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Architectural styles,
object-oriented design,
and design patterns 
all hold promise as
approaches that simplify
software design and
reuse by capturing and
exploiting system design
knowledge. This article
explores the capabilities
and roles of the various
approaches, their
strengths, and their
limitations.

oftware system builders increasingly recognize the
importance of exploiting design knowledge in the
engineering of new systems. Several distinct but
related approaches hold promise.

One approach is to focus on the architectural level
of system design—the gross structure of a system as a
composition of interacting parts. Architectural

designs illuminate such key issues as scaling and portability, 
the assignment of functionality to design elements, interaction
protocols between elements, and global system properties such
as processing rates, end-to-end capacities, and overall perfor-
mance.1 Architectural descriptions tend to be informal and idio-
syncratic: box-and-line diagrams convey essential system struc-
ture, with accompanying prose explaining the meaning of the
symbols. Nonetheless, they provide a critical staging point for
determining whether a system can meet its essential require-
ments, and they guide implementers in constructing the system.
More recently, architectural descriptions have been used for
codifying and reusing design knowledge. Much of their power
comes from use of idiomatic architectural terms, such as “client-
server system,” “layered system,” or “blackboard organization.”
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These convey widespread if informal
understanding of the descriptions and
let engineers quickly communicate

their designs to others. Such architec-
tural idioms represent what have been
termed architectural styles.2

The object-oriented paradigm
offers another approach to describing
system designs. In its simplest form,
object-oriented design lets us encapsu-
late data and behavior in discrete
objects that provide explicit interfaces
to other objects; groups of objects
interact by passing messages among
themselves. OOD has proven to be
quite popular in practice, and sophisti-
cated OOD methodologies offer sig-
nificant leverage for designing soft-
ware,2-3 including ease of decomposing
a system into its constituent elements
and partitioning system functionality
and responsibility among those ele-
ments. However, it is not by itself well
suited to describing complex interac-
tions between groups of objects.
Likewise, although individual objects
can often be reused in other imple-
mentations, capturing and reusing
common design idioms involving mul-
tiple objects can be difficult.

Design patterns have become an
increasingly popular choice for
addressing OOD’s limitations. Al-
though the principles underlying
design patterns are not inherently tied
to OOD, much recent work in this
area has focused on design patterns for
composing objects.4,5 Like architectur-
al styles, design patterns provide guid-

ance for combining design elements in
principled and proven ways.

Each of these often complementary
approaches to capturing software
design knowledge and software designs
themselves has both benefits and draw-
backs. To effectively use these ap-
proaches, we need to understand their
terminologies, capabilities, similarities,
and differences. Further, we need to
understand the roles that each can play
in successful software design.

WHAT IS SOFTWARE
ARCHITECTURE DESIGN?

In practice, an architectural design
fulfills two primary roles. First, it pro-
vides a level of abstraction at which soft-
ware system designers can reason about
system behavior: function, performance,
reliability, and so on. By abstracting
away from implementation details, a
good architectural description makes a
system design intellectually tractable
and exposes the properties most crucial
to its success. It is often the key techni-
cal document used to determine
whether a proposed new system will
meet its most critical requirements.

Second, an architectural design
serves as the “conscience” for a system
as it evolves. By characterizing the cru-
cial system design assumptions, a good
architectural design guides the process
of system enhancement—indicating
what aspects of the system can be easily
changed without compromising system
integrity. As with building blueprints, a
well-documented architectural design
makes explicit the software’s “load-
bearing walls,”6 a fact that helps not
only at design time but also throughout
a system’s life cycle. To satisfy its mul-
tiple roles over time, an architectural
description must be simple enough to
permit system-level reasoning and pre-
diction; practically speaking, it should
fit on a page or two. Consequently, it is
usually hierarchical: atomic architectur-
al elements at one level of abstraction

are often described by a more detailed
architecture at a lower level.

Architectural descriptions are pri-
marily concerned with the following
basic issues:

♦ System structure. Architectural
descriptions characterize a system’s
structure in terms of high-level compu-
tational elements and their interactions.
That is, an architecture frames its design
solution as a configuration of interacting
components. It is specifically not about
requirements (for example, abstract rela-
tionships between elements of a prob-
lem domain) nor implementation details
(such as algorithms or data structures).

