
Formal analysis of security models for
critical systems:

Virtualization platforms and mobile
devices

Carlos Luna

Grupo de Seguridad Informática, InCo
Facultad de Ingenierı́a, Universidad de la República,

Uruguay

Formal analysis of security models for critical systems
Areas of safety-critical applications:

Virtualization platforms
Mobile devices
Domain name systems

Research projects involved:
1 Mecanismos autónomos de seguridad certificados para sistemas

computacionales móviles (ANII–Clemente Estable, Uruguay, 2015-2018);
2 VirtualCert: Towards a Certified Virtualization Platform - Phase II

(UDELAR-CSIC I+D, Uruguay, 2013-2015);
3 VirtualCert: Towards a Certified Virtualization Platform (ANII-Clemente Estable,

PR-FCE-2009-1-2568, Uruguay, 2010-2012);
4 Especificación Formal y Verificación de Sistemas Crı́ticos (SeCyT-FCEIA

ING266, UNR, Argentina, 2009-2010);
5 STEVE: Security Through Verifiable Evidence (PDT 63/118, FCE 2006,

DINACYT, Uruguay, 2007-2009);
6 ReSeCo: Reliability and Security of Distributed Software Components

(STIC-AMSUD, 2006-2009);

Formal analysis of security models for critical systems
Areas of safety-critical applications:

Virtualization platforms
Mobile devices
Domain name systems

Research projects involved:
1 Mecanismos autónomos de seguridad certificados para sistemas

computacionales móviles (ANII–Clemente Estable, Uruguay, 2015-2018);
2 VirtualCert: Towards a Certified Virtualization Platform - Phase II

(UDELAR-CSIC I+D, Uruguay, 2013-2015);
3 VirtualCert: Towards a Certified Virtualization Platform (ANII-Clemente Estable,

PR-FCE-2009-1-2568, Uruguay, 2010-2012);
4 Especificación Formal y Verificación de Sistemas Crı́ticos (SeCyT-FCEIA

ING266, UNR, Argentina, 2009-2010);
5 STEVE: Security Through Verifiable Evidence (PDT 63/118, FCE 2006,

DINACYT, Uruguay, 2007-2009);
6 ReSeCo: Reliability and Security of Distributed Software Components

(STIC-AMSUD, 2006-2009);

The Calculus of (Co)Inductive Constructions (CIC)
and Coq

CIC is an extension of the simple-typed lambda calculus with:
Polymorphic types [(λ x . x) : A→ A]
Higher-order types [A→ A : ∗ : �]
Dependent types [(λ a : A . f a) : (∀ a : A . Ba)]

Implemented in Coq
Type checker + Proof assistant
Can encode higher-order predicate logic
(Co)Inductive definitions

Curry-Howard isomorphism
types ↔ propositions
terms ↔ proofs

Outline

1 VirtualCert: an idealized model of virtualization
2 A certified idealized hypervisor
3 Conclusion and work in progress

Part I

VirtualCert

OS verification

OS verification since 1970

Hand written proofs
Type systems and program logics
Proof assistants

OS verification is the next frontier

Tremendous advances in proof assistant technology
PL verification is becoming ubiquitous

Flagship projects:

L4.verified: formal verification of seL4 kernel
(G. Klein et al, NICTA)
Hyper-V: formal verification of Microsoft hypervisor
(E. Cohen et al, MSR)

Virtualization
bare-metal hypervisors

Allow several operating systems to coexist on
commodity hardware

Provide support for multiple applications to run
seamlessly on the guest operating systems
they manage

Provide a means to guarantee that applications
with different security policies can execute
securely in parallel

They are increasingly used as a means to improve system
flexibility and security

protection in safety-critical and embedded systems
secure provisioning of infrastructures in cloud computing

Hypervisors are a priority target of formal specification
and verification

Virtualization
bare-metal hypervisors

Allow several operating systems to coexist on
commodity hardware

Provide support for multiple applications to run
seamlessly on the guest operating systems
they manage

Provide a means to guarantee that applications
with different security policies can execute
securely in parallel

