented in this Chapter, 

will increase the efficiency of the (auto)calibrated model. To be able to prove this for 

catchment models, and to get some idea about the significance of the increase in model 

efficiency, more research is needed. Maybe more important is that effective parameters 

of the autocalibrated model using daily rainfall records can for sure be called less 

‘realistic’ than effective parameters resulting from the disaggregated rainfall model. 

This is true because effective parameters using the disaggregated model are optimised 

on the basis of rainfall closer to reality than daily rainfall records. No need for the 

masking of the effect daily rainfall records on the runoff have, e.g. no need for 

decreasing the saturated hydraulic conductivity needed to increase the amount of 

surface runoff. Although more research is needed, it is dared to state that the 

disaggregation procedure can provide higher model efficiencies and more realistic 

effective parameters than the case where daily rainfall records are used.  
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Chapter 8 
 

Summary, conclusions and recommendations for 
future research 
 

With the growing popularity of complex physically based distributed watershed models, 

the need to better define the magnitude of model parameters is increasing. Therefore, 

more and better field and laboratory measurements for the estimation of these 

parameters are being developed. Still, research dedicated to the development of more 

and better measurement techniques is limited and, according to our feeling, not 

proportional to the increase in the importance of parameter estimation. Though, even if 

suitable techniques would exist for the estimation of all model parameters at the scale 

required in the model, it would remain practically impossible (highly time- and money-

consuming) to measure the vast amount of parameters needed by these physically based 

distributed watershed models. Even if money and time would be unlimited, uncertainty 

remains whether the measured parameters would be suitable as model input.  

 

An alternative to measuring parameters is offered by automated parameter estimation 

techniques (i.e. inverse modelling) that mainly developed due to continuously 

increasing power of computers. They are becoming more and more popular because: (i) 

the lack of suitable parameter measurement techniques at scales required by our models, 

(ii) the enormous time- and money-consuming character of parameter measurements 

and (iii) the uncertainty of their suitability as direct model input parameters. In 

contradiction to the limited amount of literature discussing new measurement 

techniques, lots of recent literature deals with the development of new and better 

automated parameter estimation techniques.  

 

This PhD research focused on the possibilities and limitations of both direct parameter 

measurements and inverse modelling applied individually and presented a methodology 

that combines both. It is shown that the developed methodology combining both 
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strategies is capable of estimating effective parameters in a more robust way than when 

the strategies are applied individually.  

 

8.1. Summary and conclusions 

 

Lots of problems were encountered during and after the experimental set-up on the 

hillslope. Most crucial problem was the lack of surface and subsurface runoff 

measurements. Three reasons possibly explain the lack of surface runoff: (i) low rainfall 

intensities, (ii) the gentle slope and (iii) the high infiltration capacity of the topsoil. It is 

believed that the lack of subsurface runoff can be explained by the high permeability of 

the textural B horizon. This was in contrast with the visual observations during the 

augering prior to the start of the experiment. The original objectives the experiment was 

designed for are presented in Chapter 2. Because of the lack of surface and subsurface 

runoff, original objectives had to be reformulated and are presented in Chapter 1. On the 

other hand, the soil moisture measurement system worked better than satisfactory; 

though longer cables than generally accepted in literature were used. This was made 

possible due to the methodology of saving the total waveform and its subsequent 

analysis using the developed MATLAB code.  

 

The field saturated hydraulic conductivity Kfs, and the parameter αm were estimated at 

120 locations on a hillslope by means of a single-ring pressure infiltrometer. A Monte 

Carlo analysis showed that the sensitivity of αm on measurement errors using the 

classical analysis is large. On the other hand, the sensitivity of Kfs to measurement errors 

is very low and constant over the range of Kfs and αm. A new technique was developed 

that consists of the inverse optimisation of 120 Kfs values and only 1 αm value using all 

infiltration measurements. The spatial analysis revealed ranges of ln(Kfs) between 2.85 

and 3.8 m omnidirectional and along the hillslope (y-axis), respectively. Though a 

robust method for the derivation of field saturated hydraulic conductivity was presented, 

care must be taken interpreting the measured Kfs values. Lots of different methods for 

estimating hydraulic conductivity exist, all having their specific advantages and 

disadvantages at different scales. For the same soil and even at the same scale, different 

techniques might yield different Ks estimates [Reynolds et al., 2000, Herman et al., 
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2003]. As shown later in the study, it is hence well possible that the measured Ks, 

independent from the technique used and the scale it was measured at, does not coincide 

with the effective Ks needed by the model.  

 

Time series of the soil moisture content for the year 2001 in 25 locations at three 

different depths on the hillslope were used as observed data time series. The sum of the 

Root Mean Squared Error (RMSE) of the simulated moisture content at the three depths 

against the observed time series was considered as objective function in two Sensitivity 

Analyses (SA). A Monte Carlo Sensitivity Analysis of the 1-D MIKE SHE model 

revealed that soil moisture content was not sensitive to the Averjanov N parameter. A 

One-At-a-Time (OAT) SA (Morris’ design) showed comparable conclusions. Therefore, 

N was excluded from the inverse optimisation. Both SA showed that Ks and θs of the A-

horizon, Ks of the B-horizon and the depth d between the A- and B-horizon were the 

most important parameters in this study. It was concluded that both techniques are 

complementary and on the basis of both, sound conclusions concerning parameter 

sensitivity in hydrological modelling can be drawn. The main advantage of the Morris 

method was found to be the relatively low computational cost compared to the Monte 

Carlo SA and its ability to generate a ‘qualitative’ idea about the individual parameter 

interactions (or non-linear effects). Advantage of the Monte Carlo SA is the possibility 

for the quantification of the sensitivity of parameters on the basis of which the 

parameters can be ranked. 