♦ Rich abstractions for interaction.
Interactions between architectural
components—often drawn as connect-
ing lines—provide a rich vocabulary for
system designers. Although interactions
may be as simple as procedure calls or
shared data variables, they often repre-
sent more complex forms. Examples
include pipes (with conventions for
handling end-of-file and blocking),
client-server interactions (with rules
about initialization, finalization, and
exception handling), event-broadcast
connections (with multiple receivers),
and database accessing protocols (with
protocols for transaction invocation).

♦ Global properties. Architectural
designs typically describe overall sys-
tem behavior. Thus the problems they
address are usually system-level ones,
such as end-to-end data rates and
latencies, resilience of one part of the
system to failure in another, or system-
wide propagation of changes when one
part of a system is modified (such as
changing the platform on which the
system runs).

ARCHITECTURAL STYLE

As with any design activity, a central
question is how to leverage past experi-
ence to produce better designs. In cur-
rent practice, architectural designs
have been codified and reused primari-
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Each approach has
something to offer:
a collection of
representational
models and
mechanisms.

.



ly through informal transmission of
architectural idioms. For example, a
system architecture might be defined
informally as a client-server system, a
blackboard system, a pipeline, an inter-
preter, or a layered system. While
these characterizations rarely have for-
mal definitions, they convey much
about a system’s structure and underly-
ing computational model.

An important class of architectural
idioms constitutes what some re-
searchers have termed architectural
styles. An architectural style character-
izes a family of systems that are related
by shared structural and semantic
properties.2 An architectural style pro-
vides a specialized design language for
a specific class of systems. Specifically,
styles typically provide the following
four things:

♦ A vocabulary of design elements:
component and connector types such
as pipes, filters, clients, servers, parsers,
and databases.

♦ Design rules, or constraints, that
determine which compositions of those
elements are permitted. For example,
the rules might prohibit cycles in a
particular pipe-filter style, specify that
a client-server organization must be an

n-to-one relationship, or define a spe-
cific compositional pattern such as a
pipelined decomposition of a compiler.

♦ Semantic interpretation, whereby
compositions of design elements, suit-
ably constrained by the design rules,
have well-defined meanings.

♦ Analyses that can be performed
on systems built in that style. Examples
include schedulability analysis for a
style oriented toward real-time pro-
cessing, and deadlock detection for
client-server message passing. An
important special case of analysis is sys-
tem generation: many styles support
application generators (for example,
parser generators), or lead to reuse of a
certain shared implementation base
(such as user interface frameworks and
support for communication between
distributed processes).

The use of architectural styles has a
number of significant benefits. First, it
promotes design reuse: routine solu-
tions with well-understood properties
can be reapplied to new problems with
confidence. Second, it can lead to sig-
nificant code reuse: often the invariant
aspects of an architectural style lend
themselves to shared implementations.
For example, systems described in a

pipe-filter style might reuse Unix oper-
ating system primitives to handle task
scheduling, synchronization, and com-
munication through pipes. Similarly, a
client-server style can take advantage
of existing RPC (remote procedure
call) mechanisms and stub generation
capabilities. Third, it is easier for oth-
ers to understand a system’s organiza-
tion if conventionalized structures are
used. For example, even without giving
details, characterizing a system as a
client-server organization immediately
conveys a strong image of the kinds of
pieces present and how they fit togeth-
er. Fourth, use of standardized styles
supports interoperability. Examples
include CORBA object-oriented archi-
tectures, the OSI (Open Systems
Interconnection) protocol stack, and
event-based tool integration. Fifth, as
we noted earlier, by constraining the
design space, an architectural style
often permits specialized, style-specific
analyses. For example, we can analyze
systems built in a pipe-filter style for
throughput, latency, and freedom from
deadlock, but this might not be mean-
ingful for another system that uses a
different style or an arbitrary, ad hoc
architecture.
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SOFTWARE ARCHITECTURE DESCRIPTION
LANGUAGES

A variety of architectural design languages have been cre-
ated to provide software architects with notations for specify-
ing and reasoning about architectural designs. ADLs focus on
various aspects of architectural design, and the analyses they
support vary in flavor from rather informal to highly formal.
Here are some examples:
♦ The UniCon system1 focuses on compilation of architec-
tural descriptions and modules into executable code.
♦ Rapide2 emphasizes behavioral specification and the simu-
lation of architectural designs.
♦ Wright3 provides a formal basis for specifying component
interactions (via connectors) and architectural styles.
♦ The Aesop System4 supports the explicit encoding and use
of a wide range of architectural styles.
♦ Various domain-specific software architecture languages5

support architectural specification tailored to a specific appli-
cation domain.

