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Abstract: Wiener model identification and predictive control of a pH neutralisation process is
presented. Input-output data from a nonlinear, first principles simulation model of the pH
neutralisation process are used for subspace-based identification of a black-box Wiener-type model.
The proposed nonlinear subspace identification method has the advantage of delivering a Wiener
model in a format which is suitable for its use in a standard linear-model-based predictive control
scheme. The identified Wiener model is used as the internal model in a model predictive controller
(MPC) which is used to control the nonlinear white-box simulation model. To account for the
unmeasurable disturbance, a nonlinear observer is proposed. The performance of the Wiener model
predictive control (WMPC) is compared with that of a linear MPC, and with a more traditional
feedback control, namely a PID control. Simulation results show that the WMPC outperforms the
linear MPC and the PID controllers.

1 Introduction

The control of pH processes is a problem frequently
encountered in the chemical process and biotechnology
industries. It has been recognised as a challenging problem
due to the time-varying and nonlinear characteristics of the
pH processes. This is particularly true when control has to
be achieved in the neutral range (a pH between six and
eight) when only strong acids and strong bases are present.
Several techniques have been proposed in the literature for
the control of pH processes, most of them resorting to
nonlinear adaptive schemes. For instance, [1] and [2], have
proposed and experimentally evaluated an adaptive non-
linear controller which is the combination of an input-output
linearising controller and a reduced-order, open-loop,
nonlinear observer for the estimation of the unmeasurable
disturbance (the buffer flow rate). Narayanan et al. [3] have
proposed an adaptive nonlinear internal model control,
which combines the concepts of nonlinear internal model
control, strong acid equivalent (introduced in [4]) and
adaptive mechanisms.

Some research has also been conducted on model
predictive control (MPC) of pH processes. MPC refers to
a class of control algorithms in which a dynamic process
model is used to predict and optimise process performance
(see, for instance, the recent book by Maciejowski [5]).

MPC has been used in industry for more than 30 years, and
has become an industry standard mainly due to its intrinsic
capability for dealing with constraints (often, a most
efficient (and profitable) operation requires the process to
work at or near such constraints) and with multivariable
systems. Most commercially available MPC technologies
are based on a linear model of the process. For processes
which are highly nonlinear, the performance of an MPC
based on a linear model can be poor. This has motivated the
development of nonlinear model predictive control
(NMPC), where a more accurate (nonlinear) model of the
plant is used for prediction and optimisation (see for
instance [6] for a survey on the current status and future
directions of NMPC).

Many of the current NMPC schemes are based on
physical models of the process. However, in many cases
such models are difficult to derive, and are often not
available at all. In these cases it makes sense to use a
nonlinear empirical model, identified from input-output
measurements. Some works where this approach has been
followed are for instance: [7] where a nonlinear predictive
control scheme based on radial basis functions models is
proposed, [8] and [9] where the NMPC is based on a
Hammerstein model, and [9–11], where the NMPC is based
on a Wiener model. In all these works the paradigmatic
application has been pH neutralisation processes.

From an identification point of view, pH processes have
often been considered in the literature as having a Wiener
structure (see for instance [12]) consisting of the cascade
connection of a linear time-invariant (LTI) system followed
by a static (memoryless) nonlinearity. In this structure, the
linear block represents the mixing dynamics of the reagent
streams in the continous stirred tank reactor, while the static
nonlinearity represents the nonlinear titration curve which
gives the pH of the effluent solution as a function of the
chemical components.

Wiener models have the capability of approximating,
with arbitrary accuracy, any fading memory nonlinear time-
invariant system [13], and they have been successfully used
to model several nonlinear systems encountered in the

q IEE, 2004

IEE Proceedings online no. 20040438

doi: 10.1049/ip-cta:20040438
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process industry, such as distillation columns [14], and pH
processes [10–12].

Several methods have been proposed in the literature for
the identification of Wiener models (see for instance
[15–17], for some classical identification methods for
Wiener models). More recently, some research interest has
been focused on extending linear subspace identification
methods [18–20], for this class of nonlinear models (see
[21–23] for subspace identification of Hammerstein and
Wiener models).

