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In this paper, subspace-based algorithms for the
simultaneous identification of the linear and nonlinear
parts of multivariable Hammerstein and Wiener models
are presented. The proposed algorithms consist basi-
cally of two steps. The first one is a standard (linear)
subspace algorithm applied to an equivalent linear
system whose inputs (respectively outputs) are filtered
(by the nonlinear functions describing the static
nonlinearities) versions of the original inputs (respec-
tively outputs). The second step consists of a 2-norm
minimization problem which is solved via Singular
Value Decomposition. Under weak assumptions,
consistency of the estimates can be guaranteed. The
performance of the proposed identification algorithms
is illustrated through simulation examples.
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1. Introduction

Modeling, identification, and control of nonlinear
systems have been the subject of many research

activities in the last decades. In contrast to linear
models that only approximate the system around a
given operating point, nonlinear models are able to
describe the global behavior of the system over the
entire operating range. One of the most frequently
studied class of nonlinear models is the one corre-
sponding to the so-called block-oriented models,
which consist of the interconnection of linear time-
invariant (LTI) systems and static (memoryless) non-
linearities.Within this class, two of themost frequently
studied models are:

� the Hammerstein model, where the static non-
linearity is followed by an LTI system in a
cascade connection (see [2–5,9,12,24,25,28] for dif-
ferent identification algorithms for Hammerstein
models), and

� the Wiener model, in which the order of the linear
and nonlinear blocks in the cascade connection is
reversed (see for instance [15,33,34] for different
identification methods for Wiener models). Wiener
models have the capability of approximating, with
arbitrary accuracy, any fading memory nonlinear
time-invariant system [6].

These models have been successfully used to represent
nonlinear systems in a number of practical applica-
tions in the areas of chemical processes [9,18,25],
biological processes [19], signal processing [27], and
control [11].�A preliminary version of this paper was presented by the authors
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��E-mail: jcgomez@fceia.unr.edu.ar
Correspondence to: E. Baeyens.
E-mail: enrbae@eis.uva.es

Received 23 July 2003; Accepted 17 December 2004.
Recommended by E. Mosca and D. Clarke.

Note




In recent years, considerable amount of research
has been devoted to the development of new identifi-
cation methods that are able to deliver reliable state-
space models of multivariable LTI systems directly
from input–output data, and that require a modest
computational load without the need of iterative
optimization procedures. These techniques have
become collectively known as Subspace-based State
Space System IDentification (4SID) methods (see
[20,29,30], and the references therein). The methods
have their origin in state-space realization theory as
developed in the 1960/70’s, and the main computa-
tional tools are QR and singular value decomposition
(SVD). Although there is a well-developed theory for
subspace methods for LTI systems, it is not so for
nonlinear systems. Among some recent contributions
in this area, the works by Verhaegen andWestwick on
subspace-based identification ofMIMOHammerstein
and Wiener models [31,32], and the works by Chen
and coauthors [7,8], and by Favoreel and coauthors
[10] on subspace identification of bilinear systems, can
be mentioned.
In this paper, new subspace-based algorithms for

the identification of Hammerstein and Wiener models
are presented. The proposed algorithms consist of
two basic steps. The first step is a standard (linear)
subspace algorithm applied on an equivalent linear
system whose inputs (respectively outputs) are filtered
(by the nonlinear functions describing the static non-
linearities) versions of the original inputs (respectively
outputs), while the second step consists of a 2-norm
minimization problem which is solved via SVD.
In contrast to the subspace algorithms for identi-

fication of Hammerstein models in Ref. [31], and of
Wiener models in Ref. [32], which extend only the
MOESP1 family of linear subspace methods, the
subspace algorithms presented in this paper extend
any linear subspace method including the MOESP,
the N4SID,2 and the CVA3 to this class of nonlinear
models. In addition, the subspace algorithms pre-
sented here are more general than those in Refs
[31,32], in the sense that arbitrary basis functions (not
restricted to polynomials) can be used for the repre-
sentation of the nonlinearities. Furthermore, a simu-
lation example is presented for which the algorithm in
Ref. [31] fails to identify a Hammerstein model for the
system, while the algorithm proposed in this paper
successfully identifies the model.

