
Security Model of GIDISS Trusted Linux 0.1

Z Version 0.8.0

Maximiliano Cristiá
mcristia@fceia.unr.edu.ar

mcristia@flowgate.net

Grupo de Investigación y Desarrollo en Ingenieŕıa de Software y Seguridad
Facultad de Ciencias Exactas, Ingenieŕıa y Agrimensura

Universidad Nacional de Rosario

Flowgate Security Consulting

Rosario
República Argentina

April 3, 2006

Abstract

This document describes a multi-level secure model. The model is a formalization of an enhance-
ment of the standard Linux interface that includes multi-level secure (MLS) controls. The model is
based on the notion of information flow rather than the Bell-LaPadula security model.

Contents

1 Overview of the Model 4
1.1 Factors that Affect the Usability of MLS Systems . 4

1.1.1 Moving the Access Control . 4
1.1.2 All Inputs Are Not Equally Important . 4
1.1.3 Access Classes of New Objects . 5
1.1.4 Empty Objects . 5

1.2 Guiding Principles . 5
1.3 Physical Protection . 6
1.4 Trusted Computer Base . 7
1.5 Key Security Features of the GTL Formal Model . 7
1.6 Style conventions . 8

2 The State of the Secure System 11
2.1 Physical Input and Output Devices . 12
2.2 Users Allowed to Work on the System . 14
2.3 Protected Objects . 15

2.3.1 The Access Class of Directories . 16
2.4 Processes . 16
2.5 Communication Channels . 17
2.6 The Whole State . 19

3 Operations Controlled by the User 20
3.1 Chdevsc . 21
3.2 Chinsc . 23

3.2.1 Design and Implementation Comments . 25
3.3 Chobjsc . 25
3.4 Chsubsc . 26
3.5 Input . 28
3.6 Login . 28

3.6.1 Design and Implementation Comments . 31
3.7 The Interface for the User . 32

4 Programming Instructions 33
4.1 Assignment . 33
4.2 Begin Conditional . 34
4.3 End Conditional . 35
4.4 The Programming Language . 36

1

5 Operations Controlled by Processes 37
5.1 Close . 37
5.2 Create . 38
5.3 Exec . 40

5.3.1 Design and Implementation Comments . 43
5.4 Fork . 43

5.4.1 Design and Implementation Comments . 44
5.5 IpcGetRead . 44
5.6 IpcGetWrite . 45
5.7 IpcRead . 47
5.8 IpcReleaseRead . 49
5.9 IpcReleaseWrite . 50
5.10 IpcWrite . 51
5.11 Kill . 53
5.12 LinkS . 55
5.13 Link . 57
5.14 Mmap . 59
5.15 Open . 61
5.16 Oscstat . 62
5.17 Ps . 63
5.18 Read . 64
5.19 ReadDev . 66
5.20 Rename . 67
5.21 Setuid . 69
5.22 Stat . 72
5.23 Unlink . 73
5.24 Write . 74
5.25 WriteDev . 76
5.26 The Interface to be Used by Processes . 78

6 Operations Controlled by the System 80
6.1 Sched . 80
6.2 System Internal Operations . 81

7 The Transition Relation 82

8 A Formal Model for Military Security 83
8.1 The Organization and its Components . 83
8.2 The User’s Requirements . 84
8.3 Military Security . 85

9 Proof Obligations and Properties 86
9.1 State Invariants . 86

9.1.1 Invariants of ComputerPDevices . 86
9.1.2 Invariants of Users . 86
9.1.3 Invariants of SystemObjects . 87
9.1.4 Invariants of Process . 87
9.1.5 Invariants of ProcessList . 87
9.1.6 Invariant of Channel . 88
9.1.7 Invariant of IPCMechanisms . 88
9.1.8 Secure System Properties . 88

2

9.2 The Missed Property . 89
9.3 Simple Security . 89
9.4 Where Can Users Work? . 90

10 Security Classes 91
10.1 Basic Types, Parameters, and State Definition . 91
10.2 Operations . 93
10.3 Proof Obligations . 95

11 Subject Security Classes 96
11.1 Basic Types, Parameters, and State Definition . 96
11.2 Operations . 97
11.3 Proof Obligations . 100

12 Global Terms and Synonimous 101
12.1 Basic Types . 101

12.1.1 Error Reports . 101
12.1.2 Basic Modes . 101

12.2 Some Global Parameters . 102
12.3 Auxiliar Schemas . 102

12.3.1 Building Processes . 102
12.3.2 Common Errors . 103

3

Chapter 1

Overview of the Model

In this chapter we explain our motivations, goals, and principles in writing GLT’s security model.
Also we comment on how to map this model to an actual implementation on the Linux kernel.

Our main goal is to develop a secure UNIX-like operating system. Our second goal is to get an
usable implementation of it. By UNIX-like we mean an operating system with the “same” interface
than some free or proprietary version of UNIX –we choose Linux. In our vocabulary, secure means
resistant to Trojan horse attacks against confidentiality [Gas88, AJP95]. Finally, for us, usable means
that ordinary users perceive the necessary stronger security only when it is really needed; more pre-
cisely, we would like an operating system in which security does not affect users who obey the rules
[Gas88].

1.1 Factors that Affect the Usability of MLS Systems

The literature cleary shows that the only way to have an operating system resistant to Trojan horse
attacks against confidentiality, is to implement a multi-level security (MLS) model. Given the expe-
rience we gained by developing and using Lisex (GTL’s predecesor), we know that BLP-like models
[BL73a, BL73b] are secure but severely reduce the usability of the system. We have identified some
key factors that produce this second, undesired side effect. We will comment on them in the following
sections.

1.1.1 Moving the Access Control

To exercise MLS access controls at open time is perhaps the most influential factor. It is not clear
whether a process violating confinement [BL73b] will indeed violate security. Only when this process
tries to downgrade information by writing it to a lower level file, security is about to be compromised.
Thus, this time we followed an information flow model [Den76].

We have applied a simplification of Denning’s model to a subset of Linux’s system calls. This
subset includes all file system calls, and calls regarding the creation and modification of processes.
Also pipes have been considered. This is a simpler version than Denning’s because we considered only
explicit information flows. For example, the information flow that results from a process deleting all
the possible file names from a given directory and deducing the erased names from the value returned
by unlink, has nor been considered. Also, as Denning did, we do not consider information flows
through covert channels.

1.1.2 All Inputs Are Not Equally Important

Other important factor that we belive reduces the usability of the system is not taking into con-
sideration that users do not always work with classified information. In other words, in a modern

4

computing environment, computers are used to process sensitive and non sensitive information. In
order to eliminite this factor we decided to take and input-output view of the system rather than
an strictly state approach. In this view, input is classified at different access classes accordingly to
user desire; and classified output is sent by the system only to appropriate terminals. This approach
allowed us to represent a user entering input classified at many different access classes, and seeing
output as classified as the terminal where he is working on.

1.1.3 Access Classes of New Objects

Yet another important factor that we have identified as contributing to decrease system’s usability,
regards the initial access class assigned to recently created objects. In a previous prototype (Lisex)
we followed a rather obvious approach: to assign the access class of its creator when a new object is
created. While this policy is indeed secure it also severely affects the usability of the system because
users are commited to classify all their information at their own levels, thus contradicting what was
stated in the previous section.

In the present model, new objects have the lower bound (L) on the set of security classes. The
justification is simple: new objects contain no information thus it is unnecesary to classify them above
L.

1.1.4 Empty Objects

The last paragraph of the previous section gave us further insight on the significance of empty objects
and how they should be managed. Given that an empty object does not contain information, it is
impossible to disclose information by arbirtrarily, and even discretionary, changing its access class.
Hence, the model presented in this document was adapted to treat empty objects as fundamentally
different from non empty objects. Clearly, this decision will make an implementation a little more
complex because it has to deal with one more case. However, we belive that this change will increase
the usability of the system. Consider the following example.

• A user creates a new file or directory, the system assigns L to it, and then the user has the
chance to set its access class to the most appropiate.

One can argue that the first scenario allows an attacker to trick the user in beliving that the access
class of the new object is the one he wanted, when in fact a Trojan horse has set a different (lower)
one. This is countered since the piece of software allowed to perform such a change must be part of
the TCB.

1.2 Guiding Principles

Besides the general principles of computer security [Gas88], we have based the construction of this
model on the following ones:

• root is an ordinary user with respect to MLS.

Most of the sofware used in a UNIX-like operating system was installed by users with access to
the root account. It is incorrect to assume that these administrators are trustworthy as much
as the most sensitive information managed by the system. Hence, they must be trusted as much
as their access classes, and so every process acting on behalf of any of them cannot be trusted
more than its owners.

• Things must start at L.

5

New, empty objects must be classified at L; the first process of a user must be started at L; the
input of the user should be initially classified at L; directories should not be classified above L
unless file names are significative, and so on. MLS systems tend to increase the classification of
information, basically because the imposibility of writes-down [Lan81]. Thus, it is convinient to
mitigate this tendency by krafting the system in a manner that it put energy to keep information
at a low classification (without compromising security, of course). We think that a good design
principle to follow is that the system should start things as low as possible.

• The problem is that users cannot see information they are not authorized to see.

The problem is not that users cannot modify information, nor that processes cannot read in-
formation, or even write it. If the system prevents users of seeing information they are not
authorized to see, then the system is secure. It does not matter what the system do with infor-
mation, nor what the system permits processes to do. Users can see information only when it
leaves the system: users cannot read a file, they can only read from a screen or a printed sheet
of paper. Hence the system must be designed by putting hard controls around its borders, and
not necessarily inside it.

• Bening software will not be disturbed by the system.

Users use applications to interact with the system. User applications are general machines that
have been envisioned to work in countless situations. It would be amazing if such a tool bases its
decisions on the semantic of particular pieces of the information provided by some user. A text
editor reading a file containing a secret cryptographic key, should treat it as any other sequence
of characters –it would not try, say, to open certain files for each 1, or to delete a directory for
every 0, or to fullfill the printer spooler if the key matches some pattern.

When standard application software takes decisions based on the semantic of information given
by users, then this information will allways be unimportant. This happens, for instance, when
an application runs some plug-ins according to a configuration file: tool configuration cannot
contain secret information just because this is outside of the users’ businesses.

Only software that make decisions based on the semantic of the user input will be disturbed by
the system because otherwise this software is likely to disclose important information. However,
we think that standard, bening software does not behave this way; only rouge programs do this.

1.3 Physical Protection

We will describe a model for a security system. This system will run over a particular computer
hardware. At the implementation level our system will include the operating system and some user
level application (such as login). Then it is important to describe the hardware where our system will
execute. We think of a general computer like a PC or a server. It can have a number of peripherals
devices.

Devices are classified as input, output or both. The system interacts with its environment through
these devices. Then it is convinient to give some further details on them. Devices may range from
just a keyboard and a screen to a number of ports, printers, removable media, etc. In some cases more
than one piece of hardware is needed to use a given device (for example, a CD unit and a CD), and one
of them is a removable part which stores or displays information. In some cases it could be possible
to protect the removable part in some restricted area (for example a printer could be located in a
locked room), or with some other physical protection (for example by hiding the ports with a locked
steel sheet). This fact is very imporant because it helps to provide the right protection to information.
For instance, if an Ethernet cable connecting a corporate computer to the company network can be
unplugged or tapped, then it is possible to disclose information by connecting the computer to the

6

Internet or to a laptop. In this way, physical access to hardware is consistenly cotrolled with respect
to how the operating system protects information. On the other hand, if a computer is deployed in a
restricted access area, then its hardware may be less protected because only trustworthy people can
enter the room. Further, if some device could not be protected as required, then this fact should be
configured accordingly in the system to avoid information compromise.

The same is valid for hard disks or other non-removable, secondary storage units as well as the
physical memory. However, our model assumes that information is stored (persitently) in storage units
that are physically protected.

Also we assume that hardware provides some sort of protection rings. The operating system
resulting from the implementation of our model will execute in the most protected ring. The user
level applications that are part of our system will run in the less protected ring, but the operating
system will provide process isolation.

1.4 Trusted Computer Base

We are modeling a secure computer system or, better, a system that should be secure against a
particular kind of threat. Hence, we need to state precisely which entities are trusted and which are
not. The operating system plus all the hardware, are trusted. Also, some special programs (such as
login, init, etc.) are considered trusted processes, but not in the classical sense [Gas88]. In GTL a
programa is a trusted program not because it can by-pass MLS controls but because it was developed
by trusted parties; a trusted program cannot by-pass MLS controls .

Trusted programs must be guarded against unauthorized modifications; we include in this category
the operating system program. This is hard to achieve in UNIX-like operating systems. We assume
hardware is protected against anauthorized modifications with physical security countermeasures (see
section 1.3).

1.5 Key Security Features of the GTL Formal Model

The factors that in our opinion reduce the level of usability of the system and the principles described
in the previous section, guided us to specify the following key security features1:

• Physical devices have assigned three, possible distinct, access classes. One of them, outdevmsc,
applies to the output sent by the system to the device, and the remaining two, indevcsc and
indevmsc, apply to the input entered by the user (a flesh and bones human being) or other
systems. indevcsc can be set by the user to inform the system on how high is the input that will
be entered from that time on. In turn, outdevmsc and indevmsc cannot be modified by ordinary
users and represent the maximum security class that can be outpuded or entered on a particular
device.

See sections 2.1, 3.2, 3.1, 5.25.

• indevcsc is initially set to L for all devices.

• Processes can access, unless from the MLS model point of view, any object. This means that the
system will not prevent processes (no matter on behalf of whom they are acting) from reading
objects with any access class. Belive it or not but this feature by itself is not insecure.

See sections 5.18, 5.19, 5.14.
1We have included other features but in this section we only comment about the most important ones.

7

• Processes can write some information in files or devices if this information has an access class
dominated by the access class of the file or device. In other words, a process can read any file,
taking highly classified information into its memory space, but it will not be able to write this
information back to a persistent lower level object.

This will be implemented by moving the control of access from open to read and write.

You may wonder, what this feature does for the user? The answer is simple: a user may edit
two different files with distinct access classes at the same screen and at the same moment. If
a BLP-like model is implemented, this situation cannot happen. In our model, the only thing
that is forbidden to the user is to save information taken from the high level file into the lower
file being edited.

See sections 5.24, 5.25.

• Objects created with creat (or similar system calls) will have L as their initial access class, and
then it can be set to any access class by any user. But, once these objects are not empty, their
access classes cannot be modified (except by the security administrator).

See sections 5.2, 3.3.

• If an object is emptied (for example issuing truncate over it), then its access class can be
modified by a user. The user can change the access class of an empty object by executing
chobjsc.

See sections 3.3.

• Process initiated by trusted programs with execve have their memory spaces classified at L.

See section 5.3.

• Every time a process executes an assigment instruction or begins or ends a conditional structure,
the access classes of some of its variables are updated in a similar way to that proposed by
Denning in [Den76].

See section ??, 4.2, 4.3.

• Some error conditions returned by the system as a response to a system call executed by a
process imply that the access class of some process’ variable must be updated based on the
information implicitly carried with that response.

See, for instance, schema PGetError in sections 5.3, 5.12, or 5.15.

• Since shared, multi-level, finite resources can always be used as covert channels, our model
includes state variables (of type SecClass) to prevent them. For instance, in funtion rsc (included
in schema Channel) will be stored the access class of each of the processes that became a reader
in the moment they issed the request. In this way the access class of each new process wanting
to become a reader could be updated by the system.

1.6 Style conventions

We have made a great effort to keep a uniform structure for identifiers. Our conventions are as follows:

• Basic types are uppercase, like CATEGORY , and in the singular.

• Only the first letter of each word in schema names is uppercase, like SecClass, and if it is a state
schema its name is in the singular.

8

• Elements of enumerations are in lowercase, like undef .

• Variables are in lowercase, like level .

Each operation schema is divided into a number of schemas. There is one schema for each succesfull
case, and one schema for each unsuccessfull case. A schema, called Okschema, is defined as the
disjunction of all schemas representing succefull cases; and another schema, called Eschema, is defined
as the disjunction of the unsuccessfull cases. If there is only one schema for successfull or unsuccessfull
cases, then only the Okschema and the Eschema are defined. In other words, always there must be an
Okschema and an Eschema. Finally, the operation schema is defined as the disjuction of the Okschema
and the Eschema (called Tschema). So we have:

Okschema =̂ SuccessfullCase1 ∨ . . . ∨ SuccessfullCasen

Eschema =̂ UnsuccessfullCase1 ∨ . . . ∨ UnsuccessfullCasem

Tschema =̂ Okschema ∨ Eschema

We have defined name conventions for all those schemas:

• The name of a Tschema starts with an abbreviation of the name of the state schema, followed
by the name of the operation, for example SCGetCat . This convention was not applied to
SecureSystem’s operations.

• The name of an Okschema starts with the name of the corresponding Tschema followed by Ok ,
for instance SCGetCatOk .

