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Abstract

This document describes the system model for GIDIS Trusted Linux 0.1 (GTL 0.1), and the security
model to be verified by GTL 0.1. The system model is a formalization of an enhancement of the
standard Linux Virtual File System interface that includes multi-level secure (MLS) controls and
ACLs. Both models are based on the notion of information flow rather than the Bell-LaPadula
security model (which is the case of Lisex, GTL’s predecessor).

The system model is divided in three parts: a description of the environment state, a description
of many operations that may affect security (they include a number of file system calls), and some
abstract data types (ADT) that describe low level data structures.
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Chapter 1

Overview of the Model

In this chapter we explain our motivations, goals, and principles in writing GLT’s security model.
Also we comment on how to map this model to an actual implementation on the Linux kernel.

Our main goal is to develop a secure UNIX-like operating system. Our second goal is to get an
usable implementation of it. By UNIX-like we mean an operating system with the “same” interface
than some free or proprietary version of UNIX, we choose Linux. In our vocabulary, secure means
resistant to Trojan horse attacks against confidentiality [9, 1]. Finally, for us, usable means that
ordinary users perceive the necessary stronger security only when it is really needed; more precisely,
we would like an operating system in which security does not affect users who obey the rules [9].

1.1 Factors that Affect the Usability of MLS Systems

The literature cleary shows that the only way to have an operating system resistant to Trojan horse
attacks against confidentiality, is to implement a multi-level security (MLS) model. Given the expe-
rience we gained by developing and using Lisex (GTL’s predecesor), we know that BLP-like models
[2, 3] are secure but severely reduce the usability of the system. We have identified some key factors
that produce this second, undesired side effect. We will comment on them in the following sections.

1.1.1 Moving the Access Control

To exercise MLS access controls at open time is perhaps the most influential factor. It is not clear
whether a process violating confinement [3] will indeed violate security. Only when this process tries
to downgrade information by writing it to a lower level file, security is about to be compromised.
Thus, this time we followed an information flow model [7].

We have applied a simplification of Denning’s model to a subset of Linux’s system calls. This
subset includes all file system calls, and calls regarding the creation and modification of processes.
Also pipes have been considered. This is a simpler version than Denning’s because we considered only
explicit information flows. For example, the information flow that results from a process deleting all
the possible file names from a given directory and deducing the erased names from the value returned
by unlink, has nor been considered. Also, as Denning did, we do not consider information flows
through covert channels.

1.1.2 All Inputs Are Not Equally Important

Other important factor that we belive reduces the usability of the system is not taking into con-
sideration that users do not always work with classified information. In other words, in a modern
computing environment, computers are used to process sensitive and non sensitive information. In
order to eliminite this factor we decided to take and input-output view of the system rather than
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an strictly state approach. In this view, input is classified at different access classes accordingly to
user desire; and classified output is sent by the system only to appropriate terminals. This approach
allowed us to represent a user entering input classified at many different access classes, and seeing
output as classified as the terminal where he is working on.

1.1.3 Access Classes of New Objects

Yet another important factor that we have identified as contributing to decrease system’s usability,
regards the initial access class assigned to recently created objects. In Lisex we followed a rather
obvious approach: to assign the access class of its creator when a new object is created. While this
policy is indeed secure it also severely affects the usability of the system because users are commited
to classify all their information at their own levels, thus contradicting what was stated in the previous
section.

In the present model, new objects have the lower bound (L) on the set of security classes. The
justification is simple: new objects contain no information thus it is unnecesary to classify them above
L.

1.1.4 Empty Objects

The last paragraph of the previous section gave us further insight on the significance of empty objects
and how they should be managed. Given that an empty object does not contain information, it is
impossible to disclose information by arbirtrarily, and even discretionary, changing its access class.
Hence, the model presented in this document was adapted to treat empty objects as fundamentally
different from non empty objects. Clearly, this decision will make an implementation a little more
complex because it has to deal with one more case. However, we belive that this change will increase
the usability of the system. Consider the following two examples.

• A user creates a new file or directory, the system assigns L to it, and then the user has the
chance to set its access class to the most appropiate.

• A pipe between two processes is defined, the system assigns L to it, and then, given that the
pipe is empty, the system assigns the access class of the information that is first written on it.
Moreover, given that a pipe is emptied when the other process reads enough from it, chances
are to transmit information at another access class through the same pipe.

One can argue that the first scenario allows an attacker to trick the user in beliving that the access
class of the new object is the one he wanted, when in fact a Trojan horse has set a different (lower)
one. Althouh this is true, to be successfull this attack needs a negligent user, because the information
that will be written in this new object comes either from:

a. User input, in which case the user must classify it accordingly.

b. Other object, in which case the system will prevent a process to downgrade it.

Negligent users render the most secure system a castle with cotton walls.

1.2 Guiding Principles

Besides the general principles of computer security [9], we have based the construction of this model
on the following ones:
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• root is an ordinary user with respect to MLS.

Most of the sofware used in a UNIX-like operating system was installed by users with access
to the root account. It is incorrect to assume that these administrators are trustworthy as the
most sensitive information managed by the system. Hence, they must be trusted as much as
their access classes, and so every process acting on behalf of any of them cannot be trusted more
than its owners.

• Things must start at L.

New, empty objects must be classified at L; the first process of a user must be started at L; the
input of the user should be initially classified at L; directories should not be classified above L
unless file names are significative, and so on. MLS systems tend to increase the classification
of information, basically because the imposibility of writes-down [11]. Thus, it is convinient to
mitigate this tendency by krafting the system in a manner that it put energy to keep information
at a low classification (without compromising security, of course). We think that a good design
principle to follow is that the system should start things as low as possible.

• The problem is that users cannot see information they are not authorized to see.

The problem is not that users cannot modify information, nor that processes cannot read in-
formation, or even write it. If the system prevents users of seeing information they are not
authorized to see, then the system is secure. It does not matter what the system do with infor-
mation, nor what the system permits processes to do. Users can see information only when it
leaves the system: users cannot read a file, they can only read from a screen or a printed sheet
of paper. Hence the system must be designed by putting hard controls around its borders, and
not necessarily inside it.

1.3 Design and Implementation Comments

1.3.1 Key Security Requirements of the GTL Formal Model

The factors that in our opinion reduce the level of usability of the system and the principles described
in the previous section, leaded us to specify the following key security requirements1:

• Terminals have assigned two possible distinct access classes. One of them, mptsc, applies to the
output sent by the system to the terminal, and the other, cptsc, applies to the input entered
by the user (a flesh and bones human being) at the terminal. cptsc can be set by the user to
inform the system on how high is the input that will be entered from that time on. In turn,
mptsc cannot be modified and represents the maximum security level that can be displayed on
a particular terminal.

See sections 2.2, 2.3, 3.1, 4.18, 5.1.

• cptsc is initially set to L for all terminals.

• Processes can access, unless from the MLS model point of view, any object. This means that the
system will not prevent processes (no matter on behalf of whom they are acting) from reading
objects with any access class. Belive it or not but this feature by itself is not insecure.

See sections 4.12, 4.13, 4.9.
1We have included other security requirements but in this section we only comment about the most important ones.
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• But, processes cannot write information in lower objects once they have read higher objects. In
other words, a process can read any file, taking highly classified information into its memory
space, but it will not be able to write this information from its memory into lower level files.

This will be implemented by moving the control of access from open to read and write.

You may wonder, what this feature does for the user? The answer is simple: a user may edit
two different files with distinct access classes at the same screen and at the same moment. If a
BLP-like model is implemented, this situation cannot happen. In our model, the only thing that
is forbidden to the user is to save the lower level file being edited. This is so because the process
could have read data from the higher level file and be willing to write it to the lower level file.

See sections 4.17, 4.18, 4.9.

• Objects created with creat, mkdir or pipe will have L as their initial access class, and it will
be increased to the acess class of the first chunck of information that is written into them. But,
once these objects are not empty their access classes cannot be modified (except by the security
administrator).

See sections 4.4, 4.2.

• If an object is emptied (for example issuing truncate over it), then its access class can be
modified by a user or the system. The user can change the access class of an empty object by
executing chobjsc; the system changes the access class of an empty object when new data, with
a different access class, is written into the object.

See sections 4.1, 4.17.

• Process initiated by trusted programs with execve have their memory spaces classified at L.

See section 4.5.

1.3.2 Functional and Security Requirements

The model presented in this document is an abstraction of the real Linux kernel. Care must be taken
when implementing it as a modification of the Linux kernel, because some features of the kernel has
been specified in such a way that differ from its actual implementation. This is so because models do
not give all the details, but not because the model is saying “implement this or that in the way it is
specified”.

Thus, programmers are faced with a model that in one hand describes properties that must be
implemented as they are described; and on the other hand, it discribes properties that are already
implemented and which implementation should not be changed.

Roughly speaking, properties that must be implemented as specified are those that deal with
information flow or access control. And properties that must be left unchanged are all others. However,
to determine whether a predicate is specifying a security property or not, it is not always easy.
Predicates involving the variables listed below (see chapter 2 for details) are not, in most cases,
security predicates:

• input , output , ready

• stdin, stdout

• ltcont

• objs, ocont

• mem
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But, if other variables are involved in the same predicate, it is likely that this predicate is specifying a
security property. Take as an example the specification of the read system call, that is the operation
named Read on page 49. There, you will find that state variable mem is updated by adding to it some
part of ocont o? -i.e. a process reads some part of o?’s content and the system put it in the process’
memory. This predicate is not a security predicate. It is a functional predicate: it says what happens
when a process reads a file. However, this is a very important property of Read : in fact we took many
precautions in specifying this operation because of this functionality. On the other hand, predicates:

INF{o : OBJECT | o ∈ (aprocs pid?).mmfw • osc o} � osc o?

and

supr ′ = Sup supr sc ∧ sc = (osc o?)

are security predicates. You can distinguish them because they mention osc and supr which are new
state variables -i.e. variables not present in the Linux kernel.

1.4 Style conventions

We have made a great effort to keep a uniform structure for identifiers. Our conventions are as follows:

• Basic types are uppercase, like CATEGORY , and in the singular

• Only the first letter of each word in schema names is uppercase, like SecClass, and if it is a state
schema its name is in the singular

• Elements of enumerations are in lowercase, like undef

• Variables are in lowercase, like level

Each operation schema is divided into a number of schemas. There is one schema for each succesfull
case, and one schema for each unsuccessfull case. A schema, called Okschema, is defined as the
disjunction of all schemas representing succefull cases; and another schema, called Eschema, is defined
as the disjunction of the unsuccessfull cases. If there is only one schema for successfull or unsuccessfull
cases, then only the Okschema and the Eschema are defined. In other words, always there must be
an Ok-schema and an Eschema. Finally, the operation schema is defined as the disjuction of the
Okschema and the Eschema (called Tschema). So we have:

Okschema =̂ SuccessfullCase1 ∨ . . . ∨ SuccessfullCasen

Eschema =̂ UnsuccessfullCase1 ∨ . . . ∨ UnsuccessfullCasem

Tschema =̂ Okschema ∨ Eschema

We have defined name conventions for all those schemas:

• The name of a Tschema starts with an abbreviation of the name of the state schema, followed
by the name of the operation, for example SCGetCat

• The name of an Okschema starts with the name of the corresponding Tschema followed by Ok ,
for instance SCGetCatOk

• Each of the disjucts of an Okschema has the same name of the Okschema followed by a natural
number starting at 1, for example SCSetLevelOk2

• The name of an Eschema starts with the name of the corresponding Tschema followed by E , for
instance SCGetLevelE
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• Each of the disjucts of an Eschema has the same name of the Eschema followed by a natural
number starting at 1, for example SCAddCatE1

We have not used the standard Z style for recording state invariants. Instead, for each state schema
we record its invariant as follows:

1. A normalized state schema is defined without any predicate; say its name is Schema

2. A state schema named SInv is defined by including Schema and recording its invariant

3. Operation schemas acting over Schema do not include SInv , thus all preconditions are explicit

4. For each operation, Op, that changes Schema, the following proof obligation is writen:

SInv ∧ Op ⇒ SInv ′

Hence, if a proof is given the invariant is guarented and programmers have explicit preconditions
to code. For example, consider the following specification where variable x is intended to be non-
negative. We start by defining a state schema where variable x is normalized and unconstrained.

X
x : Z

Then, we define a schema capturing the invariants for schema X .

XInv
X

x ≥ 0

Now, we define an operation that could potentially violate the invariant so we include the
appropriate precondition.

Decr
∆X

x > 0
x ′ = x − 1

Finally, a proof obligation is introduced in order to guarantee that XInv is indeed an invariant.

theorem DecrPI
XInv ∧ Decr ⇒ XInv ′

Were we defined X as follows:

X
x : Z

x ≥ 0

we could have defined Decr to be
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Decr
∆X

x ′ = x − 1

because the invariant is verified by definition. Hence, we left x > 0 implicit and the specifier or
the programmer must make it explicit what is equivalent to the first approach.

At the end of this document you may find an index listing all the formal terms defined and the page
number where its definition is. We belive this index will be of great help because you may find terms
quickly. Sadly, page numbers may be off by one due to sintactical restrictions imposed by Z/EVES.

Any word written in typewriter type style refers to program code in the Linux kernel, operating
system commands or the like.
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Chapter 2

The State of the File System

The title of this section is a litle bit confusing because as it is suggested in [13], the engineer should
never describe the state of the machine when doing requirements engineering. Instead, he or she must
describe the state of the environment and the behaivor of the machine connected to this environment.
In this case the machine is the file system portion of the operating system kernel.

We think of a server running the operating system connected to a number of physical terminals
through point-to-point serial lines. Each of them interfaces with the system through a logical terminal
which is a software device. There must be a one to one relation between physical and logical terminals
that cannot be re-defined (except with a controlled procedure). This means that the binding between
logical terminals and physical ports (on the server) cannot be changed by any user. We think that
this kind of changes are seldom needed.

Physical terminals are, basically, dummies, i.e. they have no processing capabilities. If a physical
terminal performs some computation then it is assumed to be correct and trustworthy. More precisely,
each of them comprises a keyboard and a screen, and a point-to-point cable that connects each of them
with the computer. Physical terminals include printers. If a physical terminal contains a second storage
unit, then the system (running on the server) is not responsible for the data stored in that unit, and
we assume that nothing can save protected information in that unit -however, we allow the server to
read information stored in it.

The server contains a hard disk which in turn contains the information to be protected. It should
be noted that both the hard disk and its data are part of the environment -i.e. they are not the
operating system program. Also, there are some individuals whom will use the system from the
physical terminals. The system needs a way to recognize these persons and their security clearances,
then there is a data base containing all this information -which in turn is stored in the server’s hard
disk and must be protected.

To summarize the environment comprises:

• A set of physical terminals from which users interact with the system, each terminal has an
input and an output device;

• A set of logical terminals or device drivers that mediate the communication with the physical
terminals

• An external database of users and their security attributes;

• A set of objects (files and directories) and their security attributes (ACL, access classes); and

• A set of processes acting on behalf of users which are the only ones that can invoke file system
services.
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Each of this sets will be modeled as one or more state schemas as it is shown below. The invariants
of these state schemas are defined in chapter 7.

State variables can be of one of three kinds:

• machine controlled,

• environment controlled, or

• manchine and environment controlled.

If a variable is controlled by the machine, then the machine is the only entity that can modify its value
and the environment cannot modify it in any way specified or not. The same is true for environment
controlled variables. Variables controlled by both machine and environment can be modified by either
of them. Thus, we will indicate, in so called control tables, what variables are machine or environment
controlled. Machine controlled variables must be implemented inside the TCB (see section 2.1) given
that it is the only one component we can trust.

2.1 Trusted Computer Base

We are modeling a secure computer system or, better, a system that should be secure against a
particular kind of threat. Hence, we need to state precisely which entities are trusted and which are
not. The system, composed of the file system program, the set of physical terminals, and all the
hardware needed to store the external databases, are trusted. Also, some special programs (such as
login, init, etc.) are considered trusted processes. Particularly, physical terminals are trusted as
much as their security class suggests. Also, every user is trusted as much as his or her security class.
Programs and processes are not trusted, every one of them may be a Trojan horse.

Trusted programs must be guarded against unauthorized modifications; we include in this category
the operating system program. This is hard to achieve in UNIX-like operating systems. We assume
hardware is protected against anauthorized modifications with physical security countermeasures.

See [6] for more details about the TCB.

2.2 Physical Terminals

Terminals have one input device and one output device. Users enter data through the input device
and see data (sent by the system) on the output device. We will assume that terminals read and write
characters. Each terminal has a maximun security class depending on things such us location, who can
be seated in front of it, etc. But users can enter and see information at various levels (access classes).
Hence, it is necesary that the system be informed about the classification of the input it is receiving
in every moment. This access class is called current access class. Thus, if ’a’ is a character entered
at a particular classification, then another ’a’ entered at another access class must be regarded as
fundametally different than the first one. In fact, a basic property this system must enforce is that any
input done at a particular classification must not be outputed at a lower classification. In other words,
if ’a’ is entered through a terminal working at current access class ci , then it cannot be written (in
any future time) on a terminal working at current access class co , with co ≺ ci .

In concecuence, characters must be cualified by the current access class of the terminal through
which they are entered. This does not mean that an acctual implementation of the system has to
keep this information. Its only pourpose is to enable us to formally prove that the model verifies the
property stated above. We model cualified characters as follows:
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Z Section state, parents: sc, subjectsc, acl

CHAR ≈ elements of this set are inputed to or outputed from the system

[CHAR]

CCHAR == CHAR × SecClass

We think of physical terminals as character devices, i.e. characters are entered or outputed one at
a time. Thus, we model physical terminals as composed of two CCHAR variables, one represents the
input device and the other the output device.

input ≈ character already entered but yet not procesed by the system

output ≈ last character written by the system on the terminal screen

ready ≈ is used to sicronize the physical terminal with the logical terminal attached to it; if ready is
greater or equal to zero then input must be processed, otherwise it has already been processed

PhysicalTerminal
input : CCHAR
output : CCHAR
ready : Z

Next is the initial schema for a PhysicalTerminal . Initially every physical terminal has no input
to process and its output device is empty. To model this we use a special character called null . This
character cannot be printed nor processed.

null : CHAR

PTInit =̂ [PhysicalTerminal ; SCInit | input = output = (null , θSecClass) ∧ ready < 0]

We identify each physical terminal connected to the system with an element of PTERM .

PTERM ≈ identifiers for physical terminals

mptsc ≈ the maximun security class of each physical terminal

[PTERM ]

mptsc : PTERM → SecClass

We model the maximun access class of a physical terminal as an axiomatic definition (and not as
a part of the state) because we do not model operations that change this attribute.

