
Adjoint method for obtaining backward-in-time location
and travel time probabilities of a conservative
groundwater contaminant

Roseanna M. Neupauer and John L. Wilson
Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro

Abstract. Backward location and travel time probabilities can be used to determine the
prior location of contamination in an aquifer. For a contaminant particle that was
detected in an aquifer, the backward location probability is the probability of where the
particle was located at some prior time. Backward travel time probability is the probability
of when the particle was located at some position upgradient of the detection. These
probabilities can be used to improve characterization of known sources of groundwater
contamination, to identify previously unknown contamination sources, and to delineate
capture zones. For simple model domains, backward probabilities can be obtained
heuristically from a forward model of contaminant transport. For multidimensional
problems and complex domain geometries, the heuristic approach is difficult to implement
and verify. The adjoint method provides a formal approach for obtaining backward
probabilities for all model domains and geometries. We formally show that the backward
model probabilities are adjoint states of resident concentration. We provide a
methodology for obtaining the governing equations and boundary and final conditions for
these probabilities. The approach is illustrated using a one-dimensional, semi-infinite
domain that mimics flow to a production well, and these results are compared to
equivalent probabilities derived heuristically.

1. Introduction

Transport of a conservative solute in groundwater is usually
described by the advection-dispersion equation (ADE). Solu-
tions of the ADE express solute concentration as a function of
location and time, for all times after the initial release of the
solute. This form of the ADE is a forward-in-time model be-
cause we track the solute as it moves forward in time.

Concentration can be expressed in two different forms: res-
ident concentration and flux concentration [Kreft and Zuber,
1978; Parker and van Genuchten, 1984]. Resident concentra-
tion is a measure of the mass of solute per unit volume of
water, or a volume-averaged concentration. Flux concentration
is a measure of the solute mass flux per unit water flux or a
flux-averaged concentration. The forward-in-time (forward)
ADE can be solved for either resident or flux concentration.

The forward ADE can also be used to solve for location
probability and travel time probability. If we consider an indi-
vidual solute parcel that was released from the contaminant
source, then the location probability of that parcel is the prob-
ability that it is located at a given position in space at some
later time [Dagan, 1989; Jury and Roth, 1990; Chin and Chit-
taluru, 1994]. Location probability is related to resident con-
centration [Jury and Roth, 1990]. Resident concentration mea-
sures the mass of solute at a given location in space at a
snapshot in time. If the resident concentration measurements
are normalized by the total mass of solute in the system, the
resulting distribution is the percentage of the total mass that is
at a given location in space. Suppose we are interested in the
present location of one parcel of mass that was input at the

source. The parcel is more likely to be found at a location that
has a high solute concentration (or, equivalently, a high nor-
malized solute concentration) than a location that has a low
solute concentration. Thus, at any point in time, the normal-
ized concentration distribution is equivalent to a probability
density function for the location of the parcel (i.e., location
probability). Note that for a unit source, the resulting resident
concentration is equal to the location probability.

If we again consider an individual solute parcel that was
released from the contaminant source, then the travel time
probability of that parcel is the probability that it will arrive at
a fixed location after a given amount of time has elapsed [Jury,
1982; Chin and Chittaluru, 1994]. Travel time probability is
related to flux concentration [Jury, 1982]. Flux concentration
measures the mass of solute passing through a fixed location in
space over a finite time interval. Mass flux can be expressed as
the product of flux concentration and groundwater velocity. In
a one-dimensional system, the entire mass of a conservative
solute must eventually pass through every point downstream of
the source. For a given location downstream of the source, if
the mass flux is normalized by the total mass released from the
source, the resulting distribution shows the percentage of the
total mass that passes the given location in any finite time
interval. Suppose we are interested in determining when one
parcel of mass that was input at the source will reach a given
location. This parcel is more likely to reach the given location
when the flux concentration (or normalized mass flux) is high
rather than when it is low. Therefore, for a solute parcel trav-
eling from the source to any given location, the normalized
mass flux distribution is equivalent to the travel time probabil-
ity density function. Since these forward-in-time probabilities
are equivalent to normalized concentrations, the forward ADE
can also be solved for location and travel time probabilities.
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In this discussion, the probabilities have been defined from
the point of view of the contaminant source; i.e., they are
probabilities for a solute parcel that originated at the contam-
inant source. Suppose we detect contaminant in the ground-
water, but its prior location and source is unknown. We can use
a backward-in-time version of the ADE to solve for the prior
location probability of the detected solute parcel and also for
the travel time probability of the detected solute parcel from
some upgradient location to the detection location [Wilson and
Liu, 1995]. These probabilities can be used to improve char-
acterization of known sources of groundwater contamination,
to identify previously unknown contamination sources, and to
delineate capture zones. A related problem that has received
much attention recently is a deterministic problem in which the
release history of a contamination source is reconstructed from
the present position of the contamination plume [e.g., Skaggs
and Kabala, 1994]. In the source history reconstruction prob-
lem, the source location is assumed to be known, while the
problem presented here can be used to obtain information
about the locations of unknown sources.

In the forward model, we are interested in where the solute
parcel is going, so the flow of information is away from the
source, i.e., in the direction of the groundwater velocity. In the
backward model, we are interested in where the solute parcel
has been, so the flow of information is away from the detection
and back toward the (possibly unknown) source, i.e., in the
opposite direction as the groundwater velocity. Given a for-

ward model, the equivalent backward probability model can be
obtained heuristically by reversing the sign on the advection
term to account for the reversed flow of information and by
modifying the source term, boundary conditions, and initial
condition to include information about the detected solute
parcel. Although the dispersion coefficient is a function of
velocity, no sign reversal is performed on the dispersion term.
Dispersion is proportional to the magnitude of velocity; there-
fore reversing the direction of velocity does not affect the sign
on the dispersion coefficient. The resulting backward-in-time
location and travel time probabilities can provide information
about the prior location of contamination before it was de-
tected in the aquifer. Wilson and Liu [1995], who first derived
expressions for backward-in-time location and travel time
probabilities, used this approach. Although they heuristically
obtained accurate expressions for these probabilities (as dem-
onstrated in our Figure 1), no formal justification was given for
the governing equation or boundary conditions. Furthermore,
the heuristic approach is difficult to implement and verify for
multidimensional problems and complex domain geometries.