They are increasingly used as a means to improve system
flexibility and security

protection in safety-critical and embedded systems
secure provisioning of infrastructures in cloud computing

Hypervisors are a priority target of formal specification
and verification

Motivation and challenge

Main focus of L4.verified and Hyper-V on functional correctness

We focus on non-functional properties:

Isolation
Transparency
Availability (maximizing resources under constraints)

Both properties go beyond safety:

Isolation and transparency are 2-safety properties
Availability is a liveness property

We reason about classes of systems

Motivation and challenge

Main focus of L4.verified and Hyper-V on functional correctness

We focus on non-functional properties:

Isolation
Transparency
Availability (maximizing resources under constraints)

Both properties go beyond safety:

Isolation and transparency are 2-safety properties
Availability is a liveness property

We reason about classes of systems

Idealized models vs. implementations

Reasoning about implementations

Give the strongest guarantees

Is feasible for some exokernels and hypervisors

May be feasible for some baseline properties of some systems

Is out of reach in general (Linux Kernel)

May not be required for evaluation purposes

Idealized models provide the right level of abstraction

Many details of behavior are irrelevant for specific property

Idealization helps comparing different alternatives

Proofs are more focused, and achievable within reasonable time

Idealized models vs. implementations

Reasoning about implementations

Give the strongest guarantees

Is feasible for some exokernels and hypervisors

May be feasible for some baseline properties of some systems

Is out of reach in general (Linux Kernel)

May not be required for evaluation purposes

Idealized models provide the right level of abstraction

Many details of behavior are irrelevant for specific property

Idealization helps comparing different alternatives

Proofs are more focused, and achievable within reasonable time

Our focus: Xen on ARM
A popular bare-metal hypervisor initially developed at U. Cambridge

Architecture
A computer running the Xen hypervisor contains three components:

The Xen Hypervisor (software component)

The privileged Domain (Dom0): privileged guest running on the
hypervisor with direct hardware access and management
responsibilities

Multiple Unprivileged Domain Guests (DomU): unprivileged
guests running on the hypervisor, and executing hypercalls
(access to services mediated by the hypervisor)

Xen on ARM
Suggested during initial collaboration with VirtualLogix (now Red
Bend Software)

In turn, determines some modelling choices, e.g. for the cache

VirtualCert - Idealized model

Abstract model written in Coq
Focus on memory management
Model of the hypervisor: based on Xen
Model of the host machine: based on ARM

Memory model
Machine Memory

...

OS1
RW

OS1
RW

OS1
RW

OS1
RW

OS1
RW

OS2
RW

OS2
RW

OS2
RW

Hyp

Hyp

Hyp

OS1
PT

OS1
PT

OS2
PT

OS
Current Virtual

Memory

Hypervisor
reserved
region

OS accessible
region

...

OS Physical
Memory

OS hypervisor
mapping

OS current
PT page
mapping

TLB

...

...

va1
va2

ma1
ma2

Active OS Cache

OS1
RW

OS1
RW

OS1
RW

OS1
RW

OS1
RWHypHyp Hyp

OS1
RW

OS1
RW

States

State def
= { active os : os ident,

aos exec mode : exec mode,
aos activity : os activity,
oss : os ident 7→ os info,
hypervisor : os ident 7→ (padd 7→ madd),
memory : madd 7→ page
cache : vadd 7→size cache page,
tlb : vadd 7→size tlb madd }

OS information and pages

os info def
= { curr page : padd, hcall : option Hyper call }

page def
= { page content : content, page owned by : page owner }

content def
= { RW (option Value) | PT (vadd 7→ madd) | Other }

page owner def
= { Hyp | Os (os ident) | No Owner }

Execution: State transformers

read va
Guest OS reads virtual address va.

write va val
Guest OS writes value val in va.

read hyper va
Hypervisor reads virtual address va.

write hyper va val
Hypervisor writes value val in virtual address va.

hcall c
Guest OS requires privileged service c to the hypervisor.

new o va pa Hypervisor extends os memory with va 7→ ma.

del o va
Hypervisor deletes mapping for va from current memory map-
ping of o.

lswitch o pa
Hypervisor changes the current memory mapping of the ac-
tive OS, to be the one located at physical address pa.

switch o
Hypervisor sets o to be the active OS.

ret ctrl
Returns control to the hypervisor.

chmod
Hypervisor changes execution mode from supervisor to user
mode, and gives control to the active OS.

page pin o pa t
Registers memory page of type t at address pa.

page unpin o pa
Memory page at pa is un-registered.