• Each of the disjucts of an Okschema has the same name of the Okschema followed by a natural
number starting at 1, for example SCSetLevelOk2.

• The name of an Eschema starts with the name of the corresponding Tschema followed by E , for
instance SCGetLevelE .

• Each of the disjucts of an Eschema has the same name of the Eschema followed by a natural
number starting at 1, for example SCAddCatE1.

We have not used the standard Z style for recording state invariants. Instead, for each state schema
we record its invariant as follows:

1. A normalized state schema is defined without any predicate; say its name is Schema.

2. A state schema named SInv is defined by including Schema and recording its invariant.

3. Operation schemas acting over Schema do not include SInv , thus all preconditions are explicit

4. For each operation, Op, that changes Schema, the following proof obligation is writen:

SInv ∧ Op ⇒ SInv ′

Hence, if a proof is given the invariant is guarented and programmers have explicit preconditions
to code. For example, consider the following specification where variable x is intended to be non-
negative. We start by defining a state schema where variable x is normalized and unconstrained.

X
x : Z

9

Then, we define a schema capturing the invariants for schema X .

XInv
X

x ≥ 0

Now, we define an operation that could potentially violate the invariant so we include the
appropriate precondition.

Decr
∆X

x > 0
x ′ = x − 1

Finally, a proof obligation is introduced in order to guarantee that XInv is indeed an invariant.

theorem DecrPI
XInv ∧ Decr ⇒ XInv ′

Were we defined X as follows:

X
x : Z

x ≥ 0

we could have defined Decr to be

Decr
∆X

x ′ = x − 1

because the invariant is verified by definition. Hence, we left x > 0 implicit and the specifier or
the programmer must make it explicit what is equivalent to the first approach.

At the end of this document you may find an index listing all the formal terms defined and the page
number where its definition is. We belive this index will be of great help because you may find terms
quickly. Sadly, page numbers may be off by one due to sintactical restrictions imposed by Z/EVES.

Any word written in typewriter type style refers to program code in the Linux kernel, operating
system commands or the like.

10

Chapter 2

The State of the Secure System

This security model is a Z formal specification. Most of the time, Z specifications describe state
machines. State machines are described by giving a set of states and a set of transitions between
states. In this case the state machine is the security system. Since we want to implement the system
as part of a UNIX-like operating system, then the set of states of this machine is the set of states of
a UNIX-like operating system with some enhancements so MLS restrictions can be enforced. Hence,
the transitions of the state machine correspond to the operations that can be performed over such an
operating system. These operations are initiated by the environment and executed by the operating
system. Then it is important to show how the environment can interact with our system.

The environment of an operating system comprises a set of user level processes and a set of input
and output devices from which subjects –users or other systems– send or receive data to or from
the computer hosting the operating system. Traditionally, processes comunicate with the operating
system via so called system calls. However, in our model other operations that historically are outside
of an operating system are included. This operations are: assigment and conditional structures. As
was noted by Denning in [Den76] processes can deduce and consquently be able to disclose information
by executing assigments or conditional structures –since processes execute over an operating system,
they also need to interact with it to be able to make information get thru to a human been. However,
in classical operating systems this operations are not controlled by them –note that in a vitual machine
arquitecture this is not necesary the case. Since in order to enforce MLS our system needs to know
when and what of these instructions are executed by processes, then we need to include them as system
operations1. Hence, each state of our system includes a part of the state of each process; for instence,
the system needs to know the access class of each process’ memory cell, and needs to be notified every
time a process makes an assigment to a particular variable. Although, and this might be confussing,
it does not mean that processes will voluntary warn the operating system of every action the take
–precisely we need to design a system where programs and processes are built in a classical way but
still the system can control them as it needs.

Besides processes communicate with the operating system, they can communicate each other
through so called inter-process communcation (IPC) mechanisms. In UNIX-like operating systems
there are IPC mechanisms where the operating system has a minimal intervention (shared memory)
and other mechanisms where processes need to request the OS to mediate the communication between
them (pipes). This implies that in some cases the OS has full control of the interaction between pro-
cesses and in other cases it has not. Our model includes a rather general and abstract notion of IPC,
but it features all of the classical caracteristics that make IPC hard to protect in a MLS environment.
Since shared, multi-level, finite resources can always be used as covert channels, and almost all IPC
mechanisms need such resources, then IPC in a MLS setting where usability has to be maximized is
a very difficult area to model.

1Elsewhere we will explain how we are going to implement it.

11

In summary, we have to describe operations representing system calls, some programming level
instructions and the input of data through input devices –a few system calls deal with outputing data
through output devices. Further, since we know that the whole problem of confidentiality is that
persons should not see some information, and persons interact with the system via a subset of input
and output devices, then it is relevant for our problem who are around the computer and what are
their security attributes.

The only way for the operating system to control its environment is by maintaining a representation
of the state of all the components of its environment. Then, the state of our system will include the
state of processes, the state of all the input and output devices interfacing with the system, the state
of the users inputing data to the system or receiving data from the system, and the state of all the
information protected by the system and its security attributes. However, this does not mean that
those entities are part of our system; in fact, some of them are untrusted, autonomous agents.

Then, in the following sections we will describe with apropriate state variables, the set of states of
each of the components listed above.

2.1 Physical Input and Output Devices

As we said above the operating system and the users of it interact through physical devices. Devices
can be for input, output or both. Devices are used by subjects (trusted or untrusted). We will abstract
the peculiarities of devices by stating that all of them communicate by sending or receiving sequences
of so called characters –at implementation level they could be anything.

One of the main features of our system is that trusted users can set the access class of their input.
Then, not all the characters received by our system are equal from the security perspective. Each
character is classified at a particular access class. Hence, it is necessary to maintain this information.
In fact, a basic property this system must enforce is that any input done at a particular classification
must not be outputed at a lower classification. So, the system does not acctually receive characters
but pairs of a character and an access class.

However, things are a little more complicated. Say that the system receives two ordered pairs of
the form (′a ′,L) and (′a ′,H). Then, how can we prove that ′a ′ is outputed at the access class that was
inputed? It is easy to see that the ′a ′ received at L is the first ′a ′ and the other is the second. Now,
say that our system recives tuples of the form (c, s,n) where c is a character, s is an access class, and
n is a ever increasing natual number. Hence, now it is possible to prove that if character n-th is c and
is being outputed at s it is because it was inputed at an access class dominated by s.

In concecuence, characters must be cualified not only by the access class at which they are inputed
to the system but also by the index of the sequence of characters received so far. The followinf Z
paragraphs describe this situation.

Z Section state, parents: sc, subjectsc

CHAR ≈ elements of this set are inputed to or outputed from the system.

[CHAR]

CCHAR == CHAR × SecClass × N

This does not mean that an acctual implementation of the system has to keep this information.
Its only pourpose is to enable us to formally prove that the model verifies the property stated above.

Now we can model a generic physical device as a sequence of CCHAR’s that has to be processed
by the system –in case it is an input device– or by the environment –when it is an output device.

12

toproc ≈ the sequence of characters that has to be processed by the system or the enviroment de-
pending on whether the device is for input or output.

PDevice
toproc : seqCCHAR

Next is the initial schema for a PDevice. Initially every physical device has no character to process.

PDInit =̂ [PDevice | toproc = 〈〉]

Our system may have a number of input and/or output devices. Then we need a way to identify
each of them. We do so by elements of type PDID as follows.

PDID ≈ identifiers for physical devices; negative number will be reserved for input devices while
positive numbers will be for output devices; zero will not be used.

PDID == Z

Below there is the schema representing all of the devices of the computer hosting our system.
There are (partial) funtions denoting input and output devices; input-output devices are represented
by one pair in each function. Also, each input device has two access classes, while output devices
have just one. indevcsc is called current access class; it represents the access class of the input being
inputed to the system in this particular state. In turn, indevmsc denotes the maximum access class;
this puts a limit to the secrecy of the information that can be entered through a particular device.
The intention is that indevcsc may be changed by the user –using a trusted path–, and indevmsc may
be cahnged only by a security administrator. However, if the input sent to a device is not controlled
by a human been, then it is meaningless that he or she would be able to change the value of indevcsc
for this device. Then, we have the set named usrin to hold the PDID ’s of input devices for which
users can set indevcsc.

Output devices are a little different. They have just one access class, named outdevmsc, that
represents the maximum access class of the information that can be sent to the environment through
a given device. Only security administrators can change this access class.

One approach is set all output devices with the same access class –after all, if a person can see some
information, he can see it in any form. Other alternative is to have different access classes because
one trust some people to see (on a screen) some information, but it is risky to let them to take away,
say, a pen-drive with the same information because they can be assaulted outside the building.

Finally, variable nextinput stores the index of the last character inputed to the system; it is
incremented every time a new character is entered through any input device.

outdev pdid ≈ is the state of the physical output device identified with pdid .

• outdev(1) will be reserved for the user terminal. A user terminal is any device that shows
information in a way that a human been can directly understand an access it by using the
computer. For instance, a user terminal would be a screen, a printer, or a sound board –a
network card, say, is not a user terminal because the user needs another piece of equipment
capable of translating physical signals into a human redeable form; also, if a printer is
located in a different room, then it might not be considered as a user terminal because
users allowed to use the computer might not be allowed to enter the printer’s room. The
access class of the user terminal will be used to decide who can log in to the computer.

13

• outdev(2) will be reserved for removable media that is directly accessible by users using
the computer. This is the case, for instance, of a floppy disks, RW-CD units, or USB ports
–but if ports are hidden with a metal sheet, then this device may not be considered as
removable.

• outdev(3) will be reserved for unprotected, non-removable devices. This will be the case,
for example, of an Ethernet network card or its cable if it can be unplugged or tapped.

indev pdid ≈ is the state of the physical input device identified with pdid .

• indev(−1) will be reserved for the user terminal.

usrin ≈ the user can set the access class of these input devices; for instance, a scanner.

outdevmsc pdid ≈ is the maximun access class of the information that can be outputed through the
output device identified with pdid .

indevcsc pdid ≈ is the access class of the information that is being entered through the input device
identified with pdid .

indevmsc pdid ≈ is the maximun access class of the information that can be entered through the
input device identified with pdid .

nextinput ≈ is the index of the last character inputed to the system.

ComputerPDevices
indev : PDID 7→ PDevice
outdev : PDID 7→ PDevice
usrin : P PDID
outdevmsc : PDID 7→ SecClass
indevcsc : PDID 7→ SecClass
indevmsc : PDID 7→ SecClass
nextinput : N

The model does not include operations to add or remove elements to or from usrin, indev and
outdev because we think they are not too important.

2.2 Users Allowed to Work on the System

As we said in the introduction to this chapter, part of the environment is a database of users and their
security attributes. UserSecClass is defined in chapter 11 (it models the relationship between users
and security classes).

users ≈ set of users allowed to use the system.

working ≈ set of users that are working with the computer (i.e. there is some process run by them).

Users
UserSecClass
users,working : P USER

In the initial state Users contains a few built-in users, and standard access classes for them.

14

root ≈ the standard UNIX administrator.

secadm ≈ is designated in chapter 11

root : USER

UInit1
Users

users = {root , secadm}
SECADMIN /∈ (usc root).categs
working = ∅

UInit =̂ UInit1 ∧ USCInit

2.3 Protected Objects

The objects that the system must protect include files, directories, pipes, and so on (see [CGM03] for
more details).

OBJECT ≈ the set of protected objects, i.e. regular files, directories, pipes, etc. Elements of this set
are just abstract identifiers, they do not represent file names.

OCONT ≈ objects store a sequence of classified characters.

[OBJECT]

OCONT == seqCCHAR

Next, we model the object database and all their security attributes.

objs ≈ the set of objects that currently exist in the system.

ocont o ≈ the content of object o.

osc o ≈ the security class of object o.

SystemObjects
objs : P OBJECT
ocont : OBJECT 7→ OCONT
osc : OBJECT 7→ SecClass

As we said in section 1.4, the TCB is composed of hardware and software. The software portion of
the TCB is composed of programs (trusted processes) and data files. We model the software portion of
the TCB with global variable softtcb. Also we need to distinguish a couple of programs to be executed
when a user logs in on the system.

15

softtcb : P OBJECT
shell , secshell : OBJECT

shell /∈ softtcb
secshell ∈ softtcb

We consider softtcb as a global entity and not part of the state because we are not interested in
operations that modify this set.

Initially, the object database contains only the software portion of the TCB.

SOInit =̂
[SystemObjects; SCInit |

objs = dom osc = dom ocont = softtcb]

2.3.1 The Access Class of Directories

Directories contain file names. File names may be important in theirself or not. For example, if
you have file attackat8pm stored in a directory, that name conveys some information to an attacker.
Instead, if you name the same file attackplans no one (program or person) may deduce anything about
your attack plans. Now, what should be the access class of the directory where attackat8pm is stored?
What should it be if you name the file attackplans?

We think that a directory must have an access class different from L if and only if any of its file
names can give some information to an attacker. Moreover, keeping the access class of directories
close to L will increase the usability of the system whithout necesarily reducing its security.

2.4 Processes

We consider that a process records the following information:

prog ≈ the program from which the process was built by the system.

usr ≈ the user who launched the process; it is equal to the uid field of the task_struct.

suid ≈ it is possible that a process temporalily changes its identity (cf. SUID), this temporal identity
is stored in suid ; most of the time usr = suid ; this alternative identity is used to check DAC
rights; it is equal to the euid or fsuid fields of the task_struct2.

or ≈ the objects taht the process has opened for reading and not yet closed.

ow ≈ the objects that the process has opened for writing and not yet closed.

mmfr ≈ memory mapped files in read mode (see mmap manual page).

mmfw ≈ memory mapped files in write mode (see mmap manual page).

mem ≈ the variables of the process; the third component of each CCHAR will always be zero in
order to distinguish data items comming from the environment from data generated internally
by processes.

mem 0 ≈ will be used to store the error codes returned by operations. This variable cannot be
in the left hand side of an assigment instruction.

2Usually euid and fsuid are equal, even when the process is running SUID to other user.

16

cstack ≈ if last conditional structure executed by the process is of the form c : S1, . . . ,Sn and scc is
the access class of c, then scc will be at the top of cstack .

vics ≈ stands for Variables In Conditional Structures. vics will not be changed during the process’
lifetime. The i-th element of the sequence stores the indexes of those process’ variables used in
the i-th conditional structure executed by the process.

ncs ≈ stands for Number of Conditional Structures executed so far by the process. It helps to deter-
mine the exact element of vics that must be used en each moment.

Process
prog : OBJECT
usr , suid : USER
or , ow : P OBJECT
mmfr ,mmfw : P OBJECT
mem : seqCCHAR
cstack : seqSecClass
vics : seq(P N)
ncs : N

The initial state of a process is defined in section 5.3 when it is used by the Exec operation.
At any moment there will be a number of active processes but just one, current , is being executed

by the computer. All system calls are issued by process current . Each process is identified by a
process identifier, so we model the set of active processes as a partial function from PROCID to
Process. Initially this set is empty (for now we do not model system initialization).

PROCID ≈ process identifiers.

kprocs ≈ killed processes; this information it is kept to avoid covert channels and, at the same time,
to maximise usability when using Ps or Kill .

current ≈ the process that is currently being executed by the system.

PROCID == N

ProcessList
aprocs : PROCID 7→ Process
kprocs : PROCID 7→ SecClass
current : PROCID

PLInit =̂ [ProcessList | aprocs = ∅]

2.5 Communication Channels

This section describes an abstraction capturing many, if not all, the IPC mechanisms available on
a UNIX-like operating system. This abstraction, called Channel , has all the peculiarities that cause
problems when MLS restrictions are to be added to IPC, namely, finite resources and control structures
[Par89].

17

A Channel can have a finite number of processes reading from and writing to it. Such a channel
has a fixed lenght buffer where the system stores the information written by one of its writers until
one of its readers reads it. Since shared, multi-level, finite resources can always be used as covert
channels, our model includes three (possibly) distinct funtions onto access classes to prevent them.
For instance, in rsc will be stored the access class of each of the processes that became a reader in the
moment they issed the request. In this way the access class of each process wanting to become a new
reader could be updated by the system –because this process is accessing a shared, finite resource, .i.e.
the set of readers of a channel.

readers ≈ the set of processes reading from the channel.

writers ≈ the set of processes writting to the channel.

buffer ≈ the buffer where data is temporarily stored between a write and a read operation.

rsc ≈ a function onto SecClass to protect a possible covert channel arising from the finitness of readers.

wsc ≈ a function onto SecClass to protect a possible covert channel arising from the finitness of
writers.

bsc ≈ a function onto SecClass to protect a possible covert channel arising from the finitness of buffer .

Channel
readers,writers : F PROCID
buffer : seqCCHAR
rsc,wsc, bsc : PROCID 7→ SecClass

As we have said readers, writers and buffer are finite resources. The following constants describe
this property.

MAXRW ≈ the maximum number of readers or writers a channel may have.

BUFFERSIZE ≈ the (fixed) length of the buffer.