 

The Shuffled Complex Evolution (SCE) algorithm was adopted for the optimisation or 

autocalibration of the UZ soil parameters in the MIKE-SHE model. Initially, the same 

objective function as in the SA, i.e. total RMSE, was set in the SCE algorithm. Hence, 

we were dealing with a single-objective calibration problem. The optimisation bounds 

were based on ranges found in the literature and were set very wide, i.e. no prior 

parameter measurements were included in the optimisation algorithm in any way. The 

SCE algorithm succeeded in finding optimal parameter sets for the MIKE-SHE model 

which simulate the soil moisture time series at the different depths at each location well. 

Effective or optimised parameter sets were compared to their measured equivalents. All 

parameter distributions were found significantly different at the 5 % significance level 

except for α of the A-horizon and Ks and θs of the B-horizon. From this single-objective 
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autocalibration, it was concluded that estimated parameters from laboratory and in-situ 

measurements differ from their effective equivalents needed in unsaturated zone 

modelling at the field scale. Additionally, it was investigated how much worse model 

fits were when using the measured parameter values rather than their effective 

equivalents. It was concluded that measured laboratory parameters are not capable of 

simulating reasonably the moisture content observations in the field. Hence the 

measured laboratory parameters were found to be useless as direct information for the 

model.  

 

Different reasons were discussed that help to explain differences between ‘effective’ 

and measured parameters. The first and probably most important is the ‘scaling 

problem’. Ideally, physical properties should be measured at the same scale as 

characterized by the processes described by the model. Scale differences in this study 

are obvious: laboratory measurements are carried out on undisturbed soil samples which 

have a volume of 100-cm3, single ring pressure infiltrometer measurements on a surface 

of 25 cm² and the model domain has an area of 1 m² and a depth of 6 m. A second 

possible cause for the large gap between effective and measured parameters may have 

to do with the different measurement techniques used in this study. Reynolds et al., 

2000 and Herman et al., 2003 found that using different measurement techniques even 

at the same scale (or sample size) can yield different conductivity estimates. Additional 

uncertainty is present in the observed daily soil moisture content time series and this 

uncertainty is consequently propagated in the estimation of the effective parameters. A 

third possible reason for the big gap is the question whether the global optimum of the 

objective function has been reached by the autocalibration algorithm. In this study, the 

risk of missing the global optimum has been minimised by the use of a global 

optimisation method, i.e. the Shuffled Complex Evolution algorithm. A last possible 

reason that can cause differences between effective and measured parameters has to do 

with the uncertainty incorporated in any kind modelling exercise. This uncertainty can 

be further divided in three main categories of uncertainty: (a) parameter uncertainty, 

which is the main topic of this PhD research, (b) model structure uncertainty and (c) 

input uncertainty (e.g. uncertainty in rainfall and evapotranspiration). Under different 

physical (soil type, slope, etc.) and climatic conditions, by using other observation types 

(e.g. runoff, soil water heads), and by applying other numerical models, it is possible 

that differences between measured and effective parameters are smaller or larger than 
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observed in this study. Though, as argued throughout the thesis, we believe that this 

difference between measured and effective parameters is likely to exist in all 

hydrological modelling to a smaller or larger extent. 

 

From this, it was questioned whether measuring parameters is worthwhile if they differ 

from the effective parameters needed by our models anyway? It could thus be argued 

that it is a just a waste of time and money and we better use the available computer 

power to autocalibrate the parameters within wide literature ranges. To validate or 

contest this, the usefulness of the estimated parameters as prior information in effective 

parameter estimation was investigated. Therefore, a joint probability distribution of the 

measured parameters was calculated and subsequently incorporated as prior information 

in an SCE inverse optimisation and a GLUE analysis. For the SCE algorithm, prior 

information was incorporated by a penalty term as a second objective. This then 

corresponded to a multi-objective calibration with one objective being the goodness-of-

fit to the observations (RMSE) and the other objective being the distance of a parameter 

set from the measured joint parameter probability distribution. Again, the SCE 

algorithm succeeded in finding optimal parameter sets for the MIKE-SHE model which 

simulate the soil moisture time series well. As could be expected, the trade-off between 

the goodness-of-fit and the distance to prior measurements was found to be large, i.e. 

big difference in goodness-of-fit between the mean parameter set of the prior joint 

probability distribution and the optimised effective parameter set. Although a large 

trade-off was observed, the resulting Pareto front was found to be very sharp. This 

means that incorporating prior information in the SCE algorithm could be achieved by 

relaxing only slightly the goodness-of-fit. Doing this, effective or optimised parameter 

sets were found close to their measured equivalents while their resulting goodness-of-fit 

to the observations was only slightly worse. Hence, the effective parameter sets may be 

more physically feasible to the field conditions than effective parameter sets from a 

SCE optimisation without prior information. An SCE optimisation with the 

incorporation of prior information as outlined in this work, efficiently utilized all 

relevant information from the different measurements made, i.e. soil moisture content 

observations as well as prior parameter measurements. The validation of the model was 

proven successful as differences between RMSE of the calibration and the validation 

period are very small. Although slightly higher RMSE values are found using the 
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effective parameters with the prior, the dynamics of the soil moisture content at all 

depths are represented better with the prior than without the prior information. This 

increase in dynamics is a result of the higher effective conductivities obtained when 

incorporating prior information in the objective function.  