In a particular moment there are some users working on some physical terminals at a particular
classification. We include the bijection from PTERM onto PhysicalTerminal as part of the state
because the state of each PhysicalTerminal may change over time, and not because the relation
between PTERM and PhysicalTerminals is intended to change.

pts pti ≈ is the state of the physical terminal identified with pti
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upt u ≈ the physical terminal through which user u is working

cptcs pt ≈ current classification of physical terminal pt ; it is not a partial function because every
physical terminal has a current security class despite a user is working on it or not

UsersAndTerminals
pts : PTERM → PhysicalTerminal
upt : USER 7� PTERM
cptsc : PTERM → SecClass

The system starts in a state where no users are working on it, and the current access class of each
terminal equals L. Also, each physical terminal connected to the system is in its initial state.

UTInit
UsersAndTerminals
SCInit
PTInit

ran pts = {θPhysicalTerminal}
upt = ∅
ran cptsc = {θSecClass}

Table 2.1 is the control table for the state variables defined in this section.

Variable Machine Environment
input •
output •
ready • •
cptsc •
upt • •
pts •
mptsc •

Table 2.1: Control of variables of PhysicalTerminal and UserAndTerminals

2.3 Logical Terminals

Logical terminals are what the system sees of a physical terminal. Logical terminals sometimes are
called ttys. We are specially concerned with logical terminals, and we assign to them different security
properties with respect to other kind of objects. At design or implementation level, other charcter
devices may be considered as logical terminals because we model very abstract operations over them.
We think of them as having an identifier, a content, and a security class.

LTERM ≈ identifiers of logical terminals of the system

stdin ≈ sequence of input that has been taken from the environment, i.e. a physical terminal

stdout ≈ sequence of output written by a process and not yet outputed to the medium
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[LTERM ]

LTCont
stdin, stdout : seqCCHAR

Note that a logical terminal buffers the input and output send to and received from the physical
terminal attached to it. Initially, the content of a logical terminal is empty.

LTCInit =̂ [LTCont | stdin = stdout = 〈〉]

We need to assign logical terminals to physical terminals. There is exactly one logical terminal for
each physical terminal and viceversa. Hence, we define:

ltcont lt ≈ the content of logical terminal lt

ltsc lt ≈ the security class of logical terminal lt

ttys lt ≈ the physical terminal connected to logical terminal lt . We assume that if logical terminal lt
is connected to physical terminal pt , then every input received by lt can only come from pt , and
every output send by lt is written only on pt .

LogicalTerminals
ltcont : LTERM → LTCont
ltsc : LTERM → SecClass
ttys : PTERM �→ LTERM

Initially logical terminals are empty, and the access class of each of them equals L (which is equal
to the current access class of the physical terminal connected to it).

LTInit
LogicalTerminals
LTCInit
SCInit

ran ltcont = {θLTCInit}
ran ltsc = {θSecClass}

Table 2.2 is the control table for the state variables defined in this section.

Variable Machine
stdin •
stdout •
ltcont •
ltsc •
ttys •

Table 2.2: Control of variables of LogicalTerminals
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2.3.1 Design and Implementation Comments Regarding Terminals

As shown in Tables 2.1 and 2.2 mptsc is controlled by the environment, and ttys and ltsc are con-
trolled by the system. Moreover, strictly speaking mptsc is not shared between the system and the
environment. All this information has to be considered at the implementation level.

First, the system has to have a way to know the access class of each physical terminal connected
to it because many decitions are taken based on these values. Given that there is a one to one relation
between logical and physical terminals, we suggest to include this value in the i-node of each logical
terminal. Thus, logical terminals (in fact their i-nodes) will store two access classes: one representing
mptsc and the other ltsc.

There is no need in storing cptsc explicitly in the i-nodes of logical terminals. The reason is that,
as schema SFSInvPLT shows (see chapter 7), the following predicate must be a system invariant:

The current access class of a physical terminal must be
equal to the access class of the logical terminal attached to it.

Thus, at implementation level, having a field for ltsc is enough to represent both access classes because
initially they are equal and they are always changed at the same time and to the same value.

Second, as we have said the system has no way to know the access class of a physical terminal
except by looking at the access class of its logical terminal and by assuming they are equal. But this
is clearly an assumption not completely controlled by the system. For example, if a clerk decides
to move a terminal to a public place (thus, implicitly changing its access class), the system will not
perceive that change and will write classified information on it when requested. Hence, care must
be taken when access classes of both physical and logical terminals are changed because otherwise it
could be possible for attackers to see classified information.

Third, we tried to describe the transfer of characters between a physical terminal and the system.
This transfer is made on a character by character basis. Every time a user pushes a key, an interruption
occurs and the kernel copies the correspondig character into the logical terminal connected to the
keyboard. In this way, the next time a process reads from its tty this character may be available.
Clearly, the interruption acts as a sincronizing event between two processes: the system and the
environment.

Z does not direcly support sincronization between concurrent processes and we think that it is
not necesary to model this feature. Hence, we use a shared variable, ready , to sincronize system and
environment. However, with this mechanism some input may be lost. On the other hand, we try to
model a security problem and not a concurrency problem, so we do not care about lost characters (they
do not affect confidentiality). In summary, we have modeled the communication between physical and
logical terminals just in order to be able to reason about security; programmers must leave the actual
implementation as it is whenever it does not conflict with the intended security properties.

Note that the initial current access class of physical terminals is L. This means that access classes
of logical terminals are also L. Thus, initially, every input sent to the system will be classified at L.
We belive this is a good policy that helps to increase the usability of the system. MLS systems, quite
naturally, tend to upgrade information, hence we decided to start the system and the user activity as
lower as possible. Users must be warned of this fact.

Fourth, there is exactly one logical terminal for each physical terminal and viceversa (this is codified
in the type of ttys). To preserve this relation is paramount to system security. When we said that
there is only one logical terminal for each physical terminal we mean that whatever is written in or
read from a particular logical terminal, goes to or comes from its physical terminal, and nowhere else.
This must be true even for processes run by root. Moreover, all this activity must be controlled by
the system. That is, processes can only read or write from logical terminals and they never can get
direct access to physical terminals.
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Particularly, it must be impossible for a process (even for a root process) to connect a logical
terminal to a physical terminal. Process are part of the environment, and, as Table 2.2 shows, state
variable ttys is controlled by the machine (i.e. the operating system kernel program). Hence, were a
process been able to connect a logical terminal to a physical terminal, then the environment would
have been in control of ttys. More precisely, the machine is in control of ttys if the relation between
logical and physical terminals is codified in the operating system kernel program, and there is no way
(with or without system calls) for any process to alter this relation. Clearly, this implies that the only
way to modify this relation is by recompiling the kernel program.

2.4 Users Allowed to Work on the System

As we said in the introduction of this chapter, part of the environment is a database of users and their
security attributes. UserSecClass is defined in chapter 8 (it models the relationship between users and
security classes).

users ≈ set of users allowed to use the system

grps g ≈ the set of users that belong to group g

Users
UserSecClass
users : P USER
grps : GRPNAME 7→ P USER

In the initial state Users contains a few built-in users and groups, and standard access classes for
them.

root ≈ the standard UNIX administrator; in GTL it will only be able to manage ACLs but not access
classes

allgrp ≈ a group that contains all users

rootgrp ≈ a group of administrators that is equivalent to root

secadm ≈ is designated in chapter 8

root : USER
allgrp, rootgrp : GRPNAME

UInit1
Users

users = {root , secadm}
grps allgrp = {root , secadm}
grps rootgrp = {root}
SECADMIN /∈ (usc root).categs

UInit =̂ UInit1 ∧ USCInit

Table 2.3 is the control table for the state variables defined in this section.
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Variable Machine
users •
grps •
usc •

Table 2.3: Control of variables of Users

2.5 Protected Objects

The objects of that the system must protect include files, directories, pipes, and so on (see [6] for more
details).

OBJECT ≈ the set of protected objects, i.e. regular files, directories, pipes, etc. An element of this
set represents the absolute path or name of the object.

OCONT ≈ objects store a sequence of classified characters

[OBJECT ]

OCONT == seqCCHAR

Next, we model the object database and all their security attributes.

objs ≈ the set of objects that currently exist in the system

ocont o ≈ the content of object o

oacl o ≈ the access contrl list of object o

osc o ≈ the security class of object o

FileSystemObjects
objs : P OBJECT
ocont : OBJECT 7→ OCONT
oacl : OBJECT 7→ AccessCtrlList
osc : OBJECT 7→ SecClass

As we said in section 2.1, the TCB is composed of hardware and software. The software portion of
the TCB is composed of programs (trusted processes) and data files. We model the software portion
of the TCB with the following global variable.

softtcb : P OBJECT

We consider softtcb as a global entity and not part of the state because we are not interested in
operations that modify this set.

Initially, the object database contains only the software portion of the TCB.

FSOInit =̂ [FileSystemObjects | objs = dom osc = dom oacl = dom ocont = softtcb]

Table 2.4 is the control table for the state variables defined in this section.
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Variable Machine
obj •
ocont •
oacl •
osc •
softtcb •

Table 2.4: Control of variables of FileSystemObjects

2.5.1 The Access Class of Directories

Directories contain file names. File names may be important in theirself or not. For example, if you
have file mycompetitor stored in a directory, that name conveys some information to an attacker.
Instead, if you name the same file xr56wT no one (program or person) may deduce anything about its
content. Now, what should be the access class of the directory where mycompetitor is stored? What
should it be if you name the file xr56wT?

We think that a directory must have an access class different from L if and only if any of its file
names can give some information to an attacker. Moreover, keeping the access class of directories close
to L will increase the usability of the system whithout necesarily reducing its security. In particular,
we suggest that users’ home directories to be classified at L.

2.6 Processes

We consider that a process records the following information:

usr ≈ the user who launched the process; it is equal to the uid field of the task_struct

suid ≈ it is possible that a process temporalily changes its identity (cf. SUID), this temporal identity
is stored in suid ; most of the time usr = suid ; this alternative identity is used to check DAC
rights; it is equal to the euid or fsuid fields of the task_struct1

lt ≈ the identifier of the logical terminal associated with the process; i.e. the process reads from and
writes to lt to interact with the user2

or ≈ the objects taht the process has opened for reading and not yet closed

ow ≈ the objects that the process has opened for writing and not yet closed

mmfr ≈ memory mapped files in read mode (see mmap manual page)

mmfw ≈ memory mapped files in write mode (see mmap manual page)

supr ≈ the least upper bound of the access classes of the information that the process has read (it do
not matter if the files from which this information comes from are closed); this variable is called
working access class of the process, we will talk of a process working at a particular access class
when its working access class is that access class

mem ≈ the state of its memory space; it is intended to represent that portion of the process’ memory
that holds data taken from the environment (i.e. objects and devices)

1Usually euid and fsuid are equal, even when the process is running SUID to other user.
2This is an unnecesary restriction of the model that will be removed in future versions; that is, a process can interact

with many logical terminals.
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prog ≈ the program from which the process was built by the system

Process
usr , suid : USER
lt : LTERM
or , ow : P OBJECT
mmfr ,mmfw : P OBJECT
supr : SecClass
mem : seqCCHAR
prog : OBJECT

A process starts with no open files, its memory is empty, and thus the least upper bound of the
information it has read is L.

PInit
Process
SCInit

usr = suid
or = ow = mmfr = mmfw = ∅
supr = θSecClass
mem = 〈〉

At any moment there will be a number of active processes. Each of them it is identified by a
process identifier, so we model the set of active processes as a partial function from PROCID to
Process. Initially this set is empty.

PROCID ≈ process identifiers

PROCID == N

ProcessList
aprocs : PROCID 7→ Process

PLInit =̂ [ProcessList | aprocs = ∅]

Table 2.5 is the control table for the state variables defined in this section. Note that, except for
mem, every state variable of a process is controlled by the system. This means that they must be
implemented inside the kernel because otherwise a process could modify them without telling to the
operating system. In a bening environment these variables could be implemented anywhere.

2.7 The State of the Environment

We summarize the state of the environment and its initial state in a couple of schemas.

SecureFileSystem
UsersAndTerminals
LogicalTerminals
Users
FileSystemObjects
ProcessList
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Variable Machine Environment
usr •
suid •
lt •
or •
ow •
mmfr •
mmfw •
supr •
mem • •
aproc •

Table 2.5: Control of variables of Process and ProcessList

SFSInit
UTInit
LTInit
UInit
FSOInit
PLInit

end of Z Section state
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Chapter 3

Operations Controlled by the User

We divided the operations into three disjunct groups:

• Operations controlled by users

• Operations controlled processes

• Operations controlled by the system

This chapter includes the formal specification of operations that belongs to the first group, the
next two chapters include operations defined in the remaining groups. In any of these three chapters,
operations are ordered alphabetically, one for section. Next, we make some general comments regarding
operations included in any group.

We have formalized those operations we belive are security relevant. Also we have specified opera-
tions that complete the model (for example, Close is not security relevant but completes the model in
some sense). Moreover, for each operation we tried to formalize just those features related to security
and not features purely functional.

Operation can be environment controlled or system controlled [13]. Environment controlled means
that the environment initiates the execution of the operation; it does not means that the environment
necesarily performs the execution (for example, Open is initiated by the environment but performed
by the system, in other words Open is not spontaneously executed by the system). System controlled
means that the system initiates the operation. An environment controlled operation can be controlled
by only one of user or process. System controlled operations are not system calls.

In the description of each operation we have included comments to help programmers to do their
jobs. We tried to structure comments to ease reading but we were not rigid. Every section starts with
a list with the following items:

Description A one line description of the operation functionality

Input parameters A list of named input parameters along their types (all input parameters names
end with a question mark, “?”)

Kinds of objects This is an optional item. It appears only when at least one input parameter
is of type OBJECT . In this case this item indicates, for each input parameter of that type,
to what kinds of objects the operation could be applied. For example, Write writes into
files and not into directories, so this item will say “Files”.

Preconditions An informal description of the preconditions of the operation

Postconditions An informal description of the postconditions of the operation
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After this list there is a more detailed comment about the pourpose and functionality of the
operation.

Mixed with the formal text there are as many comments as we judgued necesary to make the
specification understable. Preciding every schema representing a successfull case there is a comment
explaining it. Error schemas are seldom explained.

Some operations end with a subsection containing a brief or detailed account of design or imple-
mentation considerations.

We strongly ecourage to read all the section before start implementing the respective operation.
Moreover, a somewhat consisious reading of the entired document worth the time spent on it.

3.1 Chinsc

Description Changes the security class of the input entered by the user

Input parameters pt? : PTERM ; sc? : SecClass

Preconditions pt? must be being used, that is a user must be logged on pt?; the maximun access
class of pt? must dominate sc?; and the input buffer of the logical terminal connected to pt?
must be empty

Postconditions sc? is the new current access class of pt?, and the new access class of the logical
terminal connected to pt?

This operation will be used by users to communicate to the system that they want to change the
classification of their input. Once a user execute Chinsc the system will classify the input entered by
the user from this time on at the access class indicated by him.

The intention behind this operation is to increase the level of usability of the system. We belive
that it will allow users writing confidential information to start writing public information with a few
keystrokes, and viceversa. Moreover, they will be able to do this on the same terminal and without
leaving and reentering into the system.

Z Section chinsc, parents: state, definitions

This operation has one successefull case. The first precondition says that pt? must be being used;
that is, a user must be logged on pt?.

The second precondition is tantamount to system security because it imposes a bound to the
classification of the information that can be entered on this particular terminal. Hence, the system
prevents inattentive users to disclose information by typing it in a terminal not trusted enough. Think
of a terminal close to a window and an attacker watching the keyboard.

The last precondition ensures that there are no input to process in the logical terminal connected
to pt?. This allows more simple implementations given the fact that the implemented system will not
handle CCHARs but CHARs which carry no security labels. In this way, it is impossible to merge
inputs with different classifications.
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ChinscOk
∆UsersAndTerminals
∆LogicalTerminals
ΞUsers; ΞFileSystemObjects; ΞProcessList
pt? : PTERM
sc? : SecClass
rep0! : SFSREPORT

pt? ∈ ran upt
(mptsc pt?) � sc?
(ltcont (ttys pt?)).stdin = 〈〉
cptsc′ = cptsc ⊕ {pt? 7→ sc?}
ltsc′ = ltsc ⊕ {(ttys pt?) 7→ sc?}
pts ′ = pts
ltcont ′ = ltcont
upt ′ = upt
ttys ′ = ttys
rep0! = ok

If preconditions are met, sc? is the new current access class of pt?, and the new access class of
the logical terminal connected to pt?. Note that changing the access class of the logical terminal is
consistent with our policy regarding the modification of security attibutes because the input buffer
is empty (see section 4.4. Also, pay attention to the fact that the input will be classified at the new
access class for every existing and future user’s processes reading from tty pt?. In other words, the
input will be classified at sc? until the user leaves the system or invokes the operation once more.

We have considered that requesting a new access class beyond mptsc pt? or requesting a valid new
access class but when the input buffer is not empty must has a permissionDenied response.

ChinscE1
ΞSecureFileSystem
pt? : PTERM
sc? : SecClass
rep0! : SFSREPORT

(¬ (mptsc pt?) � sc?
∨ (ltcont (ttyspt?)).stdin 6= 〈〉)
rep0! = permissionDenied

The user interface to the trusted path will be some key combination that can be invoked even if
there is no user working on that terminal, but in this case the system’s response is an error condition.
At implementation level, there could be no response.

Finally, Chinsc is defined as always.

ChinscE2 =̂ TerminalNotUsed

ChinscE =̂ ChinscE1 ∨ ChinscE2

Chinsc =̂ ChinscOk ∨ ChinscE

25



end of Z Section chinsc

3.1.1 Design and Implementation Comments

This operation must be implemented with a trusted path. We decided to use a portion of the screen
as a trusted channel reserved for comunications originated by the kernel or a trusted process. See [6]
for more details.

3.2 Input

Description A user types in a character in his physical terminal

Input parameters pt? : PTERM ; c? : CHAR

Preconditions pt? is being used by some user

Postconditions c? is classified at the current access class of the physical terminal and a signal is
issued warning the system that new input is available on pt?

This operation represents the user typing in a character on his terminal’s keyboard. It is completely
controlled by the user, i.e. he may type in characters at his will, the system has no way to constrain
this action. But, as we have explained in section 5.1 with this model some characters may be lost.

Clearly, this operation must not be implemented; it was included for completness.