Bagtzoglou et al. [1992] also used backward location proba-
bilities to identify sources of contamination. They obtained
probability maps using a random walk method by reversing the
flow field and leaving the dispersion process unchanged. Uffink
[1989] used a similar random walk approach to delineate cap-
ture zones around pumping wells.

We propose the adjoint method as a formal approach for
obtaining backward probabilities for all model domains. The
adjoint method has been used in a variety of applications in
groundwater modeling including sensitivity analysis [Sykes et
al., 1985; Wilson and Metcalfe, 1985], parameter estimation
[Neuman, 1980; Sun and Yeh, 1985; Townley and Wilson, 1985;
Lu et al., 1988; Sun and Yeh, 1990; Yeh and Sun, 1990], optimal
design [Ahlfeld et al., 1988], and others [see Sun, 1994]. Central
to each of these methods is a linear functional known as a
performance measure or an objective function. The perfor-
mance measure is problem specific and depends on the goal of
the study. For example, in their sensitivity analysis, Sykes et al.
[1985] defined one of their performance measures to be piezo-
metric head at a point in an aquifer and then used the adjoint
method to determine sensitivity of this performance measure
to the model boundary conditions. Sun and Yeh [1985], in a
parameter estimation problem, defined their performance
measure to be the sum of the squared differences between
measured and modeled piezometric head values. They used
the adjoint method to determine the sensitivity of this perfor-
mance measure to the aquifer transmissivity values and then
used these results to find the optimal values.

With the adjoint method, the forward governing equation
(forward operator), with concentration as the dependent vari-
able, is replaced by the adjoint equation (adjoint operator),
with the adjoint state as the dependent variable. The adjoint
state is a function that describes the marginal change in the
performance measure due to a unit injection of mass at any
point in the system, as we will illustrate later. A different
adjoint state can be defined for each performance measure.
The adjoint equation models the same physical processes as
the forward equation; however, the flow of information is re-
versed (i.e., the adjoint state is propagated backward in time).
A Green’s function is an example of an adjoint state.

In this paper, we show that backward-in-time location and
travel time probabilities are adjoint states of forward-in-time
resident concentration. We provide a methodology for obtain-

Figure 1. Plots of location and travel time probability, simi-
lar to plots presented by Wilson and Liu [1995]. (a) Plot of
resident concentration and forward location probability for a
contamination source at xo 5 2100 for three times. (b) Plot
of flux concentration at the pumping well (at x 5 0) and
forward travel time probability to the pumping well for a con-
tamination source at xo 5 2100. (c) Plot of forward travel
time probability to the pumping well for five different contam-
ination source locations. The cross denotes the probability that
t 5 100 for each source location. (d) Plot of backward travel
time probability from the pumping well, showing the probabil-
ity that t 5 100 for all possible source locations. The cross
denotes ft(t; x) for the source locations in Figure 1c.
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ing the governing equations and boundary and initial condi-
tions for these probabilities and show that they are equivalent
to those derived by Wilson and Liu [1995]. The illustration is
shown for a one-dimensional, semi-infinite domain. Although
one-dimensional flow and transport is highly idealized, it is
equivalent to the domain used by Wilson and Liu [1995], and
after the methodology has been developed and verified for a
one-dimensional system, we can easily extend it to multiple
dimensions. The one-dimensional, semi-infinite domain repre-
sents flow and transport to a production well. The production
well is the driving force for flow and acts as a sink of water and
solute. The adjoint approach can be applied to other domains,
such as an infinite domain with an interior monitoring well or
weak production well as a detection mechanism. In these infi-
nite domain scenarios, the driving force for flow would be a
prescribed velocity field.

In the next section, we present forward models for resident
and flux concentration, and we show the relationship between
these models and the corresponding forward probabilities. The
backward models for location and travel time probabilities are
developed heuristically from the forward probability models,
following the work of Wilson and Liu [1995] and Liu [1995]. In
the subsequent section, a general form of the adjoint equation
is derived. It is then applied to the semi-infinite domain to
derive two different adjoint states, one representing location
probability and the other representing travel time probability.
We show that these probabilities are equivalent to the back-
ward model probabilities that were developed heuristically by
Wilson and Liu [1995].

2. One-Dimensional Contaminant Transport
In this section, solutions to the advection-dispersion equa-

tion are described for resident and flux concentration in a
one-dimensional system for an instantaneous point source of
contaminant. Using these equations, expressions are devel-
oped for location and travel time probabilities for both forward
and backward models.

Wilson and Liu [1995] developed expressions for backward-
in-time location and travel time probabilities in a one-
dimensional, semi-infinite domain. In that work, the domain
extended from 0 # x , ` , with a pumping well (detection
mechanism) at x 5 0 and an instantaneous point source of
contaminant at xo . 0. Thus the velocity was in the direction
of 2x . The equations presented here are taken from Wilson
and Liu [1995]; however, in this work, the domain extends from
2` , x # 0, and velocity is moving in the 1x direction. The
pumping well is still located at x 5 0, and the instantaneous
point source of contaminant is at xo , 0.

2.1. Forward Model

Contaminant transport in a one-dimensional, semi-infinite
domain is described by the following form of the advection-
dispersion equation:

­Cr

­t 5
­

­ x SD
­Cr

­ x D 2
­~vCr!

­ x (1)

Cr3 0 x3 2`

­Cr

­ x 5 0 x 5 0

Cr~ x , 0! 5
M
Au

d~ x 2 xo! ,

where Cr is resident concentration, D is the dispersion coeffi-
cient, v is groundwater velocity, x is the spatial dimension, t is
time, M is total source mass, A is cross-sectional area, u is
porosity, d( x) is the Dirac delta function, and xo is the source
location ( xo , 0). The boundary at x 5 0 represents a
pumping well. The boundary condition specifies that the con-
centration inside the well bore is equal to the concentration of
the fluid in the porous media immediately adjacent to the well
bore. Although this might not be exact, it is mathematically
convenient and an accepted boundary condition at a pumping
well [e.g., Chen and Woodside, 1988].