The subspace method introduced in [23] by the first and
the third authors will now be used to identify a Wiener
model from input-output data generated from a nonlinear
first principles simulation model of the pH neutralisation
process. This identified Wiener model is in turn used in a
model predictive controller. It is shown that the structure of
the identified Wiener model is suitable for its use in a
standard (based on a linear model) MPC strategy, therefore
preserving the stability and numerical properties of the
involved algorithms. In contrast to similar approaches to
Wiener model predictive control (WMPC) in the literature
(see for instance [9–11]), there is no need to invert the static
nonlinearity, since it is the inverse of the nonlinearity which
is delivered by the identification algorithm proposed here. In
particular, if a quadratic criterion and linear constraints are
chosen, the optimisation problem involved in the WMPC
scheme proposed remains a highly convex quadratic
program (QP) problem, which can be solved efficiently
resorting to existing algorithms. In order to compensate for
the unmeasurable disturbance (the buffer flow rate), a
nonlinear observer based on a white-box simulation model
is proposed and used as a soft sensor in the WMPC scheme.
For the purposes of comparison, the same input-output data
used for the identification of the Wiener model are used to
identify a linear model using subspace methods. A model
predictive controller is implemented based on this model,
and its performance is compared to that of the NMPC based
on the Wiener model. Also for the purposes of comparison,
a standard PID controller is implemented on the process.

2 Process description

The considered pH neutralisation process consists of an
acid ðHNO3Þ stream, a base (NaOH) stream, and a buffer
ðNaHCO3Þ stream that are mixed in a constant volume (V )
stirring tank. The process is schematically depicted in Fig. 1,
and corresponds to a bench-scale plant at UCSB (see [1, 2]).

The inputs to the system are the base (volumetric) flow
rate ðu1Þ; the buffer flow rate ðu2Þ and the acid flow rate

ðu3Þ; while the output ( y) is the pH of the effluent solution.
The acid flow rate ðu3Þ; as well as the volume (V ) of the tank
are assumed to be constant. Usually, the objective is to
control the pH of the effluent solution by manipulating the
base flow rate, despite the variations of the unmeasured
buffer flow rate, which can be considered as a disturbance.

A simulation model, based on first principles, was
presented in [1] introducing two reaction invariants (one
related to a charge balance and the other to a balance on the
carbonate ion) for each inlet/outlet stream. The reaction
invariants will be denoted here as ðWa1;Wb1Þ; ðWa2;Wb2Þ;
ðWa3;Wb3Þ; and ðWa;WbÞ; for the base stream, the buffer
stream, the acid stream and the effluent solution respecti-
vely. The model is highly nonlinear due to the implicit
output equation, known as the titration curve (7). The
dynamic model for the reaction invariants of the effluent
solution ðWa;WbÞ; in state-space form, is given by [1, 2]:

_xx ¼ fðxÞ þ gðxÞu1 þ pðxÞu2 ð1Þ

hðx; yÞ ¼ 0 ð2Þ
where

x ¼D ½x1; x2�T ¼ ½Wa;Wb�T ð3Þ

fðxÞ ¼ u3

V
ðWa3 � x1Þ;

u3

V
ðWb3 � x2Þ

h iT

ð4Þ

gðxÞ ¼ 1

V
ðWa1 � x1Þ;

1

V
ðWb1 � x2Þ

� �T

ð5Þ

pðxÞ ¼ 1

V
ðWa2 � x1Þ;

1

V
ðWb2 � x2Þ

� �T

ð6Þ

hðx; yÞ ¼ x1 þ 10 y�14 � 10�y

þ x2

1þ 2� 10 y�pK2

1þ 10 pK1�y þ 10 y�pK2
ð7Þ

Here, the parameters pK1 and pK2 are the first and second
disassociation constants of the weak acid H2CO3: The
nominal operating conditions of the system are given in [1]
and [2], and they are reproduced in Table 1 for the sake of
completeness.

In order to compensate for the variations in the buffer
flow rate (considered here as a disturbance), a nonlinear
observer for its online estimation is proposed in Section 4.

3 Subspace-based Wiener model identification

For the sake of completeness, the subspace-based Wiener
model identification method originally introduced by the
first and third authors in [23] is summarised in this Section.

A (multivariable) Wiener model is schematically
depicted in Fig. 2. The model consists of the cascade
connection of an LTI system followed by a zero-memoryFig. 1 Schematic representation of the pH neutralisation process

Table 1: Nominal operating conditions

u3 ¼ 16:60 ml=s u2 ¼ 0:55 ml=s

u1 ¼ 15:55 ml=s V ¼ 2900 ml

Wa1 ¼ �3:05 � 10�3 mol Wa2 ¼ �3 � 10�2 mol

Wa3 ¼ 3 � 10�3 mol Wa ¼ �4:32 � 10�4 mol

Wb1 ¼ 5 � 10�5 mol Wb2 ¼ 3 � 10�2 mol

Wb3 ¼ 0 mol Wb ¼ 5:28 � 10�4 mol

pK1 ¼ 6:35 pK2 ¼ 10:25

y ¼ 7:0

IEE Proc.-Control Theory Appl., Vol. 151, No. 3, May 2004330



nonlinear element with input-output characteristic given by
Nð�Þ: The LTI subsystem has a state-space representation of
the form:

xkþ1 ¼ Axk þ Buk þ ok ð8Þ

vk ¼ Cxk þ Duk þ �k ð9Þ

where A, B, C and D, are the system matrices of appropriate
dimensions, and where xk 2 Rn; vk 2 Rm; uk 2 Rp and
�k 2 Rm; represent the LTI system state, output, input and
process noise vectors at time k, respectively.