The rest of the paper is organized as follows.
In Section 2, the Hammerstein model is introduced,
the identification problem is formulated and the
subspace algorithm is derived. The same is done in
Section 3 for the Wiener model. Finally, simulation
examples illustrating the performance of the algo-
rithms are presented in Section 4, and some conclu-
sions are given in Section 5.

2. Hammerstein Model Identification

2.1. Problem Formulation

A (multivariable) Hammerstein model is schemati-
cally represented in Fig. 1. The model consists of a
zero-memory nonlinear element Nð�Þ in cascade with
LTI system with state-space representation

xkþ1 ¼ Axk þ Bvk þ !k, ð1Þ
yk ¼ Cxk þDvk þ �k, ð2Þ

where yk 2 R
m, xk 2 R

n, vk 2 R
p, !k 2 R

n, and
�k 2 R

m, are the LTI system output, state, input,
process noise and output measurement noise vectors
at time k, respectively, and where A, B, C and D
are the (unknown) system matrices of appropriate
dimensions.
It will be assumed that the nonlinear zero-memory

block can be described by a linear combination of
basis functions in the form

vk ¼ NðukÞ ¼
Xr
i¼1

�igiðukÞ, ð3Þ

where gið�Þ : Rp ! R
p, ði ¼ 1, . . . , rÞ, are the assumed

known basis functions, �i 2 R
p
p, ði ¼ 1, . . . , rÞ are

unknown matrix parameters, and where uk 2 R
p is the

Hammerstein model input vector at time k. Typically,
the basis functions are polynomials,4 but they can
also be basis functions generated by translations and
dilations of a mother function (e.g., wavelets, or
Radial Basis Functions).

1MOESP stands for Multivariable Output Error State sPace [30].
2N4SID stands for Numerical algorithms for Subspace State-Space
System IDentification [29].
3CVA stands for Canonical Variate Analysis [20].

Fig. 1. Multivariable Hammerstein model.

4Any smooth function in an interval can be represented with
arbitrary accuracy by a polynomial of sufficiently high order.
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The identification problem is to estimate the
unknown parameter matrices �i, ði ¼ 1, . . . , rÞ, and A,
B, C, D, characterizing, respectively, the nonlinear
and the linear parts of the system, and the model order
n, from anN-point data record fuk, ykgNk¼1 of observed
input–output measurements.

2.2. Subspace Identification Algorithm

Substituting Eq. (3) into (1) and (2), these last two
equations can be written as

xkþ1 ¼ Axk þ
Xr
i¼1

B�igiðukÞ þ !k, ð4Þ

yk ¼ Cxk þ
Xr
i¼1

D�igiðukÞ þ �k: ð5Þ

Notice from Eqs (4) and (5) that the parametrization
(1)–(3) is not unique, since any parameter matrices
B�,D� and �
1�i, for some nonsingular matrix
� 2 R

p
p, provide the same description (4) and (5).
In other words, any identification experiment cannot
distinguish between the parameters B,D,�i and
B�,D�,�
1�i, respectively. To obtain a one-to-one
parametrization, i.e., for the system to be identifiable,
additional constraints must be imposed on the para-
meters. A technique that can be used to obtain
uniqueness is to normalize the parameter matrices �i,
i.e. to assume for instance that k½�1 �2 � � ��r�Tk2 ¼ 1.
A similar methodology was employed in [1] for a scalar
Hammerstein–Wiener model. Under this assumption,
the parametrization (1)–(3) is unique.
Defining now eBB , ½B�1, . . . ,B�r�, eDD , ½D�1, . . .�r�,