In addition to the ADLs described above, which were
developed specifically for describing software architectures,
several more general formal specification languages have also
been used. Examples include Z,6 Communicating Sequential
Processes,7 and the Chemical Abstract Machine.8

The software architecture research community is realizing
that these notations overlap considerably, particularly with
respect to the structural aspects of a software architecture

specification. ACME is an emerging generic architecture
description language that is designed to facilitate the inter-
change of architectural designs between different ADLs and
toolsets.9

The notations used to express the architectural diagrams
and style specifications in this article’s examples reflect termi-
nology and notations commonly found in these architecture
description languages.
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OBJECT-ORIENTED DESIGN AND
SOFTWARE ARCHITECTURE

The object-oriented design para-
digm provides another abstraction for
software design. In its simplest form,
an OOD lets system designers encap-
sulate data and behavior in discrete
objects that provide explicit interfaces
to other objects. A message-passing
abstraction is used as the glue that con-

nects the objects and defines the com-
munication channels in a design.
Although OOD concepts can be used
to address some architectural design
issues, and doing so is popular among
software developers, there are signifi-
cant differences between the capabili-
ties and benefits of object-oriented
approaches to design and the ap-
proaches provided by an emerging
class of software architecture design

tools and notations. As the following
examples illustrate, software architec-
ture concepts allow an architect to
describe multiple, rich interfaces to a
component and to describe and encap-
sulate complex protocols of component
interaction that are difficult to describe
using traditional object-oriented con-
cepts and notations.

To illustrate the different capabilities
of style-based software architecture
design and state-of-the-practice object-
oriented design, consider the simple sys-
tem presented in Figures 1 through 5.
Figures 1 and 2 use common architectur-
al notations (see the boxed text on archi-
tecture description languages on page
45) to present architectural views of the
system. Figures 3 through 5 describe
progressively more refined versions of
the same system using the Object
Modeling Technique OOD notation.3

In Figure 1, the system’s architec-
ture is described in a pipe-and-filter
style that specifies the design vocabu-
lary of components and connectors. In
the pipe-and-filter style, all compo-
nents are filters that transform a stream
of data and provide specially typed
input and output interfaces. All con-
nectors in the style are pipes that
describe a binary relationship between
two filters and a data transfer protocol.
Each pipe has two interfaces: a source
that can only be attached to a filter’s
output interface, and a sink that can
only be attached to a filter’s input
interface. Figure 2 provides a more
formal definition of this style using the
Wright notation.7 The Wright style
specification describes the semantics of
the design elements that can be used in
the style (pipes and filters), along with
a set of constraints that specify how the
design elements can be composed
when building systems in the pipe-and-
filter style. There is a direct correlation
between the graphical notation and the
formal specification of the design ele-
ments. Each design element in the
graphical depiction of the system is
typed, and the type corresponds to the
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. p : Pipefirst-stage: Filter
input:

DataInput
output:

DataOutput
source:
DataOutput

sink:
DataInput

first-stage: Filter
input:

DataInput
output:

DataOutput

Figure 1. A simple system in the pipe-and-filter style is specified using an architec-
tural notation.

    Interface Type DataOutput = write →  DataOutput []  close →  √

    Connector Pipe
        Role Source = DataOutput
        Role Sink = DataInput
        Glue = Buf<>

Style pipe-and-filter
    Interface Type DataInput = (read →  (data?x  → DataInput   
                                                          [] end-of-data  → close  → √))
                                                          []  (close →  √)

  where
    Buf<> = Source.write?x → Buf<x>  [] Source.close → Closed<>
    Bufs<x> = Source.write?y → Buf<y>s<x>
                    []  Source.close → Closeds<x>
                    []  Sink.read → Sink.data!x → Bufs
                    []  Sink.close → Killed
    Closeds<x> = Sink.read → Sink.data!x → Closeds
                         []  Sink.close → √
    Closed<> = Sink.read → Sink.end-of-data → Sink.close → √

Constraints
    ∀  c : Connectors  • Type(c) = Pipe
    ∀  c : Components  • Filter(c)
             where
                  Filter(c:Component) = ∀  p : Ports(c) • Type(p) = DataInput
                                                                                Type(p) = DataOutput
End Style

    Killed = Source.write → Killed  [] Source.close → √

Figure 2. The system shown in Figure 1 is specified here using the Wright architec-
ture description language.