 

Thereafter, a GLUE analysis using a uniform random sampling strategy across the 

specified parameter range from literature and a GLUE analysis using the joint 

probability distribution of the measured laboratory parameters were compared. 

Including prior information into a GLUE analysis was again found to be useful because 

(i) more parameters sets are classified as behavioural and hence are available for the 

estimation of the uncertainty bounds and (ii) the uncertainty bounds comprise the 

observed data better. On top of that, behavioural parameter sets are more physically 

feasible as they are much closer to measured parameters. Both, the prior measured 

parameter distributions as well as the correlation amongst parameters were found to be 

useful and beneficial to include in the GLUE analysis. Incorporating prior information 

in a GLUE analysis was able to reduce the amount of model evaluations needed for the 

same amount of behavioural parameter sets.  

 

It is true that effective parameters were found different from the measured ones when 

doing a ‘blind’ optimisation, i.e. an inverse modelling with wide literature parameter 

bounds. And even though the prior information was observed to be useless as direct 

model input, the incorporation of prior information in both the SCE and the GLUE 

algorithm showed that this prior information is not useless. The PhD research showed 

that the measuring of parameters although being very expensive (time and money), is 

useful but that care should be taken interpreting the measured parameter values. Even if 

it is found useless as direct model input, incorporating prior parameter measurements in 

an automated parameter estimation strategy is useful. It may either result in more 

‘physically feasible’ effective parameter sets (SCE algorithm) or reduce the number of 

simulations needed (GLUE). 

 

To conclude this PhD research, the importance of the quality of the rainfall time series 

on hydrological modelling and on effective parameter estimates was briefly examined. 

It was shown that the temporal resolution of rainfall is extremely important for the 

correct simulation of cumulative runoff over a year but hardly influences the simulation 
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of daily soil moisture content values at different depths over a year. Therefore, an easy-

to-use and powerful tool of incorporating rainfall intensity into daily rainfall records for 

the estimation of infiltration and/or runoff volumes over long time periods was 

developed. The developed procedure is easily understandable and very easy to apply 

compared to disaggregation techniques of daily rainfall to a finer temporal resolution 

which all use very sophisticated statistical techniques. It was concluded that such 

techniques are not required when one is interested in the simulation of cumulative 

hydrological variables over months/years.  

 

For the investigation of the importance of the temporal resolution of rainfall on effective 

parameter estimates, an SCE optimisation algorithm was set up for the estimation of Ks 

using different temporal rainfall resolutions. As observations, the simulated daily runoff 

using 10 minute input rainfall data (= reference run) was taken. The SCE succeeded in 

finding an effective Ks value that resulted in relatively high model efficiency (against 

reference run) using daily rainfall records. Even though the relatively high model 

efficiency, the dynamics were poorly mimicked. Additionally, effective Ks was found to 

be a function of the temporal rainfall resolution i.e. effective Ks using daily rainfall 

input records was found to be smaller than the Ks used in the reference model. 

Disaggregation of the daily rainfall records according to the presented procedure, 

resulted in an effective Ks very close to the reference Ks.  

 

For large catchment models with many parameters, an autocalibration using daily 

rainfall records could probably find an effective parameter set that produces an 

acceptable fit with a reasonable match of the dynamics. Although validating this 

requires more research, disaggregating the daily rainfall according to the procedure 

presented will probably increase the efficiency of the (auto)calibrated model. Effective 

parameters of the autocalibrated model using daily rainfall records are for sure less 

‘realistic’ than effective parameters resulting from the model with the 10 minute or the 

disaggregated rainfall time series. As said earlier, although  more research on this topic 

is needed to validate some of these conclusions, this PhD research shows that reliability 

of the estimated effective parameters does not depend only on commonly mentioned 

factors such as type and quality of the observations, the way the model describes the 
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different processes, optimisation algorithm, … but also on the quality of the rainfall 

time series, and most likely time series of other input variables. 

 

8.2. Innovative aspects of the study and 

recommendations for future research 

 

From the problems encountered during and after the set-up of the experiment, some 

recommendations for similar future experimental research were suggested in Chapter 2. 

We believe that innovative about the experimental set-up is the way the TDR system 

worked. The methodology developed for the analysis of waveforms captured with 

longer cable lengths was evaluated as very successful. The size of the experimental 

hillslope (80 by 20 m) is also larger than sizes of other hillslope experimental sites 

mentioned in literature. Single-ring pressure infiltrometer measurements as such have 

existed since almost 2 decades. Though, the analysis of the measurements for the 

estimation of the field saturated hydraulic conductivity developed in this study, is 

believed to be innovative and certainly preferable over the classical approach. The 

methodology results in robust estimates of the field saturated hydraulic conductivity. 