and Uk , ½g1ðukÞT, . . . , grðukÞT�T, Eqs (4) and (5) can
be written as

xkþ1 ¼ Axk þ eBBUk þ !k, ð6Þ
yk ¼ Cxk þ eDDUk þ �k: ð7Þ

Equations (6) and (7) can be interpreted as a state-
space realization of an equivalent LTI system whose
input Uk is a filtered (by the assumed known basis
functions gið�Þ) version of the original input uk. Any
available subspace identification algorithm (such as
the N4SID algorithm by Van Overschee and de Moor
[29], the MOESP algorithm by Verhaegen [30], or
the CVA algorithm by Larimore [20,21]) can then be

employed to obtain estimates bAA, beBBeBB, bCC, and beDDeDD of the
system matrices A, eBB,C, and eDD, respectively, from
input–output data.
Defining � , ½�1 �2 � � � �r�T, matrices eBB and eDD can

be written as eBB ¼ B�T, and eDD ¼ D�T, which can be

expressed in a combined form as

eBBT eDDT
h iT

, �BD ¼
B

D

� �
�T: ð8Þ

The problem now is how to compute estimates of
the parameter matrices B, D and � from an estimateb��BD of the matrix �BD. It is clear that the closest,
in the 2-norm5 sense, estimates bBB, bDD and b�� are such
that

bBB, bDD, b��� 	
¼ arg min

B;D;�

b��BD 

B

D

� �
�T





 



2
2

( )
: ð9Þ

The solution to this optimization problem is provided
by the SVD [13] of the matrix b��BD. The result is
summarized in the following theorem.

Theorem 2.1. Let b��BD 2 R
ðnþmÞ
rp have rank s > p,

and let the economy-size SVD of b��BD be given by

b��BD ¼ Us�sV
T
s ¼

Xs
i¼1

�iuiv
T
i ð10Þ

where �s is a diagonal matrix containing the s
nonzero singular values ð�i, i ¼ 1, . . . , sÞ of b��BD in
nonincreasing order, and where the matrices
Us ¼ ½u1 u2 � � � us� 2 R

ðnþmÞ
s and Vs ¼ ½v1 v2 � � � vs� 2
R

rp
s contain only the first s columns of the unitary
matricesU 2 R

ðnþmÞ
ðnþmÞ and V 2 R
rp
rp provided by

the full SVD of b��BD,

b��BD ¼ U�VT, ð11Þ

respectively. Then, the matrices b�� 2 R
rp
p, bBB 2 R

n
p,
and bDD 2 R

m
p that minimize the norm

b��BD 

bBBbDD

" #b��T













2

2

,

are given by

bBBbDD
" #

, b�� !
¼ ðU1�1,V1Þ, ð12Þ

where �1 ¼ diag f�1,�2, . . . ,�pg,U1 2 R
ðnþmÞ
p, and

V1 2 R
rp
p, are given by the following partition of the

5The 2-norm of a matrix A ¼ ðaijÞðm
nÞ is the norm induced by the
2-norm (or Euclidean norm) of vectors

kAk2 ¼ sup
w 6¼0

kAwk2
kwk2

¼ ���ðAÞ

where ���ðAÞ is the largest singular value of matrix A.
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economy-size SVD in (10),

b��BD ¼ ½U1 U2�
�1 0

0 �2

� �
VT
1

VT
2

" #
, ð13Þ

and the approximation error is given by

b��BD 

bBBbDD

" #b��T













2

2

¼ �2pþ1: ð14Þ

Proof. The result is a direct application of
Theorem 2.5.3 (pp. 72–73) in Ref. [13]. &

Based on this result, the nonlinear subspace
identification algorithm can then be summarized as
follows.

Algorithm 2.1.

Step 1: Compute estimates
� bAA, beBBeBB, bCC, beDDeDD	 of the systems

matrices
�
A, eBB,C, eDD� in (6) and (7) using any available

subspace algorithm for LTI systems.

Step 2: Based on the estimates
beBBeBB and

beDDeDD compute an
estimate b��BD of the matrix �BD defined in (8).

Step 3: Compute the economy-size SVD of b��BD as in
Theorem 2.1, and the partition of this decomposition
as in Eq. (13).