It is assumed that the static nonlinear function Nð�Þ :
R

m ! R
m is invertible, and that its inverse N�1ð�Þ can be

described as a liner combination of basis functions in the
form:

N�1ð ykÞ ¼
Xr

i¼1

aigið ykÞ ð10Þ

where gið�Þ : Rm ! R
m; ði ¼ 1; . . . ; rÞ; are the assumed

known nonlinear basis functions, and ai 2 Rm�m;
ði ¼ 1; . . . ; rÞ; are unknown matrix parameters. Typically,
the basis functions are polynomials (any smooth function in
an interval can be represented with arbitrary accuracy by a
polynomial of sufficiently high order) but they can also be
basis functions generated by translations and dilations of a
mother function (e.g. wavelets, or radial basis functions).

With this representation for the static nonlinearity, (9)
can be written as,

aYk ¼
D Xr

i¼1

aigiðykÞ ¼ Cxk þ Duk þ �k ð11Þ

where a ¼D ½a1; � � � ;ar�; Yk ¼
D ½gT

1 ð ykÞ; � � � ; gT
r ð ykÞ�T : The

Wiener model can then be described as:

xkþ1 ¼ Axk þ Buk þ ok ð12Þ

Yk ¼ ~CCxk þ ~DDuk þ ~��k; ð13Þ

with ~CC¼D ayC; ~DD¼D ayD; ~��k ¼
D
ay�k; and where ay stands for

the left pseudo-inverse ofa: It can be seen from (12) and (13)
that the parametrisation (8), (9) and (10) is not unique, since
any parameter matrices bC; bD and ayb�1; for some
nonsingular matrix b 2 Rm�m; provide the same description
as (12) and (13). To obtain a one-to-one parametrisation i.e.
for the system to be identifiable, additional constraints must
be imposed on the parameters. A technique that can be used
to obtain uniqueness is to normalise the parameter matrices

ay; that is to assume for instance that kayk2 ¼ 1: Under this

assumption the parametrisation of (8), (9) and (10) is unique.

Remark 1: Equations (12) and (13) can be interpreted as a
state-space realisation of a LTI system whose output Yk is a
transformed (by the nonlinear and known basis functions
gið�Þ) version of the original output yk: A block diagram
representation of (12) and (13) is depicted in Fig. 3.

It is this equivalent LTI model that will be used as the
internal model in a standard (based on a linear model) MPC
strategy in Section 6. This, of course, is an additional
advantage of the Proposed identification method, since it
delivers a Wiener model in a format that can be used
directly in a standard linear model-based MPC.

Based on this representation, any available subspace
identification algorithm (such as the N4SID algorithm by
Van Overschee and de Moor [18], the MOESP algorithm by
Verhaegen [19], or the CVA algorithm by Larimore [20],
can then be employed to obtain estimates of the system
matrices A, B, ~CC and ~DD from input-output data.

Given the estimates ÂA; B̂B; ~̂CC~CC and ~̂DD~DD of the matrices A,
B, ~CC and ~DD; respectively, the problem is how to compute
estimates of the matrices C, D and a: Matrices ~CC and ~DD
can be expressed in a combined form as:

½ ~CC ~DD� ¼ ay½CD� ð14Þ
The best (in the mean-squares sense) estimates of
matrices C, D and a are such that:

ðĈC; D̂D; âayÞ ¼ argmin
C;D;ay

½ ~̂CC~CC ~̂DD~DD � � ay½C D �
��� ���2

2

� �
ð15Þ

The solution to this minimisation problem is provided by

the SVD of the matrix ½ ~̂CC~CC ~̂DD~DD�: The result is summarised

in theorem 3.1 in [23]. Based on this result, the subspace
identification algorithm for the Wiener model can be
summarised as follows:

Algorithm 1:
Step 1: Compute estimates ðÂA; B̂B; ~̂CC~CC; ~̂DD~DDÞ of the systems
matrices ðA;B; ~CC; ~DDÞ in (12) and (13) using any available
subspace algorithm for LTI systems.
Step 2: Compute the economy size SVD of ½ ~̂CC~CC ~̂DD~DD�; and the
partition of this decomposition as:

½ ~̂CC~CC ~̂DD~DD � ¼ UsSsV
T
s ¼

D ½U1 U2 �
S1 0

0 S2

� �
VT

1

VT
2

" #
ð16Þ

where Ss is a diagonal matrix containing the s nonzero

singular values ðsi; i ¼ 1; � � � ; sÞ of ½ ~̂CC~CC ~̂DD~DD� in nonincreasing
order, and where the unitary matrices Us ¼ ½u1 u2 � � � us� 2
R

mr�s and Vs ¼ ½v1 v2 � � � vs� 2 RðnþpÞ�s contain the corre-
sponding left and right singular vectors, respectively. The
partition of the SVD in (16) is such that the following

dimensions for the matrices S1; U1 and V1 hold, S1 2
R

m�m; U1 2 Rmr�m and V1 2 RðnþpÞ�m:
Step 3: Compute the estimates of the parameter matrices C,
D and a as ½ ĈC D̂D� ¼ S1VT

1 ; and âa ¼ U
y
1; respectively. A

4 Nonlinear observer

The nonlinear first principles model of (1) and (2) can be
written as:

_xx ¼ Gðx; u1Þ þ FðxÞu2 ð17Þ

Fig. 2 Multivariable Wiener model

Fig. 3 Equivalent LTI model
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hðx; yÞ ¼ 0 ð18Þ
with the obvious definitions for the functions Gðx; u1Þ and
FðxÞ: In [24], a nonlinear observer for the estimation of the
constant (slowly varying) parameter u2 in a dynamic system
of the form (17) has been proposed The nonlinear observer
in [24] is described by:

ûu2 ¼ fðxÞ þ � ð19Þ

_�� ¼ �FðxÞ½Gðx; u1Þ þ FðxÞûu2� ð20Þ
where ûu2 is the estimated parameter, � is the observer state,
fðxÞ is an appropriately chosen nonlinear function, and
FðxÞ is its Jacobian matrix, i.e.:

FðxÞ ¼ @fiðxÞ
@xj

� �
ð21Þ

The matrix FðxÞ (or equivalently fðxÞ) has to be chosen in
such a way to ensure that the estimation error:

e¼D u2 � ûu2 ð22Þ
converges to zero with the desired speed. Assuming the
parameter u2 is constant, the estimation error dynamics are
given by:

_ee ¼� _bu2u2bu2u2

¼�FðxÞ_xx� _��

¼�FðxÞFðxÞe
¼� LðxÞe ð23Þ

with LðxÞ¼D FðxÞFðxÞ: Notice that the estimation error
dynamics are linear. However, since the matrix L(x) is time-
varying, to ensure the asymptotic stability of (23) it is not
sufficient to ask for the eigenvalues of L(x) to be in the open
left half-plane. If L(x) can be chosen to be a positive
semidefinite symmetric matrix, then resorting to Lyapunov
theory and Barbalat’s lemma (see lemma 1.2.1 and corollary
1.2.2 in [25]), a sufficient condition for the asymptotic
convergence of the error to zero is that L(x) be bounded.
A detailed proof is provided in the Appendix.

As pointed out in [24], one possible way (but not the only
one) of selecting FðxÞ such that L(x) is a positive
semidefinite symmetric matrix is as:

FðxÞ ¼ FTðxÞH ð24Þ

where H is a positive definite constant matrix. Choosing
H ¼ ku2

I; with ku2
>0 a positive constant, and I the identity

matrix of appropriate dimensions, matrix FðxÞ can be
written as:

FðxÞ ¼ ku2
FTðxÞ ¼

ku2

V
½ðWa2 � x1Þ; ðWb2 � x2Þ� ð25Þ

so that matrix fðxÞ is given by:

fðxÞ ¼ �
ku2

2V
ðWa2 � x1Þ2 þ ðWb2 � x2Þ2
� �

ð26Þ

Summarising, the asymptotic observer for the estimation of
the disturbance (the buffer flow rate) is given by (19), (20),
(25) and (26). The dynamic response of the observer can be
adjusted by modifying the tuning parameter ku2

:
The main drawback of the proposed nonlinear observer is

the assumption that the full state vector is available for the
estimation. For the case of the pH process, this assumption
is unrealistic since the states (the reaction invariants of the
effluent solution) are not measurable. To solve this problem,
a state observer is proposed and the observed states are used
instead of the actual, states in the disturbance observer (19),
(20), (25) and (26). That is, the certainty equivalence
principle is assumed to hold for the combined scheme.
Although the assumption is true for linear system, this is not
always the case when applied to nonlinear systems. The
proposed state observer has a Luenberger-type structure of
the form:

_̂xx̂xx ¼ Gðx̂x; u1Þ þ Fðx̂xÞu2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
plant dynamics

þKðx̂xÞðy� ŷyÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
correction term

ð27Þ

hðx̂x; ŷyÞ ¼ 0 ð28Þ

where x̂x is the observed state, ŷy is the observed output and
Kðx̂xÞ is an appropriately chosen nonlinear function, usually,
the observability matrix computed from the Lie derivatives
of the output map along the vector field f ðx̂xÞ (see [26]).
Due to the implicit output equation (18), the observability
matrix cannot be computed explicitly. An alternative for
this is to choose:

Kðx̂xÞ ¼ kxFðx̂xÞ ð29Þ

Fig. 4

a True and estimated disturbance ðu2Þ
b Output (pH)
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which means that a correction term proportional to the
output error is being added to the parameter u2; since for
this case (27) becomes:

_̂xx̂xx ¼ Gðx̂x; u1Þ þ Fðx̂xÞ u2 þ kxðy� ŷyÞ|fflfflfflfflffl{zfflfflfflfflffl}
correction term

24 35 ð30Þ

The combined observer scheme is then given by:

ûu2 ¼ fðx̂xÞ þ � ð31Þ

_�� ¼ �Fðx̂xÞ½Gðx̂x; u1Þ þ Fðx̂xÞûu2� ð32Þ

_̂xx̂xx ¼ Gðx̂x; u1Þ þ Fðx̂xÞ½ûu2 þ kxðy� ŷyÞ� ð33Þ

hðx̂x; ŷyÞ ¼ 0 ð34Þ
with FðxÞ and fðxÞ as in (25) and (26), respectively. The
convergence of the combined scheme has not been proved,
but simulation results show that the proposed scheme
converges in a wide region around the nominal operating
conditions. Simulation experiments were carried out
exciting the plant with the nominal value of the base
flow rate u1 and with a multilevel random sequence added
to the nominal value of the disturbance (the buffer flow rate
u2). The tuning parameters were set to ku2

¼ 8� 108 and
kx ¼ 1000: Figure 4a shows the true and estimated
disturbance, where, a good agreement between them can
be observed. The initial mismatch is due to the choice of
initial conditions in the observer. The corresponding output
is shown in Fig. 4b. The plot also shows how sensitive to
the disturbance is the open-loop system.

The proposed observer will be used as a soft sensor to
‘measure’ (estimate) the disturbances in the WMPC scheme
presented in Section 6.

5 Process identification

In this Section, the nonlinear white-box model (1) and (2) of
the process is used to generate input-output data for the
(black-box) identification of a Wiener model and a linear
model of the process. The nonlinear subspace identification
method of Section 3 is used to estimate a Wiener model,
while the CVA subspace algorithm [20] is used for the
estimation of a linear state-space model of the process.

For the purposes of identification, the model (1) and (2)
was excited with band limited white noise around the
nominal value of the base flow rate, keeping the buffer flow
rate and the acid flow rate constant at their nominal values.
The output of the system was corrupted with additive
Gaussian white noise with zero mean and standard deviation
s ¼ 0:001; in order to simulate the more realistic situation
of having measurement noise.

The first 1000 data point were used for the estimation of
the models, while the following 600 data points were used
for validation. The estimation and validation input-output
data are represented in Fig. 5.

In order to determine the model order of both the Wiener
and the linear models, identification experiments were
performed for ten different realisations of the measurement
noise, and for model orders in the range from two to ten. The
measurement noise was generated using the Matlab function
randn, so that each time the simulation was run, a different
realisation of the noise was obtained. Since it is desirable to
obtain stable models for the MPC implementation, only the
stability of the identified models was considered. The results
are summarised in Table 2, where the letter ‘S’ indicates that
stable models for the ten different realisations of the noise

were obtained, while the letter ‘U’ indicates that at least one
of the models for the ten different realisations, was unstable
(actually, an average of six out of ten were unstable in these
cases). The default option (‘prediction’) for the
‘focus’ property of the n4sid algorithm in version 5 of
the System Identification Toolbox for use with Matlab
(hereafter referred as SIT) was employed for the first step of
the nonlinear identification algorithm, as well as for the
identification of the linear model. This option means that the
models are determined by minimising the prediction errors,
and corresponds to the optimal weighting from a statistical
variance point of view [21].

Table 2 shows that it is more difficult to fit a stable linear
model to the data than to fit a stable Wiener model. In this
sense Wiener models perform better than linear models,
since they remain stable for a wider range of model orders.
Based on these results, and in order to be able to make a
comparison, a model order equal to three was selected using
Akaike’s criterion.