.



type and protocol specifications given
in the Wright specification. Thus, the
graphical diagram actually has a firm
semantic grounding for specification
and analysis.

The sample system has two primary
components, labeled stage 1 and stage
2, each of which transforms a data
stream and then sends it to the next
component downstream. The compo-
nents interact via the pipe protocol
specified in Figure 2. For simplicity,
Figures 1 and 2 show only two trans-
formations and ignore system input
and output.

We can make three observations
about this architectural design, espe-
cially with respect to the OMT-based
design of the same system in Figures 3
through 5. First, the protocol of inter-
action between the filters is rich,
explicit, and well specified. The
Wright specification in Figure 2 is
associated with the pipe connector
between two filters (and with all con-
nectors of type pipe). This specifica-
tion defines the protocol for transmit-
ting data through a pipe, the ordering
behavior of the pipe, and the various
interfaces that the pipe can provide to
its attached filters. Because a primary
focus of software architecture is to
describe interactions among compo-
nents, this capability is important.
Second, both the components and con-
nectors—filters and pipes in this
style—have multiple, well-defined
interfaces. As a result, a pipe can limit
the services that it provides to the fil-
ters on each end. Likewise, a filter can
specify whether each of its interfaces
will provide input or output, as well as
the type of data passing through. In
this example, the upstream filter can
only write to the pipe, and the down-
stream filter can only read from the
pipe, preventing inappropriate access
to connector functionality (such as the
upstream pipe reading from the pipe).
Finally, because there is a rich notion
of connector semantics built into the
style definition, we can evaluate the

design to determine emergent sys-
temwide properties such as freedom
from deadlock (provided that the sys-
tem contains no cycles), throughput
rates, and potential system bottlenecks.

In contrast to the stylized architec-
tural design shown in Figures 1 and 2,
Figures 3 through 5 present different
OODs of the same system in progres-
sively more sophisticated descriptions.
The first OMT diagram, in Figure 1,
provides a simple class diagram that says
each filter may be associated with other
filters by a pipe association. Each pipe
association has a source and a sink role
to indicate directionality. The instance
diagram in Figure 1 depicts the example
system using this class structure.

The association between the first-
stage and second-stage filters is not truly
a first-class entity like the Filter class and

is therefore not capable of supporting an
explicit, sophisticated protocol descrip-
tion like the pipe in the architectural
example. Rather, this is a generic associ-
ation, implying that the upstream filter
can invoke any public method of the
downstream filter. Although objects can
be sophisticated entities in the OMT
paradigm, the vocabulary for determin-
ing interactions between objects is rela-
tively impoverished for use in architec-
tural descriptions.

Any object that can send a message
to another object can request that the
target object invoke any of its public
methods. There is effectively a single,
flat interface provided by all objects to
all objects. As a result, it is difficult for
an architectural object to limit the ser-
vices it can provide based on which
aspects of the interface a requester is
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sourceFilter
pipe

sink

(Filter)

first-stage

(Filter)

second-stagesource
pipe

sink

Figure 3. The same system shown in Figure 1 is depicted here using a naive object-
oriented notation (OMT).

source

Filter

sink (Filter)

first-stage

(Filter)

second-stagesource sink
Pipe

read_from()
write_to()

(Pipe)

Figure 4. An OMT specification is used to define the same system architecture
shown in Figure 1. Pipe is now a first-class design entity.
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using and the type of connection
between the two objects.

Finally, it is difficult to determine
emergent system properties with an

impoverished vocabulary of connec-
tions and interface constraints. For
example, the ability to invoke any
method of an associated object at any
time makes it difficult to determine
dataflow characteristics and freedom
from deadlock, which are both calcu-
lated relatively easily using the soft-
ware architecture and architectural
style constructs described earlier.