Step 4: Compute the estimates of the parameter
matrices B, D and � as

bBBbDD
" #

¼ U1�1,

and b�� ¼ V1, respectively, with U1,V1 and �1 defined
as in Theorem 2.1.

Remark 2.1. It is important to note that the algorithm
intrinsically delivers estimates that satisfy the
uniqueness condition k�k2 ¼ 1, since matrix V1 in the
SVD of b��BD is a unitary matrix.

Under some assumptions on the persistency of
excitation of the inputs (which depend on the parti-
cular subspace identification method used as the first

step of the algorithm6) the estimates
� bAA, beBBeBB, bCC, beDDeDD	 are

consistent in the sense that they converge to the true
values as the number of data points N ! 1. The

convergence of the estimates
beBBeBB and

beDDeDD implies that ofbBB, bDD and b��. The result is summarized in the following
theorem.

Theorem 2.2. Let
beBBeBB and

beDDeDD be consistent estimates
computed using the identification Algorithm 2.1.
Then, under the uniqueness condition, the estimatesbBB, bDD, and b�� provided by Algorithm 2.1 are also
consistent,7 in the sense that bBB
!a:s: B, bDD
!a:s: D, andb��
!a:s: �, respectively, as N ! 1.

Proof. See Appendix. &

Remark 2.2. A similar procedure was suggested in
Ref. [26]. However, the formulation here is more
general, in the sense that any available subspace algo-
rithm can be used as a first step, and proofs of con-
sistency are provided that are not given in Ref. [26].

Remark 2.3. In comparison with the work in Ref. [31],
the algorithm presented here is more general in the
sense that any family of subspace algorithms (not
limited to the MOESP class as in Ref. [31], but also
including the N4SID and CVA classes) can be used as
a first step of the algorithm, and that a more general
representation of the nonlinearity using arbitrary
basis functions (not limited to polynomial bases as in
Ref. [31]) can be employed.

3. Wiener Model Identification

3.1. Problem Formulation

A (multivariable) Wiener model is schematically
depicted in Fig. 2. The model consists of the cascade
interconnection of an LTI system followed by a zero-
memory nonlinear element with input–output char-
acteristic given by Nð�Þ. The LTI subsystem has a
state-space representation of the form

xkþ1 ¼ Axk þ Buk þ !k, ð15Þ
vk ¼ Cxk þDuk þ �k, ð16Þ

where A, B, C and D, are the system matrices of
appropriate dimensions, and where xk 2 R

n, vk 2 R
m,

6The reader is referred to Refs [29,30], and [20] for the consistency
conditions for the N4SID, MOESP, and CVA algorithms,
respectively.

Fig. 2. Multivariable Wiener model.

7Here, the notation bXX
!a:s: X stands for almost sure convergence,
or convergence with probability 1.
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uk 2 R
p, and �k 2 R

m, represent the LTI system state,
output, input, and process noise vectors at time k,
respectively.
It will be assumed that the nonlinear function

Nð�Þ : Rm ! R
m is invertible, and that its inverse

N
1ð�Þ can be described as

N
1ðykÞ ¼
Xr
i¼1

�igiðykÞ, ð17Þ

where now gið�Þ : Rm ! R
m, ði ¼ 1, . . . , rÞ are known

basis functions, and �i 2 R
m
m, ði ¼ 1, . . . , rÞ are

unknown matrix parameters. With this representation
for the static nonlinearity, Eq. (16) can be written as

�Yk ,

Xr
i¼1

�igiðykÞ ¼ Cxk þDuk þ �k, ð18Þ

where �, ½�1, . . . ,�r�,Yk , ½gT1 ðykÞ, . . . ,gTr ðykÞ�
T. The

Wiener model can then be described as

xkþ1 ¼ Axk þ Buk þ !k, ð19Þ
Yk ¼ eCCxk þ eDDuk þ e��k, ð20Þ

with eCC , �yC, eDD , �yD, e��k , �y�k and where �y

stands for the left pseudoinverse of �. As in the case
of the Hammerstein model, here also the condition
k�k2 ¼ 1 must be imposed in order to have uniqueness
in the representation (19)–(20).
As in the case of the Hammerstein model, here also

any available subspace identification algorithm (such
as the N4SID algorithm by Van Overschee and de
Moor [29], the MOESP algorithm by Verhaegen [30],
or the CVA algorithm by Larimore [20,21]) can be
employed to obtain estimates of the system matrices
A,B, eCC, and eDD from input–output data.