The input-output data in Fig. 5 were used to identify a
Wiener model using the algorithm presented in Section 3.
The CVA algorithm by Larimore [20] as implemented by
Ljung in SIT [27], was used in the first step of the algorithm.
A third-order model, with transfer function:

ĜGðzÞ ¼ 0:0251z2 � 0:0488zþ 0:0237

z3 � 2:9210z2 þ 2:8435z� 0:9226

was estimated for the linear block in the Wiener model.
On the other hand, the following third-order polynomial:

N̂N�1ðykÞ ¼ 0:8918y3
k þ 0:4065y2

k þ 0:1988yk

was estimated for the inverse of the nonlinear block in the
Wiener model. The estimated nonlinear characteristic is
represented in Fig. 6.

For the purposes of validation the estimated Wiener
model was excited with the validation input data. The true
and estimated output (for both the estimation and the

Fig. 5 Estimation (first 1000 points) and validation (remaining
600 points) input-output data

Table 2: Model order and stability

Model order 2 3 4 5 6 7 8 9 10

Wiener S S S S S S S S S

Linear S S U U U U U U U
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validation data) are represented in Fig. 7, where a good
agreement between them can be observed.

The same data were used to estimate a third-order linear
model using the CVA algorithm by Larimore [20], as
implemented in SIT [27]. The estimated transfer function is:

ĜGlinðzÞ ¼
0:0084z2 � 0:0133zþ 0:0054

z3 � 2:5515z2 þ 2:1610z� 0:6085

For the purposes of comparison between the Wiener and the
liner models, three different performance criteria were
considered, namely the mean-square error (MSE), the
best fit (FIT) and the variance accounted for (VAF) criterion
[28].

The MSE is defined as:

MSE ¼ 1

N

XN

k¼1

ðyk � ŷykÞ2

where yk denotes the real output, ŷyk denotes the output of the
model, and N denotes the number of validation data.

The best fit is defined as:

FIT ¼ 1� ky� yvk
ky� ymeank

	 

� 100

where y is a vector containing the output of the model when
simulated with the validation input data, yv is a vector with
the validation output data and ymean is the mean value of y.

The variance accounted for is defined as:

VAF ¼ max 1� varfy� ŷyg
varfyg ; 0

� �
� 100%

where y ¼ fykgN
k¼1 denotes the real output sequence,

ŷy ¼ fŷykgN
k¼1 denotes the model output sequence, and

Varf�g denotes the variance of a quasi-stationary signal.
The results are summarised in Table 3. It can be seen that,

for this example, the prediction capability of the Wiener
model is (slightly) better than that of the linear model.

6 WMPC

In this Section, an MPC scheme based on the Wiener model
is presented. The proposed WMPC scheme is used for
constrained model predictive control of the pH neutralis-
ation process using the Wiener model identified in Section
5, and its performance is compared, through simulation
experiments, with that of a constrained MPC based on a
linear model of the process. Also, for the purposes of
comparison, a standard PID controller is implemented.

6.1 The MPC paradigm

MPC refers to a class of control algorithms in which a
dynamic model of the plant is used to predict and optimise
the future behaviour of the process (see the books [5] and
[29] for a detailed treatment of the MPC methodology). At
each control interval, the MPC algorithm computes an open-
loop sequence of future moves of the manipulated variables
over a control horizon M, in such a way as to optimise the
future behaviour of the plant. The optimisation is performed
by minimising a criterion function based on a desired output
trajectory over a prediction horizon P. The first value in this
optimal sequence is injected into the plant, then the horizon
is displaced one step towards the future (the so-called
receding horizon strategy), and the optimisation process is
repeated. Typically, the criterion function is a quadratic
function of the errors between the predicted output and the
desired trajectory (reference) over the prediction horizon,
and usually includes also terms which penalise the control
effort and the rate of change of the control variable.
Following the notation in [5], a typical criterion function
can be written as:

VðkÞ ¼
XP

i¼0

kŷykþijk � rkþik2
QðiÞ þ

XM�1

i¼0

kukþijkk2
SðiÞ

þ
XM�1

i¼0

kDukþijkk2
RðiÞ ð35Þ

where ŷykþijk denotes the prediction, made at time k, of the
output at time ðk þ iÞ; rkþi denotes the value (or an estimate
of it) of the reference at time ðk þ iÞ; and ukþijk and Dukþijk
denote the manipulated variable and the change of the
manipulated variable, computed at time k, at time ðk þ iÞ:
QðiÞ; SðiÞ; and RðiÞ are positive semidefinite diagonal
weighting matrices, and kxkW ¼