Figure 4 shows an attempt to
address some of the issues raised by the
design in Figure 3. It does so by mak-
ing the pipe connector a first-class
object. In this diagram, we use a pipe
object to connect two filter objects.
Using the OMT notation, it is now
possible to add behavioral semantics to
the Pipe class by associating dynamic
and functional models with it. The
Pipe class also introduces two new
methods, read_from() and write_to(),
that filters must call to send data on
the pipe or read data from it.

One effect of placing a pipe entity
between two filters is that the upstream
filter no longer knows which down-
stream filter is receiving and process-
ing its data. As a result, the upstream
filter no longer has access to the down-
stream filter’s methods. It can only
access the pipe that connects them,
ensuring a significant degree of inde-
pendence from the downstream filter
and transferring communication

responsibility to the pipe.
However, there is still a significant

limitation to this design. Because the
pipe object has to offer its full method
interface to both of its attached filters,
either filter can use the write_to() or
read_from() methods. To maintain
proper dataflow direction, however, we
must be able to specify that the
upstream filter, annotated by the
source role, will use only the write_to()
method, and that the downstream fil-
ter, annotated by the sink role, will use
only the read_from() method. Unfor-
tunately, the OMT notation does not
let us formally specify these con-
straints. The directionality and well-
defined pipe behavior are thus lost,
along with the design analyses and
assurances that go with them. It is cer-
tainly possible to create filters that
abide by this protocol, but it is difficult
to specify and enforce this constraint
generally and explicitly using standard
OOD notions.

Design patterns. An object-oriented
approach to specifying an architectural
pipe connector for use in pipe-and-fil-
ter style systems, along with rules for
how a pipe can be properly instantiated
in a design, apparently will require the
cooperation of multiple objects. The
emerging concept of design patterns
addresses this issue.

Figure 5 presents a third and final
revision of the simple pipe-and-filter
architecture. This time, the pipe con-
struct has been broken into three inter-
acting objects:

♦ a pipe object controls dataflow
and buffering,

♦ a source object attaches to the
upstream filter and provides only a
write_to() interface to the pipe, and

♦ a corresponding sink object
attaches to the downstream filter and
provides only a read_from() interface
to the pipe.
This solution solves the problem of
both filters having access to both
read_from() and write_to() methods by

providing intermediary objects with
limited interfaces.

By itself, however, this design does
not completely mitigate the problem of
access to inappropriate methods. It
simply shifts the problem from the fil-
ter objects accessing inappropriate pipe
methods to the source and sink objects
improperly accessing pipe methods.
Because the pipe, source, and sink
methods are all encapsulated by the
pipe-connector pattern, however, it is
possible to describe a protocol by
which the three objects agree to inter-
act according to an appropriate pipe
protocol; that is,

♦ the pipe object takes care of all
queuing and buffering issues,

♦ only the source role may invoke
the pipe’s enqueue_data() method, and

♦ only the sink role may invoke the
pipe’s dequeue_data() method.
Further details of this protocol can also
be encoded in the pattern and its objects.

The pattern approach lets us
describe relatively complex protocols of
interactions between objects that we
want to encapsulate, but don’t want to
encapsulate within a single class. We
could have described many of the con-
straints that the source and sink objects
satisfy in the Filter class, but doing so
would have added constraints to the
class that may not be generally appro-
priate, and might have significantly
decreased reusability. It would also have
spread the interaction protocol among a
wider variety of constructs, when we
really want to be able to encapsulate it
to clarify the design and ease the process
of reasoning about the design. The need
to use three different types of objects,
interconnected with a pattern specifica-
tion, significantly hinders the goal of
simplicity. Although we could model a
pipe connection using OMT and design
patterns, much of the simplicity and ele-
gance that came from specifying a sim-
ple type-annotated arrow with the archi-
tectural notation is lost when connectors
are no longer first-class entities, as in the
OOD paradigm.
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The pattern 
approach lets us 
describe relatively 
complex protocols 
of interactions 
between objects.
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Summary. As these examples illustrate,
architectural designs involve abstractions
that may not necessarily be best mod-
eled as a system of objects, at least in the
narrow sense of objects as encapsulated
data types that interact through method
invocation. This point is not limited to
dataflow styles such as pipe-and-filter.
We can easily make similar arguments
about architectural design done in a lay-
ered style, a client-server–based style, a
distributed-database style, or many
other styles of architectural design.