MAXRW ,BUFFERSIZE : N1

The initial state for a channel is obvious.

ChannelInit
Channel

readers = writers = ∅
buffer = 〈〉
rsc = wsc = bsc = ∅

The system reservers a fixed amount of channels to be used by processes. Each of these channels is
identified by a channel ID. Despite this is another shared, finite, multi-level resource it does not need
to be protected like Channel ’s resources because when a process deduce that this resource is exausted
it is because this process has deduced that all Channels are exausted. And in doing this, the system
has updated the process to prevent possible covert channels.

ipcm ≈ the set of communication channels provided by the system.

18

MAXCHANNELS ≈ the amount of communication channels provided by the system.

[CID]

IPCMechanisms =̂ [ipcm : CID 7 7� Channel]

MAXCHANNELS : N1

In general, all of the state variables protecting possible convert channels in shared, finite, multi-level
resources will store the SUP of current ’s cstack in the moment current interacts with the resource.

2.6 The Whole State

We summarize the state of the security system and its initial state in a couple of schemas.

SecureSystem
ComputerPDevices
Users
SystemObjects
ProcessList
IPCMechanisms

end of Z Section state

19

Chapter 3

Operations Controlled by the User

We divided the operations into three disjunct groups:

• Operations controlled by users

• Programming instructions

• Operations controlled processes

• Operations controlled by the system

This chapter includes the formal specification of operations that belongs to the first group, the
next three chapters include operations defined in the remaining groups. In any of these four chapters,
operations are ordered alphabetically, one for section. Next, we make some general comments regarding
operations included in any group.

We have formalized those operations we belive are security relevant. Also we have specified opera-
tions that complete the model (for example, Close is not security relevant but completes the model in
some sense). Moreover, for each operation we tried to formalize just those features related to security
and not features purely functional.

An operation is controlled by the user if the user initiates the execution of the operation; it does
not means that the user necesarily performs the execution. Some of these operations, like Chinsc,
are in fact requested by a (trusted) process but this process can only be executed through a trusted
path, then we think of them as user controlled operations. The same is valid for operations controlled
by processes. For example, Open is initiated by a process but performed by the system, in other
words Open is not spontaneously executed by the system. System controlled means that the system
initiates the operation. Some operations that are traditionally included as system controlled in our
model become process controlled. This is the case, for instance of asyncronous output. In out model
when a process requests the output of some data, the system delivers that to the environment in the
same step. Hence, the set of system controlled operations is a singleton (Sched).

In the description of each operation we have included comments to help programmers to do their
job. We tried to structure comments to ease reading but we were not rigid. Every section starts with
a list with the following items:

Description A one line description of the operation functionality

Input parameters A list of named input parameters along their types (all input parameters names
end with a question mark, “?”)

Kinds of objects This is an optional item. It appears only when at least one input parameter
is of type OBJECT . In this case this item indicates, for each input parameter of that type,

20

to what kinds of objects the operation could be applied. For example, Write writes into
files and not into directories, so this item will say “Files”.

Preconditions An informal description of the preconditions of the operation

Postconditions An informal description of the postconditions of the operation

After this list there is a more detailed comment about the pourpose and functionality of the
operation.

Mixed with the formal text there are as many comments as we judgued necesary to make the
specification understable. Preciding every schema representing a successfull case there is a comment
explaining it. Error schemas are seldom explained.

Some operations end with a subsection containing a brief or detailed account of design or imple-
mentation considerations.

We strongly ecourage to read all the section before start implementing the respective operation.
Moreover, a somewhat consisious reading of the entired document worth the time spent on it.

3.1 Chdevsc

Description Changes the maximum access class of a given input or output device.

Input parameters pd? : PDID ; sc? : SecClass

Preconditions The process issuing the call must be a trusted process; the process issuing the call
must be acting on behalf of a MAC administrator; only processes runing on behalf of MAC
administrators may be active in the computer.

Postconditions indevmsc pd?’s or outdevmsc pd?’s access class is set to sc?.

This operation allows a trusted process to change the maximum security class of a given device.
The intention behind this operation is that it should be used only when physical properties sourrunding
the computer change –for example, the computer is moved to a different location, or the lock of the
room where the computer is installed is removed, or a window is opened in the room, etc. Then we
think that Chdevsc should be executed in maintenance mode –i.e., only processes launched by MAC
administrators are running.

Z Section chdevsc, parents: state, definitions

The first case documents the conditions to change the maximum access class of a given input device.
Only MAC administrators can do that. As always, MAC administrators are users which set of com-
partments contains the special SECADMIN category. Note that, despite the user issuing the call is a
trusted user, he or she must be using a trusted program too. The complex proposition:

SECADMIN ∈
⋂
{s : SecClass | s ∈ usc(| {p : PROCID | p ∈ ran aprocs • p.usr} |) • s.categs}

describes a system where only processes launched by MAC administrators are active.

21

ChdevscOk1
∆ComputerPDevices
ΞSystemObjects; ΞUsers; ΞProcessList ; ΞIPCMechanisms
pd? : PDID
sc? : SecClass
rep0! : SFSREPORT

pd? ∈ dom indev
(aprocs current).prog ∈ softtcb
SECADMIN ∈

⋂
{s : SecClass | s ∈ usc(| {p : Process | p ∈ ran aprocs • p.usr} |) • s.categs}

indevmsc′ = indevmsc ⊕ {pd? 7→ sc?}
indev ′ = indev
outdev ′ = outdev
usrin ′ = usrin
outdevmsc′ = outdevmsc
indevcsc′ = indevcsc
nextinput ′ = nextinput
rep0! = ok

The second case is equal to the first but applies to output devices. Remember that dom indev ∩
dom outdev = ∅, then there is no ambiguity in the specification.

ChdevscOk2
∆ComputerPDevices
ΞSystemObjects; ΞUsers; ΞProcessList ; ΞIPCMechanisms
pd? : PDID
sc? : SecClass
rep0! : SFSREPORT

pd? ∈ dom outdev
(aprocs current).prog ∈ softtcb
SECADMIN ∈

⋂
{s : SecClass | s ∈ usc(| {p : Process | p ∈ ran aprocs • p.usr} |) • s.categs}

outdevmsc′ = outdevmsc ⊕ {pd? 7→ sc?}
indev ′ = indev
outdev ′ = outdev
usrin ′ = usrin
indevmsc′ = indevmsc
indevcsc′ = indevcsc
nextinput ′ = nextinput
rep0! = ok

Ordinary users cannot change the maximum access class of devices, nor can MAC administra-
tors running untrusted software and nobody can change such access classes if the system is not in
maintenance mode.

22

ChdevscE1
ΞSecureSystem
pd? : PDID
rep0! : SFSREPORT

SECADMIN /∈
⋂
{s : SecClass | s ∈ usc(| {p : Process | p ∈ ran aprocs • p.usr} |) • s.categs}

∨ (aprocs current).prog ∈ softtcb
rep0! = permissionDenied

Clearly it is an error try to change the access class of an unexistent device.

ChdevscE2
ΞSecureSystem
pd? : PDID
rep0! : SFSREPORT

pd? /∈ dom indev ∪ dom outdev
rep0! = objectDoesNotExist

ChdevscE =̂ ChdevscE1 ∨ ChdevscE2

ChdevscOk =̂ ChdevscOk1 ∨ ChdevscOk2

Chdevsc =̂ ChdevscOk ∨ ChdevscE

end of Z Section chdevsc

3.2 Chinsc

Description Changes the security class of the input entered by the user.

Input parameters pd? : PDID ; sc? : SecClass

Preconditions The maximun access class of pd? must dominate sc?; and the buffer of pd? must be
empty; pd? must belong to usrin.

Postconditions sc? is the new current access class of pd?.

This operation will be used by users to communicate to the system that they want to change the
classification of their input entered through some input device. Once a user execute Chinsc the system
will classify the input entered through pd? by the user from this time on at the access class indicated
by him.

The intention behind this operation is to increase the level of usability of the system. We belive
that it will allow users writing confidential information to start writing public information with a few
keystrokes, and viceversa. They will be able to do this without leaving and reentering into the system.

Z Section chinsc, parents: state, definitions

This operation has one successefull case. The first precondition says that the access class of the input
entered trough pd? can be defined by the user.

The second precondition is tantamount to system security because it imposes a bound to the
classification of the information that can be entered trhough this particular device. Hence, the system

23

prevents inattentive users to disclose information by entering it on a location not enough trusted.
Think of a terminal close to a window and an attacker watching the keyboard.

ChinscOk
∆ComputerPDevices
ΞUsers; ΞSystemObjects; ΞProcessList ; ΞIPCMechanisms
pd? : PDID
sc? : SecClass
rep0! : SFSREPORT

pd? ∈ usrin ∩ dom indev
(indevmsc pd?) � sc?
(indev pd?).toproc = 〈〉
indevcsc′ = indevcsc ⊕ {pd? 7→ sc?}
usrin ′ = usrin
indev ′ = indev
outdev ′ = outdev
outdevmsc′ = outdevmsc
indevmsc′ = indevmsc
rep0! = ok

If preconditions are met, sc? is the new current access class of pd?. Pay attention to the fact that
the input will be classified at the new access class for every existing and future user’s processes reading
from pd?. In other words, the input will be classified at sc? until the user leaves the system or invokes
the operation once more.

Trying to change the input access class of an input device not controlled by the user, or is an error.

ChinscE1
ΞSecureSystem
pd? : PDID
sc? : SecClass
rep0! : SFSREPORT

pd? /∈ usrin ∨ pd? /∈ dom indev ∨ pd? < 0
rep0! = wrongParameter

We have considered that requesting a new access class beyond indevmsc pd? must has a permissionDenied
response.

ChinscE2
ΞSecureSystem
pd? : PDID
sc? : SecClass
rep0! : SFSREPORT

¬ (indevmsc pd?) � sc?
rep0! = permissionDenied

The user interface to the trusted path will be some key combination that can be invoked even if
there is no user working on that terminal, but in this case the system’s response is an error condition.
At implementation level, there could be no response.

24

Finally, Chinsc is defined as always.

ChinscE =̂ ChinscE1 ∨ ChinscE2

Chinsc =̂ ChinscOk ∨ ChinscE

end of Z Section chinsc

3.2.1 Design and Implementation Comments

This operation must be implemented with a trusted path. We decided to use a portion of the screen
as a trusted channel reserved for comunications originated by the kernel or a trusted process. See
[CGM03] for more details.

3.3 Chobjsc

Description Changes the access class of a given object

Input parameters o? : OBJECT ; sc? : SecClass

Preconditions The process issuing the call must be a trusted process; o? must be empty or the
process issuing the call must be acting on behalf of a MAC administrator

Postconditions o?’s access class is set to sc?

This operation allows a trusted process to change the security class of a given object. Following
our policy that empty objects cannot compromise information, our model allows ordinary users to
change security classes of empty objects.

Z Section chobjsc, parents: state, definitions

The first successfull case is when the target object is empty. In this case, any user running a trusted
program can change access classes.

ChobjscOk1
∆SystemObjects
ΞComputerPDevices; ΞUsers; ΞProcessList ; ΞIPCMechanisms
o? : OBJECT
sc? : SecClass
rep0! : SFSREPORT

o? ∈ objs
ocont o? = 〈〉
(aprocs current).prog ∈ softtcb
osc′ = osc ⊕ {o? 7→ sc?}
ocont ′ = ocont
objs ′ = objs
rep0! = ok

We consider that a directory is empty when its state is equal to the state immediatly after it was
created. Thus, this operation can be successffully invoked when a directory contains just ’.’ and ’..’.

The second case documents the possibility offered by the system to MAC administrators to change
access classes. As always, MAC administrators are users which set of compartments contains the

25

special SECADMIN category. Note that, despite the user issuing the call is a trusted user, he or she
must be using a trusted program too.

ChobjscOk2
∆SystemObjects
ΞComputerPDevices; ΞUsers; ΞProcessList ; ΞIPCMechanisms
o? : OBJECT
sc? : SecClass
rep0! : SFSREPORT

o? ∈ objs
SECADMIN ∈ (usc (aprocs current).usr).categs
(aprocs current).prog ∈ softtcb
osc′ = osc ⊕ {o? 7→ sc?}
ocont ′ = ocont ⊕ {o? 7→ (λ i : 1 . . #(ocont o?) • (((ocont o?) i).1, sc?, ((ocont o?) i).3))}
objs ′ = objs
rep0! = ok

Also note that ocont is updated by modifying the access class of all CCHAR’s stored in o?.
Ordinary users cannot change the access class of a non empty object, and nobody can change the

access class of an object if it is not working from a trusted process.

ChobjscE1
ΞSecureSystem
o? : OBJECT
rep0! : SFSREPORT

o? ∈ objs
(ocont o? 6= 〈〉 ∧ SECADMIN /∈ (usc (aprocs current).usr).categs
∨ (aprocs current).prog /∈ softtcb)
rep0! = permissionDenied

ChobjscE2
ΞSecureSystem
o? : OBJECT
rep0! : SFSREPORT

o? /∈ objs
rep0! = objectDoesNotExist

ChobjscE =̂ ChobjscE1 ∨ ChobjscE2

ChobjscOk =̂ ChobjscOk1 ∨ ChobjscOk2

Chobjsc =̂ ChobjscOk ∨ ChobjscE

end of Z Section chobjsc

3.4 Chsubsc

Description Changes the access class of a given user

26

Input parameters u? : USER; sc? : SecClass

Preconditions The process issuing the call must be a trusted process; u? cannot be logged on the
system, and the process issuing the call must be acting on behalf of a MAC administrator

Postconditions u?’s access class is set to sc?

This operation allows a trusted process to change the security class of a given user.

Z Section chsubsc, parents: state, definitions

Only MAC administrators working from a trusted process can change the access class of a user
currently not logged on the system (u? /∈ dom upt). We ask that u? is not logged on the system
because, if his or her access class is downgraded then, it might be possible for he or she to temporarily
see information for which he or she no longer has the proper authorization.

ChsubscOk
∆Users
ΞComputerPDevices; ΞSystemObjects; ΞProcessList ; ΞIPCMechanisms
u? : USER
sc? : SecClass
rep0! : SFSREPORT

u? ∈ users
SECADMIN ∈ (usc (aprocs current).usr).categs
(aprocs current).prog ∈ softtcb
u? /∈ working
usc′ = usc ⊕ {u? 7→ sc?}
users ′ = users
rep0! = ok

If an ordinary user or a MAC administrator working from a non trusted process request this
operation then, the system must return an error condition. Likewise, if the target user is working on
the system then the operation if forbiden.

ChsubscE1
ΞSecureSystem
u? : USER
rep0! : SFSREPORT

(SECADMIN /∈ (usc (aprocs current).usr).categs
∨ (aprocs current).prog /∈ softtcb
∨ u? ∈ working)
rep0! = permissionDenied

ChsubscE2 =̂ UserNotExist

ChsubscE =̂ ChsubscE1 ∨ ChsubscE2

Chsubsc =̂ ChsubscOk ∨ ChsubscE

27

end of Z Section chsubsc

3.5 Input

Description A user types in a character at the terminal.

Input parameters c? : CHAR

Preconditions None.

Postconditions c? is classified at the current access class of the terminal.

This operation represents the user typing in a character on his terminal’s keyboard. It is completely
controlled by the user, i.e. he may type in characters at his will, the system has no way to constraint
this action.

Clearly, this operation must not be implemented; it was included for completness.

Z Section input , parents: state, definitions

EXPLICAR POR QUE SE NUMERAN LOS CARACTERES QUE SE INGRESAN; TENER EN
CUENTA TODOS LOS DISPOSITIVOS DE ENTRADA.

The next schema describes the operation. Note that it does not contain preconditions constraining
a user to type in characters; it would be unrealistic to do so. Predicate sc = indevcsc 0? establishes
that the access class at which c? is classified, is precisely the current access class of the computer
terminal.

InputOk
∆ComputerPDevices; ∆PDevice
ΞProcessList ; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
c? : CHAR
rep0! : SFSREPORT

toproc′ = toproc a 〈(c?, indevcsc 0,nextinput + 1)〉
indev ′ = indev ⊕ {0 7→ θPDevice ′}
nextinput ′ = nextinput + 1
outdev ′ = outdev
usrin ′ = usrin
outdevmsc′ = outdevmsc
indevcsc′ = indevcsc
indevmsc′ = indevmsc
rep0! = ok

Input =̂ InputOk

end of Z Section input

3.6 Login

Description A user logs in on the system.

Input parameters u? : USER

28

Preconditions u? must be a user recognized by the system, and the access class of u? must dominate
the maximun access classs of outdevmsc 0.

Postconditions A new process is initiated acting on behalf of u?; this process is in its initial state
(i.e. its memory is empty, has no open files, and executes at the lowest bound of the access class
set, L)

This operation represents the standard login program of UNIX-like operating systems, but we
have not modeled the authetication mechanism of Linux. However, at implementation level an au-
thentication mechanism does have to be implemented.