Though robust estimates are obtained, care must be taken interpreting its value as shown 

by Reynolds et al. (2000). Those authors illustrated that hydraulic conductivity 

estimates using different measurement techniques may differ. In this respect, future 

research is needed to contest or confirm these findings and suggest possible 

explanations, keeping in mind the scale issue.  

 

The parameter identifiability problem forms the major topic of many hydrological 

studies in literature since little over a decade. The contributing aspect to the existing 

literature of this study lies within the way this study combines the measuring of 

parameters with inverse modelling techniques. The study shows that combining both 

more efficient in the estimation of effective parameters than when they are applied 

individually. The PhD research presents methods of incorporating prior measured 

parameter information in two different parameter estimation strategies, i.e. GLUE and 

SCE algorithms. Considering the distance from the prior measured parameter 

information as an objective in the objective function and consequently solving the 
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problem in a multi-objective calibration framework, is according to our knowledge 

innovative. The research confirms that measuring parameters although being highly 

time and money consuming is worthwhile but that at the same time care should be taken 

using the prior measured parameters as direct model input. Future research concerning 

the incorporation of prior measured parameter information in the SCE and GLUE 

algorithms, as performed in this study, is required to confirm the findings of this study. 

It is desirable that the methods of incorporating prior measured information in SCE and 

GLUE algorithms are repeated for different scales and types of models.  

 

From these conclusions, it is suggested that future research is needed concerning both 

parameter measurement techniques and optimisation algorithms. As mentioned earlier, 

development of new in-situ and laboratory measurement techniques for the estimation 

of model parameters at different scales is crucial. For larger scales, remote-sensing 

techniques such as satellite images, radar images or air photographs offer perspectives. 

In this respect, upscaling and downscaling research can also help in the estimation of 

parameters at scales needed by the model on the basis of parameter estimates made at a 

smaller (upscaling) or larger (downscaling) scale. The inverse modelling algorithm used 

in this study, the SCE algorithm, is probably the most robust algorithm currently 

available for highly non-linear systems such as an unsaturated zone model. Though, 

more research is needed to incorporate some uncertainty analysis in global inverse 

optimisation algorithms. The GLUE algorithm as applied in this study, is capable of 

estimating some uncertainty bounds on the simulated model. Drawbacks of this method 

are the rather subjective character and the amount of model simulations needed. Future 

research attempting to develop a robust global optimisation algorithm capable of 

performing an uncertainty analysis is required.  

 

The end of the PhD research deals with the importance of the quality of the rainfall time 

series on hydrological modelling and on effective parameter estimates. Although only 

briefly discussed, it was included in this text because of its importance and because very 

few or no literature can be found dealing with this problem. The presented procedure of 

incorporating rainfall intensity into daily rainfall records needs to be tested at the 

catchment scale and for the simulation of different hydrological variables. It is believed 

that even for catchment models, temporal resolution of rainfall is important for the 
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simulation of river discharge as well as for the estimated values of the effective 

parameters. To confirm this, research is needed investigating the effect of the temporal 

resolution of rainfall and evapotranspiration on effective parameter estimations at 

different scales.  
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Appendix A 
 

The multivariate normal density  
 

The multivariate normal density is a generalisation of the univariate normal density to p 

≥ 2 dimensions. Recall the univariate normal distribution, with mean µ and variance σ2, 

has the probability density function: 
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A plot of this function yields the familiar bell-shaped curve shown in Fig. A.1. Also 

shown in the figure are approximate areas under the curve within ± 1 standard deviation 

and ± 2 standard deviations of the mean. These areas represent probabilities and thus, 

for the normal random variable X, 
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Figure A.1 A normal density with mean µ and variance σ and selected areas under the curve (after 

Johnson and Wichern, 1992) 
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It is convenient to denote the normal density function with mean µ and variance σ2 by 

N(µ,σ2). Therefore, N(10,4) refers to the function with µ = 10 and σ = 2. This notation 

is extended to the multivariate case below. 

 

The term  

 

( )( ) ( )µσµ
σ
µ

−−=⎟
⎠
⎞

⎜
⎝
⎛ − − xxx 12

2

       (A.2) 

 

in the exponent of the univariate normal density function measures the squared distance 

from x to µ in standard deviation units. This can be generalized for a p x 1 vector x as: 

 

( ) ( )µµ −′− ∑− xx 1          (A.3) 

 

The p x 1 vector µ represents the expected value of the random vector X, and the p x p 

matrix ∑ is its variance-covariance matrix. The covariance matrix can be written as 

⎥
⎦

⎤
⎢
⎣

⎡
=Σ

2221

1211

σσ
σσ

. We shall assume the symmetric matrix ∑ is positive definite, so the 

expression in Eq. A.3 is the squared generalized distance from x to µ.. 

 

The multivariate normal density is obtained by replacing the univariate distance Eq. A.2 

by the multivariate generalized distance of Eq. A.3 in the density function of Eq. A.1. 