Wilson and Liu [1995] derived the solution to this problem
for constant v and D:

Cr~ x , t! 5
1

Î4pDt

M
Au

exp H2
~ x 2 xo 2 vt!2

4Dt J
z F 1 1 exp H2xox

Dt J G
2

v
2D

M
Au

exp H2vxo

D J erfc F2x 2 xo 1 vt

Î4Dt G . (2)

By normalizing resident concentration by the total mass in
the system, we obtain the following expression for location
probability, fx( x; t):

fx~ x; t! 5
Cr~ x , t!

E
2`

0

Cr~ x , t! dx

. (3)

The integral in the denominator evaluates to M/Au , which can
be obtained by integrating (2). Alternatively, we see from (1)
that there are no internal sources or sinks of contamination,
and the contaminant is nonreactive; therefore mass is con-
served. In other words, the total mass in the system at any time
is equal to the total mass in the system at the initial time. Since
Cr( x , 0) 5 (M/Au )d( x 2 xo), where 2` , xo # 0, the
total mass in the system at any time is *2`

0 Cr( x , 0) dx 5
M/Au; so location probability in (3) is equal to Cr/(M/Au ),
and

fx~ x; t! 5
1

Î4pDt
exp H2

~ x 2 xo 2 vt!2

4Dt J
z F 1 1 exp H2xox

Dt J G
2

v
2D exp H2vxo

D J erfc F2x 2 xo 1 vt

Î4Dt G . (4)

This equation could also be obtained by solving (1), replac-
ing Cr with fx, and using the initial condition fx( x; 0) 5
d( x 2 xo) 5 Cr( x , 0)/(M/Au ).

Figure 1a shows plots of resident concentration and location
probability as a function of position for three different times,
t 5 1, 20, and 50 (dimensionless units). The source location
is at xo 5 2100. Other parameter values are v 5 1.0, D 5
5.0, M 5 1.0, A 5 1.0, and u 5 0.25. These parameter values
were used for all plots in Figure 1. A high value of the disper-
sion coefficient was used to illustrate the effects of dispersion.
The left-hand axis represents resident concentration, and the
right-hand axis represent location probability (resident con-
centration normalized by M/Au 5 4.0).
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Flux concentration is related to resident concentration as
follows [Parker and van Genuchten, 1984]:

Cf 5 Cr 2
D
v

­Cr

­ x , (5)

where Cf is flux concentration. For the semi-infinite domain
described above, the gradient of Cr at x 5 0 is zero; therefore,
at the pumping well ( x 5 0), flux concentration is equal to
resident concentration [Wilson and Liu, 1995]

Cf~0, t! 5
1

ÎpDt

M
Au

exp H2
~ xo 1 vt!2

4Dt J
2

v
2D

M
Au

exp H2vxo

D J erfc F2xo 1 vt

Î4Dt G . (6)

Normalizing flux concentration by the total mass in the sys-
tem results in the following expression for travel time proba-
bility, ft(t; x), for transport from the source to the well:

f t~t; x! 5
vCf~ x , t!

E
0

`

vCf~ x , t! dt

. (7)

Integrating the first term in (6) over the time domain yields
(2/v)(M/Au) [Abramowitz and Stegun, 1972, equation 29.3.84] and
integrating the second term in (6) yields 2(1/v)(M/Au )
[Abramowitz and Stegun, 1972, equation 7.4.21]; thus the inte-
gral in the denominator of (7) evaluates to M/Au . The travel
time probability is equal to vCf/(M/Au ), and

f t~t; 0! 5
v

ÎpDt
exp H2

~ xo 1 vt!2

4Dt J
2

v2

2D exp H2vxo

D J erfc F2xo 1 vt

Î4Dt G . (8)

Figure 1b shows a plot of flux concentration and travel time
probability at the pumping well at x 5 0, as a function of time,
for contamination from a source at location xo 5 2100. The
left-hand axis represents flux concentration, and the right-hand
axis represents travel time probability (flux concentration nor-
malized by M/Au 5 4.0).

2.2. Backward Model

For constant D and v , Wilson and Liu [1995] showed that
the backward model for location probability can be obtained by
solving the following equation:

­fx

­t
5 D

­2fx

­ x2 1 v
­fx

­ x (9)

fx3 0 x3 2`

vfx 1 D
­fx

­ x 5 0 x 5 0

fx~ x; 0! 5 d~ x 2 xd! ,

where t is backward time (t 5 td 2 t , where td is the
detection time) and xd is the detection location, which here is
the location of the pumping well at xd 5 0. The solution to this
equation is the backward-in-time location probability for a
detection at xd 5 0 and is given by [Wilson and Liu, 1995]

fx~ x; t! 5
1

ÎpDt
exp H2

~ x 1 vt!2

4Dt J
2

v
2D exp H2vx

D J erfc F2x 1 vt

Î4Dt G . (10)

For a contaminant parcel removed at the pumping well (xd 5 0),
this equation describes the probability density function of the
location of the contaminant parcel at time t before it was
observed at the pumping well. Wilson and Liu [1995] also
showed that the backward model for travel time probability
can be obtained by solving

­ft

­t
5 D

­2ft

­ x2 1 v
­ft

­ x (11)

ft3 0 x3 2`

vft 1 D
­ft

­ x 5 vd~t! x 5 0

ft~ x; 0! 5 0

where D and v are constant and the pumping well is assumed
to be at xd 5 0. The solution to this equation is the backward-
in-time travel time probability from location x to a detection at
xd 5 0 [Wilson and Liu, 1995].

ft~t; x! 5
v

ÎpDt
exp H2

~ x 1 vt!2

4Dt J
2

v2

2D exp H2vx
D J erfc F2x 1 vt

Î4Dt G . (12)

For a contaminant parcel removed at the pumping well, this
equation describes the probability density function of the travel
time from some upgradient location x to the pumping well at
xd 5 0.