We strongly recommend to read ReadDev ’s description before implementing this operation.

Z Section login, parents: state, definitions

The first program executed after log in must be a trusted program if the user is a MAC administrator,
otherwise it could be any program. Then, we start with two schemas krafting a new process in its
initial state, one for each kind of user.

PLogin1
∆Process
SCInit
u? : USER

usr ′ = u?
suid ′ = u?
ow ′ = or ′ = mmfr ′ = mmfw ′ = ∅
mem ′ = 〈〉
vics ′ = progStruct shell
prog ′ = shell
ncs ′ = 1
cstack ′ = 〈〉

PLogin2
∆Process
SCInit
u? : USER

usr ′ = u?
suid ′ = u?
ow ′ = or ′ = mmfr ′ = mmfw ′ = ∅
mem ′ = 〈〉
vics ′ = progStruct secshell
prog ′ = secshell
ncs ′ = 1
cstack ′ = 〈〉

To be able to log in on the system u?’s access class must dominate the least upper bound of of
{outdevmsc 1?, outdevmsc 2?, outdevmsc 3?, } because these are the output devices from which this
person could easely get information; otherwise the user is not authorized to log in on this computer.
As we have explained above the authentication process is not described: the reader may think that it
is encoded in u? ∈ users.

29

LoginOk1
∆Users
∆ProcessList
ΞComputerPDevices; ΞSystemObjects; ΞIPCMechanisms
PLogin1
u? : USER
rep0! : SFSREPORT

u? ∈ users
SECADMIN /∈ (usc (aprocs current).usr).categs
usc u? � SUP{i : 1 . . 3 • outdevmsc i}
aprocs ′ = aprocs ⊕ {min{p : PROCID | p /∈ dom aprocs • p} 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

Postconditions are simple: a new process acting on behalf of u? is initiated with process identifier
equal to the minumun number not being used1. Hence, from this time on the new process may request
services to the operating system. The case where a MAC administrator is quite similar.

LoginOk2
∆Users
∆ProcessList
ΞComputerPDevices; ΞSystemObjects; ΞIPCMechanisms
PLogin2
u? : USER
rep0! : SFSREPORT

u? ∈ users
SECADMIN ∈ (usc (aprocs current).usr).categs
usc u? � SUP{i : 1 . . 3 • outdevmsc i}
aprocs ′ = aprocs ⊕ {min{p : PROCID | p /∈ dom aprocs • p} 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

If the access class of u? does not dominate the access class of the terminal, then the user is not
authorized to log in on the system.

LoginE1
ΞSecureSystem
u? : USER
rep0! : SFSREPORT

¬ usc u? � outdevmsc 0
rep0! = permissionDenied

Users not recognized by the system cannot log in on the system.
1This can be implemented as it is in Linux.

30

LoginE2 =̂ UserNotExist

LoginE =̂ LoginE1 ∨ LoginE2

LoginOk =̂ LoginOk1 ∨ LoginOk2

Login =̂ LoginOk ∨ LoginE

end of Z Section login

3.6.1 Design and Implementation Comments

Trusted Process

The login program is implemented as a user space process. Given that we decided to keep this design,
the login program must be considered a trusted process. Here, trusted means that it has to behave
as intended. A program behaves as specified if it is programmed correctly and if every modification
comes from a trusted source.

We belive that our development techniques and process will lead us to a correct version of login.
More precisely, the programming team in charge of the implementation of Login must certify its
correctness. Given that we will modify an existent program its code must be thourogh reviewed.

To preserve the integrity of the program is not easy in UNIX-like operating systems if Trojan
horses are a potential threat. For example, in the standard instalation, login is owned by root; then
if a Trojan horse is executed by root it can modify login’s code making it behave accordingly to the
attackers’ intentions. In concequense we decided to implement a TCB –see sections 1.4, 2.3, and 5.15–
to protect the integrity of trusted software.

Modifications to the login Program

An important modification to the login program (despite those formally specified) is that users’
passwords will be stored in the clear in a distributed database instead of /etc/shadow. In this new
database each user password is stored in a file owned only by the user and classified at the user’s access
class. The reason is that higher users have higly classified passwords which in turn must be stored in
highly classified files. The schema based on /etc/shadow/ is inconsistent with the MLS philosophy.
On the other hand, our design does not need a SUID program to change passwords.

The login program executes the shell for the user. It is very important, due to usability reasons,
that the working access class of the shell process be as lower as possible, ideally L. The Exec operation
(section 5.3) specifies that the working access class of processes initiated with exec will be L only if
the calling process is trusted, which is this case.

Further Notes on Trojan Horses and Passwords

One may argue that if passwords are stored in personal files they can be disclosed by Trojan horses
acting on behalf of the respective users. While this is partially true, it is also true that the same could
happen if passwords are stored in /etc/shadow with Trojan horses run by root.

We say that this assertion is partially true because such a Trojan horse, running over a system like
GTL, can disclose a user password only to other users at the same access class. While this is certanly
a security violation, it is not a confidentiality problem.

First let us see why a Trojan horse cannot disclose a password to any user. The reason is simple
and tightly coupled with the information flow enforced by the system. If user u executes Trojan horse
th and it reads u’s password file, its memory space is classified at the access class of that file2 and thus

2Which is equal to the access class of u.

31

th cannot downgrade the password –see sections 5.18 and 5.24. However, th can copy the password
into a file at the same access class but owned by other user; then this user can log in as u. But, even
in this case there is no information compromise because this second user had access to the ”same”
information than u, before knowing his password3.

It should be clear now that the /etc/shadow/ scheme has the same disadvantages as the one
proposed by us, but worsen by the fact that all passwords can be ”compromised” or modified by just
one Trojan horse executed by only one user (root). Moreover, the traditional scheme needs a SUID
program to change passwrods which is always riskier than a non-SUID one.

On the other hand, without an integrity model is impossible to guarantee that passwords are
managed with the trusted commands [CW87].

3.7 The Interface for the User

This section contains a schema defining the interface the user can use.

Z Section ucop, parents: chdevsc, chinsc, chobjsc, chsubsc, input , login

UserControlledOperations =̂
Chdevsc ∨ Chinsc ∨ Chobjsc ∨ Chsubsc ∨ Input ∨ Login

end of Z Section ucop

3Here ”same” means: the same using a Trojan horse because u may have personal information.

32

Chapter 4

Programming Instructions

In this chapter we have included those operations that represent programming level instructions.
This set of operations define the abstract programming language from which processes are built. We
strongly recomend to read the introduction to chapter 3.

4.1 Assignment

Description Assigns the result of an expression to a variable.

Input parameters var : N; expr : P N

Preconditions All input parameteres must be part of current ’s state.

Postconditions The new value of var is the result of some combination between all the values pointed
to by the elements of expr .

This operation represents the assigment instruction present in low level programming languages.
As we explained earlier, by including this operation in our model, our intention is to highlight that
the security system must be aware of all assigments done by processes.

Z Section assignment , parents: state, definitions

We start by stablishing how the process changes when it requests an assigment. Then this operation
is promoted to the system level in schema Assigment . The most important part of the specification is
that the value of the assigned varible is updated as well as its security class; note that zero is set as the
index for this CCHAR –because it is produced internally, i.e. it does not come from the environment.

PAssigment
∆Process
var? : N; expr? : P N

mem ′ =
mem⊕

{var? 7→
(combine expr?,
(SUP ◦ ccharToSC)(mem(| expr? |)),
0)}

usr ′ = usr ∧ suid ′ = suid ∧ prog ′ = prog
or ′ = or ∧ ow ′ = ow ∧ mmfr ′ = mmfr ∧ mmfw ′ = mmfw
cstack ′ = cstack ∧ vics ′ = vics ∧ ncs ′ = ncs

33

var? access class is updated to the least upper bound between all the variables participating in the
expression in the righthand side of the assigment; the access class of each of these variables is updated
when they belong to the sentences of a conditional structure (see section 4.2).

Now PAssigment is promoted to the system level in schema Assigment . Here we show the pre-
conditions for the operation. Remember that by convention mem 0 is reserved to store the error
codes returned by system calls executed by the process –i.e., it cannot be in the left handside of an
assigment. Still, note that mem 0 is considered when var?’s access class is updated.

Assignment
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PAssigment
var? : N
expr? : P N
rep0! : SFSREPORT

var? 6= 0
{var?} ∪ expr? ⊆ dommem
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

There are no error conditions for the preconditions because they are checked at compile or inter-
pretation time.

end of Z Section assignment

4.2 Begin Conditional

Description Marks the begining of a conditional structure –such as if-then-else, while, etc.

Input parameters cond? : P N

Preconditions All input parameteres must be part of current ’s state.

Postconditions The stack is updated with the least upper bound of the access classes of all the
elements of cond?; and the access class of each of the members of vics ncs is updated.

This operation represents the begining of any conditional structure present in low level program-
ming languages. As we explained earlier, by including this operation in our model, our intention is to
highlight that the security system must be aware of the execution of all conditional structures in each
process.

Z Section bconditional , parents: state, definitions

We start by stablishing how the process changes when it requests the begining of a conditional struc-
turet. Then this operation is promoted to the system level in schema BConditional . The most
important part of the specification is that the least upper bound of the access classes of all the ele-
ments of cond? is stacked in cstack ; and that the access class of every variable being assigned inside
the conditional structure is updated to the least upper bound between itself and the access class of all
the elements in cond?.

34

PBConditional
∆Process
cond? : P N

mem ′ =
mem⊕

{v : vics ncs •
v 7→ ((mem v).1, (SUP ◦ ccharToSC)(mem(| cond? ∪ {v} |)), (mem v).3)}

cstack ′ = 〈SUP (ccharToSC (mem(| cond? |)))〉a cstack
ncs ′ = ncs + 1
usr ′ = usr ∧ suid ′ = suid ∧ prog ′ = prog ∧ vics ′ = vics
or ′ = or ∧ ow ′ = ow ∧ mmfr ′ = mmfr ∧ mmfw ′ = mmfw

Now PBConditional is promoted to the system level in schema BConditional . Here we show the
preconditions for the operation.

BConditional
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PBConditional
cond? : P N
rep0! : SFSREPORT

cond? ⊆ dommem
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

There are no error conditions for the preconditions because they are checked at compile or inter-
pretation time.

end of Z Section bconditional

4.3 End Conditional

Description Marks the end of a conditional structure –such as if-then-else, while, etc.

Input parameters None.

Preconditions A conditional structure must be active.

Postconditions The head of the stack is removed.

This operation represents the end of any conditional structure present in low level programming
languages. As we explained earlier, by including this operation in our model, our intention is to
highlight that the security system must be aware of the execution of all conditional structures in each
process.

35

Z Section econditional , parents: state, definitions

We start by stablishing how the process changes when it requests the end of a conditional structuret.
Then this operation is promoted to the system level in schema EConditional . The most important part
of the specification is that the head of the stack that records the execution of conditional structures
is removed.

PEConditional
∆Process

cstack ′ = tail cstack
usr ′ = usr ∧ suid ′ = suid ∧ prog ′ = prog
or ′ = or ∧ ow ′ = ow ∧ mmfr ′ = mmfr ∧ mmfw ′ = mmfw
mem ′ = mem ∧ ncs ′ = ncs ∧ vics ′ = vics

Now PEConditional is promoted to the system level in schema EConditional . Here we show the
preconditions for the operation.

EConditional
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PEConditional
rep0! : SFSREPORT

cstack 6= 〈〉
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

There is no error condition for the precondition cstack 6= 〈〉 because this is checked at compile or
interpretation time.

end of Z Section econditional

4.4 The Programming Language

This section join in a single definition the abstract programming language we have defined so far.

Z Section apl , parents: assignment , bconditional , econditional

AbstractProgrammingLanguage =̂
Assignment ∨ BConditional ∨ EConditional

end of Z Section apl

36

Chapter 5

Operations Controlled by Processes

In this chapter we have included those operations that are controlled by processes. We strongly
recomend to read the introduction to chapter 3. Process controlled operations are implemented as
system calls.

5.1 Close

Description Closes an object

Input parameters o? : OBJECT

Kinds of objects It depends on what particular system call close represents. If it is close,
then o? is a file; if it is closedir, then o? is a directory

Preconditions The standard Linux checks

Postconditions o? is removed from the list of open files of current

This operation represents system calls such as close or closedir. It is not necessary to change
its actual implementation; it was included in the present document for a matter of completness.

Z Section close, parents: state, definitions

Schema PClose sets the state of a process after closing a file. Note that its working access class (supr)
is not changed (because the process may have copied the entire file in its memory space).

PClose
∆Process
o? : OBJECT

or ′ = or \ {o?}
ow ′ = ow \ {o?}
mmfr ′ = mmfr
mmfw ′ = mmfw
usr ′ = usr
suid ′ = suid
mem ′ = mem
cstack ′ = cstack
vics ′ = vics
ncs ′ = ncs

37

An object can be closed only if the requesting process has opened it.

CloseOk
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PClose
o? : OBJECT
rep0! : SFSREPORT

o? ∈ (aprocs current).or ∪ (aprocs current).ow
(aprocs current) = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

Errors are very simple to deserve a further comments.

CloseE
ΞSecureSystem
o? : OBJECT
rep0! : SFSREPORT

o? /∈ (aprocs current).or ∪ (aprocs current).ow
rep0! = objectDoesNotExist

Close =̂ CloseOk ∨ CloseE

end of Z Section close

5.2 Create

Description Creates a new object –assigning some DAC permissions to it.

Input parameters o? : OBJECT

Kinds of objects It depends on what particular system call Create represents. If it is creat,
then o? is a file; if it is mkdir, then o? is a directory; if it is pipe, then o? is a pipe.

Preconditions The least upper bound of the variables from where the new name is generated plus
cstack ’s content is dominated by the access class of o?’s parent directory.

Postconditions o? is added to the system and its access class is set to L.

This operation represents the standard Linux system call creat but also it must be used to
implement mkdir as is described below.

38

Z Section create, parents: state, definitions

The first succesful case in creating an object is when the object does not exist. This case must be
used to guide the implementation of mkdir; the next case must not be used because mkdir does not
behave that way. The most relevant precondition says that the access class of o?’s parent directory
must dominates the least upper bound between the access class of each element taken from current ’s
state from which the name of o? is built and, because this operation could be invoked from within a
nested conditional structure, we also take all of the access classes in the stack. In this way the model
forbids illegal information flow through objects names.

CreateOk1
∆SystemObjects; ∆ProcessList
ΞComputerPDevices; ΞUsers; ΞIPCMechanisms
SCInit ; POpenWrite
o? : OBJECT
rep0! : SFSREPORT

o? /∈ objs
objName o? in (aprocs current).mem
osc (parentDir o?) � SUP (ccharToSC (ran (objName o?)) ∪ ran cstack)
(aprocs current) = θProcess
objs ′ = objs ∪ {o?}
ocont ′ = ocont ⊕ {o? 7→ 〈〉, parentDir o? 7→ ocont (parentDir o?) a (objName o?)}
osc′ = osc ⊕ {o? 7→ θSecClass}
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

If preconditions are met, the system opens o? for writing for current (this is enconded in POpenWrite).
Obviously, o?’s content is empty. Also, the initial access class of o? is set to L.

The second case in ”creating” an object is when the object already exists. In this situation, the
system must truncate the file and open it in write mode.

CreateOk2
∆SystemObjects; ∆ProcessList
ΞComputerPDevices; ΞUsers; ΞIPCMechanisms
SCInit ; POpenWrite
o? : OBJECT
rep0! : SFSREPORT

o? ∈ objs
objName o? in (aprocs current).mem
osc (parentDir o?) � SUP (ccharToSC (ran (objName o?)) ∪ ran cstack)
(aprocs current) = θProcess
ocont ′ = ocont ⊕ {o? 7→ 〈〉}
osc′ = osc ⊕ {o? 7→ θSecClass}
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
objs ′ = objs
current ′ = current
kprocs ′ = kprocs
rep0! = ok

39

We consider the following erroneous situation. If the name of o? is made up with characters too
significative for the directory where the object will be created, then the operation is forbidden.

CreateE =̂ ParentDirForbbiden

Finally, we do not specify an error condition for the precondition:

objName o? in (aprocs current).data a (aprocs current).mem

because we included this formula just to show where the name of o? comes from.

CreateOk =̂ CreateOk1 ∨ CreateOk2

Create =̂ CreateOk ∨ CreateE

The error conditions returned by Create conveys no significative information to the calling process.
Due to this fact we decided not to update the access class of mem 0. In fact, the update would have
to be: mem ′ 0 = Sup (mem 0).2 L, which leave mem 0 witho no change at all.

end of Z Section create

5.3 Exec

Description Executes a program.

Input parameters o? : OBJECT ; argv? : seqCCHAR

Kinds of objects Programs, shell scripts.

Preconditions MAC administrators can only execute trusted software, i.e. software in the TCB.

Postconditions current points to a new process made up from aprocs current plus the parameters
passed by current to the new process.