Given that architectural styles can
describe a broad range of different design
families, it is tempting to view object-
oriented design as a style of architectural
design in which all components are
objects and all connections are simple
associations or aggregations (to use the
OMT vocabulary). Indeed, it is possible
to define object-based architectural styles
that provide the typical primitive system
construction facilities supported by many
OOD toolsets. This view is quite reason-
able for the subset of OOD that deals
with architectural abstractions. There
are, on the other hand, a number of
design issues addressed directly by OOD
that are generally considered outside the
scope of architectural design. Examples
include ways of modeling problem
domains and requirements, and imple-
mentation issues such as designing data
structures and algorithms. These con-
cerns are relevant to software develop-
ment and should probably be considered
when a system architecture is being
designed; it should not, however, be nec-
essary to directly express and address all
of them in an architectural description.

Architectural design is concerned
with composing systems from compo-
nents, and the interactions between
these components. Such compositions
provide an abstract view of a system, so
that the designer can do system-level
analyses and reason about system
integrity constraints. Examples include
throughput rates and freedom from
deadlock. These distinctive aspects of
architectural design highlight several

important constrasts with object-orient-
ed design. Although both are concerned
with system structure in general, archi-
tectural design involves a richer collec-
tion of abstractions than is typically pro-
vided by OOD. These abstractions sup-
port the ability to describe new kinds of
potentially complex system glue (or con-
nectors). In addition to the pipe connec-
tor illustrated earlier, it is also possible to
define n-ary connectors such as an event
system, an RPC-based SQL query, or a
two-phase-commit transaction protocol.
Architectural abstractions also let a
designer associate multiple interfaces
with components and to express topo-
logical and other semantically based
constraints over a design.

Thus neither architectural design
nor object-oriented design subsumes
the other. They are both appropriate at
various times in the development
process and they share some common
notions and concepts. Just as you can
specify an OO-based architectural style,
you can use an OOD to implement or
refine a sophisticated component or

connector in an architectural design.
The fundamental issues that the two
approaches address and the abstraction
mechanisms that they provide, how-
ever, are not the same.

ARCHITECTURAL STYLES
AND DESIGN PATTERNS

Two of the primary limitations of
traditional OOD, as described in the
previous examples, are the difficulty in
specifying how groups of objects interact
and in specifying and packaging related
collections of objects for reuse. As
Figure 5 shows, design patterns can mit-
igate these problems. The basic idea
behind design patterns is that common
idioms are found repeatedly in software
designs and that these patterns should be
made explicit, codified, and applied
appropriately to similar problems.
Several approaches to expressing these
patterns have arisen over the past four or
five years, most of which have focused
on patterns for OOD.4,5 The utility of
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Filter

accept_input()

(Filter)

first-stage

(Filter)
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read_from() (Pipe) (Sink)

Pipe pattern instance

Figure 5. In this OMT-based specification of the system shown in Figure 1, the pipe
connector is represented as a design pattern. Connector interfaces (source and sink)
are now first-class entities.
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design patterns, however, extends
beyond this. There are three fundamen-
tal requirements for specifying and
reusing software design patterns: the
design domain must be well understood,
it must support the encapsulation of
design elements, and it must have
evolved a collection of well-known and
proven design idioms. Pattern languages
then let knowledgeable designers codify
proven designs, design fragments, and
frameworks for subsequent reuse.

Architectural styles relate closely to
design patterns in two ways. First,
architectural styles can be viewed as
kinds of patterns8—or perhaps more
accurately as pattern languages.9

Describing an architectural style as a

design pattern requires, however, a
rather broad definition of the scope of
design patterns. An architectural style is
probably better thought of as a design
language that provides architects with a
vocabulary and framework with which
they can build useful design patterns to
solve specific problems—much as OMT
provides a framework and notation for
working with objects. Second, for a
given style there may exist a set of
idiomatic uses. These idioms act as
microarchitectures, or architectural
design patterns, designed to work with-
in a specific architectural style. By pro-
viding a framework within which these
patterns work, the designer using the
pattern can leverage style’s the broad

descriptive and analytical capabilities
along with proven mechanisms for
addressing specific design challenges in
the form of design patterns.