Semantics
Axiomatic specification

Pre-condition Pre : State→ Action→ Prop

Post-condition Post : State→ Action→ State→ Prop

Focus on normal execution: no semantics for error cases
Alternatives (write through/write back, replacement and
flushing policies)
One step execution:

s ↪a−→ s′ def
= valid state(s) ∧ Pre s a ∧ Post s a s′

Traces:
s0 ↪

a0−→ s1 ↪
a1−→ s2 ↪

a2−→ s3 . . .

Valid state:
invariant under execution
key to isolation results

Valid state

Many conditions, e.g:

if the hypervisor or a trusted OS is running the processor must
be in supervisor mode

if an untrusted OS is running the processor must be in user
mode

all page tables of an OS o map accessible virtual addresses to
pages owned by o and not accessible ones to pages owned by
the hypervisor

the current page table of any OS is owned by that OS

any machine address ma which is associated to a virtual address
in a page table has a corresponding pre-image, which is a
physical address, in the hypervisor mapping

...

Semantics
Write Action

Pre s (write va val) def
= ∃ma, pg

os accessible(va) ∧
s.aos activity = running ∧
va mapped to ma(s, va,ma) ∧
va mapped to pg(s, va, pg) ∧
is RW(pg)

Post s (write va val) s′ def
=

let (new pg : page = 〈RW(Some val), pg.page owned by〉) in

s′ = s ·

 memory := (s.memory[ma := new pg]),
cache := cache add(fix cache syn(s, s.cache,ma), va, new pg),

tlb := tlb add(s.tlb, va,ma)

Equivalence w.r.t. an OS

Two states s1 and s2 are osi-equivalent, written s1 ≡osi s2, iff:

1 osi is the active OS in both states and the processor mode is the
same, or the active OS is different to osi in both states

2 osi has the same hypercall in both states, or no hypercall in both
states

3 the current page tables of osi are the same in both states

4 all page table mappings of osi that map a virtual address to a
RW page in one state, must map that address to a page with the
same content in the other

5 the hypervisor mappings of osi in both states are such that if a
given physical address maps to some RW page, it must map to
a page with the same content on the other state

Isolation properties

Read isolation
No OS can read memory that does not belong to it

Write isolation
An OS cannot modify memory that it does not own

OS isolation (on traces)

∀ (t1 t2 : Trace) (osi : os ident),
same os actions(osi, t1, t2)→
(t1[0] ≡osi t2[0])→
�(≡osi, t1, t2)

Isolation properties

Read isolation
No OS can read memory that does not belong to it

Write isolation
An OS cannot modify memory that it does not own

OS isolation (on traces)

∀ (t1 t2 : Trace) (osi : os ident),
same os actions(osi, t1, t2)→
(t1[0] ≡osi t2[0])→
�(≡osi, t1, t2)

Isolation properties

Read isolation
No OS can read memory that does not belong to it

Write isolation
An OS cannot modify memory that it does not own

OS isolation (on traces)

∀ (t1 t2 : Trace) (osi : os ident),
same os actions(osi, t1, t2)→
(t1[0] ≡osi t2[0])→
�(≡osi, t1, t2)

Transparency

A guest OS is unable to distinguish between executing together
with other OSs and executing alone on the platform

Given a trace, erase all state components that do not
correspond to osi and “silence” all actions not performed by osi

Similar to isolation, but the execution of the OS must be valid in
the erased trace

Lemmas

∀ (s : State), valid state(s) → valid state(s\osi) ∧ s
w≡osi s\osi

∀ (s s′ : State)(a : Action), s ↪a−→ s′ → s \osi ↪
a\osi−−→s′\osi

Theorem

∀ (t : Trace), t
w
≈osi t\osi

Transparency

A guest OS is unable to distinguish between executing together
with other OSs and executing alone on the platform