This operation represents the standard Linux system call execve. However, we have not modeled
execution as a permission or mode. Instead, we consider executing as a kind of reading and so whe
check to see if current has read permission over o?. On the other hand, parameter o? represents both
the executable and the libraries that must be loaded in order to execute it (and any other resource
that is needed to execute the program).

Z Section exec, parents: state, definitions

We start by stablishing how a new process is built when it is executed by another process. The new
process inherits some data from the calling process. The process data and stack is empty, and the
counter of executed conditional structures is set to 1. mem is defined in the system level schemas.

40

PExec
∆Process
o? : OBJECT

vics ′ = progStruct o?
prog ′ = o?
ncs ′ = 1
cstack ′ = 〈〉
usr ′ = usr
suid ′ = suid
or ′ = or
ow ′ = ow
mmfr ′ = mmfr
mmfw ′ = mmfw

A given process (not initiated by a MAC administrator) may execute a any program –remember
that we are not modelling DAC permissions. If the call succeeds then the new process use the same
PID of his father.

ExecOk1
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PExec
o? : OBJECT
argv? : seqCCHAR
rep0! : SFSREPORT

o? ∈ objs
argv? in (aprocs current).mem
mem ′ =

{i : dom argv? •
i 7→

((argv? i).1,
if (aprocs current).prog ∈ softtcb
then osc o?
else SUP({(osc o?), (argv? i).2} ∪ ran cstack),
(argv? i).3)}

a(dom(progVars o?) \ dom argv?) � progVars o?
SECADMIN /∈ (usc (aprocs current).usr).categs
(aprocs current) = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

The calling process my pass some data (argv?) to the new process. This data is assigned to the
first variables of the new process; the rest of them is initialized as specified in progVars’s definition.
The access class of the first variables of the new process is updated to osc o? if the calling process is
trusted –because in this case we can be sure that no illegal flow is taken place–, or to the least upper
bound between osc o? and the access class of each passed data.

41

If current was initiated by a MAC administrator then the program to be executed must belong to
the TCB.

ExecOk2
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PExec
o? : OBJECT
argv? : seqCCHAR
rep0! : SFSREPORT

o? ∈ objs ∩ softtcb
argv? in (aprocs current).mem
mem ′ =

{i : dom argv? •
i 7→

((argv? i).1,
if (aprocs current).prog ∈ softtcb
then osc o?
else SUP ({(osc o?), (argv? i).2} ∪ ran cstack),
(argv? i).3)}

a(dom(progVars o?) \ dom argv?) � progVars o?
SECADMIN ∈ (usc (aprocs current).usr).categs
(aprocs current) = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

In any case, if the operation can proceed then, a new process is created with the same process
identifier of the caller. The new process acts on behalf of the same user of current , and inherits the
same open files of it.

If o? does not exist, then current may deduce something about parentDir o?. This means that
current must be updated as follows.

ExecE1
∆ProcessList
PGetError
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
o? : OBJECT
rep0! : SFSREPORT

o? /∈ objs
esc = osc(parentDir o?)
(aprocs current) = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = objectDoesNotExist

On the other hand, if current can Exec o? then current desapears being impossible to deduce
nothing for it.

42

It is very dangerous that a MAC administrator executes an untrusted program, thus the model
has an error condition for this situation.

ExecE2
ΞSecureSystem
o? : OBJECT
rep0! : SFSREPORT

SECADMIN ∈ (usc(aprocscurrent).usr).categs
o? /∈ softtcb
rep0! = permissionDenied

ExecOk =̂ ExecOk1 ∨ ExecOk2 ∨ ExecOk3

ExecE =̂ ExecE1 ∨ ExecE2

Exec =̂ ExecOk ∨ ExecE

Finally, we do not specify an error condition for the precondition:

argv? in (aprocs current).mem

because we included this formula just to show where the argv? comes from.

end of Z Section exec

5.3.1 Design and Implementation Comments

Trusted software is authorized to start processes at L because, precisely, it is trusted to do so in
states that cannot affect the security of the system or because it launchs other trusted programs. For
example, program login is part of the TCB, and it is trusted to exec the user shell because we know
that login is not a Trojan horse and so it will not signal anything to an untrusted program. In saying
this we warn programmers to carefully implement trusted programs.

On the other hand, since MAC administrators can change security classes, any program run by
any of them can change security classes, too. Thus, if a MAC administrator executes a Trojan horse,
this program can change security classes. This is the reason to restric MAC administrators to execute
trusted software. MAC administrators’ only responsability is to change security classes, so they only
need to execute a comand implementing that functionality.

5.4 Fork

Description Creates a new process.

Input parameters None.

Preconditions None.

Postconditions The new process is equal to current .

This operation represents the standard Linux system call fork. We suggest to read the design
comments of operation Exec.

43

Z Section fork , parents: state, definitions

A given process may fork itself at any time and without restrictions.

ForkOk
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
rep0! : SFSREPORT

aprocs ′ = aprocs ⊕ {min{p : PROCID | p /∈ dom aprocs • p} 7→ (aprocs current)}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

The Linux semantics for fork is that the new process is exaclty the same than its father. The
process identifier assigned to the forked process should be implemented as it is in Linux.

Fork =̂ ForkOk

end of Z Section fork

5.4.1 Design and Implementation Comments

The manual page of fork says about the child process that “el uso de recursos esté asignado a 0”. It
is necessary to investigate precisely what does it means.

5.5 IpcGetRead

Description Subscribes the process as a reader of a given communication channel.

Input parameters cid? : CID

Preconditions cid? must have free space for a new reader.

Postconditions On success current becomes a reader of cid? and it is updated to avoid possible
covert channels.

Z Section ipcgetread , parents: state, definitions

CGetRead
∆Channel
current : PROCID
cstack sc : SecClass

#readers < MAXRW
readers ′ = readers ∪ {current}
rsc′ = rsc ⊕ {current 7→ cstack sc}
writers ′ = writers
buffer ′ = buffer
wsc′ = wsc
bsc′ = bsc

44

IpcGetReadOk
∆ProcessList ; ∆IPCMechanisms
ΞComputerPDevices; ΞUsers; ΞSystemObjects
CGetRead ; PGetError
cid? : CID
rep0! : SFSREPORT

cid? ∈ dom ipcm
esc = SUP(ran(ipcm cid?).rsc)
cstack sc = SUP(ran(aprocs current).cstack)
ipcm cid? = θChannel
aprocs current = θProcess
ipcm ′ = ipcm ⊕ {cid? 7→ θChannel ′}
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

IpcGetReadE1
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PGetError
cid? : CID
rep0! : SFSREPORT

cid? ∈ dom ipcm
#(ipcm cid?).readers = MAXRW
esc = SUP(ran(ipcm cid?).rsc)
aprocs current = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

IpcGetReadE2 =̂
[ΞSecureSystem; cid? : CID ; rep0! : SFSREPORT |

cid? /∈ dom ipcm ∧ rep0! = wrongParameter]

IpcGetReadE =̂ IpcGetReadE1 ∨ IpcGetReadE2

IpcGetRead =̂ IpcGetReadOk ∨ IpcGetReadE

end of Z Section ipcgetread

5.6 IpcGetWrite

Description Subscribes the process as a writer of a given communication channel.

Input parameters cid? : CID

45

Preconditions cid? must have free space for a new writer.

Postconditions On success current becomes a writer of cid? and it is updated to avoid possible
covert channels.

Z Section ipcgetwrite, parents: state, definitions

CGetWrite
∆Channel
current : PROCID
cstack sc : SecClass

#writers < MAXRW
writers ′ = writers ∪ {current}
wsc′ = wsc ⊕ {current 7→ cstack sc}
readers ′ = readers
buffer ′ = buffer
rsc′ = rsc
bsc′ = bsc

IpcGetWriteOk
∆ProcessList ; ∆IPCMechanisms
ΞComputerPDevices; ΞUsers; ΞSystemObjects
CGetWrite; PGetError
cid? : CID
rep0! : SFSREPORT

cid? ∈ dom ipcm
esc = SUP(ran(ipcm cid?).wsc)
cstack sc = SUP(ran(aprocs current).cstack)
ipcm cid? = θChannel
aprocs current = θProcess
ipcm ′ = ipcm ⊕ {cid? 7→ θChannel ′}
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

46

IpcGetWriteE1
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PGetError
cid? : CID
rep0! : SFSREPORT

cid? ∈ dom ipcm
#(ipcm cid?).writers = MAXRW
esc = SUP(ran(ipcm cid?).wsc)
aprocs current = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

IpcGetWriteE2 =̂
[ΞSecureSystem; cid? : CID ; rep0! : SFSREPORT |

cid? /∈ dom ipcm ∧ rep0! = wrongParameter]

IpcGetWriteE =̂ IpcGetWriteE1 ∨ IpcGetWriteE2

IpcGetWrite =̂ IpcGetWriteOk ∨ IpcGetWriteE

end of Z Section ipcgetwrite

5.7 IpcRead

Description A reader of a given communication channel reads the buffer.

Input parameters cid? : CID

Preconditions current must be a reader of cid?.

Postconditions On success cid?’s buffer is emptied and its content is copied to current ’s memory;
current is updated to avoid potential covert channels.

Z Section ipcread , parents: state, definitions

CRead
∆Channel
current : PROCID
cstack sc : SecClass

buffer ′ = 〈〉
bsc′ = bsc ⊕ {current 7→ cstack sc}
readers ′ = readers
writers ′ = writers
rsc′ = rsc
wsc′ = wsc

47

IpcReadOk
∆ProcessList ; ∆IPCMechanisms
ΞComputerPDevices; ΞUsers; ΞSystemObjects
CRead ; PCReadComplete
cid? : CID
rep0! : SFSREPORT

cid? ∈ dom ipcm
current ∈ readers
(ipcm cid?).buffer 6= 〈〉
esc = SUP(ran(ipcm cid?).bsc)
cstack sc = SUP(ran(aprocs current).cstack)
buff = (ipcm cid?).buffer
ipcm cid? = θChannel
aprocs current = θProcess
ipcm ′ = ipcm ⊕ {cid? 7→ θChannel ′}
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

IpcReadE1
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PGetError
cid? : CID
rep0! : SFSREPORT

cid? ∈ dom ipcm
(ipcm cid?).buffer = 〈〉
esc = SUP(ran(ipcm cid?).bsc)
aprocs current = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = noData

IpcReadE2 =̂
[ΞSecureSystem; cid? : CID ; rep0! : SFSREPORT |

cid? /∈ dom ipcm ∧ rep0! = wrongParameter]

IpcReadE3 =̂
[ΞSecureSystem; cid? : CID ; rep0! : SFSREPORT |

current /∈ (ipcm cid?).readers ∧ rep0! = permissionDenied]

IpcReadE =̂ IpcReadE1 ∨ IpcReadE2 ∨ IpcReadE3

IpcRead =̂ IpcReadOk ∨ IpcReadE

48

end of Z Section ipcread

5.8 IpcReleaseRead

Description Unsubscribes the process as a reader of a given communication channel.

Input parameters cid? : CID

Preconditions None.

Postconditions current cannot read from cid?, and it is updated to avoid possible covert channels.

Z Section ipcreleaseread , parents: state, definitions

CReleaseRead
∆Channel
current : PROCID
cstack sc : SecClass

readers ′ = readers \ {current}
rsc′ = rsc ⊕ {current 7→ cstack sc}
writers ′ = writers
buffer ′ = buffer
wsc′ = wsc
bsc′ = bsc

IpcReleaseReadOk
∆ProcessList ; ∆IPCMechanisms
ΞComputerPDevices; ΞUsers; ΞSystemObjects
CReleaseRead ; PGetError
cid? : CID
rep0! : SFSREPORT

cid? ∈ dom ipcm
current ∈ (ipcm cid?).readers
esc = SUP(ran(ipcm cid?).rsc)
cstack sc = SUP(ran(aprocs current).cstack)
ipcm cid? = θChannel
aprocs current = θProcess
ipcm ′ = ipcm ⊕ {cid? 7→ θChannel ′}
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

IpcReleaseReadE1 =̂
[ΞSecureSystem; cid? : CID ; rep0! : SFSREPORT |

current /∈ (ipcm cid?).readers ∧ rep0! = notInChannel]

IpcReleaseReadE2 =̂
[ΞSecureSystem; cid? : CID ; rep0! : SFSREPORT |

cid? /∈ dom ipcm ∧ rep0! = wrongParameter]

49

IpcReleaseReadE =̂ IpcReleaseReadE1 ∨ IpcReleaseReadE2

IpcReleaseRead =̂ IpcReleaseReadOk ∨ IpcReleaseReadE

end of Z Section ipcreleaseread

5.9 IpcReleaseWrite

Description Unsubscribes the process as a writer of a given communication channel.

Input parameters cid? : CID

Preconditions None.

Postconditions current cannot write to cid?, and it is updated to avoid possible covert channels.

Z Section ipcreleasewrite, parents: state, definitions

CReleaseWrite
∆Channel
current : PROCID
cstack sc : SecClass

writers ′ = writers \ {current}
wsc′ = wsc ⊕ {current 7→ cstack sc}
readers ′ = readers
buffer ′ = buffer
rsc′ = rsc
bsc′ = bsc

IpcReleaseWriteOk
∆ProcessList ; ∆IPCMechanisms
ΞComputerPDevices; ΞUsers; ΞSystemObjects
CReleaseWrite; PGetError
cid? : CID
rep0! : SFSREPORT

cid? ∈ dom ipcm
current ∈ (ipcm cid?).writers
esc = SUP(ran(ipcm cid?).wsc)
cstack sc = SUP(ran(aprocs current).cstack)
ipcm cid? = θChannel
aprocs current = θProcess
ipcm ′ = ipcm ⊕ {cid? 7→ θChannel ′}
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

50

IpcReleaseWriteE1 =̂
[ΞSecureSystem; cid? : CID ; rep0! : SFSREPORT |

current /∈ (ipcm cid?).readers ∧ rep0! = notInChannel]

IpcReleaseWriteE2 =̂
[ΞSecureSystem; cid? : CID ; rep0! : SFSREPORT |

cid? /∈ dom ipcm ∧ rep0! = wrongParameter]

IpcReleaseWriteE =̂ IpcReleaseWriteE1 ∨ IpcReleaseWriteE2

IpcReleaseWrite =̂ IpcReleaseWriteOk ∨ IpcReleaseWriteE

end of Z Section ipcreleasewrite

5.10 IpcWrite

Description A writer of a given communication channel writes into the buffer.

Input parameters cid? : CID ; buff ?,num? : N

Preconditions current must be a writer of cid?, and cid ’s buffer must have free space.

Postconditions On success cid?’s buffer is filled with the data provided by current , and current is
updated to avoid potential covert channels.

Z Section ipcwrite, parents: state, definitions

CWrite
∆Channel
buff ?,num? : N
current : PROCID
data : seqCCHAR
cstack sc : SecClass

buffer ′ = buffer a data
bsc′ = bsc ⊕ {current 7→ cstack sc}
readers ′ = readers
writers ′ = writers
rsc′ = rsc
wsc′ = wsc

51

IpcWriteOk
∆ProcessList ; ∆IPCMechanisms
ΞComputerPDevices; ΞUsers; ΞSystemObjects
CWrite; PGetError
cid? : CID
buff ?,num? : N
rep0! : SFSREPORT

cid? ∈ dom ipcm
current ∈ writers
#(ipcm cid?).buffer + num? ≤ BUFFERSIZE
{buff ?, buff ? + num?} ⊆ dom(aprocs current).mem
esc = SUP(ran(ipcm cid?).bsc)
data = (buff ? . . buff ? + num?) � (aprocs current).mem
cstack sc = SUP(ran(aprocs current).cstack)
ipcm cid? = θChannel
aprocs current = θProcess
ipcm ′ = ipcm ⊕ {cid? 7→ θChannel ′}
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

IpcWriteE1
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PGetError
cid? : CID
buff ?,num? : N
rep0! : SFSREPORT

cid? ∈ dom ipcm
#(ipcm cid?).buffer + num? > BUFFERSIZE
esc = SUP(ran(ipcm cid?).bsc)
aprocs current = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = maxReached

IpcWriteE2 =̂
[ΞSecureSystem; cid? : CID ; rep0! : SFSREPORT |

cid? /∈ dom ipcm ∧ rep0! = wrongParameter]

IpcWriteE3 =̂
[ΞSecureSystem; cid? : CID ; rep0! : SFSREPORT |

current /∈ (ipcm cid?).writers ∧ rep0! = permissionDenied]

IpcWriteE =̂ IpcWriteE1 ∨ IpcWriteE2 ∨ IpcWriteE3

IpcWrite =̂ IpcWriteOk ∨ IpcWriteE

52

end of Z Section ipcwrite

5.11 Kill

Description Kills a process; current can kill itself by doing Kill current .

Input parameters pid? : PID .

Preconditions None.

Postconditions If current = pid? then kproc is updated and current is replaced by another process;
if not, kproc and current are updated.