Figures 1c and 1d provide an illustration of the relationship
between forward and backward travel-time-probability. Figure
1c shows the forward travel time probability from many source
locations to the pumping well at x 5 0. For a travel time of t 5
100, the travel time probability is denoted with a cross. For a
backward time of t 5 100, Figure 1d shows the backward travel
time probability from the pumping well for all possible source
locations. The source locations corresponding to those shown
in Figure 1c are indicated with a cross. These plots show that
the backward probabilities can be obtained from the multiple
forward probabilities; however, more simulations are needed
(one for each possible source location), and less information is
obtained (probability is only obtained for a finite number of
source locations).

3. Derivation of Adjoint Equations
A common application of the adjoint method [Marchuk et

al., 1996] in groundwater hydrology is sensitivity analysis [e.g.,
Sykes et al., 1985; Wilson and Metcalfe, 1985; Sun and Yeh,
1990], often in the context of an inverse problem. Sensitivity
analysis is used to determine the sensitivity of the state of the
system (model output) to changes in parameter values (model
input). The direct method of performing a sensitivity analysis is
to vary the input parameter slightly, rerun the model, and
determine the effect on the model output. This method re-
quires one simulation for each parameter. The adjoint method

NEUPAUER AND WILSON: BACKWARD LOCATION AND TRAVEL TIME PROBABILITIES3392



offers a more efficient approach in which the adjoint equation
is solved once, and then the result is used to directly compute
the sensitivity of the state of the system to all parameters.

Although we are not interested in performing a sensitivity
analysis, we follow the sensitivity analysis approach to obtain
the adjoint equation. In this section, the general adjoint equa-
tion is derived for the advection-dispersion equation. Then, the
derivation is applied to location and travel time probabilities in
a semi-infinite domain. By first developing the general adjoint
equation, we can adapt the results to address other model
domains, such as the infinite domain problem, which could
simulate flow and transport through an observation well.

3.1. General Adjoint Equation

The adjoint of the advection-dispersion equation (ADE) is
developed here following the sensitivity analysis approach of
Sykes et al. [1985] (see also Sun and Yeh [1990] and Sun [1994]).
In sensitivity analysis, a performance measure is defined that
quantifies the state of the system. The goal is to determine the
marginal sensitivity of this performance measure to small
changes in parameter values. In this section, the adjoint equa-
tion is first derived for the advection-dispersion equation using
a general performance measure.

The performance measure P that quantifies the state of the
system can be expressed as

P 5 EE
x,t

h~a , C! dx dt , (13)

where h(a, C) is a functional of the state of the system, a is a
vector of system parameters (e.g., a 5 [v , D , M , u]), C is
concentration, and the integration is over the entire space-time
domain. The marginal sensitivity of this performance measure
with respect to one parameter, ak, is obtained by differentiat-
ing (13) with respect to ak:

dP
dak

5 EE
x,t

F ­h~a , C!

­ak
1

­h~a , C!

­C cG dx dt , (14)

where dP/dak is the marginal sensitivity and c is the state
sensitivity, c 5 ­C/­ak, where c is a measure of the change
in system state, C , due to a small change in one of the param-
eters, ak, while holding constant x , t , and the other parame-
ters in a. Since the state sensitivity is unknown, adjoint theory
can be used to eliminate it from the previous equation. This is
done by first differentiating the advection-dispersion equation
(including initial and boundary conditions) with respect to the
parameter ak, to obtain a form of the ADE in terms of the
state sensitivity, c.

One-dimensional contaminant transport can be described by
the following general form of the advection-dispersion equation:

2
­C
­t 1

­

­ x SD
­C
­ x D 2

­~vC!

­ x 1 Q~ x , t! 5 0, (15)

where Q( x , t) describes the contaminant source. The general
initial and boundary conditions for this equation are

a1C 1 b1

­C
­ x 5 g1~t! x 5 x1

a2C 1 b2

­C
­ x 5 g2~t! x 5 x2

C~ x , 0! 5 g3~ x! ,

where x1 and x2 are the boundary locations, x2 . x1, while a1,

a2, b1, and b2 are known constants, and g1(t), g2(t), and
g3( x) are known functions.

Differentiating (15) and its boundary and initial conditions
with respect to ak gives

2
­c

­t 1
­

­ x SD
­c

­ xD 1
­

­ x S ­D
­ak

­C
­ x D 2

­~vc!

­ x

2
­

­ x SC
­v
­ak

D 1
­Q~ x , t!

­ak
5 0 (16)

a1c 1 b1

­c

­ x 5
­g1~t!

­ak
x 5 x1

a2c 1 b2

­c

­ x 5
­g2~t!

­ak
x 5 x2

c~ x , 0! 5
­g3~ x!

­ak
,

where we assumed that the coefficients a1, a2, b1, and b2 are
independent of ak, appropriate for the problems presented in
this paper.

The next step is to obtain a similar form of the ADE in terms
of the adjoint state, c*, which, at this stage, is just an arbitrary
function. First, we define the inner product of two functions,
c* and j, to be **x ,t c*j# dx dt , where the overbar denotes
complex conjugate. All functions used in this paper are real;
therefore j# 5 j. Taking the inner product of the adjoint state,
c*, and each term on both sides of (16) gives

E
0

TE
x1

x2 F2c*
­c

­t 1 c*
­

­ x SD
­c

­ xD 2 c*
­~vc!

­ x

1 c*
­Q~ x , t!

­ak
1 c*

­

­ x S ­D
­ak

­C
­ x D

2 c*
­

­ x SC
­v
­ak

D G dx dt 5 0. (17)

Integration is carried out over the entire domain: x1 # x # x2,
and 0 # t # T (we will later show that the final time T is
equivalent to the detection time). This equation can be ma-
nipulated, term by term, to obtain a similar form of the ADE
with c* as the state variable, and with additional divergence
terms. Take the first term

E
0

TE
x1

x2

2 c*
­c

­t dx dt

5 E
0

TE
x1

x2 F2
­

­t ~c*c! 1 c
­c*
­t G dx dt . (18)

For the second term,

E
0

TE
x1

x2

c*
­

­ x SD
­c

­ xD dx dt

5 E
0

TE
x1

x2 F ­

­ x SDc*
­c

­ xD 2 D
­c*
­ x

­c

­ xG dx dt

5 E
0

TE
x1

x2 F ­

­ x SDc*
­c

­ xD 2
­

­ x SDc
­c*
­ x D

1 c
­

­ x SD
­c*
­ x D G dx dt . (19)
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The third term becomes

E
0

TE
x1

x2

2 c*
­~vc!