3.2. Subspace Identification Algorithm

Given estimates of the matrices A,B, eCC, and eDD, the
problem is how to compute estimates of the matrices
C, D and �. Proceeding similarly as in the Hammer-
stein model, the best (in the mean squares sense)
estimates of matrices C,D and � are such that

bCC, bDD, b��y
� 	

¼ arg min
C;D;�y

n


hbeCCeCC beDDeDDi
 �y½C D�



2
2

o
ð21Þ

The solution to this minimization problem is provided

by the SVD of the matrix ½beCCeCC beDDeDD�. A re-statement,
mutatis mutandi, of Theorem 2.1 could be made for
this case. The Subspace Identification Algorithm for
the Wiener model can be summarized as follows.

Algorithm 3.1.

Step 1: Compute estimates
� bAA, bBB, beCCeCC, beDDeDD	 of the systems

matrices ðA,B, eCC, eDDÞ in (19)–(20) using any available
subspace algorithm for LTI systems.

Step 2: Compute the economy-size SVD of ½beCCeCC beDDeDD� as

½beCCeCC beDDeDD� ¼ Us�sV
T
s ¼

Xs
i¼1

�iuiv
T
i ð22Þ

and the partition of this decomposition as

½beCCeCC beDDeDD� ¼ ½U1 U2�
�1 0

0 �2

� �
VT
1

VT
2

" #
, ð23Þ

where �1 ¼ diagf�1,�2, . . . ,�mg,U1 2 R
mr
m, and

V1 2 R
ðnþpÞ
m.

Step 3: Compute the estimates of the parameter
matrices C,D and � as ½ bCC bDD� ¼ �1V

T
1 , and b�� ¼ U

y
1.

Remark 3.1. It is important to note that, as in the case
of Algorithm 2.1, Algorithm 3.1 intrinsically delivers
estimates that satisfy the uniqueness condition

k�k2 ¼ 1, since matrix U1 in the SVD of ½beCCeCC beDDeDD� is a
unitary matrix. Furthermore, and for the same reason,
the pseudoinverse U

y
1 always exists.

The results on consistency of the estimates pre-
sented in Theorem 2.2 for the Hammerstein model can
be straightforwardly extended to the Wiener model,
and therefore they are omitted here.

Remark 3.2. In comparison with the work in Ref. [32],
the algorithm presented here is more general in the
sense that any family of subspace algorithms (not
limited to the MOESP class as in Ref. [32], but also
including the N4SID and CVA classes) can be used as
a first step of the algorithm, and that a more general
representation of the nonlinearity using arbitrary
basis functions (not limited to polynomial bases as in
Ref. [32]) can be employed.

4. Simulation Examples

To illustrate the proposed identification schemes, two
simulation examples are presented in this section.
In Example 4.1, the (luxurious) assumption that the
actual system belongs to the model class is considered.
The rationale for presenting this example is to
show that in this case the proposed algorithm is
able to accurately identify the system. In addition,
Example 4.1 shows that the proposed method works
properly in a case where the method in Ref. [31] fails.
Example 4.2, on the other hand, deals with the iden-
tification of a Wiener model for a real system corre-
sponding to a pH neutralization process.