This operation represents two operations which have a similar impact from an information flow
perspective. Kill is the standard kill command on UNIX operating systems and the last instruction
of a program. In any case, the execution of this operation removes a process from the set of active
processes. If current kills itself (i.e., it finishes) then a new process must be executed –in any UNIX
implementation this new process is current ’s father, here we abstract away this particular choice.

This operation poses similar information flow considerations than Ps because by killing certain
processes, current can signal information to other processes. As was stated by Denning in [Den76],
one of the potential disadvantages of dynamic information flow control –the mechanisms implemented
by GTL– is that some entities may disappear from the pureview of a given process, thus creating a
convert channel.

There are two situations to consider. First, a process, ph , reads some high level information and
based on this data, it decides to keep running or to kill itself. Then a low level process, pl , Ps ph . If
ph does not exist then it means a different thing for pl than if ph does exist. Ps’ specification helps
to avoid this covert channel but we need to close the channel by storing in kprocs the access class of
ph in its time of dying. The second situation arises when ph does not kill itself but communicates the
data read by it to another high level process which, in turn, decides to kill or not ph .

Since, at implementation level, this two actions come from the execution of two different instruc-
tions but they have similar impact on security, then we modeled them as a single operation.

Z Section kill , parents: state, definitions , sched

The first case represents current killing itself –i.e. terminating. Here the system must replace it with
another active process. We model this action as the sequential composition of Die and Sched .

Die
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects
pid? : PROCID
rep0! : SFSREPORT

pid? = current
aprocs ′ = {pid?} −C aprocs
kprocs ′ = kprocs ⊕ {pid? 7→ SUP(ran(aprocs pid?).cstack)}
current ′ = current
rep0! = ok

We store in kprocs the SUP of all the access classes stored in current ’s cstack because current ’s
termination is the consequence of some conditionals that have been executed or not. Since the access
class of each of these decisions is stored in cstack , then the system needs to record the access class of
the information that leaded current to terminate.

53

KillOk1 =̂ Die o
9 Sched

The second and third cases represent the standard UNIX command kill –althoug the standard
UNIX policy about which processes can kill a given process is not modeled because it does not change
the information flow. In KillOk21, pid? exists, then dies, kprocs is updated and an error condition is
returned to current .

KillOk21
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects
PGetError ;
pid? : PROCID
rep0! : SFSREPORT

pid? ∈ dom aprocs \ {current}
(aprocs current) = θProcess
esc = SUP(ran(aprocs pid?).cstack)
aprocs ′ = {pid?} −C aprocs ⊕ {current 7→ θProcess ′}
kprocs ′ = kprocs ⊕ {pid? 7→ SUP(ran(aprocs current).cstack)}
current ′ = current
rep0! = ok

Note that the access class of the error returned to current –stored in variable esc which binds with
schema PGetError– and the access class stored in kprocs due to pid?’s die are different. In the first
case, current can deduce something due to pid?’s existence and thus there is information flowing from
pid? to current ; the state of pid?’s cstack captures this flow. In the second case, other processes than
current and pid? can deduce something through the non-exitence of pid?. Since it was current who
decided to kill pid? then the state of current ’s cstack must be stored in kprocs.

Now, if pid? does not exist, current deduces the same information like when it Ps the same process
and it does exist. Then, the error condition (possibly) carries sensitive information and thus, current
must be updated accordingly.

KillOk22
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects
PGetError ;
pid? : PROCID
rep0! : SFSREPORT

pid? ∈ dom kprocs \ dom aprocs
(aprocs current) = θProcess
esc = kprocs pid?
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = processDoesNotExist

If pid? has never been used for any process, then there is no information leakage by revealing this
fact.

54

KillE
ΞSecureSystem
pid? : PROCID
rep0! : SFSREPORT

pid? /∈ dom kprocs ∪ dom aprocs
rep0! = processDoesNotExist

KillOk =̂ KillOk1 ∨ KillOk21 ∨ KillOk22

Kill =̂ KillOk ∨ KillE

end of Z Section kill

5.12 LinkS

Description Creates a new name for an existing object.

Input parameters old?,new? : OBJECT

Preconditions new? must not exist and current has to be able to add new? to parentDir new?.

Postconditions new? is added to the system, its content equals old?’s name, its access class equals
the least upper bound between all the information involved in old?’s name.

This operation represents the standard Linux system calls symlink. new? is created and its content
is old?’s name. old? may not exist in the current file system, but the former must not exist.

Z Section links, parents: state, definitions

This firts schema specify the case when new? does not exist. Note that current is updated to record
the access class of the error returned by the system –i.e. the fact that new? does not exist.

LinkSOk1
∆SystemObjects; ∆ProcessList
ΞComputerPDevices; ΞUsers; ΞIPCMechanisms
PGetError
old?,new? : OBJECT
rep0! : SFSREPORT

new? /∈ objs
parentDir new? ∈ objs
objName new? in (aprocs current).mem
osc (parentDir new?) � SUP(ccharToSC (ran(objName new?)) ∪ ran cstack)
(aprocs current) = θProcess
esc = osc(parentDir new?)
objs ′ = objs ∪ {new?}
ocont ′ = ocont ⊕ {new? 7→ objName old?}
osc′ = osc ⊕ {new? 7→ SUP(ccharToSC (ran(objName old?)) ∪ ran cstack)}
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

55

If preconditions are met we set the following postconditions:

• new? is added to the set of objects.

• The content of new? is set to the set of characters constituting th name of old?.

• The access class of new? is set to the least upper bound between the access class of each piece
of information used to fill the file.

• current ’s variable reserved to store error conditions is updated with the access class of the
information current may deduce.

As with Exec if current receives an error it may be able to deduce information about parentDir o?,
then we update it state accordingly.

LinkSOk2
∆ProcessList
ΞSystemObjects; ΞComputerPDevices; ΞUsers; ΞIPCMechanisms
PGetError
old?,new? : OBJECT
rep0! : SFSREPORT

new? ∈ objs
(aprocs current) = θProcess
esc = osc(parentDir new?)
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = objectAlreadyExists

If current cannot create new? in parentDir o? due to lack of permissions, then an error is returned.

LinkSE1 =̂ ParentDirForbbiden

In this case no sensitive information is leaked through the error condition because the only thing
current can deduce is that parentDir o? has an access class not dominated by some information in
current ’s state. But if the access class of parentDir o? is different from L, then only a person using a
trusted path to execute a trusted program could do that. This implies that parentDir o’s access class
is the result of a human action, not a program action. Hence, no Trojan horse could be the originator
of that information.

The remaining error does not leak information neither.

LinkSE2
ΞSecureSystem
o? : OBJECT
rep0! : SFSREPORT

parentDir o? /∈ objs
rep0! = objectDoesNotExist

LinkSE =̂ LinkSE1 ∨ LinkSE2

LinkSOk =̂ LinkSOk1 ∨ LinkSOk2

LinkS =̂ LinkSOk ∨ LinkSE

56

end of Z Section links

5.13 Link

Description Creates a new name for an existing object.

Input parameters old?,new? : OBJECT

Preconditions new? must not exist and current has to be able to add new? to parentDir o?.

Postconditions new? is added to the system, all its security attributes and content equal old?’s.

This operation represents the standard Linux system calls link.

Z Section link , parents: state, definitions

new? is linked to old?. In this case, new?’s attributes are those of old?, and new? is added to the set
of exisiting objects. As with LinkS error conditions returned by the system may disclose information,
then current must be updated accordingly.

LinkOk1
∆SystemObjects; ∆ProcessList
ΞComputerPDevices; ΞUsers; ΞIPCMechanisms
PGetTwoErrors
old?,new? : OBJECT
rep0! : SFSREPORT

{old?, parentDir new?} ⊆ objs
new? /∈ objs
objName new? in (aprocs current).mem
osc (parentDir new?) � SUP(ccharToSC (ran(objName new?)) ∪ ran cstack)
oesc = osc (parentDir old?)
nesc = osc (parentDir new?)
(aprocs current) = θProcess
objs ′ = objs ∪ {new?}
ocont ′ = ocont ⊕ {new? 7→ (ocont old?)}
osc′ = osc ⊕ {new? 7→ osc old?}
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

If new? already exists and this error is returned to current , then it may be able to deduce sensitive
information. We need to update current to reflect this possibility.

57

LinkOk2
∆ProcessList
ΞSystemObjects; ΞComputerPDevices; ΞUsers; ΞIPCMechanisms
PGetError
old?,new? : OBJECT
rep0! : SFSREPORT

new? ∈ objs
esc = osc (parentDir new?)
(aprocs current) = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = objectAlreadyExists

Something alike is true if old? does not exist.

LinkOk3
∆ProcessList
ΞSystemObjects; ΞComputerPDevices; ΞUsers; ΞIPCMechanisms
PGetError
old?,new? : OBJECT
rep0! : SFSREPORT

old? /∈ objs
parentDir old? ∈ objs
esc = osc (parentDir old?)
(aprocs current) = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = objectDoesNotExist

If current cannot create new? in parentDir new? due to lack of permissions, then an error is
returned.

LinkE =̂ ParentDirForbbiden

In this case no sensitive information is leaked through the error condition because the only thing
current can deduce is that parentDir o? has an access class not dominated by some information in
current ’s state. But if the access class of parentDir o? is different from L, then only a person using a
trusted path to execute a trusted program could do that. This implies that parentDir o’s access class
is the result of a human action, not a program action. Hence, no Trojan horse could be the originator
of that information.

LinkOk =̂ LinkOk1 ∨ LinkOk2 ∨ LinkOk3

Link =̂ LinkOk ∨ LinkE

58

end of Z Section link

5.14 Mmap

Description Maps a file into memory.

Input parameters o? : OBJECT ; m? : MODE

Preconditions o? had to be opened in a mode not in conflict with m?.

Postconditions current can access o? directly from its memory space, i.e. it is not necesary to use
Read or Write (see sections 5.18 and 5.24)

This operation represents the standard Linux system call mmap (see its manual page for more
details). mmap is very important for security because it allows processes to access files without using
read or write. In fact, if a process has mapped a file into memory then the process can access the
file like a memory buffer, i.e. without calling the kernel.

The system call has a parameter, called flags in its manual page, that has not been included in our
model in order to keep it simple. This parameter in conjuntction with m? has security implications.
For example, if flags is set to MAP_SHARED and m? to write, all modifications to the mapped file are
saved so other processes can share them. Other parameters of the standard system call have no been
considered to simplify the model.

Thus, to keep the model simple we decided that to map a file in write mode means that modifi-
cations to the mapped file are private to the callling process –i.e. flags was set to MAP_PRIVATE–,
otherwise the file has been mapped in read mode. In other words, if the model specifies a case where
a file is mapped in write mode it represents, at implementation level, an invocation of mmap where the
combination between prot and flags does not allow changes to be saved.

The problem of permitting mappings in write mode with a shared flag is that either, data can
be downgrouded explicitly or a 1 bit covert channel can be exploted. The first scenario occurs if the
access class of the mapped file is not changed when low level data is written into it –we consider that
forbidding assigments to the mapped region of high level data has more undesirable consequences to
the system than forbidding mapped files in write mode with a shared flag. The second scenario is the
consequence of updating the access class of the file if low level data is copied to the shared region,
when the file is unmapped. On the other hand, this restriction can be wekened if this kind of mapping
is allowed just when there are not high level data in the process’ state –but also it is necesary to avoid
the process fetching high level data after the mapping has been done.

Z Section mmap, parents: state, definitions

First, we define a frame schema so then we promote the operation to the system level.

PMmap
∆Process

usr ′ = usr
suid ′ = suid
or ′ = or
ow ′ = ow
prog ′ = prog
cstack ′ = cstack
vics ′ = vics
ncs ′ = ncs

59

Then, we define two schemas one for each mode in which a file can be mapped. In any case, a file
can be mapped in a given mode if it was previously opened in the same mode.

MmapOk1
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PMmap
o? : OBJECT
m? : MODE
rep0! : SFSREPORT

o? ∈ or
m? = read
aprocs current = θProcess
mmfr ′ = mmfr ∪ {o?}
mem ′ = mem a (ocont o?)
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
mmfw ′ = mmfw
current ′ = current
kprocs ′ = kprocs
rep0! = ok

If precondtions are met then the file is copied into the memory space of current1.
Schema MmapOk2 represents the case of mapping a file in write mode without a shared flag2.

This is possible only if the file was previously opened in the same mode.

MmapOk2
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PMmap
o? : OBJECT
m? : MODE
rep0! : SFSREPORT

o? ∈ ow
m? = write
(aprocs current) = θProcess
mmfw ′ = mmfw ∪ {o?}
mem ′ = mem a (ocont o?)
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
mmfr ′ = mmfr
current ′ = current
kprocs ′ = kprocs
rep0! = ok

It is an standard error to try to map a file in mode m? if it has not been opened in that mode.
The remaining errors are easy to understand.

1Obviously this particular feature must be implemented as it is in Linux. Further, we do not model the fact that this
memory pages are marked as read-only making it impossible to write on them, nor that the process’ memory is extended
without requiring it to the system.

2Again, we have not modeled the marking of memory pages, thus the process is able to read this pages. Obviously,
this must be implemented as it is in Linux.

60

MmapE
ΞSecureSystem
pid? : PROCID
o? : OBJECT
m? : MODE
rep0! : SFSREPORT

m? = read ∧ o? /∈ (aprocs pid?).or
∨ m? = write ∧ o? /∈ (aprocs pid?).ow
rep0! = permissionDenied

MmapOk =̂ MmapOk1 ∨ MmapOk2

Mmap =̂ MmapOk ∨ MmapE

end of Z Section mmap

5.15 Open

Description Opens an object in a given mode.

Input parameters o? : OBJECT ; m? : MODE

Kinds of objects It depends on what particular system call Open represents. If it is open,
then o? is a file; if it is opendir, then o? is a directory.

Preconditions For ordinary files, none; for TCB files: only a MAC administrator can open such a
file for writing.

Postconditions o? is added to the list of open files of current .

This operation represents the standard open system call of Linux. If a process wants to read or
write a file it first needs to open the file. The system call returns a file descriptor which is used by
the process for future references to the file.

This description must be used as a guide to implement similar system calls like opendir. See
[CGM03] for more details.

Z Section open, parents: state, definitions

The following schema is used to promote the operation from the process level to the system level.

OpenFrame
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
∆Process
o? : OBJECT
m? : MODE
rep0! : SFSREPORT

aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs

61

Finally, the operation is defined by cojoining the frame with the schemas at the process level and
the schemas recording the standard DAC preconditions. Note that we do not require any MLS controls
as is suggested in [BL73a, BL73b], for ordinary files. Instead, we enforce an information flow policy
similar to that presented in [Den76], see sections 5.18 and 5.24. TCB files are treated in OpenOk3.

OpenOk1 =̂ [OpenFrame; POpenRead | o? ∈ objs ∧ m? = read ∧ rep0! = ok]

OpenOk2 =̂ [OpenFrame; POpenWrite | o? ∈ objs ∧ m? = write ∧ o? /∈ softtcb ∧ rep0! = ok]

As we said in the summary at the begining, only MAC administrators can open TCB files for
writing.

OpenOk3 =̂
[OpenFrame; POpenWrite |

o? ∈ objs
∧ m? = write
∧ o? ∈ softtcb
∧ SECADMIN ∈ (usc (aprocs current).usr).categs
∧ rep0! = ok]

As with other system calls, the error condition returned by the system when o? does not exits
reveals information about parentDir o?, then the process must be updated accordingly.

OpenE1 =̂ [OpenFrame; PGetError | o? /∈ objs ∧ esc = osc o? ∧ rep0! = objectDoesNotExist]

OpenE2 represents the situation where an ordinary user tries to open a TCB file in write mode.
Since this error is received by all processes of ordinary users in the same situation, it does not conveys
significative information to current –then no update is needed.

OpenE2 =̂
[ΞSecureSystem; o? : OBJECT ; m? : MODE ; rep!0 : SFSREPORT |

m? = write
∧ o? ∈ softtcb
∧ SECADMIN /∈ (usc (aprocs current).usr).categs
∧ rep!0 = permissionDenied]

OpenOk =̂ OpenOk1 ∨ OpenOk2 ∨ OpenOk3

OpenE =̂ OpenE1 ∨ OpenE2

Open =̂ OpenOk ∨ OpenE

end of Z Section open

5.16 Oscstat

Description Returns the access class of a given object.

Input parameters o? : OBJECT

Preconditions None.

Postconditions o?’s access class is copied to current ’s memory.

This operation represents system call oscstat. Any process may request the access class of any
object because this attribute can only be set by a user using a trusted path to run a trusted program,
then no information can be leaked by malicious software through this piece of data.

62

Z Section oscstat , parents: state, definitions

current ’s memory space must be updated with the access class of o?; this is left underspecified. Note
that we do not require that o? be part of the file system because be it there or not current can deduce
the same thing: that something does exist or does not exist in parentDir o?