Z Section input , parents: state, definitions

We start be defining a schema at the PhysicalTerminal level which model how a character is received
and classified at some security class (sc). This value is further constrained in schema InputOk .

PTInput
∆PhysicalTerminal
c? : CHAR
sc : SecClass

input ′ = (c?, sc)
output ′ = output
ready ′ = 1

The next schema describes the operation. Note that it does not contains preconditions constraining
a user to type in characters; it would be unrealistic to do so. Predicate sc = cptsc pt? establishes that
the access class at which c? is classified, is precisely the current access class of the physical terminal
at which c? is received.
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InputOk
∆UsersAndTerminals
ΞProcessList ; ΞLogicalTerminals; ΞUsers; ΞFileSystemObjects
PTInput
c? : CHAR
pt? : PTERM
rep0! : SFSREPORT

pt? ∈ ran upt
sc = cptsc pt?
pts ′ = pts ⊕ {pt? 7→ θPhysicalTerminal}
upt ′ = upt
cptsc′ = cptsc
rep0! = ok

It is an error to receive an input in a terminal not being used.

InputE =̂ TerminalNotUsed

Input =̂ InputOk ∨ InputE

end of Z Section input

3.3 Login

Description A user logs in on the system trough a particular physical terminal

Input parameters u? : USER; pt? : PTERM

Preconditions u? must be a user recognized by the system, pt? is not being used by any user, and
the access class of u? must dominate the maximun access classs of pt?

Postconditions A new process is initiated acting on behalf of u?; this process is in its initial state
(i.e. its memory is empty, has no open files, and executes at the lowest bound of the access class
set, L)

This operation represents the standard login program of UNIX-like operating systems, but we
have not modeled the authetication mechanism of Linux. We are only interested in access control or
information flow, not in authentication mechanisms. However, at implementation level an authenti-
cation mechanism does have to be implemented.

We strongly recommend to read ReadLT ’s description before implementing this operation.

Z Section login, parents: state, definitions

We start with a schema krafting a new process with adecuate values given the user and the terminal
where the user is loging in.
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PLogin
∆Process
SCInit
u? : USER
newlt : LTERM

usr ′ = u?
suid ′ = u?
lt ′ = newlt
ow ′ = ∅
or ′ = ∅
mmfr ′ = ∅
mmfw ′ = ∅
mem ′ = 〈〉
supr ′ = θSecClass

To be able to log in on the system u?’s access class must dominate that of pt?; otherwise the user
is not authorized to log in on that terminal. Also, pt? must be free, i.e. no user should be working
on it. As we have expained above the authentication process is not described: the reader may think
that it is encoded in u? ∈ users.

LoginOk
∆UsersAndTerminals
∆ProcessList
ΞLogicalTerminals; ΞUsers; ΞFileSystemObjects
PLogin
u? : USER
pt? : PTERM
rep0! : SFSREPORT

u? ∈ users
pt? /∈ ran upt
usc u? � mptsc pt?
newlt = ttys pt?
upt ′ = upt ⊕ {u? 7→ pt?}
aprocs ′ = aprocs ⊕ {min{p : PROCID | p /∈ dom aprocs • p} 7→ θProcess ′}
rep0! = ok

Postconditions are simple: a new process acting on behalf of u? is initiated with process identifier
equal to the minumun number not being used1; and user u? is associated with terminal pt?. Hence,
from this time on the new process may request services to the operating system and pt? cannot be
used by other users.

Users not recognized by the system cannot log in on the system, and even if they are valid users
they cannot log in on a terminal already in use.

1This can be implemented as it is in Linux.
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LoginE1
ΞSecureFileSystem
pt? : PTERM
rep0! : SFSREPORT

pt? ∈ ran upt
rep0! = terminalAlreadyInUse

If the access class of u? does not dominate the access class of pt? the user is not authorized to log
in on the system.

LoginE2
ΞSecureFileSystem
u? : USER
pt? : PTERM
rep0! : SFSREPORT

¬ usc u? � mptsc pt?
rep0! = permissionDenied

LoginE3 =̂ UserNotExist

LoginE =̂ LoginE1 ∨ LoginE2 ∨ LoginE3

Login =̂ LoginOk ∨ LoginE

end of Z Section login

3.3.1 Design and Implementation Comments

Trusted Process

The login program is implemented as a user space process. Given that we decided to keep this design,
the login program must be considered a trusted process. Here, trusted means that it has to behave as
intended, ant that it has permission to by-pass some MLS controls [9]. A program behaves as specified
if it is programmed correctly and if every modification comes from a trusted source.

We belive that our development techniques and process will lead us to a correct version of login.
More precisely, the programming team in charge of the implementation of Login must certify its
correctness. Given that we will modify an existent program its code must be thourogh reviewed.

To preserve the integrity of the program is not easy in UNIX-like operating systems if Trojan
horses are a potential threat. For example, in the standard instalation, login is owned by root; then
if a Trojan horse is executed by root it can modify login’s code making it behave accordingly to the
attackers’ intentions. In concecuense some mechanism or configuration must be carried on in order to
protect login’s integrity. See [6] for more details.

Modifications to the login Program

An important modification to the login program (despite those formally specified) is that users’
passwords will be stored in a distributed database instead of /etc/shadow. In this new database each
user password is stored in a file owned only by the user and classified at the user’s access class. The
reason is that higher users have higly classified passwords which in turn must be stored in highly
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classified files. The schema based on /etc/shadow/ is inconsistent with the MLS philosophy. On the
other hand, our scheme does not need a SUID program to change passwords.

The login program executes the shell for the user. It is very important, due to usability reasons,
that the working access class of the shell process be as lower as possible, ideally L. The Exec operation
(section 4.5) specifies that the working access class of processes initiated with exec will be L only if
the calling process is trusted.

See [6] for more details.

Further Notes on Trojan Horses and Passwords

One may argue that if passwords are stored in personal files they can be disclosed by Trojan horses
acting on behalf of the respective users. While this is partially true, it is also true that the same could
happen if passwords are stored in /etc/shadow with Trojan horses run by root.

We say that this assertion is partially true because such a Trojan horse can disclose a user password
only to other users at the same access class. While this is certanly a security violation, it is not a
confidentiality problem.

First let’s see why a Trojan horse cannot disclose a password to any user. The reason is simple
and tightly coupled with the information flow enforced by the system. If user u executes Trojan horse
th and it reads u’s password file, its memory space is classified at the access class of that file2 and thus
th cannot downgrade the password (see sections 4.12 and 4.17). However, th can copy the encripted
password into a file at the same access class but owned by other user; then this user can log in as u.
But, even in this case there is no information compromise because this second user had access to the
”same” information than u, before knowing his password3.

It should be clear now that the /etc/shadow/ scheme has the same disadvantages as the one
proposed by us, but worsen by the fact that all passwords can be ”compromised” or modified by just
one Trojan horse executed by only one user (root). Moreover, the traditional scheme needs a SUID
program to change passwrods which is always riskier than a non-SUID one.

On the other hand, without an integrity model is impossible to guarantee that passwords are
managed with the trusted commands [4].

3.4 The Interface for the User

This section contains a schema defining the interface the user can use.

Z Section ucop, parents: chinsc, input , login

UserControlledOperations =̂ Chinsc ∨ Input ∨ Login

end of Z Section ucop

2Which is equal to the access class of u.
3Here ”same” means: the same using a Trojan horse because u may have personal information.
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Chapter 4

Operations Controlled by Processes

In this chapter we have included those operations that are controlled by processes. We strongly
recomend to read the introduction to chapter 3. Process controlled operations are implemented as
system calls or process internal actions.

4.1 Chobjsc

Description Changes the access class of a given object

Input parameters pid? : PROCID ; o? : OBJECT ; sc? : SecClass

Preconditions The process issuing the call must be a trusted process; o? must be empty or the
process issuing the call must be acting on behalf of a MAC administrator

Postconditions o?’s access class is set to sc?

This operation allows a trusted process to change the security class of a given object. Following
our policy that empty objects cannot compromise information, our model allows ordinary users to
change security classes of empty objects.

Z Section chobjsc, parents: state, definitions

The first successfull case is when the target object is empty. In this case, any user running a trusted
program can change access classes.
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ChobjscOk1
∆FileSystemObjects
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞProcessList
pid? : PROCID
o? : OBJECT
sc? : SecClass
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? ∈ objs
ocont o? = 〈〉
(aprocs pid?).prog ∈ softtcb
osc′ = osc ⊕ {o? 7→ sc?}
ocont ′ = ocont
objs ′ = objs
oacl ′ = oacl
rep0! = ok

We consider that a directory is empty when its state is equal to the state immediatly after it was
created. Thus, this operation can be successffully invoked when a directory contains just ’.’ and ’..’.

The second case documents the possibility offered by the system to MAC administrators to change
access classes. As always MAC administrators are users which set of compartments contains the
special SECADMIN category. Note that, despite the user issuing the call is a trusted user, he or she
must be using a trusted program too.

ChobjscOk2
∆FileSystemObjects
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞProcessList
pid? : PROCID
o? : OBJECT
sc? : SecClass
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? ∈ objs
SECADMIN ∈ (usc (aprocs pid?).usr).categs
(aprocs pid?).prog ∈ softtcb
osc′ = osc ⊕ {o? 7→ sc?}
ocont ′ = ocont
objs ′ = objs
oacl ′ = oacl
rep0! = ok

Ordinary users cannot change the access class of a non empty object, and nobody can change the
access class of an object if it is not working from a trusted process.
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ChobjscE1
ΞSecureFileSystem
pid? : PROCID
o? : OBJECT
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? ∈ objs
(ocont o? 6= 〈〉 ∧ SECADMIN /∈ (usc (aprocs pid?).usr).categs
∨ (aprocs pid?).prog /∈ softtcb)
rep0! = permissionDenied

ChobjscE2 =̂ PidNotExist

ChobjscE3 =̂ ObjectNotExist

ChobjscE =̂ ChobjscE1 ∨ ChobjscE2 ∨ ChobjscE3

ChobjscOk =̂ ChobjscOk1 ∨ ChobjscOk2

Chobjsc =̂ ChobjscOk ∨ ChobjscE

end of Z Section chobjsc

4.2 Chsubsc

Description Changes the access class of a given user

Input parameters pid? : PROCID ; u? : USER; sc? : SecClass

Preconditions The process issuing the call must be a trusted process; u? cannot be logged on the
system, and the process issuing the call must be acting on behalf of a MAC administrator

Postconditions u?’s access class is set to sc?

This operation allows a trusted process to change the security class of a given user.

Z Section chsubsc, parents: state, definitions

Only MAC administrators working from a trusted process can change the access class of a user
currently not logged on the system (u? /∈ dom upt). We ask that u? is not logged on the system
because, if his or her access class is downgraded then, it might be possible for he or she to temporarily
see information for which he or she no longer has the proper authorization.

33



ChsubscOk
∆Users
ΞUsersAndTerminals; ΞLogicalTerminals; ΞFileSystemObjects; ΞProcessList
pid? : PROCID
u? : USER
sc? : SecClass
rep0! : SFSREPORT

u? ∈ users
SECADMIN ∈ (usc (aprocs pid?).usr).categs
(aprocs pid?).prog ∈ softtcb
u? /∈ dom upt
usc′ = usc ⊕ {u? 7→ sc?}
users ′ = users
grps ′ = grps
rep0! = ok

If an ordinary user or a MAC administrator working from a non trusted process request this
operation then, the system must return an error condition. Likewise, if the target user is working on
the system then the operation if forbiden.

ChsubscE1
ΞSecureFileSystem
pid? : PROCID
u? : USER
rep0! : SFSREPORT

(SECADMIN /∈ (usc (aprocs pid?).usr).categs
∨ (aprocs pid?).prog /∈ softtcb
∨ u? ∈ dom upt)
rep0! = permissionDenied

ChsubscE2 =̂ PidNotExist

ChsubscE3 =̂ UserNotExist

ChsubscE =̂ ChsubscE1 ∨ ChsubscE2 ∨ ChsubscE3

Chsubsc =̂ ChsubscOk ∨ ChsubscE

end of Z Section chsubsc

4.3 Close

Description Closes an object

Input parameters pid? : PROCID ; o? : OBJECT

Kinds of objects It depends on what particular system call close represents. If it is close,
then o? is a file; if it is closedir, then o? is a directory

Preconditions The standard Linux checks
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Postconditions o? is removed from the list of open files of pid?

This operation represents system calls such as close or closedir. It is not necessary to change
its actual implementation; it was included in the present document for a matter of completness.

Z Section close, parents: state, definitions

Schema PClose sets the state of a process after closing a file. Note that its working access class (supr)
is not changed (because the process may have copied the entire file in its memory space).

PClose
∆Process
o? : OBJECT

or ′ = or \ {o?}
ow ′ = ow \ {o?}
mmfr ′ = mmfr
mmfw ′ = mmfw
usr ′ = usr
suid ′ = suid
supr ′ = supr
mem ′ = mem
lt ′ = lt
prog ′ = prog

An object can be closed only if the requesting process has opened it.

CloseOk
∆ProcessList
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞFileSystemObjects
PClose
pid? : PROCID
o? : OBJECT
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? ∈ (aprocs pid?).or ∪ (aprocs pid?).ow
(aprocs pid?) = θProcess
aprocs ′ = aprocs ⊕ {pid? 7→ θProcess ′}
rep0! = ok

Errors are very simple to deserve a deeper explanation.

CloseE1
ΞSecureFileSystem
pid? : PROCID
o? : OBJECT
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? /∈ (aprocs pid?).or ∪ (aprocs pid?).ow
rep0! = objectIsNotOpen
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CloseE2 =̂ PidNotExist

CloseE =̂ CloseE1 ∨ CloseE2

Close =̂ CloseOk ∨ CloseE

end of Z Section close

4.4 Create

Description Creates a new object assigning some DAC permissions to it

Input parameters pid? : PROCID ; o? : OBJECT ; perm? : OWNP ×GRPP ×OTHP

Kinds of objects It depends on what particular system call Create represents. If it is creat,
then o? is a file; if it is mkdir, then o? is a directory; if it is pipe, then o? is a pipe

Preconditions The same of the standard Linux system call plus the access class of o?’s parent
directory must dominates the acess class of the process calling the function

Postconditions The same of the standard Linux system call plus o?’s access class is set to L

This operation represents the standard Linux system call creat but also it must be used to
implement mkdir as is described below.

Z Section create, parents: state, definitions

We need to define 2-dimensional vectors of PERM in order to represent the stadard Linux mode for
files. We do not define 3-dimensional vectors because we do not consider execute as a meaningful
permission, acctually we equate it with read . OWNP , GRPP , and OTHP are used to store owner’s,
group’s and other’s permissions, respectevely. ACLSetOGO fills an AccessCtrlListData instance with
permissions for one user ant two groups. Latter, this schema is used to set permissions for the user
who execute the operation, the file’s group and the group formed with all the users of the system.

OWNP == PERM × PERM

GRPP == PERM × PERM

OTHP == PERM × PERM

ACLSetOGO =̂
ACLSetModeUsr [u/u?, up/P?]
o
9ACLSetModeGrp[g/g?, gp/P?]
o
9ACLSetModeGrp[o/g?, op/P?]
o
9ACLSetModeGrp[r/g?, rp/P?]

The first succesful case in creating an object is when the object does not exist. Note that we
request that the access class of o?’s parent directory be higher than the access class of pid?. This is
necessary to avoid Trojan horses using low level directories as high bandwith cover storage channels.
In other words, if we do not check this situation it could be possible to create files or directories with
names taken from the content of higher files. This restriction may have a severe impact on system
usability.

parentDir o? may not belong to dom osc but we do not check this explicitly because this is a
standard constrain in Linux. This does not mean that this checks should be removed from the
implementation. Predicate:
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u = (aprocs pid?).suid ∧ g = primaryGrp u ∧ o = allgrp ∧ r = rootgrp
∧ up = {per?.1.1, perm?.1.2} ∧ gp = {perm?.2.1} ∧
op = {perm?.3.1, perm?.3.2} ∧ rp = {OWNER}

is used to connect variables in ACLSetOGO to variables in schema CreateOk1.
This case must be used to guide the implementation of mkdir; the next case must not be used

because mkdir does not behave that way.

CreateOk1
∆FileSystemObjects
∆ProcessList
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers
SCInit
ACLSetOGO
POpenWrite
pid? : PROCID
o? : OBJECT
perm? : OWNP ×GRPP ×OTHP
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? /∈ objs
osc (parentDir o?) � (aprocs pid?).supr
(u = (aprocs pid?).suid

∧ g = primaryGrp u
∧ o = allgrp
∧ r = rootgrp
∧ up = {perm?.1.1, perm?.1.2}
∧ gp = {perm?.2.1}
∧ op = {perm?.3.1, perm?.3.2}
∧ rp = {OWNER})

(aprocs pid?) = θProcess
objs ′ = objs ∪ {o?}
ocont ′ = ocont ⊕ {o? 7→ 〈〉}
osc′ = osc ⊕ {o? 7→ θSecClass}
oacl ′ = oacl ⊕ {o? 7→ θAccessCtrlList}
aprocs ′ = aprocs ⊕ {pid? 7→ θProcess ′}
rep0! = ok

If preconditions are met, the system opens o? for writing for pid? (this is enconded in POpenWrite).
Obviously, o?’s content is empty. In this case, the ACL resulting from ACLSetOGO is set as the initial
ACL of the object as it is done in Linux. Also, the initial access class is set to L, i.e. the lowest access
class.

The second case in ”creating” an object is when the object exists. In this situation, the system
must truncate the file and open it in write mode. Note that in this case perm? is not used, and also
that we check for DAC access because (aprocs pid?).suid is not necesary one of the owners of the object
(as is the case when the object does not exist). Given that no new name is added to parentDir o?,
there is no need to check whether or not its access class dominates that of pid?.
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CreateOk2
∆FileSystemObjects
∆ProcessList
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers
PreDACWrite
POpenWrite
pid? : PROCID
o? : OBJECT
perm? : OWNP ×GRPP ×OTHP
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? ∈ objs
(aprocs pid?) = θProcess
ocont ′ = ocont ⊕ {o? 7→ 〈〉}
aprocs ′ = aprocs ⊕ {pid? 7→ θProcess ′}
objs ′ = objs
oacl ′ = oacl
osc′ = osc
rep0! = ok

Error conditions are met when pid? does not exist or when the user on behalf of which pid? is
acting does not have write permission for o? (second case, E3) or in parentDir o? (first case, E1).