Subspace Identification of Multivariable H. and W. Models 5



Example 4.1 (Hammerstein Model). The nonlinear
true system consists of a third order linear discrete
system with transfer function

GðzÞ ¼ z2 þ 0:7z
 1:5

z3 þ 0:9z2 þ 0:15zþ 0:002
, ð24Þ

preceded by a static nonlinearity described by a third
order polynomial containing only odd terms, of the
form

NðukÞ ¼ 0:8593uk 
 0:5115u3k: ð25Þ

Note the reader that in this case the true system has a
Hammerstein structure (i.e., the system belongs to the
model class). The nonlinear characteristic is shown in
solid line in the left plot of Fig. 3.
For the purposes of identification, the system was

excited with zero-mean Gaussian white noise with
variance �2u ¼ 0:8953

3
0:5115 ¼ 0:56. The corresponding
output was corrupted with zero-mean colored noise
with spectrum ��ð!Þ ¼ 0:64
10
8

1:2
0:4 cosð!Þ.

Remark 4.1. This example corresponds to Example 2.
in Ref. [31], where the authors prove that their sub-
space identification method fails when the variance
of the input is of the form �2u ¼ �1

3�3
, with �1 and �3

being the coefficients of the linear and cubic terms
of the polynomial nonlinearity, respectively. As will
be seen in the following, the method proposed in
this paper will allow a successful identification of the
Hammerstein model.

Algorithm 2.1 was employed to identify a
Hammerstein model for the system, using the
first (N¼ 5000) points of observed input–output

measurements. The remaining 3000 data were used for
validation purposes. Step 1 in Algorithm 2.1 was
performed using the CVA algorithm by Larimore
[20,21] as implemented by Ljung in the n4sid routine
in the System Identification Toolbox for use with
Matlab (hereafter referred as SIT) [23]. The default
option ‘Prediction’ for the ‘focus’ property of the
n4sid routine was chosen, which means that the
models are determined by minimizing the prediction
errors, and corresponds to the optimal weighting
from a statistical variance point of view [23]. A third-
order LTI subsystem was identified. The estimated
transfer function was (compare with the true transfer
function (24))

bGGðzÞ ¼ 1:0000z2 þ 0:7000z
 1:5000

1:0000z3 þ 0:9000z2 þ 0:1500zþ 0:0002
:

On the other hand, a third order polynomial con-
taining only odd terms, was used to represent the
nonlinear part of the Hammerstein model. The esti-
mated nonlinear model was (compare with the true
nonlinearity (25))

bNNðukÞ ¼ 0:859300uk 
 0:511471u3k:

The estimated nonlinear characteristic is represented
in dashed line in the left plot of Fig. 3. It can be
observed that it is indistinguishable from the true
nonlinear characteristic.
Finally, the measured (solid line) and estimated

(dashed line) outputs are represented in the right
plot of Fig. 3 (only the last 100 ms), where a good

Fig. 3. Left Plot: True (solid line) and estimated (dashed line) nonlinear characteristic (indistinguishable one from the other). Right Plot:
Measured (solid line) and estimated (dashed line) outputs (last 100 ms).
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agreement between them can be observed. The mean
square (Output) error8 for the validation data
was MSE ¼ 6:6887
 10
9, while the Best Fit9 was
99.9942%.

Example 4.2 (Wiener Model ). In this example,
Algorithm 3.1 is used to identify a Wiener model
based on the simulation data of a pH neutralization
process in a constant volume stirring tank considered
in [16,17]), which corresponds to a bench-scale plant
at the University of California, Santa Barbara.

The control of pH processes has been recognized as
a challenging problem due to the time-varying and
nonlinear characteristics of the pH processes. This is
particularly true when control has to be achieved in
the neutral range (pH between 6 and 8) when only
strong acids and strong bases are present. From an
identification point of view, pH processes have often
been considered in the literature as having a Wiener
structure (see for instance [18]). In this structure, the
linear block represents the mixing dynamics of the
reagent streams in the stirring tank reactor (CSTR),
while the static nonlinearity represents the nonlinear
titration curve, which gives the pH of the effluent
solution as a function of the chemical components.
The pH neutralization process considered here

consists of an acid (HNO3) stream, a base (NaOH)
stream, and a buffer (NaHCO3) stream that are mixed
in a constant volume (V ) stirring tank. The process is
schematically depicted in Fig. 4.
The inputs to the system are the base (volumetric)