Oscstat
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PGetError
o? : OBJECT
rep0! : SFSREPORT

esc = osc (parentDir o?)
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

end of Z Section oscstat

5.17 Ps

Description Returns whether a given process is active or not.

Input parameters pid? : PROCID .

Preconditions None.

Postconditions current is updated to reflect the flow of information that arises due to its query.

This operation represents some of the actions processes can execute against the UNIX /proc file
system. Here we abstract away many peculiarities and we focus on the essencial information flows:
the system allows processes to consult information about other processes. In fact, we have modeled
just a query returning whether a given process exists or not. If other queries about pid?’s metadata
are possible –for instance, the amount of memory used, the open files, the user on behalf of who is
executing, etc.– then similar considerations apply. On the other hand, pid ’s data is queried through
IPC mechanisms, then the reader should read the sections involving these operations.

As was stated by Denning in [Den76], one of the potential disadvantages of dynamic information
flow control –the mechanisms implemented by GTL– is that some entities may disappear from the
pureview of a given process, thus creating a convert channel.

To avoid this potential covert channel we decided to update the access class of those current ’s
variable(s), where the data from pid? is copied, to the least upper bound of pid?’s cstack variable.
Certanly, this decision is very restrictive, but there is no other alterinative because otherwise Trojan
horses can use processes’ creation and elimination as 1-bit covert channels.

Z Section ps, parents: state, definitions

current ’s first variable is updated to reflect the level of information obtained by it due to the success
or failure of the operation. This first schema specifies the first case.

63

PsOk1
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PGetError ; pid? : PROCID
rep0! : SFSREPORT

pid? ∈ dom aprocs
esc = SUP(ran(aprocs pid?).cstack)
(aprocs current) = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

Schema PsOk2 describes the case where pid? is not an active process. Here we use the information
stored in kprocs variable. If pid? has been killed then the system updates current with kprocs pid?;
otherwise no update is needed.

PsOk2
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PGetError ; pid? : PROCID
rep0! : SFSREPORT

pid? ∈ dom kprocs \ dom aprocs
(aprocs current) = θProcess
esc = kprocs pid?
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = processDoesNotExist

If pid? has never been used for any process, then there is no information leakage by revealing this
fact.

PsE
ΞSecureSystem
pid? : PROCID
rep0! : SFSREPORT

pid? /∈ dom kprocs ∪ dom aprocs
rep0! = processDoesNotExist

PsOk =̂ PsOk1 ∨ PsOk2

Ps =̂ PsOk ∨ PsE

end of Z Section ps

5.18 Read

Description Reads from an open object.

64

Input parameters o? : OBJECT

Kinds of objects It depends on what particular system call Read represents. If it is read,
then o? is a file; if it is readdir or getdents, then o? is a directory.

Preconditions The object must be opened in read mode by current .

Postconditions All of the characters read from o? are copied in current ’s memory space.

This operation represents the standard read system call. It should be used as a guide for the
implementation of similar system calls like readdir or getdents. See [CGM03] for more details.

The correct implementation of this operation is tantamount to the security of the system because
it records some state data which is latter used by Write to decide if an object may be written by a
process.

The specification we introduce is a convenient abstraction of the system call. We have omited the
following two parameters:

buf where in memory must bytes be copied, and

nbytes how many bytes must be read.

Instead, we take nbytes as the lengh of the file, and buf as the next memory address following the
last being used (i.e. we add the entire file at the end of the process memory space). Obviously, this
abstraction must be implemented as currently is in Linux.

Z Section read , parents: state, definitions

A Read operation can proceed if o? is opened in read mode by current . Schema PReadComplete is
defined in section 12.

ReadOk
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PReadComplete
o? : OBJECT
rep0! : SFSREPORT

o? ∈ (aprocs current).or
esc = sc = osc o? ∧ buff = ocont o?
(aprocs current) = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

If preconditions are met, we record the fact that current has read o? by adding o?’s content to
current ’s memory. These predicates are hidden in PReadComplete.

It is an error to request a Read operation over an object not open in read mode.

65

ReadE
ΞSecureSystem
o? : OBJECT
rep0! : SFSREPORT

o? /∈ (aprocs current).or
rep0! = objectIsNotOpenForReading

Read =̂ ReadOk ∨ ReadE

end of Z Section read

5.19 ReadDev

Description Reads from an input device.

Input parameters pd? : PDID

Preconditions The input device must exist.

Postconditions The characters read from the input device are copied into current ’s memory space.

This operation is the read system call when the object to read is an input device. It may be
implemented as part of the code of read. We have modeled it as different of Read because in our
model input devices have a different type (and different properties) than objects. Also, we model in
ReadDev how characters in toproc are consumed as they are read.

We strongly recommend to read Read and Login descriptions before implementing this operation.
Regarding Read , similar design considerations apply to this operation.

Z Section readdev , parents: state, definitions

This schema will be promoted to the system level. It simply says that a ReadDev operation consumes
the input available in the logical terminal.

PDRead =̂ [∆PDevice | toproc′ = 〈〉]

Information can flow from an input device to a process in any circumstances.

ReadDevOk
∆ProcessList ; ∆ComputerPDevices
ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PDRead ; PRead
pd? : PDID
rep0! : SFSREPORT

pd? ∈ dom indev
sc = indevcsc pd? ∧ buff = (indev pd?).toproc
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
indev ′ = indev ⊕ {pd? 7→ θPDevice ′}
current ′ = current ∧ kprocs ′ = kprocs
outdev ′ = outdev ∧ usrin ′ = usrin ∧ outdevmsc′ = outdevmsc
indevcsc′ = indevcsc ∧ indevmsc′ = indevmsc ∧ nextinput ′ = nextinput
rep0! = ok

66

It is impossible to read from an unexistent input device –this condition does not leak information
because all processes get the same result; pd? is linked to a physical device.

ReadDevE
ΞSecureSystem
pd? : PDID
rep0! : SFSREPORT

pd? /∈ dom indev
rep0! = objectDoesNotExist

ReadDev =̂ ReadDevOk ∨ ReadDevE

end of Z Section readdev

5.20 Rename

Description Changes the name of an object.

Input parameters old?,new? : OBJECT

Preconditions

Postconditions old? is removed from the system and new? is added to it; new? has old?’s attributes.

This operation represents the standard Linux system call rename.

Z Section rename, parents: state, definitions

A process can rename a file in a given directory if and only if the access class of this directory dominates
the access class of the information used to generate the new name for the file, and if this new name
does not exist in that directory. The invalidity of this two situations are trated differently by the
system because they have different security implications. Look for schema PGetTwoErrors in section
12.

67

RenameOk1
∆SystemObjects; ∆ProcessList
ΞComputerPDevices; ΞUsers; ΞIPCMechanisms
PGetTwoErrors
old?,new? : OBJECT
rep0! : SFSREPORT

{old?, parentDir new?} ⊆ objs
new? /∈ objs
objName new? in (aprocs current).mem
osc (parentDir new?) � SUP(ccharToSC (ran (objName new?)) ∪ ran cstack)
oesc = osc (parentDir old?)
nesc = osc (parentDir new?)
(aprocs current) = θProcess
objs ′ = (objs \ {old?}) ∪ {new?}
ocont ′ = ({old?} −C ocont) ∪ {new? 7→ ocont old?}
osc′ = ({old?} −C osc) ∪ {new? 7→ osc old?}
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

If new? already exists and this error is returned to current , then it may be able to deduce sensitive
information. We need to update current to reflect this possibility.

RenameOk2
∆ProcessList
ΞSystemObjects; ΞComputerPDevices; ΞUsers; ΞIPCMechanisms
PGetError
old?,new? : OBJECT
rep0! : SFSREPORT

new? ∈ objs
esc = osc (parentDir new?)
(aprocs current) = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = objectAlreadyExists

Something alike is true if old? does not exist.

68

RenameOk3
∆ProcessList
ΞSystemObjects; ΞComputerPDevices; ΞUsers; ΞIPCMechanisms
PGetError
old?,new? : OBJECT
rep0! : SFSREPORT

old? /∈ objs
parentDir old? ∈ objs
esc = osc (parentDir old?)
(aprocs current) = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = objectDoesNotExist

If current cannot create new? in parentDir new? due to lack of permissions, then an error is
returned.

RenameE =̂ ParentDirForbbiden

In this case no sensitive information is leaked through the error condition because the only thing
current can deduce is that parentDir old? has an access class not dominated by some information in
current ’s state. But if the access class of parentDir old? is different from L, then only a person using
a trusted path to execute a trusted program could do that. This implies that parentDir old ’s access
class is the result of a human action, not a program action. Hence, no Trojan horse could be the
originator of that information.

RenameOk =̂ RenameOk1 ∨ RenameOk2 ∨ RenameOk3

Rename =̂ RenameOk ∨ RenameE

end of Z Section rename

5.21 Setuid

Description Sets the user identity of a process.

Input parameters new? : USER

Preconditions root can change to a MAC administrator only when the process requesting Setuid is
a trusted process; root can change to any user (except to secadm) in any other circumstances;
ordinary users can change to the owner of the program (unless the owner is a MAC administrator)
when its SUID bit it is on.

Postconditions current starts to act on behalf of new?.

This operation represents the family of system calls based on suid. Objects’ owners and SUID
bits are underspecified in this model.

69

Z Section setuid , parents: state, definitions

We start with a framing schema to be used latter to promote the main operation. This schema
unconditianally changes the user to a new user received as input.

PSetuid
∆Process
new? : USER

suid ′ = new?
vics ′ = vics ∧ prog ′ = prog ∧ ncs ′ = ncs ∧ cstack ′ = cstack
usr ′ = usr ∧ or ′ = or ∧ ow ′ = ow ∧ mem ′ = mem
mmfr ′ = mmfr ∧ mmfw ′ = mmfw

An untrusted process may request Suid if it is acting on behalf of root and the new user is not a
MAC administrator. We test whether new? is a MAC administrator by checking if SECADMIN is a
category in new?’s security class.

We forbid root to set the identity of its untrusted processes to a MAC administrator, because
otherwise a Trojan horse running on behalf of root could change its identity to a MAC administrator
and then it would be able to successfully invoke critical operatios such as Chobjsc. This kind of attacks
inderectly affect confidentiality.

SetuidOk1
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
∆Process
PSetuid
new? : USER
rep0! : SFSREPORT

new? ∈ users
(aprocs current).usr = root
SECADMIN /∈ (usc new?).categs
(aprocs current).prog /∈ softtcb
(aprocs current) = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

See how operation promotion is used:

1. A framing schema is defined (PSetuid)

2. Preconditions are set in the operation schema (PSetuidOk1)

3. In particular, we set aprocs current = θProcess, so any unprimed variable defined in the framing
schema (PSetuid) equals the same variable of the interesting process. For example variable usr
in PSetuid equals (aprocs current).usr .

4. Also, by seting (aprocs current).usr = root we indirectly set usr = root in PSetuid

70

5. Finally, postconditions are set by using θProcess ′; that is, the new process associated with
current has all its state variables with the same value as the old process except suid which
equals new?.

If the process invoking Setuid is acting on behalf of root and is the result of executing a trusted
program then it is authorized to change its identity to a MAC administrator.

SetuidOk2
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
∆Process
PSetuid
new? : USER
rep0! : SFSREPORT

new? ∈ users
(aprocs current).usr = root
SECADMIN ∈ (usc new?).categs
(aprocs current).prog ∈ softtcb
(aprocs current) = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

Finally, if a process acting on behalf of a regular user invokes Setuid then the system sets the
identity of the process to the user indicated by suidto.

SetuidOk3
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
∆Process
PSetuid
new? : USER
rep0! : SFSREPORT

new? ∈ users
(aprocs current).usr 6= root
SECADMIN /∈ (usc new?).categs
new? = suidto (aprocs current).prog
(aprocs current) = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

Errors are the standard ones. The first one captures all the possible situations where the process
lacks the necesary permissions to invoke the operation.

71

SetuidE1
ΞSecureSystem
new? : USER
rep0! : SFSREPORT

new? ∈ users
((aprocs current).usr = root

∧ SECADMIN ∈ (uscnew?).categs
∧ (aprocs current).prog /∈ softtcb

∨ (aprocs current).usr 6= root
∧ SECADMIN ∈ (uscnew?).categs

∨ (aprocs current).usr 6= root
∧ new? 6= suidto (aprocs current).prog)

rep0! = permissionDenied

SetuidE2 =̂ UserNotExist

SetuidE =̂ SetuidE1 ∨ SetuidE2

SetuidOk =̂ SetuidOk1 ∨ SetuidOk2 ∨ SetuidOk3

Setuid =̂ SetuidOk ∨ SetuidE

end of Z Section setuid

5.22 Stat

Description Returns metadata of a given object (not including MAC attributes).

Input parameters o? : OBJECT

Preconditions None.

Postconditions o?’s metadata is copied to current ’s memory.

This operation represents various system calls such as stat, aclstat, and so on. In our model
just the existence or not of the “stated” object is returned.

Z Section stat , parents: state, definitions

current first variable is updated to reflect the level of information obtained by it due to the success
or failure of the operation. This first schema specifies the first case.

72

StatOk1
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PReadComplete; o? : OBJECT
rep0! : SFSREPORT

o? ∈ objs
buff = objName o?
esc = sc = osc (parentDir o?)
(aprocs current) = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

Schema StatOk2 describes the second case.

StatOk2
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
PGetError ; o? : OBJECT
rep0! : SFSREPORT

o? /∈ objs
(aprocs current) = θProcess
esc = osc o?
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

StatOk =̂ StatOk1 ∨ StatOk2

Stat =̂ StatOk

end of Z Section stat

5.23 Unlink

Description Deletes an object from the system.

Input parameters o? : OBJECT

Preconditions The least upper bound of the variables from where the new name is generated plus
cstack ’s content is dominated by the access class of o?’s parent directory.

Postconditions o? is removed from the system; current ’s state is updated depending on the possible
flows originated from the error conditions returned by the system.

This operation represents the standard Linux system call unlink but also it must be used to
implement rmdir.

73

Z Section unlink , parents: state, definitions

The first case in deleting an object is when the object exists. In this case the system is updated acord-
ingly and current is updated to reflect the flow of information from the access class of parentDir o?.
Precicely, current just discovered that o? exists in parentDir o?.

UnlinkOk1
∆SystemObjects; ∆ProcessList
ΞComputerPDevices; ΞUsers; ΞIPCMechanisms
PGetError
o? : OBJECT
rep0! : SFSREPORT

o? ∈ objs
esc = osc (parentDir o?)
(aprocs current) = θProcess
objs ′ = objs \ {o?}
ocont ′ = {o?} −C ocont
osc′ = {o?}−C
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = ok

The second case takes place when o? does not exist in the system. Now, the system is not updated
because no object is deleted, but current is updated due to the same reason regarding UnlinkOk1. In
this case current knows that o? does not exist in parentDir o?.

UnlinkOk2
∆ProcessList
ΞSystemObjects; ΞComputerPDevices; ΞUsers; ΞIPCMechanisms
PGetError
o? : OBJECT
rep0! : SFSREPORT

o? /∈ objs
esc = osc (parentDir o?)
(aprocs current) = θProcess
aprocs ′ = aprocs ⊕ {current 7→ θProcess ′}
current ′ = current
kprocs ′ = kprocs
rep0! = objectDoesNotExist

Unlink =̂ UnlinkOk1 ∨ UnlinkOk2

end of Z Section unlink

5.24 Write

Description Writes to an open object.

74

Input parameters o? : OBJECT ; buff ?,num? : N

Preconditions The object must be opened in write mode by current , and the information to be
written must dominate o?’s access class.

Postconditions The information to be written is copied into o?’s content.

This operation represents the standard write system call. Its specification should be used to
program all write functions declared to VFS3, except the version used to write into devices which is
specified in section 5.25.

The correct implementation of this operation is tantamount to the security of the system because
it forbids the downgrade of information.

In what follows, note that root has no special priviledges when requesting this operation. That
is to say, root cannot violate Write. More generally, root has no special priviledges with respect to
the MLS model.

Z Section write, parents: state, definitions

The system performs the operation only if the access class of the information to be written by current
dominates the access class of the object where this information would be saved. Since information
is composed of characters, here, dominates means that the least upper bound of all those charecters
dominates the access class of the object.

The exact way the system writes into a file depends on previous writes and how the process had
moved the read/write pointer of the object. We simplified this behaivior by appending the new data
to the end of the target.

WriteOk
∆SystemObjects
ΞProcessList ; ΞComputerPDevices; ΞUsers; ΞIPCMechanisms
o? : OBJECT
buff ?,num? : N
rep0! : SFSREPORT

{buff ?, buff ? + num?} ⊆ dom(aprocs current).mem
o? ∈ (aprocs current).ow
let p == aprocs current ; r == buff ? . . buff ? + num? •

osc o? � SUP ((ccharToSC ◦ ran)(r � p.mem) ∪ (ran p.cstack))
ocont ′ = ocont ⊕ {o? 7→ (ocont o?) a (buff ? . . buff ? + num?) � (aprocs current).mem}
objs ′ = objs
osc′ = osc
rep0! = ok

It is worth noticing that in a real implementation there are many causes that could deny this
operation. For instance, the disk may be full or the file would excede its maximum size. Many of this
situations produce a flow of information, at the access class of the target file, to current . For example,
a high level process could have fullfiled the file as a means to signal some high level data; then a low
level process, tries to write into that file and receives EFBIG. Hence, the low level process can deduce
high level data. Then, current must be updated by recalculating the access class of mem 0.