CreateE1 =̂ MLSViolation

CreateE2 =̂ PidNotExist

CreateE3 =̂ NoWrite ∧ [ΞSecureFileSystem; o? : OBJECT | o? /∈ objs]

CreateE =̂ CreateE1 ∨ CreateE2 ∨ CreateE3

CreateOk =̂ CreateOk1 ∨ CreateOk2

Create =̂ CreateOk ∨ CreateE

end of Z Section create

4.4.1 Design and implementation...

VER BIEN ESTO!!!!
We consider that a directory is empty when its state is equal to the state immediatly after it was

created. Thus, this operation can be successffully invoked when a directory contains just ’.’ and ’..’.

4.5 Exec

Description Executes a program

Input parameters pid? : PROCID ; o? : OBJECT

Kinds of objects Programs, shell scripts

Preconditions The same of the standard Linux system call
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Postconditions Basically the same of the standard Linux system call; the new process inherits the
working access class of the caller process if it is not part of the TCB, otherwise the callee starts
at L

This operation represents the standard Linux system call execve. However, we have not modeled
execution as a permission or mode. Instead, we consider executing as a kind of reading and so whe
check to see if pid? has read permission over o?. On the other hand, parameter o? represents both the
executable and the libraries tah must be loaded in order to execute it (and any other resource that is
needed to execute the program).

Z Section exec, parents: state, definitions

We start by stablishing how a new process is built when it is executed by another process. Read the
paragraph after schema ExecOk for an explanation.

PExec
∆Process

usr ′ = usr
suid ′ = suid
lt ′ = lt
or ′ = or
ow ′ = ow
mmfr ′ = mmfr
mmfw ′ = mmfw
prog ′ = prog
mem ′ = 〈〉

A given process may execute a program whenever the former has read permission over the last.

ExecOk
∆ProcessList
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞFileSystemObjects
PreDACRead
PExec
SCInit
pid? : PROCID
o? : OBJECT
rep0! : SFSREPORT

pid? ∈ dom aprocs
(aprocs pid?) = θProcess
supr ′ =

if (aprocs pid?).prog ∈ softtcb
then Sup θSecClass (osc o?)
else Sup (aprocs pid?).supr (osc o?)

aprocs ′ = aprocs ⊕ {pid? 7→ θProcess ′}
rep0! = ok

If the operation can proceed then, a new process is created with the same process identifier of the
caller. The new process acts on behalf of the same user of pid?, and inherits the same open files of
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pid?. The memory of the new process is classified at L if the caller is part of the software portion of
the TCB (softtcb), otherwise it is classified at the working access class of pid?. The reason to classify
the new process at the working access class of pid? when the last is not a trusted process, is because
pid? may pass arguments containing classified information, or it could Exec a new process to signal
some pid?’s condition to lower level users.

Errors are the stardard ones: the requesting process does not exist, the program does not exist or
the user does not have read permission over o?.

ExecE1 =̂ PidNotExist

ExecE2 =̂ ObjectNotExist

ExecE3 =̂ NoRead

ExecE =̂ ExecE1 ∨ ExecE2 ∨ ExecE3

Exec =̂ ExecOk ∨ ExecE

end of Z Section exec

4.5.1 Design and Implementation Comments

Trusted software is authorized to start processes at L because, precisely, it is trusted to do so in
states that cannot affect the security of the system or because it launchs other trusted programs. For
example, program login is part of the TCB, and it is trusted to exec the user shell because we know
that login is not a Trojan horse and so it will not signal anything to an untrusted program.

In saying this we warn programmers to carefully implement trusted programs.

4.6 Fork

Description Creates a new process

Input parameters pid? : PROCID

Preconditions The same of the standard Linux system call

Postconditions Basically the same of the standard Linux system call; the new process inherits the
working access class of the caller process

This operation represents the standard Linux system call fork. We suggest to read the design
comments of operation Exec.

Z Section fork , parents: state, definitions

A given process may fork itself at any time and without restrictions.

ForkOk
∆ProcessList
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞFileSystemObjects
pid? : PROCID
rep0! : SFSREPORT

pid? ∈ dom aprocs
aprocs ′ = aprocs ⊕ {min{p : PROCID | p /∈ dom aprocs • p} 7→ (aprocs pid?)}
rep0! = ok
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The Linux semantics for fork is that the new process is exaclty the same than its father. Then,
the new process inherits the working access class of its father. The process identifier assigned to the
forked process should be implemented as it is in Linux.

The only possible error is that the requesting process does not exist.

ForkE =̂ PidNotExist

Fork =̂ ForkOk ∨ ForkE

end of Z Section fork

4.6.1 Design and Implementation Comments

The manual page of fork says about the child process that “el uso de recursos esté asignado a 0”. It
is necessary to investigate precisely what does it means.

4.7 Link

Description Creates a new name for an existing object

Input parameters pid? : PROCID ; old?,new? : OBJECT

Preconditions The same of the link system call plus the access class of o?’s parent directory must
dominate the acess class of the process calling the function

Postconditions The same of the link system calls (i.e. security attributes remains the same in
new?)

This operation represents the standard Linux system calls link. We have abstracted away many
peculiarities of this system call. In fact, only its security features are captured by the following
specification. Its remaining features must be implemented as they currently are in Linux.

Z Section link , parents: state, definitions

new? is linked to old?. In this case, new?’s attributes are those of old?, and new? is added to the set
of exisiting objects.

parentDir o? may not belong to dom osc but we do not check this explicitly because this is a
standard constrain in Linux. This does not mean that this checks should be removed from the
implementation.

We require the access class of new?’s parent directory to dominate the access class of pid?’s memory
in order to avoid illegal information flows in the form of file or directory names.
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LinkOk
∆FileSystemObjects
ΞProcessList ; ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers
pid? : PROCID
old?,new? : OBJECT
rep0! : SFSREPORT

pid? ∈ dom aprocs
old? ∈ objs
new? /∈ objs
osc (parentDir new?) � (aprocs pid?).supr
objs ′ = objs ∪ {new?}
ocont ′ = ocont ⊕ {new? 7→ (ocont old?)}
osc′ = osc ⊕ {new? 7→ osc old?}
oacl ′ = oacl ⊕ {new? 7→ (oacl old?)}
rep0! = ok

Error conditions are trivial.

LinkE1 =̂ ObjectNotExist [old?/o?]

LinkE2 =̂ ObjectAlreadyExists[new?/o?]

LinkE3 =̂ PidNotExist

LinkE4 =̂ MLSViolation[new?/o?]

LinkE =̂ LinkE1 ∨ LinkE2 ∨ LinkE3 ∨ LinkE4

Link =̂ LinkOk ∨ LinkE

end of Z Section link

4.8 LinkS

Description Creates a new name for an existing object

Input parameters pid? : PROCID ; old?,new? : OBJECT

Preconditions The same of the symlink system call plus the access class of o?’s parent directory
must dominate the acess class of the process calling the function

Postconditions The same of the symlink system calls but the access class of new? equals the access
class of the calling process.

This operation represents the standard Linux system calls symlink. We have abstracted away
many peculiarities of this system call. In fact, only its security features are captured by the following
specification. Its remaining features must be implemented as they currently are in Linux.

42



Z Section links, parents: state, definitions

new? is linked to old?. The last object may not exists in the current file system, but the former must
not exist.

parentDir o? may not belong to dom osc but we do not check this explicitly because this is a
standard constrain in Linux. This does not mean that this checks should be removed from the
implementation.

We require the access class of new?’s parent directory to dominate the access class of pid?’s memory
in order to avoid illegal information flows in the form of file or directory names.

The content of new? is the name of old?. This is a fundamental difference with respect to Link
specification (see section 4.7), because this fact implies that LinkS performs a Write into new?. Given
that the type of variable new? and ocont are not compatible we need to define a function mapping
OBJECT onto sequences of CHAR. In this way we are able to add to ocont the content of new?.

OBJECTToSeqCHAR : OBJECT → seqCHAR

LinkSOk
∆FileSystemObjects
ΞProcessList ; ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers
pid? : PROCID
old?,new? : OBJECT
rep0! : SFSREPORT

pid? ∈ dom aprocs
new? /∈ objs
osc (parentDir new?) � (aprocs pid?).supr
objs ′ = objs ∪ {new?}
let NEWCONT == (λ i : 1 . . #(OBJECTToSeqCHAR old?) •

((OBJECTToSeqCHAR old?)i , (aprocs pid?).supr)) •
ocont ′ = ocont ⊕ {new? 7→ NEWCONT}

osc′ = osc ⊕ {new? 7→ (aprocs pid?).supr}
oacl ′ = oacl ⊕ {new? 7→ (oacl old?)}
rep0! = ok

If preconditions are met we set the following postconditions:

• new? is added to the set of objects

• The content of new? is set to the set of characters constituting th name of old?, and each of
these characters are classified with the access class of the calling process. This is so, because the
access class of new? is set to the same access class (see next item)

• The access class of new? is set to the access class of the calling process. We cannot set it to L
because this operation takes characters from the process’ memory space and writes them into
the file. Then, if the process is classified above L setting the access class of new? to L allows an
illegal information flow.

• new?’s DAC attributes are those of old?

Error conditions are trivial.
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LinkSE1 =̂ ObjectAlreadyExists[new?/o?]

LinkSE2 =̂ PidNotExist

LinkSE3 =̂ MLSViolation[new?/o?]

LinkSE =̂ LinkSE1 ∨ LinkSE2 ∨ LinkSE3

LinkS =̂ LinkSOk ∨ LinkSE

end of Z Section links

4.9 Mmap

Description Maps a file into memory

Input parameters pid? : PROCID ; o? : OBJECT ; m? : MODE

Preconditions o? had to be opened in a mode not in conflict with m?; if the file is being mapped
in read mode then its access class must be dominated by the access class of the greatest lower
bound of the files already mapped in write mode

Postconditions pid? can access o? directly from its memory space, i.e. it is not necesary to use
Read or Write (see sections 4.12 and 4.17)

This operation represents the standard Linux system call mmap (see its manual page for more
details). mmap is very important to security because it allows processes to access files without usign
read or write. In fact, if a process has mapped a file into memory then the process can access the
file like a memory buffer, i.e. without calling the kernel.

The system call has a parameter, called flags in its manual page, that has not been included in our
model in order to keep it simple. This parameter in conjuntction with m? has security implications.
For example, if flags is set to MAP_PRIVATE and m? to write, all modifications to the mapped file are
private to the process. This means that modifications are not saved when the file is unmapped.

Thus, to keep the model simple we decided that to map a file in write mode means that modifica-
tions to the mapped file are saved when it is unmapped, otherwise the file has been mapped in read
mode. In other words, if the model specifies a case where a file is mapped in write mode it represents,
at implementation level, an invocation of mmap where the combination between prot and flags allows
changes to be saved.

Z Section mmap, parents: state, definitions

First, we define a frame schema so then we promote the operation to the system level.

PMmap
∆Process

usr ′ = usr
suid ′ = suid
lt ′ = lt
or ′ = or
ow ′ = ow
prog ′ = prog
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Then, we define two schemas one for each mode in which a file can be mapped. In any case, a
file can be mapped in a given mode if it was previously opened in the same mode. The first schema
represents the case when a file is mapped in read mode; here we need an extra precondition:

INF{o : OBJECT | o ∈ (aprocs pid?).mmfw • osc o} � osc o?

to prevent the situation where a process maps a file in read mode but it already has another, lower
level file maped in write mode. In that case the process would be able to read from a higher file and to
copy its contents in a lower level file. This precondition looks like the precondition needed to preserve
confinement in BLP-like models [2, 3].

MmapOk1
∆ProcessList
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞFileSystemObjects
PMmap
pid? : PROCID
o? : OBJECT
m? : MODE
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? ∈ objs
m? = read
o? ∈ or
INF{o : OBJECT | o ∈ (aprocs pid?).mmfw • osc o} � osc o?
aprocs pid? = θProcess
mmfr ′ = mmfr ∪ {o?}
supr ′ = Sup supr (osc o?)
mem ′ = mem a put in mem(ocont o?)
mmfw ′ = mmfw
aprocs ′ = aprocs ⊕ {pid? 7→ θProcess ′}
rep0! = ok

If precondtions are met then some part of the file is copied into the memory space of pid?1. Hence,
supr must be updated accordingly; that is it must be set to the least upper bound between its actual
value and the access class of o?.

Schema MmapOk2 represents the case of mapping a file in write mode2. This is possible only if
the file was previously opened in the same mode. Given that a mapped file is accessible without the
intervetion of the kernel, we must forbid the operation if the access class of the file to be mapped
is not dominated by the working access class of pid?. This is so because otherwise pid? could write
information from its memory into o? without the kernel controlling it.

1Obviously this particular feature must be implemented as it is in Linux. Further, we do not model the fact that this
memory pages are marked as read-only making it impossible to write on them.

2Again, we have not modeled the marking of memory pages, thus the process is able to read this pages. Obviously,
this must be implemented as it is in Linux.
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MmapOk2
∆ProcessList
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞFileSystemObjects
PMmap
pid? : PROCID
o? : OBJECT
m? : MODE
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? ∈ objs
m? = write
o? ∈ ow
osc o? � (aprocs pid?).supr
(aprocs pid?) = θProcess
mmfw ′ = mmfw ∪ {o?}
mem ′ = mem a put in mem(ocont o?)
supr ′ = supr
mmfr ′ = mmfr
aprocs ′ = aprocs ⊕ {pid? 7→ θProcess ′}
rep0! = ok

It is an standard error to try to map a file in mode m? if it has not been opened in that mode.
We have added one more error if the file is mapped in write mode (this was explained in the previous
paragraph). The remaining errors are easy to understand.

MmapE1
ΞSecureFileSystem
pid? : PROCID
o? : OBJECT
m? : MODE
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? ∈ objs
(m? = read ∧ o? /∈ (aprocs pid?).or
∨ m? = write ∧ (o? /∈ (aprocs pid?).ow ∨ ¬ osc o? � (aprocs pid?).supr))
rep0! = permissionDenied

MmapE2 =̂ PidNotExist

MmapE3 =̂ ObjectNotExist

MmapE =̂ MmapE1 ∨ MmapE2 ∨ MmapE3

MmapOk =̂ MmapOk1 ∨ MmapOk2

Mmap =̂ MmapOk ∨ MmapE
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end of Z Section mmap

4.10 Open

Description Opens an object in a given mode

Input parameters pid? : PROCID ; o? : OBJECT ; m? : MODE

Kinds of objects It depends on what particular system call Open represents. If it is open,
then o? is a file; if it is opendir, then o? is a directory

Preconditions The standard DAC checks

Postconditions o? is added to the list of open files of pid?

This operation represents the standard open system call of Linux. If a process wants to read or
write a file it first needs to open the file. The system call returns a file descriptor which is used by
the process for future references to the file; this was not included in our model.

This description must be used as a guide to implement similar system calls like opendir. See [6]
for more details.

Z Section open, parents: state, definitions

The following schema is used to promote the operation from the process level to the system level.

OpenFrame
∆ProcessList
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞFileSystemObjects
∆Process
pid? : PROCID
o? : OBJECT
m? : MODE
rep0! : SFSREPORT

aprocs ′ = aprocs ⊕ {pid? 7→ θProcess ′}
rep0! = ok

Finally, the operation is defined by cojoining the frame with the schemas at the process level and
the schemas recording the standard DAC preconditions. Note that we do not require any MLS controls
as is suggested in [2, 3]. Instead, we enforce an information flow policy similar to that presented in
[7], see sections 4.12 and 4.17.

OpenOk1 =̂ [OpenFrame; PreDACRead ; POpenRead | m? = read ]
OpenOk2 =̂ [OpenFrame; PreDACWrite; POpenWrite | m? = write]
OpenOk =̂ OpenOk1 ∨ OpenOk2

Error schemas capture all possible errors.

OpenE1 =̂ PidNotExist
OpenE2 =̂ ObjectNotExist
OpenE31 =̂ NoRead
OpenE32 =̂ NoWrite
OpenE3 =̂ OpenE31 ∨ OpenE32
OpenE =̂ OpenE1 ∨ OpenE2 ∨ OpenE3
Open =̂ OpenOk ∨ OpenE
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end of Z Section open

4.11 Oscstat

Description Returns the access class of a given object

Input parameters pid? : PROCID ; o? : OBJECT

Preconditions None

Postconditions o?’s access class is copied to pid?’s memory

This operation represents system call oscstat. It dastrically changes the semantics of this call
with respect to Lisex. Now, any process may request the access class of any object.

Z Section oscstat , parents: state, definitions

We need to copy a security class into a process’ memory space. Processes’ memory spaces stores
a sequenses of CCHAR which is a different type than SecClass. So, we define a function mapping
SecClass onto seqCHAR (then, in schema OscstatOk , we will transform a sequense of CHAR into a
sequense of CCHAR).

SCToSeqCHAR : SecClass → seqCHAR

We use a lambda expresion to define what is copied to pid?’s memory. Note that, by not updating
(aprocs pid?).supr , we decided to classify this information at L. Future versions of GTL may classify
it at o?’s access class.

OscstatOk
∆ProcessList
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞFileSystemObjects
PAddToMem
SCInit
pid? : PROCID
o? : OBJECT
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? ∈ objs
let sc == SCToSeqCHAR (osc o?) •

buff = (λ i : 1 . . #sc • (sc i , θSecClass))
aprocs ′ = aprocs ⊕ {pid? 7→ θProcess ′}
rep0! = ok

Errors are quite simple to deserve further comments.

OscstatE1 =̂ PidNotExist

OscstatE2 =̂ ObjectNotExist

OscstatE =̂ OscstatE1 ∨ OscstatE2

Oscstat =̂ OscstatOk ∨ OscstatE
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end of Z Section oscstat

4.12 Read

Description Reads from an open object

Input parameters pid? : PROCID ; o? : OBJECT

Kinds of objects It depends on what particular system call Read represents. If it is read,
then o? is a file; if it is readdir or getdents, then o? is a directory

Preconditions The object must be opened in read mode by pid?

Postconditions All of the characters read from o? are copied in pid?’s memory space

This operation represents the standard read system call. It should be used as a guide for the
implementation of similar system calls like readdir or getdents. See [6] for more details.

The correct implementation of this operation is tantamount to the security of the system because
it records some state data which is latter used by Write to decide if an object may be written by a
process.

The specification we introduce is a convenient abstraction of the system call. We have omited the
following two parameters:

buf where in memory must bytes be copied, and

nbytes how many bytes must be read.

Instead, we take nbytes as the lengh of the file, and buf as the next memory address following the
last being used (i.e. we add the entire file at the end of the process memory space). Obviously, this
abstraction must be implemented as currently is in Linux.