­ x dx dt

5 E
0

TE
x1

x2 F2
­

­ x ~vc*c! 1 cv
­c*
­ x G dx dt . (20)

No manipulation is done to the remaining terms in (17).
Substituting (18), (19), and (20) into (17) and rearranging

the terms gives

E
0

TE
x1

x2 H cF ­c*
­t 1

­

­ x SD
­c*
­ x D 1 v

­c*
­ x G 1 c*

­Q
­ak

1 c*
­

­ x S ­D
­ak

­C
­ x D 2 c*

­

­ x SC
­v
­ak

D 1
­

­ x

z FDc*
­c

­ x 2 Dc
­c*
­ x 2 vc*cG 2

­

­t ~c*c!J dx dt

5 0. (21)

Since the left-hand side of this equation is equal to zero, it can
be added to the right-hand side of the marginal sensitivity
equation (14), yielding

dP
dak

5E
0

TE
x1

x2 H­h~a, C!

­ak
1 cF­h

­C 1
­c*
­t 1

­

­x SD
­c*
­x D 1 v

­c*
­x G

1 c*
­Q
­ak

1 c*
­

­ x S ­D
­ak

­C
­ x D 2 c*

­

­ x SC
­v
­ak

D 1
­

­ x

z FDc*
­c

­ x 2 Dc
­c*
­ x 2 vc*cG2

­

­t ~c*c!J dx dt .

(22)

The last two terms in this equation are divergence terms,
which, after integration, are evaluated at the boundary condi-
tions. Thus these terms can be simplified as follows:

E
0

TE
x1

x2 ­

­ x FDc*
­c

­ x 2 Dc
­c*
­ x 2 vc*cG dx dt

5 E
0

T FDc*
­c

­ x 2 Dc
­c*
­ x 2 vc*cG U

x1

x2

dt (23)

E
0

TE
x1

x2

2
­

­t ~c*c! dx dt 5 E
x1

x2

2 ~c*c!U
0

T

dx (24)

where the time domain extends from t 5 0 to t 5 T .
Recall that the intent of this exercise is to eliminate the

unknown state sensitivity, c, from the (14), or, equivalently,
from (22). Recall also that the adjoint state, c*, is still an
arbitrary function. Thus the adjoint state, c*, can be defined in
such a way as to eliminate the state sensitivity, c, from (22).
From these considerations, the governing equation for the
adjoint state is

­h~a , C!

­C 1
­c*
­t 1

­

­ x SD
­c*
­ x D 1 v

­c*
­ x 5 0, (25)

and the following statements must be satisfied by the boundary
and initial conditions, respectively:

FDc*
­c

­ x 2 Dc
­c*
­ x 2 vc*cG U

x1

x2

5 0 (26)

~c*c! u0
T 5 0. (27)

The boundary and initial conditions of the state sensitivity, c,
have been defined in the governing equation of the forward
model (16). By substituting these values for c into (26) and
(27), we obtain the boundary and final conditions on c*, in
terms of known quantities (e.g., v and D). We have now
defined an adjoint equation (25) and its boundary (26) and
final (27) conditions, which can be solved to obtain the (no
longer arbitrary) functional form of the adjoint state c*. This
function c* is an adjoint state of the original state variable C .

Through this derivation, we see that there are many differ-
ent adjoint states of C . For each definition of the performance
measure, we have a different functional h and therefore dif-
ferent forms of the adjoint equation and the adjoint state. Two
possible adjoint states are location probability and travel-time
probability, which we derive in the next section. Also, in de-
riving the adjoint equation, we added zero (21) to the marginal
sensitivity equation (14) to obtain an equivalent marginal sen-
sitivity equation (22) from which we eliminated the state sen-
sitivity c by defining an adjoint equation. We could have added
a different form of zero (e.g., by multiplying (21) by a constant)
to the marginal sensitivity equation. The result would be a
different, but equally valid, adjoint equation.

Our intent was to obtain the adjoint of the ADE, which we
have done in general form for one dimension. For complete-
ness, we now discuss the relationship between adjoint states
and sensitivity analysis. Each adjoint state represents a differ-
ent measure of the system sensitivity. If we were performing a
sensitivity analysis, we would use the appropriate adjoint state
in the reduced form of (22) to obtain our solution to the
marginal sensitivity, dP/dak. Note that if we were performing
a sensitivity analysis with respect to the source strength at one
point in space-time, the adjoint state would be equivalent to
the marginal sensitivity. In other words, let the contaminant
source be an instantaneous point source at x 5 x* and t 5 t*,
so Q( x , t) 5 Q*d( x 2 x*)d(t 2 t*), where Q* is the source
strength. Then, ak is the source strength, Q*. Since f , D , and
v are independent of Q*, the terms in (22) containing their
derivatives with respect to ak are equal to zero. The terms in
(22) that contain c are equal to zero by the definition of the
adjoint state, c*. Therefore the only nonzero term in (22) is
c*­Q/­ak. Since ak is defined as Q*, it can be seen that
­Q/­ak is equal to d( x 2 x*)d(t 2 t*). Thus we have
c*­Q/­ak 5 c*d(x 2 x*)d(t 2 t*) and, from (22), dP/dak 5
c*( x*, t*). Therefore, by choosing ak to be the magnitude of
Q at x 5 x* and t 5 t*, the marginal sensitivity of the
performance measure is equal to the adjoint state. In other
words, the adjoint state describes the sensitivity of the perfor-
mance measure to a unit source at any location in the space-
time domain.