When this replacement is made, the univariate normalizing constant (2π)-1/2(σ2)-1/2 must 

be changed to a more general constant that makes the volume under the surface of the 

multivariate density function unity for any p. This is necessary because in the 

multivariate case, probabilities are represented by volumes under the surface over 

regions defined by intervals of the xi values. It can bee shown that this constant is (2π)-

p/2⎢∑⎢-1/2, and consequently a p-dimensional normal density for the random vector X = 

[X1, X2, … , Xp]’ has the form: 
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where - ∞ < xi < ∞, i = 1, 2, …, p. We shall denote this p-dimensional normal density by 

Np(µ, ∑), which is analogous to the univariate case.  

 

From the expression in Eq. A.4 for the density of a p-dimensional normal variable, it 

should be clear that the paths of x values yielding a constant height for the density are 

ellipsoids. That is, the multivariate normal density is constant on surface where the 

squared distance ( ) ( )µµ −′− ∑− xx 1  is constant. These paths are called contours. An 

example of two bivariate (p = 2) normal distributions is shown in Fig. A.2. More 

information on how to sample from a multivariate normal distributions and additional 

properties of the multivariate normal distribution can be found in Johnson and Wichern, 

1992. 
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Figure A.2 Two bivariate normal distributions. (a) σ11 = σ22 and ρ12 = 0 (b) σ11 = σ22 and ρ12 = 

0.75 (with )/( 22111212 σσσρ = ) 

 



 

Appendix B 
 

Model Validation 
 

As discussed in 6.4.3, the model verification was performed for the 9 locations along 

the middle transect (x = 10) of the hillslope. Simulated moisture content values using 

the effective parameters from the SCE with and without prior information for both the 

calibration and the validation period at these 9 locations are plotted below. 
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Summary 


 


During the past four decades, computer based mathematical hydrological models have 


been widely used for a variety of applications. These models are based on general 


mathematical descriptions of the hydrological processes that transform natural forcings 


(e.g. rainfall over the landscape) into response (e.g. runoff in the river). The user of a 


hydrological model must specify the model parameters before the model is able to 


properly simulate the hydrological behaviour that it describes. In general, there are two 


main approaches to estimating model parameters. The first (a-priori approach) 


estimates model parameters by relying on theoretical or empirical relationships that 


relate such parameters to observable (measurable) characteristics of the model area (e.g. 


soil and vegetation properties, topography, …). The second approach (model 


calibration) adjusts model parameter values such that the model input-output (e.g. 


rainfall-runoff) response closely matches the observed (measured) input-output response 


for some historical period for which data has been collected. Ever since the 
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development of these models, studies have shown the large complexity of estimating 


these parameter values, either by the a-priori or model calibration approaches. The main 


reason for this is the fact that our model equations and their respective parameters are 


idealised representations of real world processes. Furthermore, there are a variety of 


errors in the model structure and uncertainties in the data used for parameter estimation, 


which introduce considerable inaccuracy into model behaviour. These factors have 


made it difficult to develop reliable procedures for model parameter estimation, and to 


provide suitable estimates of uncertainties in the model predictions.  


 


The parameter estimation problem for unsaturated zone modelling forms the central 


research topic of this PhD dissertation. After a general introduction, the set-up of a field 


experiment that was carried out on a hillslope in the sandy-loam belt of Belgium is 


described. Soil samples were taken from profile pits along the hillslope. On these 


samples, the soil hydraulic parameters needed for unsaturated zone modelling were 


estimated in the laboratory. On top of that, in-situ measurements using a single ring 


pressure infiltrometer prior to the start of the experiment were carried out. Based on 


these measurements, a mathematical procedure was developed resulting in more robust 


estimates of the field-saturated hydraulic conductivity than the classical approach. 


Parameter estimates as a result of the laboratory measurements together with the field 


saturated hydraulic conductivity estimated were considered as prior information in the 


a-priori approach.  


 


The importance of each of the soil hydraulic parameters for simulating water content 


profiles on the hillslope was evaluated using two different sensitivity analyses. 


Resulting important parameters were consequently incorporated in the SCE (Shuffled 


Complex Evolution) automatic calibration routine and their ‘effective’ values were 


estimated. The ‘effective’ parameter set is the result from the autocalibration routine 


and yields the best fit of the model to the observed soil moisture content on the 


hillslope. Initially, no use was made of the prior information in the inverse modelling or 


autocalibration technique. It was concluded that for the hillslope, ‘effective’ parameter 


values and the prior measured parameter values differed significantly. Furthermore, the 


use of this prior information in an a-priori context, i.e. as model parameters in the 


model, resulted in very poor model fits. These conclusions raised questions about the 
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relevance of measuring prior information since the parameters needed by the model 


(=’effective parameters’) to give the best fit to the observed data, are significantly 


different.  