The reason to abstract the system call in this way is based on the fact that we classify the entire
memory space at the same access class, so it is unimporant where bytes are copied. Moreover, we do
not care how many bytes are read because if the process read just one byte its memory space must be
re-classified.

Z Section read , parents: state, definitions

Schema PRead is used to set the process state after a Read operation. A Read operation can proceed if
pid? is an existent process, o? is opened in read mode by pid?, and when there is no memory mapped
files in write mode with access classes lower than that of o?.
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ReadOk
∆ProcessList
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞFileSystemObjects
PRead
pid? : PROCID
o? : OBJECT
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? ∈ (aprocs pid?).or
INF{o : OBJECT | o ∈ (aprocs pid?).mmfw • osc o} � osc o?
sc = (osc o?) ∧ buff = read inode(ocont o?)
(aprocs pid?) = θProcess
aprocs ′ = aprocs ⊕ {pid? 7→ θProcess ′}
rep0! = ok

If preconditions are met, we record the fact that pid? has read o? by updating supr , and by copying
part of the file into pid?’s memory. These predicates are hidden in PRead : supr ′ = Sup supr sc, where
Sup is the binary upper bound operator on SecClass; and mem ′ = mem a buff where buff equals
(ocont o?). The first predicate states that the working access class of pid? is updated to the least
upper bound between the current working access class of pid? and the access class of o?.

It is an error to request a Read operation over an object not open in read mode, and if pid? is
not a process. Also, an error condition must be returned if there are lower files mapped on memory
in write mode.

ReadE1
ΞSecureFileSystem
pid? : PROCID
o? : OBJECT
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? /∈ (aprocs pid?).or
rep0! = objectIsNotOpenForReading

ReadE2
ΞSecureFileSystem
pid? : PROCID
o? : OBJECT
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? ∈ objs
¬ INF{o : OBJECT | o ∈ (aprocs pid?).mmfw • osc o} � osc o?
rep0! = permissionDenied

ReadE3 =̂ PidNotExist

ReadE =̂ ReadE1 ∨ ReadE2 ∨ ReadE3

Read =̂ ReadOk ∨ ReadE
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end of Z Section read

4.12.1 Design and Implementation Comments

In Linux, when nbytes are read from a file, the operating system kernel increments an internal pointer
so that sucessives reads start from position nbytes + 1. We have not modeled this feature because it
adds nothing to security.

On the other hand, it is not always necessary to recalculate supr as schema PRead suggests. It
is only necessary when a file is read for first time or when its access class was changed since the
first read. Then, if the kernel internally records whether or not a file has been read, postcondition
supr ′ = Sup supr ′ sc should only be executed for files that have not been read (or when its access
class has changed since the last read)3. See section 4.17 for further comments.

The same happens with precondition

INF{o : OBJECT | o ∈ mmfw • osc o} � osc o?

That is, at implementation level, this predicate can be checked just when the file is read for the
first time. This is so, because if this predicate is true the first time the file is read, then, given the
specification for Mmap, it will be impossible to map lower files in write mode.

This operation could be implemented jointly with ReadLT .

4.13 ReadLT

Description Reads from a logical terminal

Input parameters pid? : PROCID

Preconditions pid? must be a valid process

Postconditions The characters read from the logical terminal which pid? is connected to are copied
in pid?’s memory space

This operation is the read system call when the object to read is a logical terminal connected to
the process issuing the call. It may be implemented as part of the code of read. We have modeled it as
different of Read because in our model logical terminals have a different type (and different properties)
than objects. Also, we model in ReadLT how characters in stdin are consumed as they are read.

We strongly recommend to read Read and Login descriptions before implementing this operation.
Regarding Read , similar design considerations apply to this operation.

Z Section readlt , parents: state, definitions

This schema will be promoted to the system level. It simply says that a ReadLT operation consumes
the input available in the logical terminal.

LTCRead
∆LTCont

stdin ′ = 〈〉
stdout ′ = stdout

Information can flow from a terminal to a process only if the process has no lower memory mapped
files in write mode (see section 4.9 for more details). This is stated in the first let construct.

3Thanks to Alejandro Hernández and Felipe Manzano for noticing part of this optimization.
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The last two let constructs define the logical terminal identifier of the logical terminal which
pid? is connected to. We have used two, instead of just one, to separate predicates on variables of
ProcessList from those of LogicalTerminals. By cojoining the predicates of the second let with those
predicates defined in PRead , we define how the process is updated after reading from its terminal.
Similarly, LTRead and the third let state how the logical terminal changes its state.

ReadLTOk
∆ProcessList
∆LogicalTerminals
ΞUsersAndTerminals; ΞUsers; ΞFileSystemObjects
PRead
LTCRead
pid? : PROCID
rep0! : SFSREPORT

pid? ∈ dom aprocs
let p == (aprocs pid?) •

INF{o : OBJECT | o ∈ p.mmfw • osc o} � ltsc p.lt
let lt == (aprocs pid?).lt •

sc = ltsc lt
∧ buff = (ltcont lt).stdin
∧ aprocs ′ = aprocs ⊕ {pid? 7→ θProcess ′}

let lt == (aprocs pid?).lt •
ltcont ′ = ltcont ⊕ {lt 7→ θLTCont ′}

rep0! = ok

An error condition must be returned if there are lower files mapped on memory in write mode.

ReadLTE1
ΞSecureFileSystem
pid? : PROCID
rep0! : SFSREPORT

pid? ∈ dom aprocs
let p == (aprocs pid?) •

¬ INF{o : OBJECT | o ∈ p.mmfw • osc o} � ltsc p.lt
rep0! = permissionDenied

ReadLTE2 =̂ PidNotExist

ReadLTE =̂ ReadLTE1 ∨ ReadLTE2

ReadLT =̂ ReadLTOk ∨ ReadLTE

end of Z Section readlt

4.14 Rename

Description Changes the name and/or the path of a file or directory

Input parameters pid? : PROCID ; old?,new? : OBJECT
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Preconditions The same of the standard Linux system call plus the access class of new?’s parent
directory must dominates the acess class of the process calling the function

Postconditions The same of the standard Linux system call (i.e. security attributes remains the
same in new?)

This operation represents the standard Linux system call rename.

Z Section rename, parents: state, definitions

parentDir o? may not belong to dom osc but we do not check this explicitly because this is a standard
constrain in Linux. This does not mean that this checks should be removed from the implementation.

We require the access class of new?’s parent directory to dominate the access class of pid?’s memory
in order to avoid illegal information flows in the form of file or directory names.

RenameOk
∆FileSystemObjects
ΞProcessList ; ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers
pid? : PROCID
old?,new? : OBJECT
rep0! : SFSREPORT

pid? ∈ dom aprocs
old? ∈ objs
new? /∈ objs
osc (parentDir new?) � (aprocs pid?).supr
objs ′ = (objs \ {old?}) ∪ {new?}
ocont ′ = (ocont \ {old? 7→ ocont old?}) ∪ {new? 7→ ocont old?}
osc′ = (osc \ {old? 7→ osc old?}) ∪ {new? 7→ osc old?}
oacl ′ = (oacl \ {old? 7→ oacl old?}) ∪ {new? 7→ oacl old?}
rep0! = ok

All the functional variables in FileSystemObjects must be updated in the same manner: a pair of
the form old? 7→ f old? has to be removed from f , while a pair of the form new? 7→ f old? is added
to function f .

Error conditions are trivial.

RenameE1 =̂ ObjectNotExist [old?/o?]

RenameE2 =̂ ObjectAlreadyExists[new?/o?]

RenameE3 =̂ PidNotExist

RenameE4 =̂ MLSViolation[new?/o?]

RenameE =̂ RenameE1 ∨ RenameE2 ∨ RenameE3

Rename =̂ RenameOk ∨ RenameE
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end of Z Section rename

4.15 Setuid

Description Sets the user identity of a process

Input parameters pid? : PROCID ; new? : USER

Preconditions root can change to a MAC administrator only when the process requesting Setuid is
a trusted process; root can change to any user (except to secadm) in any other circumstances;
ordinary users can change to the (Linux) owner of the program (unless the owner is a MAC
administrator) when its SUID bit it is on

Postconditions pid? starts to act on behalf of new?

This operation represents the family of system calls based on suid. We vaguely model the fact
that a process acting on behalf of a user different than root can successfully request Setuid if the SUID
bit is on in the program that originated the process. This functionality must be implemented as it is
in Linux.

Z Section setuid , parents: state, definitions

We start with a framing schema to be used latter to promote the main operation. This schema
unconditianally changes the user to a new user received as input.

PSetuid
∆Process
new? : USER

suid ′ = new?
usr ′ = usr
lt ′ = lt
or ′ = or
ow ′ = ow
mmfr ′ = mmfr
mmfw ′ = mmfw
supr ′ = supr
prog ′ = prog
mem ′ = mem

An untrusted process may request Suid if it is acting on behalf of root and the new user is not a
MAC administrator. We test whether new? is a MAC administrator by checking if SECADMIN is a
category in new?’s security class.

We forbid root to set the identity of its untrusted processes to a MAC administrator, because
otherwise a Trojan horse running on behalf of root could change its identity to a MAC administrator
and then it would be able to successfully invoke critical operatios such as Chobjsc. This kind of attacks
inderectly affect confidentiality.
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SetuidOk1
∆ProcessList
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞFileSystemObjects
∆Process
PSetuid
pid? : PROCID
new? : USER
rep0! : SFSREPORT

pid? ∈ dom aprocs
new? ∈ users
(aprocs pid?).usr = root
SECADMIN /∈ (usc new?).categs
(aprocs pid?).prog /∈ softtcb
(aprocs pid?) = θProcess
aprocs ′ = aprocs ⊕ {pid? 7→ θProcess ′}
rep0! = ok

See how operation promotion is used:

1. A framing schema is defined (PSetuid)

2. Preconditions are set in the operation schema (PSetuidOk1)

3. In particular, we set aprocs pid? = θProcess, so any unprimed variable defined in the framing
schema (PSetuid) equals the same variable of the interesting process. For example variable usr
in PSetuid equals (aprocs pid?).usr .

4. Also, by seting (aprocs pid?).usr = root we indirectly set usr = root in PSetuid

5. Finally, postconditions are set by using θProcess ′; that is, the new process associated with pid?
has all its state variables with the same value as the old process except user which equals new?.

If the process invoking Setuid is acting on behalf of root and is the result of executing a trusted
program then it is authorized to change its identity to a MAC administrator.

SetuidOk2
∆ProcessList
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞFileSystemObjects
∆Process
PSetuid
pid? : PROCID
new? : USER
rep0! : SFSREPORT

pid? ∈ dom aprocs
new? ∈ users
(aprocs pid?).usr = root
SECADMIN ∈ (usc new?).categs
(aprocs pid?).prog ∈ softtcb
(aprocs pid?) = θProcess
aprocs ′ = aprocs ⊕ {pid? 7→ θProcess ′}
rep0! = ok
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Finally, if a process acting on behalf of a regular user invokes Setuid then the system sets the
identity of the process to the user indicated by suidto.

SetuidOk3
∆ProcessList
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞFileSystemObjects
∆Process
PSetuid
pid? : PROCID
new? : USER
rep0! : SFSREPORT

pid? ∈ dom aprocs
new? ∈ users
(aprocs pid?).usr 6= root
SECADMIN /∈ (usc new?).categs
new? = suidto (aprocs pid?).prog
(aprocs pid?) = θProcess
aprocs ′ = aprocs ⊕ {pid? 7→ θProcess ′}
rep0! = ok

Errors are the standard ones. The first one captures all the possible situations where the process
lacks the necesary permissions to invoke the operation.

SetuidE1
ΞSecureFileSystem
pid? : PROCID
new? : USER
rep0! : SFSREPORT

pid? ∈ dom aprocs
new? ∈ users
((aprocs pid?).usr = root

∧ SECADMIN ∈ (uscnew?).categs
∧ (aprocs pid?).prog /∈ softtcb

∨ (aprocs pid?).usr 6= root
∧ SECADMIN ∈ (uscnew?).categs

∨ (aprocs pid?).usr 6= root
∧ new? 6= suidto (aprocs pid?).prog)

rep0! = permissionDenied

SetuidE2 =̂ PidNotExist

SetuidE3 =̂ UserNotExist

SetuidE =̂ SetuidE1 ∨ SetuidE2 ∨ SetuidE3

SetuidOk =̂ SetuidOk1 ∨ SetuidOk2 ∨ SetuidOk3

Setuid =̂ SetuidOk ∨ SetuidE
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end of Z Section setuid

4.16 Stat

Description Returns state information of a given object (not including MAC attributes)

Input parameters pid? : PROCID ; o? : OBJECT

Preconditions The user issuing the call or some group to which the user belongs must be in some
entry of o?’s ACL

Postconditions o?’s ACL is copied to pid?’s memory

This operation represent various system calls such as stat, aclstat, and so on. It dastrically
changes the semantics of these calls with respect to Linux. Now, a user does not need x mode along
the path to o? to stat it, instead he or she needs to be part of o?’s ACL.

Z Section stat , parents: state, definitions

We need to copy an ACL into a process’ memory space. Processes’ memory spaces stores a sequense of
CCHAR which is a different type than AccessCtrlList . So, we define a function mapping AccessCtrlList
onto seqCHAR (then we will transform a sequense of CHAR into a sequense of CCHAR).

ACLToSeqCHAR : AccessCtrlList → seqCHAR

Expand schema PreDAC to see what preconditions are required. There you will see that suid ,
and not usr , is used to check for DAC permissions.

StatOk
∆ProcessList
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞFileSystemObjects
PreDAC
PAddToMem
SCInit
pid? : PROCID
o? : OBJECT
rep0! : SFSREPORT

let acl == ACLToSeqCHAR (oacl o?) •
buff = (λ i : 1 . . #acl • (acl i , θSecClass))

aprocs ′ = aprocs ⊕ {pid? 7→ θProcess ′}
rep0! = ok

Note that the information added to pid?’s memory is classified at L (and so we do not need to
update supr because sc = Sup sc L for every security class sc).

We only model how this operation returns the ACL of the object: at implementation level, system
calls must return the information originally intended. For example, stat must return a stat struct,
aclstat must return just the ACL, and so on.

On the other hand, to model this operation we directly access the secret of AccessCtrlList , but at
implementation level AccessCtrlList ’s interface must be used.

Errors are the obvious: pid? or o? may not exist, and the user requesting the action may lack the
necessary rights (that is pid?’s suid is not part of o?’s ACL).
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StatE1 =̂ PidNotExist

StatE2 =̂ ObjectNotExist

StatE3 =̂ (NoRead ∧ NoWrite ∧ NoOwner) \ (m?)

StatE =̂ StatE1 ∨ StatE2 ∨ StatE3

Stat =̂ StatOk ∨ StatE

end of Z Section stat

4.17 Write

Description Writes to an open object

Input parameters pid? : PROCID ; o? : OBJECT

Kinds of objects Files

Preconditions The object must be opened in write mode by pid?

Postconditions The characters written by pid? are copied into o?’s content

This operation represents the standard write system call. Its specification should be used to
program all write functions declared to VFS4, except the version used to write into ttys which is
specified in section 4.18.

The correct implementation of this operation is tantamount to the security of the system because
it forbids the downgrade of information. Also, we have introduced an enhancement thay may increase
the usability of the system.

The specification we introduce is a convenient abstraction of the system call. We have omited the
following two parameters:

buff to indicate where in memory are the bytes to be written.

num to indicate how many bytes must be written, and

We decided not to model these features because they do not add anything to the problem of security.
In what follows, note that root has no special priviledges when requesting this operation. That

is to say, root cannot violate Write. More generally, root has no special priviledges with respect to
the MLS model.

Z Section write, parents: state, definitions

There are two successfull cases depending on whether the file to be written is empty or not. WriteOk1
is the case to be used when o? is not empty. In this case, the system performs the operation only if
the working access class of pid? is dominated by the access class of o?. The reason to enforce this
restriction is clear: a process writes a file with data taken from its memory space which in turn contains
data read from several sources; thus, if one of these sources is highly classified then the process may
disclose information if this check is not performed.

The exact way the system writes into a file depends on previous writes and how the process had
moved the read/write pointer of the object. We have encoded this features in write inode, which is
underspecified.

4We mean the write inode field of the inode operations structure.
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WriteOk1
∆FileSystemObjects
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞProcessList
pid? : PROCID
o? : OBJECT
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? ∈ (aprocs pid?).ow
ocont o? 6= 〈〉
osc o? � (aprocs pid?).supr
ocont ′ = ocont ⊕ {o? 7→ write inode (ocont o?) (aprocs pid?).mem}
objs ′ = objs
oacl ′ = oacl
osc′ = osc
rep0! = ok

Note that with this semantics it is possible that two Writes on the same file may have different
behaivior if in the mean time the process read from a file with an access class dominating its working
access class.

When o? is empty, the system does not check the working access class of pid? against that of o?.
In this case, the process is authorized to write anything into the object but the object’s access class
is set to the working access class of the process.

WriteOk2
∆FileSystemObjects
ΞUsersAndTerminals; ΞLogicalTerminals; ΞUsers; ΞProcessList
pid? : PROCID
o? : OBJECT
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? ∈ (aprocs pid?).ow
ocont o? = 〈〉
ocont ′ = ocont ⊕ {o? 7→ write inode (ocont o?) (aprocs pid?).mem}
osc′ = osc ⊕ {o? 7→ (aprocs pid?).supr}
objs ′ = objs
oacl ′ = oacl
rep0! = ok

We belive that this semantics will increase the usability of the system because objects such as
pipes will be able to receive information from many sources provided they are emptied before a Write
is requested.

It is an error to try to write into a non open object.
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WriteE1
ΞSecureFileSystem
pid? : PROCID
o? : OBJECT
rep0! : SFSREPORT

pid? ∈ dom aprocs
o? /∈ (aprocs pid?).ow
rep0! = objectIsNotOpenForWriting

An error is returned when a process requests a write into a non empty object while it is working
at an access class that dominates that of the object.