D ffiffiffiffiffiffiffiffiffiffiffiffi
xT Wx
p

denotes the weigh-
ted 2-norm of vector x. The weighting matrices QðiÞ; S(i)
and R(i), as well as the prediction horizon P and the controlFig. 7 True and estimated output (estimation and validation data)

Fig. 6 Estimated nonlinear characteristic

Table 3: Error comparison between the Wiener and linear
models

MSE FIT VAF

Wiener 0.0728 56.8456 81.5129

Linear 0.0832 53.8870 78.7940

IEE Proc.-Control Theory Appl., Vol. 151, No. 3, May 2004334



horizon M are design parameters that must be tuned to
provide the controller with a satisfactory performance.

An important feature of the MPC approach is that it can
deal intrinsically with constraints, which can be included in
the optimisation process. In practice all processes are
subject to constraints due to limited range and dynamic
response of actuators, and constructive, safety, economic or
environmental reasons. Usually, constraints in the magni-
tude of the manipulated variable, the rate of change of the
manipulated variable, and the state variables and outputs, of
the process are considered. The mathematical formulation
of the constrained optimisation problem involved in the
MPC approach can be expressed as (where the superscript i
denotes the ith compoment of the corresponding vector):

min
Du
fVðkÞg ð36Þ

subject to

Process dynamics
xkþ1 ¼ f ðxk; ukÞ
yk ¼ gðxkÞ

�
ð37Þ

constraints
ui
min � ui

k � ui
max

Dui
min � Dui � Dui

max

yi
min � yi

k � yi
max

8<: ð38Þ

When the criterion function V(k) is quadratic (as in (35)), the
constraints are linear (as in (38)), and the process model is
linear, the constrained optimisation problem (36)–(38) can
be written as a (QP) problem, which can be solved by
resorting to standard algorithms available in the literature
(a review of QP algorithms can be found in [29] Section 7.3).

6.2 The WMPC scheme

As pointed out in remark 1, an equivalent linear model for
the Wiener model can be obtained by filtering the output of
the process by the nonlinear basis functions used to
described the inverse of the static nonlinearity. This
equivalent linear model can then be used as the internal
model used by a standard (i.e. based on a linear model) MPC
algorithm for prediction and optimisation. As already
mentioned, if the criterion is quadratic and the constraints
are linear the optimisation process is a QP problem. In this
way, a WMPC scheme has been introduced that retains the
numerical properties of a standard MPC. The WMPC
scheme is represented in, Fig. 8.

Remark 2: It is important to note that in contrast to similar
approaches to WMPC in the literature (see for instance
[9–11]) there is no need to invert the static nonlinearity,
since it is the inverse of the nonlinearity which is delivered
by the proposed identification algorithm.

Remark 3: In the proposed WMPC scheme, the optimisation
no longer involves the system output yk directly in the cost
function, but the transformed (by the nonlinear basis
functions used to represent the inverse of the static
nonlinearity) version Yk: This would imply a suboptimal
solution. However, when basis functions are used with the
first element being linear (as in the considered application
where polynomials are used), the system output yk does
appear directly in the cost function, while the remaining
components of Yk can be weighted to zero by an appropriate
choice of the weighting matrix QðiÞ in (35), resulting in an
optimal solution.

6.3 Simulation results

The WMPC scheme introduced in the preceding Section
was implemented using the nlmpcsim function in the
MPC toolbox for use with Matlab [30], and the Wiener
model identified in Section 5. The function allows the
simulation of closed-loop systems with saturation con-
straints on the manipulated variables using linear models in
the step format for nonlinear plants represented as Simulink
S-functions. In this case, the criterion function is as in (35)
but does not include the term which penalises the control
effort (i.e. SðiÞ � 0 in (35)). There was no need to modify
the nlmpcsim function for the simulation of the Wiener-
model-based MPC, since the equivalent linear model
described in remark 1 could be used as the internal model
used by the MPC algorithm for prediction and optimisation.
The closed-loop control scheme for the WMPC is
represented in Fig. 8.

To take into account variations in the buffer flow rate, the
nonlinear observer described in Section 4 is implemented
and its output ðûu2Þ is used as a measured disturbance by the
MPC block. The combined scheme is represented in Fig. 9.

For the purposes of comparison, an MPC based on the
linear model of the process identified in Section 5 was also
implemented in the configuration shown in Fig. 10.