flow rate (u1), the buffer flow rate (u2), and the acid
flow rate (u3), while the output (y) is the pH of the
effluent solution. The acid flow rate (u3), as well as the
volume (V) of the tank are assumed to be constant.
Usually, the objective is to control the pH of the
effluent solution by manipulating the base flow rate,
despite the variations of the unmeasured buffer flow
rate, which can be considered as a disturbance.
A simulation model, based on first principles, was

presented in Ref. [16] introducing two reaction invar-
iants (one related to a charge balance and the other to
a balance on the carbonate ion) for each inlet/outlet
stream. The reaction invariants will be denoted here as
ðWa1,Wb1Þ, ðWa2,Wb2Þ, ðWa3,Wb3Þ and ðWa,WbÞ, for
the base stream, the buffer stream, the acid stream,
and the effluent solution, respectively. The model is
highly nonlinear due to the implicit output equation,
known as titration curve (Eq. (32)). The dynamic
model for the reaction invariants of the effluent

solution ðWa,WbÞ, in state-space form, is given by
Refs [16,17].

_xx ¼ fðxÞ þ gðxÞu1 þ pðxÞu2, ð26Þ

hðx, yÞ ¼ 0, ð27Þ

where

x , ½x1, x2�T ¼ ½Wa,Wb�T, ð28Þ

fðxÞ ¼ u3
V
ðWa3 
 x1Þ,

u3
V
ðWb3 
 x2Þ

h iT
, ð29Þ

gðxÞ ¼ 1

V
ðWa1 
 x1Þ,

1

V
ðWb1 
 x2Þ

� �T
, ð30Þ

pðxÞ ¼ 1

V
ðWa2 
 x1Þ,

1

V
ðWb2 
 x2Þ

� �T
, ð31Þ

hðx, yÞ ¼ x1 þ 10y
14 
 10
y

þ x2
1þ 2
 10y
pK2

1þ 10pK1
y þ 10y
pK2
: ð32Þ

Here, the parameters pK1 and pK2 are the first
and second disassociation constants of the weak
acid H2CO3. The nominal operating conditions of
the system are given in Refs [16,17], and they are
reproduced in Table 1 for the sake of completeness.
For the purposes of identification, the model (26)

and (27) was excited with band limited white noise
around the nominal value of the base flow rate (u1)
and the buffer flow rate (u2), keeping the acid flow rate
constant at its nominal value. The output of the

8See footnote 10.
9See footnote 11.

Fig. 4. Schematic representation of the pH neutralization process.
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system was corrupted with additive Gaussian
white noise with zero mean and standard deviation
�¼ 0.001, in order to simulate the more realistic
situation of having measurement noise. The first
1000 data were used for the estimation of the Wiener
model, while the following 600 data were used for
validation purposes.
For the purposes of comparison the same data were

used to estimate a linear model of the process. The
CVA algorithm option of the n4sid routine in SIT,
with the default option ‘Prediction’ for the ‘focus’
property, was employed for the first step of the
nonlinear identification algorithm, as well as for
the identification of the linear model. As already
mentioned, this option means that the models are
determined by minimizing the prediction errors,
and corresponds to the optimal weighting from a
statistical variance point of view [23].
The order of the linear model was chosen as n¼ 3,

using the default choice ‘best’ of the order argument
in the n4sid routine. The algorithm computes the
singular values of the Hankel matrices of the impulse
responses for model orders in the range [1 : 10], and
the best order is selected, in the sense that for higher
orders the singular values are comparatively smaller.
To make a fair comparison, the same order (n¼ 3) was
chosen for the linear block in the Wiener model.
Polynomial basis functions were used for the

representation of the nonlinear block in the Wiener
model. In order to determine the number of terms in
the polynomial representation, simulations were per-
formed with polynomials with orders in the range
[1 : 7], and an ‘optimal’ order r¼ 3 was selected based
on the minimum Mean Square Error.
The estimated linear model is represented in Fig. 5,

while the estimated Wiener model is represented in
Fig. 6. The estimated nonlinear block in the Wiener
model is given bybNN
1ðykÞ ¼ 0:1595y3k þ 0:0225y2k þ 0:9869yk,