3.2. Complete Adjoint Equations

The general adjoint equations that were derived in the pre-
vious section (25)–(27) are used to obtain expressions for the
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adjoint states of resident concentration. The backward-in-time
location and travel time probabilities are two possible adjoint
states. To use the general equation, we need to define the
performance measure P in terms of the functional, h(a , C), as
shown in (13). As we will show, to obtain location probability
as the adjoint state, we define the performance measure to be
resident concentration at a point in the space-time domain,
and for travel time probability, we use flux concentration at a
point in the space-time domain.

To complete the adjoint equation, we also need to specify
the boundary and initial conditions on the state variable C .
The boundary conditions depend on the system domain (e.g.,
semi-infinite domain). From the boundary and initial condi-
tions on C , we can obtain their counterparts for the state
sensitivity, c; through these conditions, we obtain the boundary
and final conditions for the adjoint equation.

The governing equation for contaminant transport in a one-
dimensional system in a semi-infinite domain (2` , x # 0)
that is bounded at the downgradient boundary by a pumping
well is

2
­Cr

­t 1
­

­ x SD
­Cr

­ x D 2
­~vCr!

­ x 1 Q~ x , t! 5 0, (28)

where Cr is resident concentration. The appropriate initial and
boundary conditions for this equation are

Cr~ x , t!3 0 x3 2`

­Cr

­ x 5 0 x 5 0

Cr~ x , 0! 5 0.

Taking the derivative of these equations with respect to an
arbitrary parameter ak gives

2
­c

­t 1
­

­ x SD
­c

­ xD 2
­~vc!

­ x 1
­

­ x S ­D
­ak

­Cr

­ x D
2

­

­ x SCr
­v
­ak

D 1
­Q~ x , t!

­ak
5 0 (29)

c~ x , t!3 0 x3 2`

­c

­ x 5 0 x 5 0

c~ x , 0! 5 0.

Using these boundary and initial conditions with (26) and
(27), we can obtain the appropriate boundary and final condi-
tions for the adjoint state. Substituting c( x , t) 3 0 as x 3
2` and ­c/­ x 5 0 at x 5 0 into (26), we are left with

2Dc
­c*
­ x U

x50

2 vc*c ux50 2 Dc*
­c

­ xU
x32`

5 0. (30)

This equation is satisfied if we set c*( x , t) 3 0 as x 3 2`
and D­c*/­ x 1 vc* 5 0 at x 5 0. These are the boundary
conditions for the adjoint equation. Note that the forward
problem had a second-type boundary condition at the well,
while the adjoint problem has a third-type boundary condition
for the well. For the final condition, we substitute initial con-
dition c( x , 0) 5 0 into (27), resulting in

c*c uT 5 0. (31)

For this equation to be satisfied, the final condition for the
adjoint equation must be c*( x , T) 5 0.

The only remaining undefined item in the adjoint equation is
the functional h(a , Cr). Here we have indicated the depen-
dence of h on resident concentration, Cr (instead of just C),
because we wrote the governing ADE (28) in terms of resident
concentration. The form of h(a , Cr) depends on whether we
are looking for location probability or travel time probability.

3.2.1. Location probability. Recall that the normalized
distribution of resident concentration Cr is equivalent to a
probability density function for the location of a solute parcel
from a given source. Define the performance measure P as the
resident concentration at a point, ( x9 , t9), in the space-time
domain, which would usually be the location and time of de-
tection. The appropriate functional h is

h~a , Cr! 5 Cr~ x , t!d~ x 2 x9!d~t 2 t9! . (32)

Substituting (32) into (13) and integrating over the ( x , t)
domain gives P 5 Cr( x9 , t9). For the adjoint equation (25),
we need ­h/­Cr, which is a Fréchet derivative [Saaty, 1981] of
h(a , Cr) with respect to the function Cr. Taking the Fréchet
derivative of both sides of (32), we obtain (see Appendix D).

­h~a , Cr!

­Cr 5 d~ x 2 x9!d~t 2 t9! . (33)

Note that final time T is an arbitrary upper limit of the time
domain in the forward problem. If the performance measure
for the forward model is resident concentration at ( x9 , t9), we
are only interested in the solution for t # t9 . Thus the upper
limit of the time domain in the forward problem can be arbi-
trarily set to T 5 t9 . For the backward problem (see section
2.2), the backward time t is given by t 5 T 2 t 5 t9 2 t .
Using T 5 t9 and v and D constant, the adjoint equation (25)
and its boundary and final conditions for location probability in
a semi-infinite domain are given by

2
­c*
­t 2 D

­2c*
­ x2 2 v

­c*
­ x 5 d~ x 2 x9!d~t 2 T! , (34)

c*~ x , t!3 0 x3 2`

D
­c*
­ x 1 vc* 5 0 x 5 0

c*~ x , T! 5 0.

This equation can be solved using Laplace transforms. The
solution (derived in Appendix A) is

c*~ x , t! 5
1

Î4pD~T 2 t!
exp H2

@ x 2 x9 1 v~T 2 t!#2

4D~T 2 t! J
z F 1 1 exp H 2xx9

D~T 2 t!J G 2
v

2D exp H2
vx
D J

z erfc S2
x 1 x9 2 v~T 2 t!

Î4D~T 2 t! D (35)

for 2` , x # 0 and 0 , t # T . This equation is equivalent
to the backward-in-time location probability proposed by Wil-
son and Liu [1995] for a detection at the pumping well (equa-
tion (10), where x9 5 xd 5 0 and t 5 T 2 t).

As stated earlier, the adjoint state describes the sensitivity of
the performance measure to a unit source at any location in the
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space-time domain. By this definition, the adjoint state in (35)
is the sensitivity of the resident concentration at x9 to a source
at any other location. Not only is resident concentration re-
lated to location probability [Jury and Roth, 1990], but in this
case of a unit source, they are the same. Thus the adjoint state
(35) is location probability.