Given a trace, erase all state components that do not
correspond to osi and “silence” all actions not performed by osi

Similar to isolation, but the execution of the OS must be valid in
the erased trace

Lemmas

∀ (s : State), valid state(s) → valid state(s\osi) ∧ s
w≡osi s\osi

∀ (s s′ : State)(a : Action), s ↪a−→ s′ → s \osi ↪
a\osi−−→s′\osi

Theorem

∀ (t : Trace), t
w
≈osi t\osi

Availability

IF the hypervisor only performs chmod actions whenever no
hypercall is pending

AND the hypervisor returns control to guest operating systems
infinitely often

THEN no OS blocks indefinitely waiting for its hypercalls to be
attended

∀ (t : Trace),¬ hcall(t[0])→
�(chmod nohcall, t)→
�(♦ ¬ hyper running, t)→
�(♦ ¬ hcall, t)

Fairness and other properties

Does not guarantee that every OS will eventually get attended

Many other policies may be considered

Part II

A certified idealized hypervisor

Implementation in Coq

We present an implementation of an hypervisor in the
programming language of Coq
The implementation is total, in the sense that it computes
for every state and action a new state or an error. Thus,
soundness is proved with respect to an extended axiomatic
semantics in which transitions may lead to errors

Error management

ErrorMsg : State→ Action→ ErrorCode→ Prop

Action Failure Error Code

write va val

s.aos activity 6= running wrong os activity
¬ va mapped to ma(s, va,ma) invalid vadd
¬ os accessible(va) no access va os
¬ is RW(s.memory[ma].page content) wrong page type

Table: Preconditions and error codes

Executions with error management

valid state(s) Pre(s, a) Post(s, a, s′)

s ↪
a/ok−−→ s′

valid state(s) ErrorMsg(s, a, ec)

s ↪
a/error ec−−−−−−→ s

Response def
= ok : Response
| error : ErrorCode→ Response

Lemma (Validity is invariant)

∀ (s s′ : State)(a : Action)(r : Response),
valid state(s) → s ↪

a/r−−→ s′ → valid state(s′)

Executions with error management

valid state(s) Pre(s, a) Post(s, a, s′)

s ↪
a/ok−−→ s′

valid state(s) ErrorMsg(s, a, ec)

s ↪
a/error ec−−−−−−→ s

Response def
= ok : Response
| error : ErrorCode→ Response

Lemma (Validity is invariant)

∀ (s s′ : State)(a : Action)(r : Response),
valid state(s) → s ↪

a/r−−→ s′ → valid state(s′)

Action execution

Definition step s a :=
match a with

| . . .⇒ . . .
| Write va val ⇒ write safe(s, va, val)
| . . .⇒ . . .

end.

Result def
= {resp : Response, st : State}

Execution of write action
Definition write safe (s : state) (va : vadd) (val : value) : Result :=

match write pre(s, va, val) with
| Some ec ⇒ 〈error(ec), s〉
| None ⇒ 〈ok,write post(s, va, val)〉

end.

Definition write pre (s : state) (va : vadd) (val : value) : option ErrorCode :=
match get os ma(s, va) with
| None ⇒ Some invalid vadd
| Some ma
⇒ match page type(s.memory,ma) with
| Some RW
⇒ match aos activity(s) with
| Waiting ⇒ Some wrong os activity
| Running
⇒ if vadd accessible(s, va)

then None
else Some no access va os

end
| ⇒ Some wrong page type

end end.