ð33Þ
and it is depicted in the left plot of Fig. 7. The true
and estimated output (for both the estimation and the

validation data) for the Wiener model are represented
in the right plot of Fig. 7, where a good agreement
between them can be observed.
For the purposes of comparison between the

Wiener and the linear models, three different perfor-
mance criteria were considered, viz., the mean square
error10 (MSE), the Best Fit11 (FIT) and the Variance
Accounted For12 (VAF) criterion [22]. The results are
summarized in Table 2. It can be seen that, for this
example, the prediction capability of the Wiener
model is better than that of the linear model, for the
three different criteria considered. In particular,
an improvement of 12% in the MSE is obtained by
resorting to the Wiener model as an alternative to
the linear model. It should also be noted that there
is no significant increase in the model complexity by
choosing a Wiener model instead of a linear model
(in this case, only 3 extra parameters need to be
estimated).

Remark 4.2. The identified Wiener model has been
used in Ref. [14] in a Wiener model predictive control
scheme. In that paper, it is shown that the improve-
ment in the prediction capabilities of the Wiener
model with respect to the linear model is translated

Table 1. Nominal operating conditions.

u3 ¼ 16:60ml s
1 u2 ¼ 0:55ml s
1

u1 ¼ 15:55ml s
1 V ¼ 2900ml
Wa1 ¼ 
3:05
 10
3 M Wa2 ¼ 
3
 10
2 M
Wa3 ¼ 3
 10
3 M Wa ¼ 
4:32
 10
4 M
Wb1 ¼ 5
 10
5 M Wb2 ¼ 3
 10
2 M
Wb3 ¼ 0M Wb ¼ 5:28
 10
4 M
pK1 ¼ 6:35 pK2 ¼ 10:25
y ¼ 7:0

Fig. 5. Identified linear model.

10The MSE is defined as

MSE ¼ 1

N

XN
k¼1

ðyk 
 byykÞ2,
where ykdenotes the real output, byyk denotes the output of the
model, and N is the number of validation data.
11The Best Fit is defined as

FIT ¼ 1
 Y
 Yvk k
Y
 ymeank k

� �

 100,

where Y is a vector containing the output of the model when
simulated with the validation input data, Yv is a vector with the
validation output data, and ymean is the mean value of y.
12The Variance Accounted For is defined as

VAF ¼ max 1
 Varfy
 byyg
Varfyg , 0

� �

 100%,

where y ¼ fykgNk¼1denotes the real output sequence, byy ¼ fbyykgNk¼1
denotes the model output sequence, and Varf�g denotes the
variance of a quasi-stationary signal.
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into a better performance of the model predictive
controller.

5. Concluding Remarks

In this paper, new subspace algorithms for the
simultaneous identification of the linear and nonlinear
parts of Hammerstein and Wiener models have been
presented. The algorithms consist of two basic steps.
The first one is a standard (linear) subspace algorithm,
while the second one is a 2-norm minimization
problem solved via SVD. Under weak assumptions,
consistency of the estimates is guaranteed. It has been
shown that the proposed algorithms deliver nonlinear
models which are suitable for their use in standard
(i.e., based on linear model) MPC schemes. The

performance of the proposed algorithms has been
illustrated through simulation examples.
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Appendix

Proof of Theorem 2.2. Let b��BD be a consistent estimate
of �BD defined in (8). Noting now that
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and considering that �BD is a rank-p matrix (so that
�2pþ1 ¼ 0), and that b��BD is a consistent estimate of
�BD, then

bBBbDD
" #b��T 


B

D

� �
�T













2

2


!a:s: 0,

as N ! 1 Now, from the uniqueness of the decom-
position B

D

� �
�T, it can be concluded thatbBB a:s:

!B, bDD a:s:

!D,and b�� a:s:

!�, what ends the proof. &
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