3.2.2. Travel time probability. Recall that the normalized
mass flux vCf is equivalent to the travel time probability for a
given source location. Define the performance measure P as
the mass flux at a point ( x9 , t9) in the space-time domain. The
appropriate functional h is

h~a , Cr! 5 vCf~ x , t!d~ x 2 x9!d~t 2 t9! . (36)

Substituting (36) into (13) and integrating over the ( x , t)
domain gives P 5 vCf( x9 , t9). For the adjoint equation (25),
we need ­h/­Cr. Flux concentration is defined in terms of
resident concentration, as shown in (5). Substituting this ex-
pression in the functional h , we obtain

h~a , Cr! 5 F vCr 2 D
­Cr

­ x G d~ x 2 x9!d~t 2 t9! . (37)

Using this equation to solve for the Fréchet derivative, ­h/­Cr,
gives

­h~a , Cr!

­Cr 5 vd~ x 2 x9!d~t 2 t9! 1 Dd9~ x 2 x9!d~t 2 t9! ,

(38)

where d9( x) is the derivative with respect to x of the Dirac
delta function. The second term is derived in Appendix B.

By the argument used in the location probability problem,
we can arbitrarily take T 5 t9 . Thus, for travel time probability
in a semi-infinite domain, with v and D constant, the adjoint
equation and its boundary and final conditions are given by

2
­c*
­t 2 D

­2c*
­ x2 2 v

­c*
­ x

5 vd~ x 2 x9!d~t 2 T! 1 Dd9~ x 2 x9!d~t 2 T! , (39)

c*~ x , t!3 0 x3 2`

D
­c*
­ x 1 vc* 5 0 x 5 0

c*~ x , T! 5 0.

This equation can be solved using Laplace transforms. The
solution (derived in Appendix C) is

c*~ x , t! 5 2
x 2 x9 2 v~T 2 t!

4 ÎpD~T 2 t!3

z exp H2
@ x 2 x9 1 v~T 2 t!#2

4D~T 2 t! J
1

x 1 x9 1 3v~T 2 t!

4 ÎpD~T 2 t!3 exp H 2xx9

D~T 2 t!J
z exp H2

@ x 2 x9 1 v~T 2 t!#2

4D~T 2 t! J 2
v2

2D exp H2vx
D J

z erfc S2x 2 x9 1 v~T 2 t!

Î4D~T 2 t! D (40)

for 2` , x # 0 and 0 , t # T . This equation is equivalent
to the backward-in-time travel time probability proposed by

Wilson and Liu [1995] for a detection at the pumping well
(equation (12), with x9 5 xd 5 0 and t 5 T 2 t).

The adjoint state in (40) is the sensitivity of the mass flux at
x9 , e.g., the detection location, to a unit source at any other
location. Not only is mass flux related to travel time probability
[Jury, 1982], but in this case, they are the same. Thus the
adjoint state (40) is travel time probability.

4. Conclusions
Backward-in-time location and travel time probabilities can

be developed heuristically from the forward-in-time resident
and flux concentration distributions, as Wilson and Liu [1995]
showed for a one-dimensional, semi-infinite domain. Although
they arrived at the appropriate governing equation and bound-
ary conditions, their approach was based more on intuition
than on proof. To provide a consistent framework for obtain-
ing backward-in-time probabilities for multidimensional prob-
lems and all spatial domains, we propose the adjoint method.

In this paper, we demonstrated that the adjoint method
provides a formal framework for obtaining these backward-in-
time probabilities. We derived the one-dimensional adjoint
equation for backward-in-time location and travel time prob-
abilities in terms of general boundary conditions. By applying
the general form (25)–(27) of the equation to the special case
of a semi-infinite domain, we derived expressions for location
and travel time probabilities; then we verified that these prob-
abilities are equivalent to those obtained by Wilson and Liu
[1995]. The general form of the adjoint equation can be used to
find location and travel time probabilities for other boundary
conditions.

Backward-in-time probabilities can be used to obtain infor-
mation about where contamination was located before it was
detected. They have a variety of applications, including capture
zone delineation. The backward model is more efficient than
the forward model in situations in which the number of known
or potential sources is greater than the number of detections.
The benefit of the backward model is that, for each detection,
we solve the adjoint equation only once to obtain the back-
ward-in-time location probability for all prior locations at a
given time. In other words, for each detection, we obtain in-
formation about all possible prior locations after solving the
adjoint equation only once. With the forward model, we obtain
information about all possible future locations for contamina-
tion that was injected at one specified source. Thus, if we have
a few detections and many known or possible source locations,
the backward model is computationally more efficient than the
forward model in that fewer simulations must be run (i.e., one
simulation for each detection). However, if we have many
detections and only a few possible source locations, the for-
ward model is more computationally efficient than the back-
ward model.

The approach described in this paper is for a simple, ideal-
istic, one-dimensional system. By using the adjoint method,
development of the backward probabilities can now formally
be extended to a multidimensional system.

Appendix A: Derivation of the Solution to the
Adjoint Equation for Location Probability

The adjoint equation for location probability is shown in
(34). An equivalent equation is given here, with a new time
variable, t 5 T 2 t , and a new space variable, y 5 2x .
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­c*
­t

2 D
­2c*
­ y2 1 v

­c*
­ y 5 d~ y 2 y9!d~t! , (41)

c*~ y , t!3 0 y3 `

2D
­c*
­ y 1 vc* 5 0 y 5 0

c*~ y , 0! 5 0,

where y9 5 2x9 and 0 # y , ` .
Taking the Laplace transform with respect to time (t 3 s)

gives

sC 2 c*~ y , 0! 2 D
d2C

d y2 1 v
dC

d y 5 g~ y! (42)

C3 0 y3 `

vC 2 D
dC

d y 5 0 y 5 0,

where C is the transformed state of c* and g( y) 5 d( y 2 y9).
The second term on the left-hand side is equal to zero, accord-
ing to the initial condition in t (final condition in t). Taking a
second Laplace transform with respect to y ( y 3 r) gives

sĈ 2 Dr2Ĉ 1 DrC u y50 1 D
dC

d y U
y50

1 vrĈ 2 vC u y50 5 ĝ~r!