WriteE2
ΞSecureFileSystem
pid? : PROCID
o? : OBJECT
rep0! : SFSREPORT

pid? ∈ dom aprocs
ocont o? 6= 〈〉
¬ osc o? � (aprocs pid?).supr
rep0! = permissionDenied

WriteE3 =̂ PidNotExist

WriteE =̂ WriteE1 ∨ WriteE2 ∨ WriteE3

WriteOk =̂ WriteOk1 ∨ WriteOk2

Write =̂ WriteOk ∨ WriteE

end of Z Section write

4.17.1 Design and Implementation Comments

To optimize the security controls performed in Write, we must analyze what happens if the access
class of o? is chagend between to Writes. The first conclusion is that it is not possible to perform
those controls only at the first Write. A compromise occurs at least in the following case:

• Say processes pf and pl have open file f (with access class cf ) for writing

• Assume that suprpf � cf � suprpl

• Let us suposse that pf writes into f before pl , then the system checks whether pf can do that,
it decides that pf can, and records this fact for future times

• Now, if pl truncates f to zero5 and writes something into it, f ’s access class is downgraded to
suprpl

• Hence, if pf writes once again into f , information of a higher class (suprpf ) will be stored in a
file with a lower class (suprpl ) because the system will not check f ’s access class again.

5To truncate a file can be done without compromise by any process on every file.
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Hence, to optimize this checks it is necessary to record whether the process can write into a file
and whether the access class of the file has changed since the last write. This can be implemented with
one bit per process and file, say may . If may equals 1, write is allowed; otherwise security controls
must be re-checked. Initially (when the file is open) may is set to 0, and right after the first successfull
write is set to 1 for this file and process. If the access class of an open file is changed, may is set to
0 for all the process that has the same file open in write mode. Once security controls are re-checked
for a given file, may is set to 1. That this optimization is correct would deserve a formal proof.

This operation could be implemented jointly with WriteLT .

Writing into Empty Objects

The semantics we have given to Write allows this kind of attacks:

1. User h with access class ch (� L) creates a file named secret with the intention of writing a
secret document.

2. To write the document, h uses a text editor, say te, which is a Trojan horse (obviously h ignores
this fact)

3. h has logged in recenlty, so his shell is working at L (see section 3.3)

4. h types in: te secret and press enter

5. Then h invokes Chinsc to upgrade his input to ch (remember that he wants to write a secret
file)

6. After a while he closes the session (so at this moment secret ’s access class is ch)

7. The next day, h continues to working on secret thus he types in from his shell: te secret and
press enter (note that his input is at L)

8. Now, let us say he forgget to upgrade his input with Chinsc, and te (which is a Trojan horse)
truncates secret to zero and writes into it the new input typed in by h6

9. This new input is intended to be at ch but in fact is at L, and so secret is declassified to L

10. Then the spy who installed te will be able to read from secret and write its content on his
terminal

Clearly, this attack needs the sloppiness of users. We belive that a perfectly secure system cannot
help much if it is used by sloppy users. In fact, with or whithout a computer system a sloppy user
may disclose information any way. However, some countermeasures could be taken. For example, if
part of the screen is reserved by the kernel to communicate with the user then, a warnning message
may be displayed showing the current access class of the input and/or every time a file is truncated.

4.18 WriteLT

Description Writes into a logical terminal

Input parameters pid? : PROCID

Preconditions pid? must be a valid process
6h may note this because the text written yesterday is not printed on his screen. However, te can mimic this too.

61



Postconditions pid?’s memory is written into the output stream of the logical terminal which pid?
is connected to

This operation represents the write system call when the object to be written is a logical terminal
connected to the process issuing the call. It may be implemented as part of the code of write. We
have modeled it as a special case of Write because in our model logical terminals have a different type
than objects.

We strongly recommend to read Write description before implementing this operation. Similar
design considerations apply to this operation.

In what follows, note that root has no special priviledges when requesting this operation. That is
to say, root cannot violate WriteLT . More generally, root has no special priviledges with respect to
the MLS model.

Z Section writelt , parents: state, definitions

WriteLT allows a process to write from its memory into a logical terminal if the process is working
at an access class dominated by the maximun access class of the physical terminal connected to the
logical terminal. This precondition is encoded in the first let construct.

WriteLTOk
∆LogicalTerminals
ΞUsersAndTerminals; ΞUsers; ΞProcessList ; ΞFileSystemObjects
∆LTCont
pid? : PROCID
rep0! : SFSREPORT

pid? ∈ dom aprocs
let pt == (upt (aprocs pid?).usr) •

mptsc pt � (aprocs pid?).supr
let lt == (aprocs pid?).lt •

stdout ′ = stdout a writelt (aprocs pid?).mem
∧ stdin ′ = stdin
∧ ltcont ′ = ltcont ⊕ {lt 7→ θLTCont ′}

ltsc′ = ltsc
ttys ′ = ttys
rep0! = ok

It is worth noticing that the access class of the logical terminal is not considered in order to
authorize the operation (while it may be lower than mptsc). This is so because the kernel interface
does not offer an operation to retrieve what was written into a logical terminal. Thus, we have to take
care only about who can see what is written, and not if a process can read that. In other words, the
current access class of the physical terminal (which is equal to the access class of the logical terminal)
applies only to the input entered by the user, and not to the output seen by him.

WriteLT ’s postcondition is set in the second let : some portion of the process’ memory is added
to the output buffer of the logical terminal.

There are two possible error conditions: pid? is not a valid process or the maximun access class of
pt does not domintate the working acess class of pid?.
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WriteLTE1
ΞSecureFileSystem
pid? : PROCID
rep0! : SFSREPORT

pid? ∈ dom aprocs
let pt == (upt (aprocs pid?).usr) • ¬ mptsc pt � (aprocs pid?).supr
rep0! = permissionDenied

WriteLTE2 =̂ PidNotExist

WriteLTE =̂ WriteLTE1 ∨ WriteLTE2

WriteLT =̂ WriteLTOk ∨ WriteLTE

end of Z Section writelt

4.19 The Interface to be Used by Processes

This section contains a schema defining the interface that processes must use.

Z Section pcop, parents: chobjsc, chsubsc, close, create, exec, fork , link , links ,mmap, open, oscstat , read , readlt , rename, setuid , stat ,write,writelt

ProcessControlledOperations =̂
Chobjsc
∨ Chsubsc
∨ Close
∨ Create
∨ Exec
∨ Fork
∨ Link
∨ LinkS
∨ Mmap
∨ Open
∨ Oscstat
∨ Read
∨ ReadLT
∨ Rename
∨ Setuid [newuid?/new?]
∨ Stat
∨ Write
∨ WriteLT

end of Z Section pcop

4.20 Other operations

The following system calls must be implemented as they currently are in Lisex:

• acladd
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• acldel

• chmod

• chown

• munmap

System call owner_close must not be implemented at all; system call sscstat must be imple-
mented as a library function (because users’ access classes are stored in a file inside the TCB).
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Chapter 5

Operations Controlled by the System

In this chapter we describe all the operations controlled by the system. We strongly recomend to
read the introduction to chapter 3. System controlled operations are implemented as kernel internal
actions.

5.1 Get

Description Input from the physical terminal is copied to the logical terminal attached to it

Input parameters pt? : PTERM

Preconditions New input must be available in pt?

Postconditions Input available in pt? is added to the end of the input buffer of the logical terminal
attached to pt?

With this operation we tried to describe the transfer of characters between a physical terminal and
the logical terminal attached to it. This transfer is made on a character by character basis. Every time
a user pushes a key, variable ready is set to a non-negative value, and every time the kernel process
this character it sets ready to a negative value. This description is not intended to be a formalization
of the actual Linux behaivior, rather our intention was to describe some (very) abstract properties
that must be enforced.

Z Section get , parents: state, definitions

We need a couple of schemas to promote operations of PhysicalTerminal and LTCont . PTGet simply
says that the system has processed the input available in a physical terminal. LTAdd adds a CCHAR
to the input buffer of a logical terminal.

PTGet
∆PhysicalTerminal

ready ′ = −1
input ′ = input
output ′ = output

65



LTCAdd
∆LTCont
cc : CCHAR

stdin ′ = stdin a 〈cc〉
stdout ′ = stdout

The system should pay attention only to physical terminals that are being used (pt? ∈ ran upt),
and only when there is new input available (0 ≤ (pts pt?).ready) on them. Note that the input
parameter pt? is not provided by the environment because this operation is inteded to be initiated by
the system.

GetOk
∆UsersAndTerminals
∆LogicalTerminals
ΞUsers; ΞFileSystemObjects; ΞProcessList
PTGet
LTCAdd
pt? : PTERM
rep0! : SFSREPORT

pt? ∈ ran upt
0 ≤ (pts pt?).ready
pts ′ = pts ⊕ {pt? 7→ θPhysicalTerminal ′}
cc = (pts pt?).input
ltcont ′ = ltcont ⊕ {ttyspt? 7→ θLTCont ′}
upt ′ = upt
cptsc′ = cptsc
ltsc′ = ltsc
ttys ′ = ttys
rep0! = ok

If everything is right the new character is added to the end of the input buffer of the logical
terminal connected to pt?.

Errors may arise if pt? is not being used or if there is no new input to process.

GetE1
ΞSecureFileSystem
pt? : PTERM
rep0! : SFSREPORT

(pts pt?).ready < 0
rep0! = noInput

GetE2 =̂ TerminalNotUsed
GetE =̂ GetE1 ∨ GetE2
Get =̂ GetOk ∨ GetE
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end of Z Section get

5.2 Put

Description The system takes data from the output buffer of a logical terminal and writes this data
on the corresponding physical terminal

Input parameters lt? : LTERM

Preconditions lt? must be in use and there must be something to write on the physical terminal

Postconditions The first character in the output buffer of lt? is written on the output device of
ttys lt?

With this operation we tried to describe the transfer of characters from a logical terminal to the
physical terminal attached to it. This transfer is made on a character by character basis. It may be
that this modelization is not an accurate description of the real process, but certanly it captures its
essence. In fact, this operation is not critical and is here just for completness. The only thing that
matters is that the system must send data taken from a logical termial only to the physical terminal
attached to it. The exact way in which this is accomplished is unimportant.

Z Section put , parents: state, definitions

We start with a schema at the PhysicalTerminal level describing how its output device is updated.

PTPut
∆PhysicalTerminal
cc : CCHAR

output ′ = cc
ready ′ = ready
input ′ = input

The first character available in the output buffer of a logical terminal is removed.

LTCRemove
∆LTCont

stdout ′ = tail stdout
stdin ′ = stdin ′

Output is sent to the physical terminal attached to lt? whenever there is output available and lt?
is being used. See how output is sent only to the physical terminal attached to lt?: pt == (ttys lt?).
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PutOk
∆UsersAndTerminals
∆LogicalTerminals
ΞUsers; ΞFileSystemObjects; ΞProcessList
PTPut
LTCRemove
lt? : LTERM
rep0! : SFSREPORT

let pt == (ttys∼lt?) •
pt ∈ ran upt
∧ (pts pt) = θPhysicalTerminal
∧ (ltcont lt?).stdout 6= 〈〉
∧ cc = head (ltcont lt?).stdout
∧ pts ′ = pts ⊕ {pt 7→ θPhysicalTerminal ′}

ltcont ′ = ltcont ⊕ {lt? 7→ θLTCont ′}
upt ′ = upt
cptsc′ = cptsc
ltsc′ = ltsc
ttys ′ = ttys
rep0! = ok

There are two possible errors: lt? is not being used or there is no output availble in it.

PutE1
ΞSecureFileSystem
lt? : LTERM
rep0! : SFSREPORT

(ltcont lt?).stdout = 〈〉
rep0! = noOutput

PutE2 =̂ [TerminalNotUsed ; lt? : LTERM | pt? = ttys∼lt?]

PutE =̂ PutE1 ∨ PutE2

Put =̂ PutOk ∨ PutE

end of Z Section put

5.3 System Internal Operations

This section contains a schema defining all the systema internal operations.

Z Section scop, parents: get , put

SystemControlledOperations =̂ Get ∨ Put

end of Z Section scop
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Chapter 6

The Transition Relation

This chapter contains just a schema consisting of the disjunction of all the possible operations. We
write it through the three interfaces defined in the previous chapters.

Z Section tranrel , parents: ucop, pcop, scop

TransitionRelation =̂
UserControlledOperations
∨ ProcessControlledOperations
∨ SystemControlledOperations

end of Z Section tranrel
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Chapter 7

Formal Security Model

In this section we state properties the system must enforce. Properties are state predicates and the
intention is to prove that they are state invariants. There are properties of particular state schemas
and properties that relate two or more schemas.

7.1 Invariants of UsersAndTerminals

The first property regarding users and terminals says that if a physical terminal is working at a
particular current access class then, every input on that terminal must be taken at the same access
class.

Z Section secmod , parents: tranrel

UTInvI
UsersAndTerminals

∀ pt : PTERM • cptsc pt = (pts pt).input .2

There is a similar property for output written on the terminal. It says that characters written on
a terminal must have a classification dominated by the maximun access class of that terminal.

UTInvO
UsersAndTerminals

∀ pt : PTERM • mptsc pt � (pts pt).output .2

The last property regarding physical terminals says that a terminal could not work at an access
class not dominated by its maximun access class.

UTInvCSC
UsersAndTerminals

∀ pt : PTERM • mptsc pt � cptsc pt

Finally, all invariants are gathered in one schema.

UTInv =̂ UTInvI ∧ UTInvO ∧ UTInvCSC

70



7.2 Invariants of LogicalTerminals

There is only one invariant that we can express considering the state of LogicalTerminals; other
important properties relate physical and logical terminals, see section 7.6. The invariant says that the
access class of the input stored in a logical terminal must equal the access class of the terminal. It
would be possible to state a weak version by asking � rather =, but that would be not implementable.
Precisely, at implementation level the system does not manage CCHARs but CHARs thus, if a logical
terminal stores input (CHAR) at different access classes then it would be impossible to manage it
securely. In other words, it would be impossible for the system to write input in a file preserving a
secure information flow.

LTInv
LogicalTerminals

∀ lt : LTERM •
∀ cc : CCHAR | cc ∈ ran(ltcont lt).stdin • cc.2 = ltsc lt

7.3 Invariants of Users

The invariant of this schema is just a well-formedness property. The set of users recognized by the
system must equals the set of users who have access classes, and only registerd users may belong to
groups of users. The reason to ask for = and not ⊆ is that there is a group, called allgrp, that contains
all the users of the system.

UInvWF
Users

users = dom usc⋃
{g : ran grps} = users

UInv =̂ UInvWF ∧ USCInv

7.4 Invariants of FileSystemObjects

Again, the first invariant of this type is a well-formedness property. The second line says that every
object in the system is owned by rootgrp.

FSOInvWF
FileSystemObjects

objs = dom osc = dom oacl = dom ocont
∀ o : OBJECT | o ∈ objs • (grp rootgrp) 7→ OWNER ∈ (oacl o).acl
softtcb ⊆ objs

FSOInvIF is one of the most important properties to be enforced. It says that an object must
contain data as sensitive as the object’s classification. Here the reader may notice the importance
of considering CCHARs and not plain CHARs in order to be able to prove important properties.
However, given that at implementation level there are only CHARs, the system must implement a
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simplified version of this property: all characters stored in an object o will have o’s access class, but
they can be stored in it only if they come from a source with an access class dominated by o’s.

FSOInvIF
FileSystemObjects

∀ o : OBJECT | o ∈ objs •
osc o � SUP{cc : CCHAR | cc ∈ ran(ocont o) • cc.2}

FSOInv =̂ FSOInvWF ∧ FSOInvIF

7.5 Invariants of Process

There is only one property for this type but it is a crusial one. It states that the kernel must
control every process p in order to record in p.supr the least upper bound of the access classes of the
information it has been reading.

Given that processes are outside of our TCB, and that they have complete control of their memory
spaces, then the system must keep track of how high is the information that each process has read. In
this way, afterwards, the system will be able to deny certain write requests of certain processes. By a
write request we underestand calling the Write system call.

PInv
Process

supr = SUP {cc : CCHAR | cc ∈ ran mem • cc.2}

7.6 Secure File System Properties

In this section we account for those invariants that relate two or more components of the environment.
The first one is another well-formedness property relating the state of each process with the other
components of the environment.

SFSInvWF
Users
ProcessList
FileSystemObjects

∀ p : Process | p ∈ ran aprocs •
p.usr ∈ users
∧ p.suid ∈ users
∧ p.or ⊆ objs
∧ p.ow ⊆ objs
∧ p.mmfr ⊆ p.or
∧ p.mmfw ⊆ p.ow
∧ p.prog ∈ objs

The property formalized below is esential to the securtity of the system. Users can work on
terminals with access class dominated by their own. In other words, low level users are not permitted
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to enter where high level users work. If output devices (such as printers) are considered as particular
kinds of physical terminals, SFSInvUT says that a user cannot enter a printer’s room if higher level
users print on it.

SFSInvUT
UsersAndTerminals
Users

∀ u : USER | u ∈ dom upt • usc u � mptsc (upt u)

Property SFSInvUT in conjuction with property PTInvO ensures that a user cannot inadvertely
disclose information.

Next, we state two relations between physical and logical terminals. A the first one says that a
logical terminal must operate at the current access class of the physical terminal attached to it.

SFSInvPLTI
UsersAndTerminals
LogicalTerminals

∀ pt : PTERM • cptsc pt = ltsc (ttys pt)

However, the output sent by a logical terminal to its physical terminal may be higher than cptsc,
in fact it must be lower than mptsc. Given that everything stored in the output buffer of a logical
terminal is sent eventually to its physical terminal, we require that the least upper bound between all
CCHAR stored in output be dominated by mptsc.

SFSInvPLTO
UsersAndTerminals
LogicalTerminals

∀ pt : PTERM •
mptsc pt � SUP{cc : CCHAR | 〈cc〉 in (ltcont (ttys pt)).stdout • cc.2}

We close this section with a schema composed by the conjuction of all the properties introduced
up to here.

SFSInv =̂
UTInv
∧ LTInv
∧ UInv
∧ FSOInv
∧ PInv
∧ SFSInvWF
∧ SFSInvUT
∧ SFSInvPLTI
∧ SFSInvPLTO

7.7 The Missed Property

The fundamental propery of the system should be that any input done at a particular classification
must not be outputed at a lower classification. In other words, if ’a’ is entered through a terminal
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working at current access class ci , then it cannot be written (in any future time) on a terminal with
maximum access class co , with co 6� ci . But this kind of property is not easy to express in a language
such as Z. It would be necesary a language with enough expressive power as a modal or temporal
logic.

However, validity of properties UTInvO , PInv and FSOInvIF , given what we hace included inside
the TCB, and Tables 2.1 to 2.5, should be enough to convince anyone that the fundamental property
stated above could be proved if we were able to write it down.