Effect of write execution

Definition write post (s : state) (va : vadd) (val : value) : state :=
match s.cache[va] with
| Value old pg⇒

let new pg := Page (RW c (Some val)) (page owned by old pg) in
let val ma := va mapped to ma system(s, va) in
match val ma with
| Value ma ⇒

s · [mem := s.memory[ma := new pg],
cache := fcache add(fix cache syn(s, s.cache,ma), va, new pg)]

| Error ⇒ s
end
| Error ⇒

match s.tlb[va] with
| Value ma ⇒

match s.memory[ma] with
| Value old pg⇒

let new pg := Page (RW c (Some val)) (page owned by old pg) in
s · [mem := s.memory[ma := new pg],

cache := fcache add(fix cache syn(s, s.cache,ma), va, new pg)]
| Error ⇒ s
end

Effect of write execution (II)

| Error ⇒
match va mapped to ma currentPT(s, va) with
| Value ma ⇒

match s.memory[ma] with
| Value old pg⇒

let new pg := Page (RW c (Some val)) (page owned by old pg) in
s · [mem := s.memory[ma := new pg],

cache := fcache add(fix cache syn(s, s.cache,ma), va, new pg),
tlb := ftlb add(s.tlb, va,ma)]

| Error ⇒ s
end
| Error ⇒ s
end

end
end.

Soundness
Theorem (Soundness of hypervisor implementation)

∀ (s : State) (a : Action), valid state(s)→
s ↪

a/step(s,a).resp−−−−−−−−−→ step(s, a).st

Lemma (Soundness of error execution)

∀ (s : State) (a : Action),
valid state(s)→ ¬Pre(s, a)→ ∃ (ec : ErrorCode),
step(s, a).st = s ∧ step(s, a).resp = ec ∧ ErrorMsg(s, a, ec)

Lemma (Soundness of valid execution)

∀ (s : State) (a : Action), valid state(s) → Pre(s, a) →
s ↪

a/ok−−→ step(s, a).st ∧ step(s, a).resp = ok

Soundness
Theorem (Soundness of hypervisor implementation)

∀ (s : State) (a : Action), valid state(s)→
s ↪

a/step(s,a).resp−−−−−−−−−→ step(s, a).st

Lemma (Soundness of error execution)

∀ (s : State) (a : Action),
valid state(s)→ ¬Pre(s, a)→ ∃ (ec : ErrorCode),
step(s, a).st = s ∧ step(s, a).resp = ec ∧ ErrorMsg(s, a, ec)

Lemma (Soundness of valid execution)

∀ (s : State) (a : Action), valid state(s) → Pre(s, a) →
s ↪

a/ok−−→ step(s, a).st ∧ step(s, a).resp = ok

Non-influencing execution (errors)
Traces

s0 ↪
a0/r0−−−→ s1 ↪

a1/r1−−−→ s2 ↪
a2/r2−−−→ s3 . . .

t1 ≈osi,cache,tlb t2 ¬ os action(s, a, osi)

(s ↪
a/r−−→ t1) ≈osi,cache,tlb t2

t1 ≈osi,cache,tlb t2 ¬ os action(s, a, osi)

t1 ≈osi,cache,tlb (s ↪
a/r−−→ t2)

t1 ≈osi,cache,tlb t2 os action({s1, s2}, a, osi) s1 ≡cache,tlb
osi s2

(s1 ↪
a/ok−−→ t1) ≈osi,cache,tlb (s2 ↪

a/ok−−→ t2)

Cache and TLB equivalences

s1 ≡cache,tlb
osi s2 iff s1 ≡osi s2 ∧ s1 ≡cache

osi s2 ∧ s1 ≡tlb
osi s2

Non-influencing execution (errors)
Traces

s0 ↪
a0/r0−−−→ s1 ↪

a1/r1−−−→ s2 ↪
a2/r2−−−→ s3 . . .

t1 ≈osi,cache,tlb t2 ¬ os action(s, a, osi)

(s ↪
a/r−−→ t1) ≈osi,cache,tlb t2

t1 ≈osi,cache,tlb t2 ¬ os action(s, a, osi)

t1 ≈osi,cache,tlb (s ↪
a/r−−→ t2)

t1 ≈osi,cache,tlb t2 os action({s1, s2}, a, osi) s1 ≡cache,tlb
osi s2

(s1 ↪
a/ok−−→ t1) ≈osi,cache,tlb (s2 ↪

a/ok−−→ t2)

Cache and TLB equivalences

s1 ≡cache,tlb
osi s2 iff s1 ≡osi s2 ∧ s1 ≡cache

osi s2 ∧ s1 ≡tlb
osi s2

Non-influencing execution (errors)
Traces

s0 ↪
a0/r0−−−→ s1 ↪

a1/r1−−−→ s2 ↪
a2/r2−−−→ s3 . . .