 


To investigate the relevance of the prior information, a methodology for the 


incorporation of this prior parameter information in two different parameter estimation 


strategies, SCE and GLUE (Generalised Likelihood Uncertainty Estimation) was 


developed. It was shown that incorporating prior information in the SCE algorithm 


resulted in more ‘realistic’ parameter estimates and reduced the goodness-of-fit of the 


model negligibly. Incorporating prior information in the GLUE algorithm resulted in 


more behavioural parameter sets and uncertainty bounds that comprised the observed 


data better. Hence, it was concluded that the developed methodology of combining 


inverse modelling with prior parameter estimations was ‘superior’ to the case when both 


were applied individually, i.e. the direct use of prior information in the model (a-priori 


approach) and inverse modelling without the incorporation of prior information 


(calibration approach). Finally, a procedure for the incorporation of rainfall intensity 


into daily rainfall records was developed and tested using a synthetic hillslope model 


set-up. Using this procedure, it was shown that the temporal resolution of rainfall 


affected the values of the effective parameters significantly.  
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Samenvatting 


 


Gedurende de laaste 40 jaar worden numerieke hydrologische modellen gebruikt voor 


een brede waaier van toepassingen. Deze modellen zijn gebaseerd op algemene 


wiskundige beschrijvingen van hydrologische processen die natuurfenomenen (vb. 


regen) tranformeren in een respons (vb. afvoer naar rivier). De gebruiker van een 


hydrologisch model moet de modelparameters specifiëren alvorens het model het 


gesimuleerde hydrologisch process correct kan beschrijven. Het schatten van parameters 


kan grosso modo opgedeeld worden in twee benaderingen. De eerste (a-priori aanpak) 


schat de modelparameters op basis van theoretische of empirische relaties. Deze 


benadering relateert modelparameters aan observeerbare (meetbare) karakteristieken 


van het modelgebied (vb. bodem en vegetatie eigenschappen, topografie, ...). De tweede 


aanpak (model calibratie) past modelparameters aan zodat de model input-output (vb. 


regen-afvoer) respons overeenstemt met de geobserveerde (gemeten) respons voor een 


historisch opgemeten tijdreeks. Sinds het ontstaan van deze modellen hebben 
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verschillende studies gewezen op de enorme complexiteit die gepaard gaat met het 


schatten van deze parameters, dit voor beide benaderingen. De belangrijkste reden voor 


deze complexiteit is het feit dat  model vergelijkingen en hun respectievelijke 


parameters geidealiseerde representaties zijn van ‘echte wereld’ processen. Bovendien 


zijn fouten in model structuur niet uit te sluiten en  bestaan er onzekerheden in de data 


gebruikt voor parameter schatting, die een aanzienlijke onzekerheid introduceren in 


model gedrag. Deze factoren bemoeilijken het ontwikkelen van betrouwbare procedures 


voor parameter schatting en schatting van onzerheidsintervallen voor 


modelvoorspellingen.  


 


Het probleem van de parameter schatting voor modellen, die zich focussen op de 


onverzadigde zone (= bodem van maaiveld tot grondwatertafel), vormt het centraal 


onderzoeksthema van deze doctoraatsthesis. Na een algemene inleiding wordt er een 


beschrijving gegeven van het veldexperiment uitgevoerd op een hellend proefveld in 


Rillaar, België. Er werden onverstoorde bodemstalen genomen in 3 profielputten 


langsheen de helling. De bodemhydraulische parameters, vereist voor onverzadigde 


zone modellering, werden geschat aan de hand van metingen in het laboratorium op de 


onverstoorde stalen. Bovenop deze metingen, werden er ook in-situ metingen 


uitgevoerd gebruik makende van enkele-ring druk infiltrometers. Gebruik makend van 


deze metingen werd een wiskundige inverse optimalisatie procedure ontwikkeld die 


resulteert in meer robuste in-situ hydraulische conductiviteit schattingen dan de 


klassieke analyse methode. Parameter schattingen uit het laboratorium en de in-situ 


hydraulische conductiviteit schattingen werden beschouwd als prior informatie in de a-


priori aanpak.  


 


Het belang van elk van bodemhydraulische parameters voor het simuleren van 


bodemvochtgehalte profielen werd geëvalueerd met behulp van 2 verschillende 


gevoeligheidsanalyses. Belangrijke parameters werden vervolgens geïncorporeerd in het 


SCE (Shuffled Complex Evolution) algoritme. Dit resulteerde in schattingen van de 


effectieve waarden van de belangrijke parameters. De set van effectieve 


modelparameters is het resultaat van een calibratie of in dit geval een autocalibratie 


(SCE) die resulteert in de beste overeenkomst tussen geobserveerde en gesimuleerde 


data. In dit onderzoek werden bodemvochtgehalte profielen gebruikt om deze 
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overeenkomst na te gaan. Initieel werd er geen gebruik gemaakt van de prior informatie 


in de inverse modellering of autocalibratie techniek. Er werd aangetoond dat voor het 


hellend proefveld, effectieve parameter waarden significant verschillen van hun 


gemeten waarden. Bovendien resulteerde het gebruik van de prior informatie als 


rechtstreekse parameter input in het model in een slechte overeenkomst. Deze besluiten 


deden vragen rijzen over de relevantie van het meten van prior informatie aangezien de 


parameters die het model nodig heeft voor de beste overeenkomst (effectieve 


parameters) significant verschillen van hun gemeten waarden.  