Saturation constraints in the manipulated variable are
imposed to take into account the minimum and the
maximum aperture of the valve regulating the base flow
rate. For both cases (WMPC and linear MPC), a lower limit
of 0 ml/s and an upper limit of 30 ml/s were chosen for this
variable, so that the nominal operating condition is
approximately in the middle of the range (the nominal
value of the base flow rate being 15.55 ml/s). In both cases,
the prediction horizon was chosen as P ¼ 20; while the
number of control moves (the control horizon) was chosen
as M ¼ 5: In all the simulation experiments, the system, was
subjected to disturbances in the buffer flow rate as

Fig. 8 WMPC scheme Fig. 9 ½WMPC þ observer� combined scheme
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represented in solid-line in Fig. 4a, while the acid flow rate
and the volume of the tank were assumed to be constant in
their nominal values.

The simulation results corresponding to the linear-model-
based predictive control of the process are shown in Fig. 11,
while those corresponding to the Wiener-Model-Based
Predictive Control are shown in Fig. 12. It can be observed
that the Wiener-model-based MPC performs better than the
linear-model-based one, when the operating region is far
from the nominal operating conditions (i.e. pH equal to
seven). The corresponding mean-squares tracking error are
0.8660 and 0.8689 for the WMPC and for the linear MPC,
respectively.

For the purposes of comparison, a PID controller was
implemented, and its parameters tuned using Cohen-Coon
tuning rules based on the linear model of the processFig. 10 ½Linear MPC þ observer� combined scheme

Fig. 11

a Setpoint and output with MPC based on the linear model identified in Section 5
b Manipulated variable u1

c Rate of change of the manipulated variable Du1 ðMSE ¼ 0:8689Þ

Fig. 12

a Setpoint and output with MPC based on the Wiener model identified in Section 5
b Manipulated variable u1

c Rate of change of the manipulated variable Du1 ðMSE ¼ 0:8660Þ
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identified in Section 5. The simulation results for the case in
which no constraints are imposed are shown in Fig. 13. As
expected, the PID outperforms the WMPC and linear MPC
controllers, but at the cost of the constraints being violated, as
can be observed in the Fig. 13b and Fig. 13c. The MSE for
this case is 0.5295. When saturation constraints are imposed
at the output of the PID controller, its performance deterio-
rates considerably, as can be observed in Fig. 14a. In addi-
tion, the constraint on the rate of change of the manipulated
variable is still being violated, as can be observed in Figs. 14b
and 14c. The MSE for this case is 1.3150.

7 Conclusions

A subspace Wiener model identification and predictive
control of pH neutralisation processes has been presented.
Input-output data from a nonlinear, first principles simu-
lation model of the pH neutralisation process were used for
subspace-based identification of black-box linear and
Wiener-type models. Simulation results showed that the

identified Wiener models presented better prediction
capabilities, and remained stable over a much wider range
of model orders, in comparison with the identified linear
models. In addition, the proposed nonlinear subspace
method delivers a Wiener model in a format that can be
used directly in a standard (based on a linear model) MPC
strategy. The identified models were used as the internal
models in an MPC of the nonlinear white-box simulation
model. To take into account variations in the (unmeasur-
able) buffer flow rate, a nonlinear observer was introduced.
Simulation results showed that, for the considered appli-
cation, the WMPC outperformed the MPC based on the
linear model, particularly when the system was operating
away from the nominal operating conditions. The simu-
lation results also showed that, provided there are no
constraints a standard PID controller would perform
adequately. However, in the presence of constraints, and
due to the sensitive nature of the nonlinear process
dynamics, significant degradation in the control quality
would occur.

Fig. 14

a Setpoint and output with PID controller with saturation constraints
b Manipulated variable u1

c Rate of change of the manipulated variable Du1 ðMSE ¼ 1:3150Þ

Fig. 13

a Setpoint and output with PID controller
b Manipulated variable u1

c Rate of change of the manipulated variable Du1 ðMSE ¼ 0:5295Þ
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10 Appendix

Proof of error convergence: The estimation error dynamics
are given by (23), that is:

_ee ¼ �LðxÞe ð39Þ
Let the candidate Lyapunov function be VðeÞ ¼ e2; and let
L(x) be a positive semidefinite symmetric matrix. Then, the
orbital derivative of V(e) is given by:

dV

dt
¼ @V

@e
_ee ¼ �LðxÞe2 � 0 ð40Þ

which is decreasing along the trajectories solution of (39)
This proves that e 2 L2 \ L1:Resorting to Barbalat’s lemma
(see lemma 1.2.1 and corollary 1.2.2 in [25]), a sufficient con-
dition for the error to converge to zero is that e is uniformly
continuous, or equivalently that _ee is bounded ð_ee 2 L1Þ:Since
e is bounded, the condition _ee 2 L1 is guaranteed if L(x) is
bounded, which concludes the proof. A
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