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IntroductionIntroductionIntroduction
• Non iterative algorithms for the identification of Multiva-

riable Block-oriented Nonlinear models are presented.
• The algorithms are numerically robust, since they are

based only on Least Squares Estimation (LSE) and Singular
Value Decomposition (SVD). No nonlinear numerical
optimization procedures are required.

• For the Hammerstein model consistency of the estimates is 
guaranteed under very weak assumptions on the persistency 
of excitation of the inputs, and even in the presence of 
coloured noise. For the Wiener model and the Feedback
model problems.

• Key in the derivation of the results is the representation of 
the linear part of the models using orthonormal bases
functions. 
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Motivation for Nonlinear IdentificationMotivation for Nonlinear IdentificationMotivation for Nonlinear Identification

• Most physical processes have a nonlinear behaviour, except
in a limited range where they can be considered linear.

• The performance of controllers designed from a linear
approximation is strongly influenced by a change in the 
operating point of the system.

• Nonlinear models are able to describe more accurately the
global behaviour of the system, independently of the opera-
ting point.
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Nonlinear ModelsNonlinear ModelsNonlinear Models
• Since the identification is carried out from observed input-

output data, it is more natural to try to identify discrete-
time models, rather than continuous-time ones.

• Many dynamical systems can be represented by the 
interconnection of  static nonlinearities and LTI systems.
These models are called block-oriented nonlinear models.

• Hammerstein models (cascade connection of a static 
nonlinearity followed by a LTI system) , Wiener models
(where the order of the blocks is reversed), and Feedback 
models (static nonlinearity in the feedback loop around a 
LTI system), have been successfully used in a number of 
practical applications in the areas of chemical processes,
biological processes, signal processing, communications, 
controls, etc.

Rochester 2001 J. C. Gomez 6

Block-oriented Nonlinear ModelsBlockBlock--oriented Nonlinear Modelsoriented Nonlinear Models
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Nonlinear Identification Algorithms
for Hammertein-Wiener Models

Nonlinear Identification AlgorithmsNonlinear Identification Algorithms
for Hammerteinfor Hammertein--Wiener ModelsWiener Models

• Iterative algorithms for nonlinear optimization (Narendra et 
al., 1966) : convergence problems, existence of local minima,
initialization problems, computationally intensive.
• Correlation techniques (Billings et al., 1982) : rather restric-
tive requirement on the input being white noise.
• Recent approaches based on Least Squares techniques and
Singular Value Decomposition (SVD) (Bai, 1998),(Gómez et 
al., 2000): global convergence is guaranteed, numerically 
robust, not computationally intensive.
• Present work is a collaboration with Dr. Enrique Baeyens,
Universidad de Valladolid, Spain.
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Hammerstein ModelHammerstein ModelHammerstein Model
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1.Problem Formulation1.Problem Formulation
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Let the Hammerstein model be described by:

where               is the transfer matrix of the LTI subsystem, and
is the (static) input-output characteristic of the nonlinear subsystem, and 
where are the system output, input, and 
measurement noise vectors at time k, respectively.
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It will be assumed that the nonlinear subsystem can be described as

where are known vector fields, and
are unknown matrix parameters.
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On the other hand, the LTI subsystem will be represented using rational 
orthonormal bases on as( )T2H
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where are unknown matrix parameters, and

are rational orthonormal bases on .
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Identification problem: to estimate the unknown parameter matrices 

, and                                                   characterizing 
the nonlinear and the linear parts, respectively, from an N-point data set

of observed input-output measurements.
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2. Nonlinear Identification Algorithm2.2. Nonlinear Identification AlgorithmNonlinear Identification Algorithm

Considering (2) and (3), the input-output equation (1) can be written as
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Identifiability problem

Note: It is clear from (4) that the parameterization (1)-(3) is not unique, since
any parameter matrices           , and , for some nonsingular matrix

, provide the same input-output equation (1). To obtain a one-to-one 

parameterization, i.e., for the system to be identifiable, additional constraints 

must be imposed on the parameter matrices. A standard technique is to norma-

lize the parameter matrices, assuming for instance . 
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the input/output equation (4) can be written as a linear regressor
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Considering an N -point data set, equation (4) can be written in matrix 
form as 
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The Least Squares Estimate is given by
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The problem is now how to estimate the parameter matrices
and                                  from the estimate in (6).
Defining the matrices
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so that an estimate can be obtained from the estimate in (6).

The closest, in the 2-norm sense, estimates are such they 
minimize the norm        

2

2
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it is easy to see that
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The solution to this optimization problem is provided by the SVD of .abΘ̂
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Main Result: Let                               have rank k>n, and let its 
economy size SVD be partioned as
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Identification AlgorithmIdentification AlgorithmIdentification Algorithm
The identification algorithm can be summarized as follows.

Step 1: Compute the LSE          in (6), and the matrix            such that

Step 2: Compute the economy size SVD of , and the partition of this 
decomposition as in (9).
Step 3: Compute the estimates of the parameter matrices a and b as

θˆ

( ).ˆblockvecˆ abΘ=θ
abΘ̂

, ˆ 1Ua =

, ˆ 11Σ=Vb

abΘ̂

respectively.



Rochester 2001 J. C. Gomez 17

Consistency AnalysisConsistency AnalysisConsistency Analysis
Result: Let be computed using the proposed identification algo-
rithm. Then, assuming that the uniqueness condition                    holds, and 
that the regressors are persistently exciting (PE), 

ba ˆ  and  ˆ
 12 =ia
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, ˆ
, ˆ

..

..

bb

aa
sa

sa

→

→

∞→Nas                . The result holds even in the presence of coloured noise.