The argument is as follows:

1. Physical terminals properly classify the input they receive (TCB)

2. The file system program does not change the classification of any input (or at least it does not
lower the acces class of inputs) (TCB and FSOInvIF )

3. The operating system kernel properly classify the memory of each process (PInv)

4. The operating system kernel controls the information flow across objects and memory (SFSInvIF
and TCB)

5. The operating system kernel controls what information is written on physical terminals (UTInvO)

However, we can write a predicate that state a simplified version of the intended property rather
precisely (we borrowed this technique from [8]):

TranquilityPrinciple =̂ TransitionRelation ∧ ¬ (Chobjsc ∨ Chsubsc ∨ Input)

theorem NoIlegalFlow
∀ tr : seqSecureFileSystem •

tr(1) ∈ {SFSInit • θSecureFileSystem}
∧ tr(1) 7→ tr(2) ∈ {Input • θSecureFileSystem 7→ θSecureFileSystem ′}
∧ (∀ i : 2 . . #tr − 1 •

tr(i) 7→ tr(i + 1)
∈ {TranquilityPrinciple • θSecureFileSystem 7→ θSecureFileSystem ′})

⇒ (∃ pt : PTERM •
(pt , tr(1)) 7→ tr(2) ∈ {Input • (pt?, θSecureFileSystem) 7→ θSecureFileSystem ′}
⇒ (∀n : 3 . . #tr ; ptout : PTERM ; sc : SecClass •

let ptin == ((tr 2).pts pt).input •
¬ ptin.2 � sc
⇒ (ptin.1, sc) 6= ((tr n).pts ptout).output))

end of Z Section secmod

7.8 Simple Security

Simple security is a property formalized in [2, 3]. It is stated as follows:

(BLP) If subject s with access class cs has opened object o with access class co then, cs � co .

The intention behind this property is to fulfil the fundamental requirement of the DoD’s security
policy1:

1DoD is Department of Defense (of the United States of America).

74



(DoD) Person p with clearance cp may read document d with classification2 cd if and only if cp domi-
nates cd [9].

In requirement engineering, (DoD) is a requirement and (BLP) is its specification [13]. We want
to implement (DoD) in a different way because we consider that (BLP) is unnecesary restrictive. As
stated, (DoD) says nothing about processes, files, computer memory, and so on. It only talks about
persons, documents and certain access attributes of them. If we succed in implementing a system that
prevents persons to see information they are unauthorized to see, then our system obeys (DoD).

In our model, persons are elements of USER (they are not processes), and users can see information
only on their physical terminals. If we build a system that never writes information on a physical
screen when an a user not unathorized to see it is seated in front of this terminal, then we have a
secure system3. Moreover, nobody should matter about what the system does with characters, files
and processes: it could merge files in strange ways, it cuould manage processes in bizarre ways.

We are strongly convinced that if our system verify SFSInv then the previous situation will be
impossible.

On the other hand, by not implementing (BLP) we are allowing that higher files be contaminated
with lower data. But this is an integrity problem, it does not compromise confidentiality. Integrity
will not be assured by implementing (BLP) [4]. Moreover, some tasks and features of Linux will be
easier to implement with an apropriate configuration. Consider, for example, /dev/null or how to
make backups. We belive that in doing so trusted processes will be seldom needed.

7.9 Where Can Users Work?

In our model users can log in on terminals not trusted as they. One may be tempted to impose
stronger restrictions on where users can work. For example, we could have stated that users can work
only at terminals with their access classes. The reason to impose such a restriction is based on the
fact that, otherwise, we left a door open to some attacks regarding the authentication of users to the
system. A possible scenario is as follows.

• Let us say user u with access class cu is willing to log in on physical terminal pt with maximun
access class cpt , where cu � cpt .

• pt has this access class because it is exposed to certain attacks. For example, pt lays in a public
place, or it is close to a window or outside a TEMPEST room; moreover, pt ’s hardware could
had been built by a company not trusted enough.

• The secret used by u to authenticate to the system must be as trusted as himself, so it must be
classified at cu . If this is not true, then, for example, u may be careless in protecting this secret.

• In order to authenticate to the system u has to show his secret to pt . Here, to show means to
write a password, to use a piece of pt ’s hardware to calculate a key, to enter a PIN, etc.

• Hence, if pt is not trusted as u, then u’s secret could be inadvertly disclosed by u or pourposedly
stolen by pt or an attacker with access to pt ’s room.

• Note that, once u has logged in, the system will not write on pt information with an access class
not dominated by cpt even if u request such an action.

However, by imposing stronger a restrictions as the one stated above we cannot avoid this scenario:
a user can always go and try to log in on a non trusted terminal giving the chance to an attacker to

2Clearance and classification are synonimous of access class.
3Ovbiously, physical security must work too.
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steal his or her authentication secret4. In consecuence, imposing such a restriction will not make the
system more secure but it certanly make it less usable.

4Tahnks to Felipe Manzano for noticing this fact.
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Chapter 8

Subject Security Classes

This chapter describes the reationship between users and access classes. Every user have a unique
security class. Moreover, new users may be added to the system and users may have their security
classes changed by MAC administrators. Thus, we model this relation as a partial function from
USER onto SecClass. This relation must be implemented as an abstract data type (ADT).

8.1 Basic Types, Parameters, and State Definition

Z Section subjectsc, parents: main, sc

uscOk ≈ is returned when there are no errors in the invocation of some operation

uscError ≈ is returned when a non previously specified error occurs in the invocation of some opera-
tion

USCREPORT ::= uscOk | uscError

secadm ≈ is the MAC administrator delivered with the system

SECADMIN ≈ is a category reserved for those users enabled to change security classes, i.e. MAC
administrators

secadm : USER
SECADMIN : CATEGORY

As we said above, the relation between users and their security classes is modeled as a partial
function.

UserSecClass
usc : USER 7→ SecClass

The invariant for this ADT says that secadm cannot be removed, and that if a user has category
SECADMIN , then this must be the only one category in her or his access class.
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USCInv
UserSecClass

secadm ∈ dom usc
(usc secadm).categs = {SECADMIN }
∀ u : USER |

u ∈ dom usc •
SECADMIN ∈ (usc u).categs ⇒ (usc u).categs = {SECADMIN }

Initially the ADT is in a state that, by definition, verifies the invariant.

USCInit =̂ USCInv

8.2 Operations

We will descibe the operations on UserSecClass in part by promoting operations of SecClass (see
chapter 9). Thus, we start this section by introducing the appropriate framing schema for operation
promotion [12, 10]. This schema defines how usc must be updated when a SecClass operation is
invoked from this level. The last D in the schema name stands for Delta, that is, this framing schema
is used just for operations that change the state. Latter, another framing schema will be defined for
those operations that consult the state.

SecClassToUserSecClassD
∆SecClass
∆UserSecClass
u? : USER
rep1! : USCREPORT

u? ∈ dom usc
(usc u?) = θSecClass
usc′ = usc ⊕ {u? 7→ θSecClass ′}
rep1! = uscOk

The schema above is intended to be used only in successful cases, hence we need to define schemas
for the error cases. We have one implicit error case, when a SecClass operation fails, and one explicit
when user u? does not exist.

USCErrorReport =̂ [ΞUserSecClass; rep1! : USCREPORT | rep1! = uscError ]

USCUserNotExist =̂ [ΞUserSecClass; u? : USER | u? /∈ dom usc]

The following operation sets the level of the access class of a given user. It is specified by promoting
SCSetLevel . Note how in the third case we take into account all of the possible failures of SCSetLevel .

USCSetLevelOk =̂ SecClassToUserSecClassD ∧ SCSetLevelOk

USCSetLevelE1 =̂ SCSetLevel ∧ USCUserNotExist ∧ USCErrorReport

USCSetLevelE2 =̂ SCSetLevelE ∧ USCErrorReport

USCSetLevelE =̂ USCSetLevelE1 ∨ USCSetLevelE2

USCSetLevel =̂ USCSetLevelOk ∨ USCSetLevelE
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The addition of a category to the access class of a given user cannot be described just by promotig
SCAddCat because at this level we must see whether SECADMIN category is to be added or not.
Note that the category set of secadm cannot be changed; this precondition is redundant given the
second one but we belive it is a good idea to reinforce this property.

USCAddCatOk
SecClassToUserSecClassD
SCAddCatOk

u? 6= secadm
c? = SECADMIN ⇒ (usc u?).categs = ∅

USCAddCatE1 =̂ SCAddCat ∧ USCUserNotExist ∧ USCErrorReport

USCAddCatE2
SCAddCat
USCErrorReport
u? : USER
c? : CATEGORY

u? = secadm ∨ (c? = SECADMIN ∧ (usc u?).categs 6= ∅)

USCAddCatE3 =̂ SCAddCatE ∧ USCErrorReport

USCAddCatE =̂ USCAddCatE1 ∨ USCAddCatE2 ∨ USCAddCatE3

USCAddCat =̂ USCAddCatOk ∨ USCAddCatE

Now, we introduce an operation that sets the level and the category set at the same time. Again,
a little bit of extra preconditions should be considered.

USCSetSCOk
SecClassToUserSecClassD
SCSetSCOk

u? 6= secadm
SECADMIN ∈ C ? ⇒ ((usc u?).categs = ∅ ∧ C ? = {SECADMIN })

USCSetSCE1 =̂ SCSetSC ∧ USCUserNotExist ∧ USCErrorReport

USCSetSCE2
SCSetSC
USCErrorReport
u? : USER
C ? : P CATEGORY
l? : Z

u? = secadm
∨ (SECADMIN ∈ C ?

∧ ((usc u?).categs 6= ∅ ∨ C ? 6= {SECADMIN }))
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USCSetSCE3 =̂ SCSetSCE ∧ USCErrorReport

USCSetSCE =̂ USCSetSCE1 ∨ USCSetSCE2 ∨ USCSetSCE3

USCSetSC =̂ USCSetSCOk ∨ USCSetSCE

Below we define the framing schema for promoting operations that consult the state; the X at the
end of the name stands for Xi (i.e. Ξ).

SecClassToUserSecClassX
ΞSecClass
ΞUserSecClass
u? : USER
rep1! : USCREPORT

u? ∈ dom usc
(usc u?) = θSecClass
usc′ = usc
rep1! = uscOk

The rest of this section describes the promotion of operations that consult the state; their names
are self explanatory. The last schema defines the ADT’s interface.

USCGetSizeOk =̂ SecClassToUserSecClassX ∧ SCGetSize

USCGetSizeE =̂ USCUserNotExist ∧ USCErrorReport

USCGetSize =̂ USCGetSizeOk ∨ USCGetSizeE

USCGetCatOk =̂ SecClassToUserSecClassX ∧ SCGetCat

USCGetCatE =̂ USCUserNotExist ∧ USCErrorReport

USCGetCat =̂ USCGetCatOk ∨ USCGetCatE

USCGetLevelOk =̂ SecClassToUserSecClassX ∧ SCGetLevel

USCGetLevelE =̂ USCUserNotExist ∧ USCErrorReport

USCGetLevel =̂ USCGetLevelOk ∨ USCGetLevelE

USCInterface =̂
USCGetLevel
∨ USCGetSize
∨ USCGetCat
∨ USCSetLevel
∨ USCAddCat
∨ USCSetSC
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8.3 Proof Obligations

theorem USCSetLevelPI
USCInv ∧ USCSetLevel ⇒ USCInv ′

theorem USCAddCatPI
USCInv ∧ USCAddCat ⇒ USCInv ′

theorem USCSetSCPI
USCInv ∧ USCSetSC ⇒ USCInv ′

theorem USCInterfacePI
USCInv ∧ USCInterface ⇒ USCInv ′

end of Z Section subjectsc
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Chapter 9

Security Classes

In this chapter we describe security or access classes (SC). Usually a SC is repesented as an ordered pair
which first component is called level and the second is a set of categories (see [9, 5] for more details).
SCs should be implemented as an ADT where the hidden data structure will be an implementation of
the state schema, and the interface will comprise the state operations defined below.

9.1 Basic Types, Parameters, and State Definition

Z Section sc, parents: toolkit

CATEGORY ≈ all the possible categories, departments or need-to-know

scCatFull ≈ is returned when the size of the set of categories reaches its maximun capacity

scOk ≈ is returned when there are no errors in the invocation of some operation

scError ≈ is returned when a non previously specified error occurs in the invocation of some operation

[CATEGORY ]

SCREPORT ::= scCatFull | scOk | scError

MAXLEVEL ≈ maximun possible value of a security level

MAXNCAT ≈ maximun size of a category set

MAXLEVEL,MAXNCAT : N

MAXNCAT > 0

We model a SC as a schema comprising to variables with obvious meanings.

SecClass
level : Z
categs : F CATEGORY

The ADT’s invariant says that the level of any SecurityClass must belong to a finite interval, and
that the size of the set of categories must be less or equal to MAXNCAT .

82



SCInv
SecClass

level ∈ 0 . . MAXLEVEL
#categs ≤ MAXNCAT

Domain check proof
prove by reduce;

end proof.

Now, we define the standard partial order over the set of access classes. The symbol � it is read
dominates.
syntax � inrel

� : SecClass ↔ SecClass

∀ x , y : SecClass •
x � y ⇔ x .level ≥ y .level ∧ y .categs ⊆ x .categs

SUP is the least upper bound operator on the set of security classes [7]. We define it with domain
on P SecClass and Sup with domain on SecClass × SecClass. Similarly, the greatest lower boud
operators are defined (INF and Inf ).

SUP : P1 SecClass → SecClass

∀SC : P1 SecClass •
(SUP SC ).level = max{s : SecClass | s ∈ SC • s.level}
∧ (SUP SC ).categs =

⋃
{s : SecClass | s ∈ SC • s.categs}

Sup : SecClass → SecClass → SecClass

∀ sc1, sc2 : SecClass •
(Sup sc1 sc2).level = if sc1.level ≥ sc2.level then sc1.level else sc2.level
∧ (Sup sc1 sc2).categs = sc1.categs ∪ sc2.categs

INF : P SecClass → SecClass

∀SC : P SecClass •
(INF SC ).level = min{s : SecClass | s ∈ SC • s.level}
∧ (INF SC ).categs =

⋂
{s : SecClass | s ∈ SC • s.categs}

Inf : SecClass → SecClass → SecClass

∀ sc1, sc2 : SecClass •
(Inf sc1 sc2).level = if sc1.level ≥ sc2.level then sc2.level else sc1.level
∧ (Inf sc1 sc2).categs = sc1.categs ∩ sc2.categs

On the initial state a security class equals L, i.e. the lower bound of the set of access classes.

SCInit
SecClass

level = 0
categs = ∅

L =̂ SCInit
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9.2 Operations

SCGetSize returns the number of categories in a given access class.

SCGetSize
ΞSecClass
size! : N
rep! : SCREPORT

size! = #categs
rep! = scOk

SCGetCat returns a list with the catagories of a given access class.

SCGetCat
ΞSecClass
lcategs! : seqCATEGORY
rep! : SCREPORT

ran lcategs! = categs
#lcategs! = #categs
rep! = scOk

SCGetLevel returns the level of a given access class.

SCGetLevel
ΞSecClass
l ! : Z
rep! : SCREPORT

l ! = level
rep! = scOk

SCSetAddCat adds a category to the category set of an access class whenever the current amount
of categories do not equals MAXNCAT . The other precondition (c? /∈ categs) is there just to warn
the programer who will not have a set at implementation level.

SCAddCatOk
∆SecClass
c? : CATEGORY
rep! : SCREPORT

c? /∈ categs
#categs < MAXNCAT
categs ′ = categs ∪ {c?}
level ′ = level
rep! = scOk

There are two possible errors: when categs is full and when an existing category is to be added.
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SCAddCatE1
ΞSecClass
c? : CATEGORY
rep! : SCREPORT

c? ∈ categs
rep! = scError

SCAddCatE2
ΞSecClass
rep! : SCREPORT

#categs = MAXNCAT
rep! = scCatFull

The total operation is summarized below.

SCAddCatE =̂ SCAddCatE1 ∨ SCAddCatE2

SCAddCat =̂ SCAddCatOk ∨ SCAddCatE

SCSetLevel sets the level of an access class whenever the input level lays in the appropriate interval.

SCSetLevelOk
∆SecClass
l? : Z
rep! : SCREPORT

0 ≤ l? ≤ MAXLEVEL
level ′ = l?
categs ′ = categs
rep! = scOk

SCSetLevelE
ΞSecClass
l? : Z
rep! : SCREPORT

l? < 0 ∨ MAXLEVEL < l?
rep! = scError

SCSetLevel =̂ SCSetLevelOk ∨ SCSetLevelE

The following operation allows to set both the level and the set of categories at the same time. Its
preconditions are obvious if SCAddCat and SCSetLevel have been read.
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SCSetSCOk
∆SecClass
l? : Z
C ? : F CATEGORY
rep! : SCREPORT

0 ≤ l? ≤ MAXLEVEL
#C ? ≤ MAXNCAT
level ′ = l?
categs ′ = C ?
rep! = scOk

SCSetSCE1 =̂ SCSetLevelE

SCSetSCE2
ΞSecClass
C ? : F CATEGORY
rep! : SCREPORT

#C ? > MAXNCAT
rep! = scError

SCSetSCE =̂ SCSetSCE1 ∨ SCSetSCE2
SCSetSC =̂ SCSetSCOk ∨ SCSetSCE

The interface of this ADT is summarized below.

SCInterface =̂
SCGetLevel
∨ SCGetSize
∨ SCGetCat
∨ SCSetLevel
∨ SCAddCat
∨ SCSetSC

9.3 Proof Obligations

theorem SCSetLevelPI
SCInv ∧ SCSetLevel ⇒ SCInv ′

theorem SCAddCatPI
SCInv ∧ SCAddCat ⇒ SCInv ′

theorem SCSetSCPI
SCInv ∧ SCSetSC ⇒ SCInv ′

theorem SCInterfacePI
SCInv ∧ SCInterface ⇒ SCInv ′

end of Z Section sc

86



Chapter 10

Access Control Lists

This chapter defines Access Control Lists. An ACL is a list or set of pairs of the form (id , perm) where
id is a user or group identification and perm is a permission grated to id . ACL are associated with
objects in the state section. ACL will be implemented as an abstract data type (ADT) where the
hidden data structure will be an implementation of the state schema, and the interface will comprise
the state operations defined below.