We see patterns and architectural
styles as complementary mechanisms
for encapsulating design expertise. An
architectural style provides a collection
of building-block design elements, rules
and constraints for composing the
building blocks, and tools for analyzing
and manipulating designs created in the
style. Styles generally provide guidance
and analysis for building a broad class of
architectures in a specific domain,
whereas patterns focus on solving small-
er, more specific problems within a
given style (or perhaps multiple styles).
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Primitive 
vocabulary

Primitive vocabulary:

Components:

Process

Informal description Interface constraints Properties

OS Process. Processes read input messages, 
send results to output interfaces.

(ports define typed component interfaces)

processing-cost, rate, 
input-message-type(s),
output-message-type(s)

at least 1 async-input port
at least 1 async-output port
at least 0 sync-caller ports

Resource Component for which processes contend. resource-costexactly 0 async ports
at least 1 sync-callee port

Device
Send messages into the system at a 
predefined rate.

output-rate,
output-message-type

exactly 0 sync ports
exactly 0 async-input ports
at least 1 async-output port

(roles define typed connector interfaces)

async-msg-pass
Asynchronous message channel for typed 
messages.

message-typeexactly 1 async-input role
exactly 1 async-output role

Connectors:

async-msg-pass-
rendevous

Like async-msg-pass, but requires rendevous 
before sending message. N-ary connector.

message-typeat least 1 async-input role
exactly 1 async-output role

sync-request
Binary synchronous request channel, 
typed messages.

message-typeexactly 1 sync-caller role
exactly 1 sync-callee role

Design rules (list is a subset of all RTP/C style design rules):
• Async-msg-pass connectors may only connect (process, process) or (device, process) pairs of components.
• Sync-request connectors may only connect (process, resource) pairs of components.
• All processes must have an attached input interface.
• Each connector's input message type must match its output message type.
• ...

Analysis

Style-based design analyses:

Description

Insures only valid message types are passed along each message channel. Provides early detection of message 
type mismatch.

Determines how often each process can be given control and resources.

Calculates whether this design could be scheduled on a uniprocessor with user-specified performance characteristics.

If the system cannot be scheduled, this analysis identifies bottlenecks and suggests likely repairs and improvements.

Message path 
typechecking

Rate calculation

Schedulability

Repair heuristics

Figure 6. An informal specification of the Real-Time Producer/Consumer (RTP/C) style.

.



It is also important to note that patterns
need not be architectural. Indeed, many
patterns in recent handbooks4,5 deal
with solutions to lower-level program-
ming mechanisms, rather than system-
structuring issues.

Pattern and style examples. To illus-
trate the scope and purpose of architec-
tural styles, as well as how they relate to
design patterns, consider the architec-
tural style specification given in Figure
6. This style, described as the Real-
Time Producer/Consumer style, is
designed to assist architects putting
together real-time multimedia systems
running on uniprocessor computers.10

Figure 6 provides an informal descrip-
tion of the RTP/C style, emphasizing
the types of (primitive) design vocabu-
lary used by designs constructed in the
style, design rules and constraints that
specify how the elements may be com-
posed, and analyses that can be per-
formed on the design. The RTP/C
style definition describes a set of primi-
tive building blocks and guidelines for
putting together a fairly broad range of
systems within a reasonably well under-
stood domain.

Even with such a well-defined style,
however, relatively concrete design pat-
terns play an important role. The

RTP/C primitive design elements and
guidelines form a language that can be
used to capture more detailed, concrete
solutions to specific problems. This
style provides a well-understood and
well-defined vocabulary framework for
composing individual design elements
in principled ways that support real-
time analyses. Figure 7 shows two sim-
plified design patterns done in the
RTP/C style—the forked-memory pat-
tern and the message-replicator pattern.
Along with a diagram, each pattern pro-
vides information describing its applica-
bility, consequences of use, and so on.
We have shown these patterns using the
structure provided in a 1995 book by
Erich Gamma and his colleagues.4 This
framework works well for architectural
patterns as well as for OO patterns, with
the primary difference being that archi-
tectural patterns address a more specific
set of design issues (as described earlier
under “What is software architecture?”)
than do OO patterns. Just as OMT and
objects are used to show the design pat-
terns in most OOD patterns hand-
books, the vocabulary and rules of
architectural style can be used to specify
architectural design patterns.