Key in the proof of this result is the fact that the regressors are deterministic,
since depend only on past inputs (orthonormal basis model structure).
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Wiener modelWiener modelWiener model
1. Problem Formulation1. Problem Formulation
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We assume that N(.) is invertible, and that its inverse can be represented as
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where are known vector fields, and( ) ( )rig mm
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i ,,1 , !=ℜ∈ × are unknown matrix parameters.

Without loss of generality it will be assumed that mIa =1
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On the other hand, the LTI subsystem will be represented using rational 
orthonormal bases on as
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where are unknown matrix parameters, and

are rational orthonormal bases on .
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Identification problem: to estimate the unknown parameter matrices 

, and                                                   characterizing 

the nonlinear and the linear parts, respectively, from an N-point data set

of observed input-output measurements.
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2. Nonlinear Identification Algorithm2.2. Nonlinear Identification AlgorithmNonlinear Identification Algorithm
The intermediate variable          can be written as kυ
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and also as
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Equating the right-hand sides of both equations and considering the parame-
terization of the linear and nonlinear blocks
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which is a linear regression. Defining
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we can write

( ) kk
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kyg νφθ +=1

Now, an estimate of the parameter matrix          can be computed by 
minimizing a quadratic criterion on the prediction errors       

θ
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(i.e., the least squares estimate). The solution is given by
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T
NN YΦΦΦ= −1)(θ̂

Consistency               problems (noise free-case)Consistency               problems (noise free-case)
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Feedback block-oriented modelFeedback block-oriented model
1. Problem Formulation1. Problem Formulation
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the input-output equation (15) can be written as
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which is a linear regression. As in the case of the Hammerstein and the Wiener 
models, the least squares estimate of         is given byθ
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T
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with similar definitions for           and           .NΦ NY
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The parameter matrix         can be written as θ

( )[ ]TT
abpbb Θ= − blockvec ,,, 10 !θ

So that estimates          and             can be obtained from the LSE         .

An estimate of matrix  a can be obtained by solving the 2-norm minimization 
problem

b̂ abΘ̂ θ̂
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Consistency               problems  (white noise)Consistency               problems  (white noise)
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Simulation ExamplesSimulation Examples

❑ The True System
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( ) 432  0263.0 5113.0 0149.0 8585.0 kkkkk uuuuuN −−+= nonlinear subsystem

❑ The input and noise
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Spectrum of the zero
mean coloured noise

1. Hammerstein model1. Hammerstein model
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❑ The Orthonormal Bases
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Orthonormal Bases with Fixed Poles

Generalization of the standard FIR,
Laguerre, and Kautz Bases.

❑ The chosen basis poles

{ }7.0,2.0,01.0 −−− Basis poles (3rd order linear model)

True poles at  { }6725.0,2399.0,0124.0 −−

❑ The Estimated Transfer Function
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❑ The Estimated Nonlinear Model

( ) 432  1183.0 4483.0 0747.0 8829.0ˆ kkkkk uuuuuN −−−= Estimated nonlinear model

True (solid line) and Estimated (dashed line) nonlinear characteristic.
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❑ True and Estimated Output

True (solid line) and Estimated (dashed line) Output.
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❑ A more persistently exciting input 
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0035.0sin 1.00025.0sin 3.0     
0015.0sin 5.00005.0sin kγ white noise with

variance 610−

True (solid line) and Estimated (dashed line) nonlinear characteristic
(indistinguishable one from the other)..
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❑ True and Estimated Output

True (solid line) and Estimated (dashed line) Output.
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True (solid line) and Estimated (dashed line) nonlinear characteristic

❑ An intermediate persistently exciting input 
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❑ True and Estimated Output

True (solid line) and Estimated (dashed line) Output.
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2. Wiener model2. Wiener model
• The processThe process:: pH neutralization process in a constant volume stirring

tank considered in (Henson & Seborg, 1992). (Bench-scale plant at the 
University of California, Santa Barbara).

• The modelmodel was derived using the concept of reaction invariants (highly 
nonlinear model, with the output given in implicit form: titrationtitration curvecurve).

• The inputsinputs to the system are:
: the base flow rate
: the buffer flow rate

• The outputoutput is:
: the pH of the solution in the tank.

1u
2u

y

input  
(buffer flow rate)

acid flow rate
input 
(base flow rate)

output 
(pH of the output 
flow rate)

V h

Tank

2u
1u
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InputInput/Output Data/Output Data:

First 600 data used for Estimation,
remaining 500 data used  for Validation

••Simulation:Simulation:

!System excited with band-limited white noise around the nominal operating point. 

!Linear Subsystem: Orthonormal Bases with fixed Poles at:  

{0.97 , 0.98 , 0.98 , 0.99, 0.99} 

! Nonlinear Subsystem: 3rd. order polynomial.
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ConclusionsConclusions
• Noniterative methods for the identification of Multivariable Block-

oriented Nonlinear Models have been presented.
• The proposed methods are numerically robust, since they depend only 

on Lest Squares Estimation and Singular Value Decomposition. No
nonlinear numerical optimization procedures are required.

• For the Hammerstein model, the method provides consistent estimates
under weak assumptions on the persistency of excitation of the inputs,
even in the presence of coloured noise. For the Wiener model, and the 
Feedback model, consistency can only be guaranteed in the noise-free 
case.

• The key issue is the representation of the LTI subsystem using 
Orthonormal Basis Functions →→→→ deterministic regressors.

• In addition, the use of orthonormal bases allows the incorporation of a 
priori information about system dynamics →→→→ improvement in estima-
tion accuracy by choosing the poles of the bases close to the true poles.