10.1 Basic Types, Parameters, and State Definition

Z Section acl , parents: toolkit ,main

GRPNAME ≈ all the possible user group names

READ ≈ read permission

WRITE ≈ pure write permission

OWNER ≈ if a user has this permission, then she or he can grant all three permissions to other users
or groups in the current ACL

aclOk ≈ indicates that an ACL operation executed from a state verifying its precondition

aclError ≈ indicates that an ACL operation executed from a state not verifying its precondition

MAXACLLEN ≈ at implementation level ACLs are of finite length, this constant defines their max-
imun size

[GRPNAME ]

SUBJECT ::= usr〈〈USER〉〉 | grp〈〈GRPNAME 〉〉

PERM ::= READ | WRITE | OWNER

ACLREPORT ::= aclOk | aclError

MAXACLLEN : N

We model ACLs as a relation between SUBJECT and PERM . The obvious interpretation applies:
if (s, p) ∈ acl then user or group s has permission p in the current ACL.
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AccessCtrlList
acl : F(SUBJECT × PERM )

The invariant for this ADT is simple: the lenght of the ACL must be less or equal to the maximun
allowed size.

ACLInv
AccessCtrlList

#acl ≤ MAXACLLEN

In the initial state the ACL is empty.

ACLInit
AccessCtrlList

acl = ∅

10.2 Operations

ACLSetMode is the operation that sets the mode (set of permissions) for a given user or group. New
permissions may be added to an ACL provided its new lenght does not go beyond the maximun. The
operation is divided into two cases: ACLSetModeOk1 to set users modes, and ACLSetModeOk2 to set
groups modes.

ACLSetModeUsrOk
∆AccessCtrlList
u? : USER
P? : F PERM
rep! : ACLREPORT

#acl −#(acl(| {usr u?} |)) + #P? ≤ MAXACLLEN
acl ′ = acl ⊕ {p : PERM | p ∈ P? • usr u? 7→ p}
rep! = aclOk

ACLSetModeGrpOk
∆AccessCtrlList
g? : GRPNAME
P? : P PERM
rep! : ACLREPORT

#acl −#(acl(| {grp g?} |)) + #P? ≤ MAXACLLEN
acl ′ = acl ⊕ {p : PERM | p ∈ P? • grp g? 7→ p}
rep! = aclOk

Now we describe the schemas for the error cases (i.e. when preconditions are not satisfied). There
is just one precondition in each successful case, thus there are two error schemas.
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ACLSetModeUsrE
ΞAccessCtrlList
u? : USER
P? : P PERM
rep! : ACLREPORT

#acl −#(acl(| {usru?} |)) + #P? > MAXACLLEN
rep! = aclError

ACLSetModeGrpE
ΞAccessCtrlList
g? : GRPNAME
P? : P PERM
rep! : ACLREPORT

#acl −#(acl(| {grpg?} |)) + #P? > MAXACLLEN
rep! = aclError

ACLSetMode is defined as the disjunction of the successful and unsuccessful cases.

ACLSetModeUsr =̂ ACLSetModeUsrOk ∨ ACLSetModeUsrE

ACLSetModeGrp =̂ ACLSetModeGrpOk ∨ ACLSetModeGrpE

ACLSetMode =̂ ACLSetModeUsr ∨ ACLSetModeGrp

Now we define the operation that returns the mode of a given user or group.

ACLGetModeOk1
ΞAccessCtrlList
u? : USER
P ! : seqPERM

ranP ! = acl(| {usr u?} |)
#P ! = #(acl(| {usr u?} |))

ACLGetModeOk2
ΞAccessCtrlList
g? : GRPNAME
P ! : seqPERM

ranP ! = acl(| {grp g?} |)
#P ! = #(acl(| {grp g?} |))

ACLGetMode =̂ ACLGetModeOk1 ∨ ACLGetModeOk2

ACLGetSize is the operation that returns the current length or size of an ACL.

ACLGetSize
ΞAccessCtrlList
size! : Z

size! = #acl
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The following operation specify if a user or group has a given mode.

ACLIsPermOk1
AccessCtrlList
u? : USER
p? : PERM

p? ∈ acl(| {usr u?} |)

ACLIsPermOk2
AccessCtrlList
g? : GRPNAME
p? : PERM

p? ∈ acl(| {grp g?} |)

ACLIsPerm =̂ ACLIsPermOk1 ∨ ACLIsPermOk2

The ADT interface is summarized.

ACLInterface =̂ ACLSetMode ∨ ACLGetMode ∨ ACLGetSize ∨ ACLIsPerm

10.3 Proof Obligations

theorem ACLSetModePI
ACLInv ∧ ACLSetMode ⇒ ACLInv ′

theorem ACLInterfacePI
ACLInv ∧ ACLInterface ⇒ ACLInv ′

end of Z Section acl
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Chapter 11

Types, Parameters, and Schemas Used
to Specify Operations

In this chapter we gathered some types and schemas that are used in the definition of several operations.

11.1 Basic Types

11.1.1 Error Reports

Z Section definitions, parents: state

The following labels are used in many operations to signal error conditions.

SFSREPORT ::=
ok
| userDoesNotExist
| objectDoesNotExist
| objectAlreadyExists
| objectIsNotOpenForReading
| objectIsNotOpenForWriting
| objectIsNotOpen
| permissionDenied
| terminalAlreadyInUse
| terminalNotInUse
| processDoesNotExist
| noInput
| noOutput

11.1.2 Basic Modes

Files can be opened in two modes:

read ≈ is pure read, that is the process can read from anywhere in the file but cannot modify it in
any way

write ≈ is pure write, that is the process can modify it anywhere but cannot see nothing of it

MODE ::= read | write

If a process needs to edit a file then it should open it in both modes.
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11.2 Global Parameters

primaryGrp u ≈ is the primary group of user u; the primary group of a user is used to set the group
of a file or directory when it is created

primaryGrp : USER → GRPNAME

write inode ≈ represents the actual write of bytes into the file. Its first argument is intended to be
the file where (part of) the second argument is to be written. We left it underspecified.

read inode ≈ represents the actual read of bytes from a file. We left it underspecified.

put in mem ≈ represents which part of a given file es mapped onto memory (cf. Mmap, section 4.9,
and mmap). We left it underspecified.

writelt ≈ represents the actual write of bytes into a logical terminal. It must be interpreted like if
part of its argument (and not necessary all of it) is written.

write inode : seqCCHAR → seqCCHAR → seqCCHAR
read inode : seqCCHAR → seqCCHAR
put in mem : seqCCHAR → seqCCHAR
writelt : seqCCHAR → seqCCHAR

∀F ,M : seqCCHAR • (∃ f ,m : seqCCHAR | f in F ∧ m in M • f a m = write inode F M )
∀F : seqCCHAR • read inode F in F
∀F : seqCCHAR • put in mem F in F
∀F : seqCCHAR • writelt F in F

rootdir ≈ represents the root of the file system hierachy

parentDir o ≈ is the parent directory of o

rootdir : OBJECT
parentDir : OBJECT → OBJECT

parentDir rootdir = rootdir
∀ o : OBJECT | o 6= rootdir • parentDiro 6= o

suidto o ≈ the user to whom a process (which was created by running program o) can set its identity
by invoking Setuid ; objects that are not programs or programs that do not have their SUID
bits on, are mapped by suidto to some default, non existent user; in other words this function
represents a combination of the state of the SUID bit of each file and its owner

suidto : OBJECT → USER
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11.3 Schemas Used to Specify Operations

11.3.1 DAC Preconditions

ACLIsPermForUser =̂ ACLIsPermOk1

ACLIsPermForGrp =̂ ACLIsPermOk2

The following two schemas can be used to see whether a given user has a given right over a given
object. The variables used to read the right and the user are hiden in schemas ACLIsPerForUser or
ACLIsPermForGrp, respectevely.

PreDACUser
ProcessList
FileSystemObjects
ACLIsPermForUser
pid? : PROCID
o? : OBJECT

pid? ∈ dom aprocs
u? = (aprocs pid?).suid
o? ∈ objs
oacl o? = θAccessCtrlList

PreDACGrp
Users
ProcessList
FileSystemObjects
ACLIsPermForGrp
pid? : PROCID
o? : OBJECT

pid? ∈ dom aprocs
o? ∈ objs
oacl o? = θAccessCtrlList
∃ g : GRPNAME | (aprocs pid?).suid ∈ grps g • g = g?

PreDACRead determines whether user u? has READ permission in the ACL of object o?. The
same, but with WRITE , says PreDACWrite. Note that both predicates check if u? has the apropriate
permission trough one of his groups.

PreDAC =̂ PreDACUser ∨ PreDACGrp \ (g?, u?)

PreDACRead =̂ [PreDAC | p? = READ ] \ (p?)

PreDACWrite =̂ [PreDAC | p? = WRITE ] \ (p?)

PreDACOwn =̂ [PreDAC | p? = OWNER] \ (p?)
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11.3.2 Opening an object at the Process level

POpenOk1
∆Process
o? : OBJECT

or ′ = or ∪ {o?}
ow ′ = ow
mmfr ′ = mmfr
mmfw ′ = mmfw
supr ′ = supr
mem ′ = mem
suid ′ = suid
lt ′ = lt
prog ′ = prog

POpenOk2
∆Process
o? : OBJECT

or ′ = or
ow ′ = ow ∪ {o?}
mmfr ′ = mmfr
mmfw ′ = mmfw
supr ′ = supr
mem ′ = mem
suid ′ = suid
lt ′ = lt
prog ′ = prog

POpenRead =̂ POpenOk1

POpenWrite =̂ POpenOk2

POpenOk =̂ POpenOk1 ∨ POpenOk2

POpen =̂ POpenOk

PRead
∆Process
sc : SecClass
buff : seqCCHAR

supr ′ = Sup supr sc
mem ′ = mem a buff
usr ′ = usr
or ′ = or
ow ′ = ow
mmfr ′ = mmfr
mmfw ′ = mmfw
suid ′ = suid
lt ′ = lt
prog ′ = prog
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PAddToMem
∆Process
buff : seqCCHAR

mem ′ = mem a buff
supr ′ = supr
usr ′ = usr
or ′ = or
ow ′ = ow
mmfr ′ = mmfr
mmfw ′ = mmfw
suid ′ = suid
lt ′ = lt
prog ′ = prog

11.3.3 Common Errors

PidNotExist
ΞSecureFileSystem
pid? : PROCID
rep0! : SFSREPORT

pid? /∈ dom aprocs
rep0! = processDoesNotExist

ObjectNotExist
ΞSecureFileSystem
o? : OBJECT
rep0! : SFSREPORT

o? /∈ objs
rep0! = objectDoesNotExist

ObjectAlreadyExists
ΞSecureFileSystem
o? : OBJECT
rep0! : SFSREPORT

o? ∈ objs
rep0! = objectAlreadyExists

UserNotExist
ΞSecureFileSystem
u? : USER
rep0! : SFSREPORT

u? /∈ users
rep0! = userDoesNotExist
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TerminalNotUsed
ΞSecureFileSystem
pt? : PTERM
rep0! : SFSREPORT

pt? /∈ ran upt
rep0! = terminalNotInUse

The following schema captures the lack of DAC permissions of a process over an object. As you
can see, we do not use AccessCtrlList ’s interface to model this error, but at implementation level
programmers must use that interface.

PermissionDenied
ΞSecureFileSystem
pid? : PROCID
o? : OBJECT
m? : MODE
p : PERM
rep0! : SFSREPORT

o? ∈ objs
pid? ∈ dom aprocs
(p /∈ (oacl o?).acl(| {usr (aprocs pid?).suid} |)
∧ ¬ (∃ g : GRPNAME | g ∈ dom grps •

(aprocs pid?).suid ∈ (grps g)
∧ p ∈ (oacl o?).acl(| {grp g} |)))

rep0! = permissionDenied

NoRead =̂ [PermissionDenied | m? = read ∧ p = READ ]

NoWrite =̂ [PermissionDenied | m? = write ∧ p = WRITE ]

NoOwner =̂ [PermissionDenied | p = OWNER] \ (m?)

MLSViolation
ΞSecureFileSystem
pid? : PROCID
o? : OBJECT
rep0! : SFSREPORT

¬ osc (parentDir o?) � (aprocs pid?).supr
o? /∈ objs
rep0! = permissionDenied

end of Z Section definitions
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Chapter 12

Main

This section was introduced just because Z/EVES does not accept the same type defined in two
different sections. Otherwise USER would have been defined in chapters 8 and 10.

Z Section main (no parents)

USER ≈ all the possible users of the system

[USER]

end of Z Section main
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ChinscE2 25
ChinscE 25
Chinsc 25
ChinscOk 25
ChobjscE1 33
ChobjscE2 33
ChobjscE3 33
ChobjscE 33
Chobjsc 33
ChobjscOk1 32

ChobjscOk2 32
ChobjscOk 33
ChsubscE1 34
ChsubscE2 34
ChsubscE3 34
ChsubscE 34
Chsubsc 34
ChsubscOk 34
CloseE1 36
Close 36
CloseOk 35
cptcs 15
CreateE1 38
CreateE2 38
CreateE3 38
CreateE 38
Create 38
CreateOk1 37
CreateOk2 38
CreateOk 38
ExecE1 40
ExecE2 40
ExecE3 40
ExecE 40
Exec 40
ExecOk 39
FileSystemObject 19
ForkE 41
Fork 41
ForkOk 41
FSOInit 19
FSOInv 72
FSOInvIF 72
FSOInvWF 71
GetE 66
Get 66
GetOk 66
GRPNAME 87
GRPP 36
grps 18
Inf 83
INF 83
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InputE 27
input 14
Input 27
InputOk 27
LCONT 16
L 83
LinikE3 42, 53
LinikSE3 44
LinkE1 42
LinkE2 42
LinkE4 42
LinkE 42
Link 42
LinkOk 42
LinkSE1 44
LinkSE2 44
LinkSE4 44
LinkSE 44
LinkS 44
LinkSOk 43
LogicalTerminals 16
LoginE1 29
LoginE2 29
LoginE 29
Login 29
LoginOk 28
LTCAdd 66
LTCInit 16
ltcont 16
LTCRead 51
LTCRemove 67
LTERM 16
lt 20
LTInit 16
LTInv 71
ltsc 16
MAX ACL LEN 87
MAXLEVEL 82
MAXNCAT 82
mem 20
MLSViolation 96
MmapE1 46
MmapE2 46
MmapE3 46
MmapE 46
Mmap 46
MmapOk1 45
MmapOk2 46
MmapOk 46
mmfr 20

mmfw 20
MODE 91
mptsc 14
NoOwner 96
NoRead 96
NoWrite 96
null 14
oacl 19
ObjectAlreadyExists 95
OBJECT 19
OBJECTToSeqCHAR 43
objs 19
ocont 19
OCONT 19
OpenE1 48
OpenE2 48
OpenE31 48
OpenE32 48
OpenE 48
OpenFrame 47
Open 48
OpenOk1 47
OpenOk2 47
OpenOk 47
or 20
osc 19
OscstatE1 48
OscstatE2 48
OscstatE 48
Oscstat 48
OscstatOk 48
OTHP 36
output 14
ow 20
OWNP 36
PAddToMem 95
parentDir 92
PClose 35
PERM 87
PermissionDenied 96
PExec 39
PhysicalTerminal 14
PidNotExist 95
PInit 21
PInv 72
PLInit 21
PLogin 28
PMmap 44
POpen 94
POpenOk1 94
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POpenOk2 94
POpenOk 94
POpenRead 94
POpenWrite 94
PRead 95
PreDACGrp 93
PreDAC 93
PreDACOwn 93
PreDACRead 93
PreDACUser 93
PreDACWrite 93
primaryGrp 92
Process 21
ProcessList 21
PROCID 21
prog 21
PSetuid 54
PTGet 65
PTInit 14
PTInput 26
PTPut 67
pts 14
PutE1 68
PutE2 68
PutE 68
Put 68
put in mem 92
PutOk 68
ReadE1 50
ReadE2 50
ReadE 50
Read 50
read inode 92
ReadLTE1 52
ReadLTE2 52
ReadLTE 52
ReadLT 52
ReadLTOk 52
ReadOk 50
ready 14
RenameE1 53
RenameE2 53
RenameE4 53
RenameE 53
Rename 53
RenameOk 53
rootdir 92
rootgrp 18
root 18
SCAddCatE1 85

SCAddCatE2 85
SCAddCatE 85
SCAddCat 85
SCAddCatOk 84
SCAddCatPI 86
SCGetCat 84
SCGetLevel 84
SCGetSize 84
SCInit 83
SCInterface 86
SCInterfacePI 86
SCInv 83
SCREPORT 82
SCSetLevelE 85
SCSetLevel 85
SCSetLevelOk 85
SCSetLevelPI 86
SCSetSCE1 86
SCSetSCE2 86
SCSetSCE 86
SCSetSC 86
SCSetSCOk 86
SCSetSCPI 86
SCToSeqCHAR 48
secadm 18, 77
SECADMIN 77
SecClass 82
SecClassToUserSecClassD 78
SecClassToUserSecClassX 80
SecureFileSystem 22
SetuidOk1 55
SetuidOk2 56
SetuidOk3 56
SFSInit 22
SFSInv 73
SFSInvPLTI 73
SFSInvPLTO 73
SFSInvUT 73
SFSInvWF 72
SFSREPORT 91
softtcb 19
StatOk 57
stdin 15
stdout 15
SUBJECT 87
suid 20
suidto 92
Sup 83
SUP 83
supr 20
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TERM 14
TerminalNotUsed 96
ttys 16
UInit1 18
UInit 18
UInv 71
UInvWF 71
upt 15
USCAddCatE1 79
USCAddCatE2 79
USCAddCatE3 79
USCAddCatE 79
USCAddCat 79
USCAddCatOk 79
USCAddCatPI 81
USCErrorReport 78
USCGetCatE 80
USCGetCat 80
USCGetCatOk 80
USCGetLevelE 80
USCGetLevel 80
USCGetLevelOk 80
USCGetSizeE 80
USCGetSize 80
USCGetSizeOk 80
USCInit 78
USCInterface 80
USCInterfacePI 81
USCInv 78
USCREPORT 77
USCSetLevelE1 79
USCSetLevelE2 79
USCSetLevelE 79
USCSetLevel 79
USCSetLevelOk 79
USCSetLevelPI 81
USCSetSCE1 79, 80
USCSetSCE3 80
USCSetSCE 80
USCSetSC 80
USCSetSCOk 79
USCSetSCPI 81
USCUserNotExist 78
USER 97
UserNotExist 96
UsersAndTerminals 15
UserSecClass 77
users 18
Users 18
usr 20

UTInit 15
UTInvCSC 70
UTInv 70
UTInvI 70
UTInvO 70
WriteE1 60
WriteE2 60
WriteE3 60
WriteE 60
Write 60
write inode 92
WriteLTE1 63
WriteLTE2 63
WriteLTE 63
WriteLT 63
writelt 92
WriteLTOk 62
WriteOk1 59
WriteOk2 59
WriteOk 60
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