It follows, then, that OMT and the
design patterns notations from the
OOD patterns handbooks can be used

to specify architectural patterns also. In
fact, several of the design patterns that
Gamma and his colleagues describe
appear to apply to architectural design.8
Examples include the Facade pattern
that provides a single interface to a col-
lection of objects, the Observer pattern
that specifies a mechanism for main-
taining consistency among objects (or
components), and the Strategy pattern
that specifies how to separate algorith-
mic choices from interface decisions.
None of the listed patterns are limited
to being only architectural patterns. All
have applicability at lower levels of
design (such as detailed design or
implementation code). In addition to
the architectural patterns listed here,
several patterns in the Gamma et al.
book, for example, fail to address archi-
tectural issues. The Factory Method
and Flyweight patterns. Both of these
patterns, for instance, deal with lower-
level implementation issues than archi-
tectures generally specify.

Thus, architectural design patterns
and object-oriented design patterns are
simply instances of the more general
class of all design patterns. Unlike
design patterns proper, however, an
architectural style provides a language
and framework for describing families
of well-formed software architectures.
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Intent: Avoid deadlock when processes share common resources.

Shared-resource architectural pattern

P1:
RTP/C process sr2:

resource

Motivation: System deadlock can occur when architectural 
components lock shared resources in an inappropriate order.
Applicability: Architectural designs done in the RTP/C style, where 
process components share resource components and freedom from 
deadlock is more important than run-time performance.

Structure: 

Pn:
RTP/C process

sr1:
resource

srm:
resource

Intent: Send identical messages to a dynamically changing group 
of other components using a principled protocol.

Message-Replicator architectural pattern

Motivation: A component's output may need to be sent to a 
variable set of components. The set of receiving components may 
change as the system runs, and constraints on the order in which 
recipients receive the messages may be important (as in the case 
of a stock-quote and trading system).
Applicability: Architectural designs done in the RTP/C style 
where the set of applicable recipients for the output of a specific 
component may vary as the system runs.

Structure: Msg-replicator:
RTP/C process

Participants: N RTP/C process components, each connected to m 
or fewer RTP/C resource components. All connectors used are 
RTP/C sync-request connectors from processors to resources.
Collaborations: In order to avoid deadlock, a process Pk can only 
send a request on resources sri (locking sri) if i > j, where sj is the 
highest numbered resource currently held by Pk.
Consequences: Using the ordered access protocol to prevent deadlock 
will not generally lead to optimal resource access or allocation. Other 
protocols may lead to better average-case performance.

Participants: The Msg-replicator process is an RTP/C process 
component with a single input port and a variable array of output 
ports. There is a single async-msg-pass connector providing input and 
a set of async-msg-pass connectors that send output to the recipients.
Collaborations: When this pattern is instantiated the designer needs 
to select a protocol by which the messages will be sent to the outputs. 
Options include sequentially, whereby messages are written in a 
user-specified order to each output connector one at a time; parallel, 
whereby all messages are written to their output connectors 
concurrently; or a user-specified variation on one of these.
Consequences: The dynamic nature of this pattern can make some 
static analyses, such as dataflows and delivery guarantees, difficult or 
impossible to perform.

Figure 7. Two sample architectural design patterns in the RTP/C style.

.



The role of style is to provide a lan-
guage for expressing both architectural
instances and patterns of common
architectural design idioms. As a result,
the constructs and concepts underlying
architectural style are comparable to
those underlying an OOD methodolo-
gy like OMT, rather than a set of

design patterns such as those given by
Gamma and his colleagues.4 A specific
architectural style is better thought of as
a language for building patterns than as
an instance of a design pattern itself.

rchitectures, architectural styles,
objects, and design patterns cap-

ture complementary aspects of soft-
ware design. Although the issues and
aspects of software design addressed by
these four approaches overlap some-
what, none completely subsumes the
other. Each has something to offer in
the way of a collection of representa-
tional models and mechanisms.
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