t1 ≈osi,cache,tlb t2 ¬ os action(s, a, osi)

(s ↪
a/r−−→ t1) ≈osi,cache,tlb t2

t1 ≈osi,cache,tlb t2 ¬ os action(s, a, osi)

t1 ≈osi,cache,tlb (s ↪
a/r−−→ t2)

t1 ≈osi,cache,tlb t2 os action({s1, s2}, a, osi) s1 ≡cache,tlb
osi s2

(s1 ↪
a/ok−−→ t1) ≈osi,cache,tlb (s2 ↪

a/ok−−→ t2)

Cache and TLB equivalences

s1 ≡cache,tlb
osi s2 iff s1 ≡osi s2 ∧ s1 ≡cache

osi s2 ∧ s1 ≡tlb
osi s2

OS isolation in execution traces (with errors)
Theorem (OS isolation)

∀ (t1 t2 : Trace) (osi : os ident),
same os actions(osi, t1, t2)→
(t1[0] ≡osi t2[0])→ t1 ≈osi,cache,tlb t2

Lemma (Locally preserves unwinding lemma)

∀ (s s′ : State) (a : Action) (r : Response) (osi : os ident),
¬ os action(s, a, osi) → s ↪

a/r−−→ s′ → s ≡cache,tlb
osi s′

Lemma (Step-consistent unwinding lemma)

∀ (s1 s′1 s2 s′2 : State) (a : Action) (osi : os ident),
s1 ≡osi s2 → os action(s1, a, osi)→ os action(s2, a, osi)→
s1 ↪

a/ok−−→ s′1 → s2 ↪
a/ok−−→ s′2 → s′1 ≡

cache,tlb
osi s′2

OS isolation in execution traces (with errors)
Theorem (OS isolation)

∀ (t1 t2 : Trace) (osi : os ident),
same os actions(osi, t1, t2)→
(t1[0] ≡osi t2[0])→ t1 ≈osi,cache,tlb t2

Lemma (Locally preserves unwinding lemma)

∀ (s s′ : State) (a : Action) (r : Response) (osi : os ident),
¬ os action(s, a, osi) → s ↪

a/r−−→ s′ → s ≡cache,tlb
osi s′

Lemma (Step-consistent unwinding lemma)

∀ (s1 s′1 s2 s′2 : State) (a : Action) (osi : os ident),
s1 ≡osi s2 → os action(s1, a, osi)→ os action(s2, a, osi)→
s1 ↪

a/ok−−→ s′1 → s2 ↪
a/ok−−→ s′2 → s′1 ≡

cache,tlb
osi s′2

Part III

Conclusion and Work in Progress

Conclusion

Our work shows that it is feasible to analyze formally
models of safety-critical applications
The Coq proof assistant is a useful tool for the verification
of critical systems

Virtualization platforms
Formally verified idealized model of virtualization
Machine-checked proofs of isolation, availability and
transparency
Certified functional specification of step execution with
error handling (and extraction of prototype in a functional
programming language)

Conclusion

Our work shows that it is feasible to analyze formally
models of safety-critical applications
The Coq proof assistant is a useful tool for the verification
of critical systems

Virtualization platforms
Formally verified idealized model of virtualization
Machine-checked proofs of isolation, availability and
transparency
Certified functional specification of step execution with
error handling (and extraction of prototype in a functional
programming language)

Statistics

Virtualization platforms

Size of the Coq code corresponding to the core model:

Model and basic lemmas 4.8kLOC
Valid state invariance 8.0kLOC
Read and write isolation 0.6kLOC
OS Isolation 6.0kLOC
Availability 1.0kLOC
Total 20.4kLOC

The extension with cache and TLB adds further 12kLOC

The certified prototype of hypervisor adds further 20kLOC

More...