 


Om de relevantie van het meten van prior informatie te onderzoeken, werd een 


methodologie voor het incorporeren van deze prior informatie in twee verschillende 


parameter schatting strategiën, SCE en GLUE (Generalised Likelihood Uncertainty 


Estimation), ontwikkeld. Er werd aangetoond dat het incorporeren van de prior 


informatie in het SCE algorithme resulteerde in meer ‘realistische’ effectieve parameter 


schattingen terwijl de model overeenkomst met de geobserveerde bodemvochtprofielen, 


slechts verwaarloosbaar verminderde. Incorporeren van prior informatie in het GLUE 


algorithme resulteerde in meer ‘behavioural’ parameter sets en de onzekerheidsgrenzen 


bevatten de geobserveerde bodemvochtprofielen beter. De ontwikkelde methodologie 


van het combineren van invers modelleren met prior parameter informatie werd beter 


bevonden dan de toepassing van beiden apart, met name het direkt gebruik van prior 


informatie in het model (a-priori aanpak) en invers modelleren zonder de inbreng van 


prior informatie (calibratie aanpak). Om te besluiten werd er een procedure ontwikkeld 


en getest op een synthetisch hellend veld model voor het in rekening brengen van 


regenintensiteit in dagelijkse regenhoeveelheden. Gebruik makende van deze procedure 


werd er aangetoond dat de temporele resolutie van de neerslag een significant effect 


heeft op de waarden van de effectieve modelparameters.  
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Notation 


 


In some places throughout the text, same symbols are used for different variables to 


have a notation in correspondence with the general notation in literature. The exact 


meaning of the symbol should be clear from the context in which the variable is used. 


The dimensions of the symbols can be found throughout the text in square brackets ([ ]) 


and are copied in the following tables. In these tables, the paragraph in which the 


symbol first occurred or is defined, is also given.  


 


Latin symbols 
Symbol Definition Units Paragraph 


ia  Parameter to be optimised in the 


analysis of single ring pressure 


infiltrometer measurements (related 


T-1 3.2.2.3 
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to Kfs at each location i) 


aint Chosen integer (Morris design) - 5.3.2 


A Cross sectional area  L² 2.2.1 


b  Parameter to be optimised in the 


analysis of single ring pressure 


infiltrometer measurements (related 


to field αm) 


L 3.2.2.3 


C Soil water capacity  L-1 2.2.1 


C0 Nugget variance   3.2.3 


C1 Empirical parameter of the 


Kristensen and Jensen 


evapotranspiration model 


- 4.2.1.2 


C2 Empirical parameter of the 


Kristensen and Jensen 


evapotranspiration model 


- 4.2.1.2 


Cs Co-variance contribution or sill 


value 


 


- 3.2.3 


Symbol Definition Units Paragraph 


d Depth between the A- and B-


horizon 


L 5.2 


d() Elementary effect of the ith 


component (Morris design) 


- 5.3.2 


dr Depth of insertion of the ring of a 


single-ring pressure infiltrometer 


L 3.2.2.1 


E Model Efficiency - 7.4.2 


Eat Actual transpiration LT-1 4.2.1.2 


Ep Potential evapotranspiration LT-1 4.2.1.2 


Es Soil evaporation  LT-1 4.2.1.2 


F Objective function value   2.2.2 


Fagg Aggregated objective  6.3.2 


G Dimensionless parameter - 3.2.2.1 
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h Soil pressure head L 2.2.1 


H Height of the ponded head L 3.2.2.1 


hg Flow depth above the ground 


surface 


L 4.2.1.3 


hl Lag distance class L 3.2.3 


j Number of intensity classes  - 7.3 


K Hydraulic conductivity  LT-1 2.2.1 


k Number of parameters (Morris 


design) 


- 5.3.2 


Kfs Field saturated hydraulic 


conductivity  


LT-1 3.1 


Ks Saturated hydraulic conductivity  LT-1 2.2.1 


Kx - Strickler coefficient x direction L-3T-1 4.2.1.3 


Ky- Strickler coefficient y direction L-3T-1 4.2.1.3 


l Length  L 2.2.1 


L Likelihood measure   6.3.3 


m Empirical fitting parameter of van 


Genuchten-Mualem hydraulic 


functions 


- 2.2.1 


Symbol Definition Units Paragraph 


m 


No. of points in each complex (SCE 


algorithm) 


- 4.3.3.3 


M() Model function   3.2.2.3 


mj Rainfall intensity LT-1  


n Empirical fitting parameter of van 


Genuchten-Mualem hydraulic 


functions 


- 2.2.1 


N Empirical fitting parameter of 


Averjanov conductivity curve 


- 2.2.2 


n Number of … -  


O Observed data vector  3.2.2.3 


p Set of parameters  3.2.2.3 
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P Feasible parameter space  - 4.3.2.2 


p No. of complexes (SCE algorithm) - 4.3.3.3 


P Significance level in the 


Kolgomorov-Smirnov test 


- 5.3.1 


P Vector containing the transformed 


parameters 


 6.3.2 


Pi Rainfall record on day i L  


pmin 


Minimum No. of complexes 


required as the search proceeds 


(SCE algorithm) 


- 4.3.3.3 


Q Flow capacity L³T-1 2.2.1 


Q Infiltration rate LT-1 3.1 
⊗
∞0q  Theoretical perturbed infiltration 


rate 


LT-1 3.2.2.2 


q 


No. of points in a sub-complex 


(SCE algorithm) 