(43)

where Ĉ is the transformed state of C and ĝ(r) is the trans-
form of g( y). The fourth and sixth terms on the left-hand side
sum to zero according to the boundary condition at y 5 0. This
equation can be rearranged to give

Ĉ 5
ĝ~r! 2 DrC u y50

2Dr2 1 vr 1 s . (44)

Taking the inverse Laplace transform with respect to r (r 3 y)
gives

C 5 Lr3y
21 F ĝ~r! 2 DrC u y50

2D~r2 2 vr/D 2 s/D!G (45)

where L21 denotes the inverse Laplace transform.
Using partial fractions, the convolution theorem, and apply-

ing the boundary condition as y 3 ` , we obtain the following
expression for C:

C 5
1
vj F exp H vy

2D ~1 1 j!J
z E

y

`

g~ y0! expH2
vy0

2D ~1 1 j!J d y0 1 expH vy
2D ~1 2 j!J

z SE
0

y

g~ y0! exp H2
vy0

2D ~1 2 j!J d y0

2
1 2 j

1 1 j E
0

`

g~ y0! exp H2
vy0

2D ~1 1 j!J d y0D G , (46)

where j 5 =1 1 4sD/v2.
The adjoint state c* is found by taking the inverse Laplace

transform of the previous equation with respect to s . After
some algebraic manipulation and use of the shifting property,
we obtain

c* 5
1

Î4pDt E
0

`

g~ y0! exp H2
~ y 2 y0 2 vt!2

4Dt J d y0

1
1

Î4pDt E
0

`

g~ y0! exp H2yy0

Dt J
z exp H2

~ y 2 y0 2 vt!2

4Dt J d y0

2
v

2D exp H vy
D JE

0

`

g~ y0! erfc S y 1 y0 1 vt

Î4Dt
D d y0 .

(47)

Recall that g( y0) 5 d( y0 2 y9). Substituting this expres-
sion into (47), evaluating the integrals, and substituting y 5
2x , results in the expression for the adjoint state shown in
(35).

Appendix B: Verification of the Equality Used
in the Travel Time Probability Adjoint Equation

In the derivation of the adjoint equations (section 3.2), we
made use of the following weak equality:

­

­Cr F2D
­Cr

­ x d~ x 2 x9!d~t 2 t9!G 5 Dd9~ x 2 x9!d~t 2 t9! .

(48)

We justify this substitution here.
By taking the Fréchet derivative [Saaty, 1981] with respect to

Cr of the bracketed term in (48), we obtain the following
operator, L:

L 5 2Dd~ x 2 x9!d~t 2 t9!
­

­ x . (49)

Two operators are weakly equal if the results of their operation
on a test function are equal, i.e. L1 5 L2 if ^L1, f& 5 ^L2,
f& , where f is an arbitrary test function, and ^h, j& represents
the inner product. For the operator shown in (49), we have

^L , f& 5 EE
x,t

2 Dd~ x 2 x9!d~t 2 t9!
­f

­ x dx dt , (50)

where integration is over the entire space-time domain. Inte-
grating the right-hand side by parts in x , we see that

^L , f& 5 EE
x,t

Dd9~ x 2 x9!d~t 2 t9!f dx dt . (51)

This can be written as

^L , f& 5 ^Dd9~ x 2 x9!d~t 2 t9! , f& . (52)

Therefore L 5 Dd9( x 2 x9)d(t 2 t9).

Appendix C: Derivation of the Solution to the
Adjoint Equation for Travel Time Probability

The adjoint equation for travel time probability is shown in
(39). An equivalent equation is given here, with a new time
variable, t 5 T 2 t , and a new space variable, y 5 2x .
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­c*
­t

2 D
­2c*
­ y2 1 v

­c*
­ y

5 vd~ y 2 y9!d~t! 2 Dd9~ y 2 y9!d~t! , (53)

c*~ y , t!3 0 y3 `

2D
­c*
­ y 1 vc* 5 0 y 5 0

c*~ y , 0! 5 0,

where y9 5 2x9 and 0 # y , ` .
Taking the Laplace transform of the previous equation with

respect to time (t 3 s) gives

sC 2 c*~ y , 0! 2 D
d2C

d y2 1 v
dC

d y 5 g~ y! (54)

C3 0 y3 `

vC 2 D
dC

d y 5 0 y 5 0,

where C is the transformed state of c* and g( y) 5 vd( y 2
y9) 2 Dd9( y 2 y9). The second term on the left-hand side is
equal to zero, by the initial condition in t. With the right-hand
side written in general terms, (54) is equivalent to (42). There-
fore the solution to (53) in general form is (47). Substituting
the expression for g( y) into (47), evaluating the integrals, and
substituting y 5 2x gives the expression for the adjoint state
shown in (40).

Appendix D: Fréchet Derivative
The derivative, ­h /­Cr, in (14) and (25), is a Fréchet

(strong) derivative of a functional, h [Saaty, 1981; Zwillinger,
1989]. Consider a function u( x), where x is space, and a
functional w(u) 5 Wu , where W is an operator. The Fréchet
derivative, ­w/­u , is defined as [Zwillinger, 1989]

lim
i«i30

iW@u 1 «# 2 Wu 2 «Lui
i«i 5 0, (55)

where L the derivative operator, Lu is the Fréchet derivative
(Lu 5 ­w/­u), and i z i represents the norm. If, for example,
w(u) 5 Wu 5 u3 1 u0 1 (u9)2, then the derivative operator
is L[ ] 5 3u2[ ] 1 [ ]0 1 2u9[ ]9 . Contrast this to the
derivative of a function; in this example, ­w/­ x 5 3u2u9 1
u- 1 2u9u0 . In our adjoint problem for location probability,
the functional is h(a , Cr) 5 Cr( x , t)d( x 2 x9)d(t 2 t9), and
its operator is H[ ] 5 [ ]d( x 2 x9)d(t2t9). Rewriting (55)
to define the derivative of this functional gives

lim
iDCri30

iH@Cr 1 DCr# 2 HCr 2 DCrLCri
iDCri

5 lim
iDCri30

iDCrd~ x 2 x9!d~t 2 t9! 2 DCrLCri
iDCri 5 0, (56)

so that ­h/­Cr 5 LCr 5 d( x 2 x9)d(t 2 t9). By a similar
process, we can show that (38) is the Fréchet derivative of (37).
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