Extension of the virtualization model to use a VIPT cache
and abstract replacement and write policies
Using the model for reasoning about cache-based attacks
and countermeasures

Papers
1 Barthe, G., Betarte, G., Campo, J., Luna, C., Pichardie, D.: System-level

non-interference for constant-time cryptography. In: 21st ACM Conference on
Computer and Communications Security (2014) 1267–1279;

2 Barthe, G., Betarte, G., Campo, J.D., Chimento, J.M., Luna, C.: Formally verified
implementation of an idealized model of virtualization. In TYPES 2013. Volume
26 of Leibniz International Proceedings in Informatics (LIPIcs)., Dagstuhl,
Germany, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2014) 45–63;

3 Barthe, G., Betarte, G., Campo, J., Luna, C.: Cache-Leakage Resilient OS
Isolation in an Idealized Model of Virtualization. In: IEEE 25th Computer Security
Foundations Symposium (2012) 186–197;

4 Barthe, G., Betarte, G., Campo, J., Luna, C.: Formally verifying isolation and
availability in an idealized model of virtualization. In Butler, M., Schulte, W., eds.:
Formal Methods 2011. Volume 6664 of LNCS, Springer-Verlag (2011) 231–245;

More...

Extension of the virtualization model to use a VIPT cache
and abstract replacement and write policies
Using the model for reasoning about cache-based attacks
and countermeasures

Papers
1 Barthe, G., Betarte, G., Campo, J., Luna, C., Pichardie, D.: System-level

non-interference for constant-time cryptography. In: 21st ACM Conference on
Computer and Communications Security (2014) 1267–1279;

2 Barthe, G., Betarte, G., Campo, J.D., Chimento, J.M., Luna, C.: Formally verified
implementation of an idealized model of virtualization. In TYPES 2013. Volume
26 of Leibniz International Proceedings in Informatics (LIPIcs)., Dagstuhl,
Germany, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2014) 45–63;

3 Barthe, G., Betarte, G., Campo, J., Luna, C.: Cache-Leakage Resilient OS
Isolation in an Idealized Model of Virtualization. In: IEEE 25th Computer Security
Foundations Symposium (2012) 186–197;

4 Barthe, G., Betarte, G., Campo, J., Luna, C.: Formally verifying isolation and
availability in an idealized model of virtualization. In Butler, M., Schulte, W., eds.:
Formal Methods 2011. Volume 6664 of LNCS, Springer-Verlag (2011) 231–245;

Work in progress: mobile devices

Android
Open-source operating system originally designed for
mobile devices
Developed by Google and the Open Handset Alliance
(OHA)
Multi-user Linux system in which each app is a different
user
Any app can invoke another app’s functionalities

Permission system
Permissions granting among applications (installation /
access)
Can be used until revocation
Different delegation mechanisms

Work in progress: mobile devices

Android
Open-source operating system originally designed for
mobile devices
Developed by Google and the Open Handset Alliance
(OHA)
Multi-user Linux system in which each app is a different
user
Any app can invoke another app’s functionalities

Permission system
Permissions granting among applications (installation /
access)
Can be used until revocation
Different delegation mechanisms

Android security

Work in progress
Formal analysis of security models for mobile devices:
Android 4.x – 6.x
Vulnerability analysis
A certified monitor

Papers
1 Betarte G., Campo J., Luna, C., Romano, A.: Formal Analysis of Android’s

Permission-Based Security Model. In: Scientific Annals of Computer Science
26(1):27–68 (2016);

2 Betarte, G., Campo, J., Luna, C., Romano, A.: Verifying Android’s Permission
Model In: ICTAC 2015, 485–504 (2015).

Android security

Work in progress
Formal analysis of security models for mobile devices:
Android 4.x – 6.x
Vulnerability analysis
A certified monitor

Papers
1 Betarte G., Campo J., Luna, C., Romano, A.: Formal Analysis of Android’s

Permission-Based Security Model. In: Scientific Annals of Computer Science
26(1):27–68 (2016);

2 Betarte, G., Campo, J., Luna, C., Romano, A.: Verifying Android’s Permission
Model In: ICTAC 2015, 485–504 (2015).

Time for questions

Questions?
Comments?

Thanks!

	VirtualCert
	A certified idealized hypervisor
	Conclusion and Work in Progress