- 4.3.3.3 


q0∞ Steady flow rate LT-1 3.2.2.1 


r Number of trajectories (Morris 


design) 


 5.3.2 


ra Practical range L 3.2.3 


Symbol Definition Units Paragraph 


rd Ring radius of a single-ring 


pressure infitrometer 


L 3.2.2.1 


Ri,obs Observed (reference) daily hillslope 


runoff 


L 7.4.2 


Ri,sim Simulated daily hillslope runoff. L 7.4.2 


Sfx Friction slopes in x direction - 4.2.1.3 


Sfy Friction slopes in y direction - 4.2.1.3 


t Time  T 2.2.1 


T Test statistic in the Kolgomorov-


Smirnov test 


 5.3.1 


tij duration of the j’th part of daily T  
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rainfall 


u Flow velocities in x direction LT-1 4.2.1.3 


v Flow velocities in y direction LT-1 4.2.1.3 


x Horizontal coordinate (width) L 3.2.1 


X Sample in the Kolgomorov-


Smirnov test  


 5.3.1 


x Vector in the parameter space 


(Morris design) 


 5.3.2 


X Untransformed variable  6.3.1 


x* Base value of x (Morris design)  5.3.2 


X1, X2 Limits of X  6.3.1 


xi Component of x (Morris design)  5.3.2 


xlower,i Lower limit of xi (Morris design)  5.3.2 


xupper,i Upper limit of x, (Morris design)i  5.3.2 


y Horizontal coordinate (length) L 3.2.1 


Y Transformation of X  6.3.1 


y(x) Output as a result from simulation 


with x as input parameters (Morris 


design) 


 5.3.2 


z Vertical coordinate L 2.2.1 


Z Vector of standard normal variables  6.3.1 


Symbol Definition Units Paragraph 


z(xi) Measured sample values at point xi,   3.2.3 


zg Ground surface level L 4.2.1.3 


)(ˆ ixz  Predicted (krigged) value at 


location xi 


 3.2.3 


 


Greek symbols 
Symbol Definition Units             Paragraph 


α Empirical fitting parameter of van 


Genuchten-Mualem hydraulic 


functions 


L-1 2.2.1 
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α 


No. of offsprings generated by each 


sub- complex (SCE algorithm) 


- 4.3.3.3 


αm Measure of the relative 


contributions of gravity and 


capillary forces to water movement 


in an unsaturated soil 


L-1 3.1 


β 


No. of evolution steps taken by 


each complex before shuffling 


(SCE algorithm) 


- 4.3.3.3 


γ  Estimated semivariance  - 3.2.3 


δ  Dimensionless parameter in the 


Morris design 


- 5.3.2 


∆ Dimensionless parameter in the 


Morris design 


- 5.3.2 


ε Transformation constant - 6.3.2 


φm Matric flux potential L2T-1 3.1 


θ Volumetric water content L3L-3 2.2.1 


θF Volumetric water content at field 


capacity 


L³L-³ 4.2.1.2 


θobs  Mean observed daily moisture 


content 


 


L3L-3 5.3 


Symbol Definition Units Paragraph 


θr Residual water content L3L-3 2.2.1 


θs Saturated water content  L3L-3 2.2.1 


θsim  Mean simulated daily moisture 


content 


L3L-3 5.3 


θW Volumetric moisture content at 


wilting point  


L³L-³ 4.2.1.2 


ω Weighting factor - 6.3.2 


ψ Soil potential  L 2.2.1 
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Mathematical and statistical symbols 
Symbol Definition Units Paragraph 


CDF  Normal cumulative distribution 


function with sample mean and 


standard deviation taken from Y(X) 


 6.3.1 


F(X) Cumulative distribution functions 


of sample X 


 5.3.1 


)(Fg  Transformation function of F  6.3.2 


Np(µ, ∑) p-dimensional normal density   6.3.1 


µ Mean    


S Lower triangular (Choleski) 


decomposition of Σ  


 6.3.1 


S(Y) Empirical cumulative distribution 


function of Y(X)  


 6.3.1 


σ Standard deviation   


U Johnson Transformation   6.3.1 


Σ  Variance-covariance matrix   6.3.1 


A  Determinant of matrix A   


A  Mean of matrix A   


∆x Difference operator for variable x   


 


Acronyms 
Symbol Definition Units Paragraph 


CD Coefficient of Determination  7.2 


CI Confidence Interval  2.2 


GLUE Generalized Likelihood Uncertainty 


Estimation 


 4.4.2.1 


LAI Leaf Area Index  4.2.1.2 


MC Monte Carlo  5.5.2.1 


ME Mean of the reduced Error vector  3.2.3 


MRE Mean squared Reduced Error  3.2.3 
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MSE Mean Squared Error   6.3.3 


RE Reduced Error vector  3.2.3 


res   residual  5.3 


RMSE  Root Mean Squared Error  5.3 


SA Sensitivity analysis  4.3.1 


SCE Shuffled Complex Evolution  4.3.3.3 


SSR Sum of squared residuals  3.2.2.3 


STD Standard Deviation  5.3 


UB Uncertainty bound  6.4.3 


 


 


 


 


 


 


 


 


 