None of the preconditions in schema WriteOk cause such a flow, in fact:
3We mean the write inode field of the inode operations structure.

75

let p == aprocs current ; r == buff ? . . buff ? + num? •
osc o? � SUP ((ccharToSC ◦ ran)(r � p.mem) ∪ (ran p.cstack))

is not dangerous because its falsehood says to current that o?’s access class is higher than the infor-
mation current is trying to write into it. This is equivalent to say that current can deduce the access
class of o?. However, the access class of any object over L is set by a user through a trusted path
executing trusted software –this implies that the access class cannot be set by a malicious process.
Then we specify a traditional Z error schema for this situation.

WriteE1
ΞSecureSystem
o? : OBJECT
buff ?,num? : N
rep0! : SFSREPORT

let p == aprocs current ; r == buff ? . . buff ? + num? •
¬ osc o? � SUP ((ccharToSC ◦ ran)(r � p.mem) ∪ (ran p.cstack))

rep0! = permissionDenied

It is an error to try to write into a non open object.

WriteE2
ΞSecureSystem
o? : OBJECT
buff ?,num? : N
rep0! : SFSREPORT

o? /∈ (aprocs current).ow
rep0! = objectIsNotOpenForWriting

Also, it is an error to try to write data that lies outside curren’s memory.

WriteE3
ΞSecureSystem
o? : OBJECT
buff ?,num? : N
rep0! : SFSREPORT

¬ {buff ?, buff ? + num?} ⊆ dom(aprocs current).mem
rep0! = wrongParameter

WriteE =̂ WriteE1 ∨ WriteE2 ∨ WriteE3

Write =̂ WriteOk ∨ WriteE

end of Z Section write

5.25 WriteDev

Description Writes into an output device.

76

Input parameters pd? : PDID ; buff ?,num? : N

Preconditions The access class of the information to be written must be dominated by the maximum
access class of the output device.

Postconditions The output device is updated with the information written by the process.

This operation represents the write system call when the object to be written is a physical output
device. It may be implemented as part of the code of write. We have modeled it as a special case of
Write because in our model devices have a different type than objects.

We strongly recommend to read Write description before implementing this operation. Similar
design considerations apply to this operation.

In what follows, note that root has no special priviledges when requesting this operation. That
is to say, root cannot violate WriteDev . More generally, root has no special priviledges with respect
to the MLS model.

Z Section writedev , parents: state, definitions

WriteDev allows a process to write from its memory into an output device if the information is
dominated by the maximun access class of the device.

WriteDevOk
∆ComputerPDevices; ∆PDevice
ΞUsers; ΞProcessList ; ΞSystemObjects; ΞIPCMechanisms
pd? : PDID
buff ?,num? : N
rep0! : SFSREPORT

pd? ∈ dom outdev
{buff ?, buff ? + num?} ⊆ dom(aprocs current).mem
let p == aprocs current ; r == buff ? . . buff ? + num? •

outdevmsc pd? � SUP ((ccharToSC ◦ ran)(r � p.mem) ∪ (ran p.cstack))
outdev pd? = θPDevice
toproc′ = toproc a (buff ? . . buff ? + num?) � (aprocs current).mem
outdev ′ = outdev ⊕ {pd? 7→ θPDevice ′}
indev ′ = indev
usrin ′ = usrin
outdevmsc′ = outdevmsc
indevcsc′ = indevcsc
indevmsc′ = indevmsc
nextinput ′ = nextinput
rep0! = ok

WriteDev ’s postcondition is to write some portion of the process’ memory to the buffer of the
output device. Errors are as follows (for a deeper explanation see section 5.24).

77

WriteDevE1
ΞSecureSystem
pd? : PDID
buff ?,num? : N
rep0! : SFSREPORT

let p == aprocs current ; r == buff ? . . buff ? + num? •
¬ outdevmsc pd? � SUP ((ccharToSC ◦ ran)(r � p.mem) ∪ (ran p.cstack))

rep0! = permissionDenied

It is an error to try to write into a non existent output device.

WriteDevE2
ΞSecureSystem
pd? : PDID
buff ?,num? : N
rep0! : SFSREPORT

pd? /∈ dom outdev
rep0! = objectDoesNotExist

Also, it is an error to try to write data that lies outside curren’s memory.

WriteDevE3
ΞSecureSystem
pd? : PDID
buff ?,num? : N
rep0! : SFSREPORT

¬ {buff ?, buff ? + num?} ⊆ dom(aprocs current).mem
rep0! = wrongParameter

WriteDevE =̂ WriteDevE1 ∨ WriteDevE2 ∨ WriteDevE3

WriteDev =̂ WriteDevOk ∨ WriteDevE

end of Z Section writedev

5.26 The Interface to be Used by Processes

This section contains a schema defining the interface that processes must use.

Z Section pcop1, parents: close, create, exec, fork , ipcgetread , ipcgetwrite, ipcread

ProcessControlledOperations1 =̂
Close
∨ Create
∨ Exec
∨ Fork
∨ IpcGetRead
∨ IpcGetWrite
∨ IpcRead

78

end of Z Section pcop1

Z Section pcop2, parents: ipcreleaseread , ipcreleasewrite, ipcwrite, kill , link , links

ProcessControlledOperations2 =̂
IpcReleaseRead
∨ IpcReleaseWrite
∨ IpcWrite
∨ Kill
∨ Link
∨ LinkS

end of Z Section pcop2

Z Section pcop3, parents: mmap, open, oscstat , ps , read , readdev , rename, setuid , stat

ProcessControlledOperations3 =̂
Mmap
∨ Open
∨ Oscstat
∨ Ps
∨ Read
∨ ReadDev
∨ Rename
∨ Setuid [newuid?/new?]
∨ Stat

end of Z Section pcop3

Z Section pcop4, parents: write,writedev

ProcessControlledOperations4 =̂
Write
∨ WriteDev

end of Z Section pcop4

Z Section pcop, parents: pcop1, pcop2, pcop3, pcop4

ProcessControlledOperations =̂
ProcessControlledOperations1
∨ ProcessControlledOperations2
∨ ProcessControlledOperations3
∨ ProcessControlledOperations4

end of Z Section pcop

79

Chapter 6

Operations Controlled by the System

In this chapter we describe all the operations controlled by the system. We strongly recomend to
read the introduction to chapter 3. System controlled operations are implemented as kernel internal
actions.

6.1 Sched

Description The system suspend the current process and resumes the execution of a different active
process.

Input parameters None

Preconditions There must be more than one active process

Postconditions The current proccess is different from the previous one

With this operation we tried to describe the scheduling performed by the operating system. We
do not model any particular scheduling policy. This operation is described just for completness.

Z Section sched , parents: state, definitions

The operation is very simple: a new PROCID value, different than current is assigned to it provided
there are more than one element in dom aprocs.

SchedOk
∆ProcessList
ΞComputerPDevices; ΞUsers; ΞSystemObjects; ΞIPCMechanisms
rep0! : SFSREPORT

dom aprocs \ {current} 6= ∅
current ′ 6= current
current ′ ∈ dom aprocs
kprocs ′ = kprocs
rep0! = ok

It is an error to suspend the current process if it is the only one active process in the system.

80

SchedE
ΞSecureSystem
rep0! : SFSREPORT

dom aprocs \ {current} = ∅
rep0! = processDoesNotExist

Sched =̂ SchedOk ∨ SchedE

end of Z Section sched

6.2 System Internal Operations

This section contains a schema defining all the systema internal operations.

Z Section scop, parents: sched

SystemControlledOperations =̂ Sched

end of Z Section scop

81

Chapter 7

The Transition Relation

This chapter contains just a schema consisting of the disjunction of all the possible operations. We
write it using the four interfaces defined in previous chapters.

Z Section tranrel , parents: ucop, pcop, scop, apl

TransitionRelation =̂
UserControlledOperations
∨ ProcessControlledOperations
∨ SystemControlledOperations
∨ AbstractProgrammingLanguage

end of Z Section tranrel

82

Chapter 8

A Formal Model for Military Security

Military security or the DoD security policy (DSP) is the security requirement asked by the customer.
The whole problem is to define a system which verifies this requirement.

8.1 The Organization and its Components

DSP deals with persons, documents and access classes. Documents are described as sequences of
characters, and access classes (we call them SC for security class) are ordered pairs of a level and a
set of categories. We first introduce all this concepts as follows.

[EMPLOYEES ,CATEGORIES ,CHARS]

LEVELS == N
SC == LEVELS × P CATEGORIES

DOCUMENTS == seqCHARS

Next, we need to define the dominates relation between access classes; we do this with the following
axiomatic definition.
syntax � inrel

� : SC ↔ SC

∀ x , y : SC •
x � y ⇔ x .1 ≥ y .1 ∧ y .2 ⊆ x .2

In our opinion there are many ways to formalize military security for a given organization. Since
we are using the Z formal notation we decided to describe it as a state machine. Thus we begin
by defining the set of states of the organization –or the relevant portion of the set of states for our
purposes. The schema Organization describes this set. The organization employs a set of persons,
its personnel , and has some interesting information (info) stored in some guarded library or the like.
Each employee and document is classified with an access class. Since documents are physical entities
we have to record, in variable pworinfo, which of them were borrowed, and not yet returned, by some
employee.

Organization
personnel : P EMPLOYEES
info : P DOCUMENTS
psc : EMPLOYEES 7→ SC
isc : DOCUMENTS 7→ SC
pworinfo : DOCUMENTS 7→ EMPLOYEES

83

8.2 The User’s Requirements

The most important requirement for the customer is under what conditions an employee can borrow,
and thus be able to read, a document. This is the standard requirement for the military sector: an
employee is authorized to read a document if and only if his/her access class dominates the access
class of the document. Schema BorrowDocument formalizes the previous sentence.

BorrowDocumentOk
∆Organization
p? : EMPLOYEES
d? : DOCUMENTS

p? ∈ personnel
d? ∈ info
d? /∈ dom pworinfo
psc p? � isc d?
pworinfo′ = pworinfo ∪ {d? 7→ p?}
personnel ′ = personnel
info′ = info
psc′ = psc
isc′ = isc

BorrowDocument =̂ BorrowDocumentOk ∨ ΞOrganization

This operation could also be described as a state invariant as follows. However we rather the
previous formalization because other requirements cannot be described as such.

ReadRestriction
Organization

∀ d : DOCUMENTS ; p : EMPLOYEES | d 7→ p ∈ pworinfo •
psc p � isc d

An example of what we said above is the requirement that allows employees to write new docu-
ments. This organization trusts its employees to write and adecuately classify new documents.

WriteNewDocumentOk
∆Organization
p? : EMPLOYEES
newinfo? : seqCHARS
sc? : SC

p? ∈ personnel
newinfo? /∈ info
pworinfo′ = pworinfo ∪ {newinfo? 7→ p?}
personnel ′ = personnel
info′ = info ∪ {newinfo?}
psc′ = psc
isc′ = isc ⊕ {newinfo? 7→ sc?}

WriteNewDocument =̂ WriteNewDocumentOk ∨ ΞOrganization

84

The fact that the organization trusts employees to behave as they have been told, is not a re-
quirement. In other words, the customer does not ask to us to build a system implementing that fact
–indeed it would be impossible any way. Precisely, this is an assumption that has to be included in
the description of the domain knowledge associated to this application domain (see section ??). Also,
note that specifying ReadDocument as a noninterference assertion is unnecesary because if employees
are trusted, then they will not disclose information in any way so there is no way, in the real world,
that what a group of high level employees do, could have any effect in what other emploees might
see. On the other hand, if a noninterference assertion is used to describe the real world, then there is
no way for the organization to enforce that formula besides by assuming that employees are trusted
–what as we saw is not a requirement. However, when we move this requirement to an information
processing system, then noninterference is very apropriate because in a computer system some tasks
are carried on by untrusted machines –such as a word processor or a user mail agent– and it would be
insecure to assume they are trusted.

Let us continue with the formalization of the security requirement. Employees can modify or edit
existing documents. Again, this organization trusts them to not to include new information not in
accordance with the actual classification of the document being edited. To simplify the model we
first define a function that edits any document by adding and removing sequences of CHARS in any
possible way.

editDocuments :
DOCUMENTS → seqCHARS → seqCHARS → DOCUMENTS

ModifyDocumentOk
∆Organization
p? : EMPLOYEES
d? : DOCUMENTS
newinfo?, delinfo? : seqCHARS

p? ∈ personnel
d? ∈ info
d? 7→ p? ∈ pworinfo
pworinfo′ = pworinfo
personnel ′ = personnel
info′ = info \ {d?} ∪ {editDocuments d? newinfo? delinfo?}
psc′ = psc
isc′ = isc

ModifyDocument =̂ ModifyDocumentOk ∨ ΞOrganization

There are many other possible requirements for a complex organization. For instance, it could
need some discretionary access control enforced in conjunction with military security; or they may
have an special group of employees who can modify the access class of employees or documents.

8.3 Military Security

Here we just define the whole requirement for military security.

MilitarySecurity =̂
BorrowDocument
∨ WriteNewDocument
∨ ModifyDocument
∨ ΞOrganization

85

Chapter 9

Proof Obligations and Properties

In this chapter we state the proof obligations for our model. The first category of theorems to be
proved are state invariants. Then the fundamental theorem for security is introduced, i.e. K ∧ S ⇒ R.

9.1 State Invariants

In this section we account the properties that should be state invariants. We organized them on the
basis of the schemas they include.

9.1.1 Invariants of ComputerPDevices

The first invariant stablishes some basic consistency properties regarding devices.

CPDConsistency
ComputerPDevices

usrin ⊆ dom indev
dom outdev ⊆ N1

dom indev ⊆ {n : Z | n < 0}
−1 ∈ dom indev ∩ usrin
1 ∈ dom outdev
dom outdevmsc = dom outdev
dom indevmsc = dom indevcsc = dom indev

Next we set one fundamental state invariant for physical output devices: the access class of the
informtation sent through an output device must be dominated by the maximum access class of this
device.

CPDSecureOutput
ComputerPDevices

∀ pd : PDID | pd ∈ dom outdev • outdevmsc pd � (SUP ◦ ccharToSC ◦ outdev) pd

9.1.2 Invariants of Users

The invariant of this schema is just a consistency property. The set of users recognized by the system
must equals the set of users who have access classes.

86

UConsistency
Users

users = dom usc
working ⊆ users

9.1.3 Invariants of SystemObjects

Again, the first invariant of this type is a consistency property.

SOConsistency
SystemObjects

objs = dom osc = dom ocont
softtcb ⊆ objs

The next property, SOObjectContent , is one of the most important properties to be proved. It
says that an object must contain data as sensitive as the object’s classification. Here the reader may
notice the importance of considering CCHARs and not plain CHARs in order to be able to prove
important properties.

SOObjectContent
SystemObjects

∀ o : OBJECT | o ∈ objs •
osc o � SUP{cc : CCHAR | cc ∈ ran(ocont o) • cc.2}

9.1.4 Invariants of Process

We start with some state predicates describing some basic consistency properties.

PConsistency
Process

mmfw ⊆ ow
mmfr ⊆ or
ncs ≤ #vics⋃

ran vics ⊆ dommem

9.1.5 Invariants of ProcessList

The invariant for this part of the system state is easy: current must be an existing process.

PLConsistency
ProcessList

current ∈ dom aprocs

87

9.1.6 Invariant of Channel

CConsistency
Channel

readers = dom rsc
writers = domwsc
dom bsc ⊆ readers ∪ writers

CBounds
Channel

#readers ≤ MAXRW
#writers ≤ MAXRW
#buffer ≤ BUFFERSIZE

9.1.7 Invariant of IPCMechanisms

IPCMBounds
IPCMechanisms

#ipcm = MAXCHANNELS

9.1.8 Secure System Properties

In this section we account for those invariants that relate two or more components of the system’s
state. The first one is another consistency property relating the state of each process with the other
components of the environment.

SSConsistency
Users
ProcessList
SystemObjects

∀ p : Process | p ∈ ran aprocs •
p.usr ∈ users
∧ p.suid ∈ users
∧ p.or ⊆ objs
∧ p.ow ⊆ objs
∧ p.prog ∈ objs

The property formalized below is esential to the securtity of the system. Users can work on
terminals with access class dominated by their own. In other words, low level users are not permitted
to enter where high level users work. SSSecureLogin says, for instance, that a user cannot enter a
printer’s room if higher level users print on it.

SSSecureLogins
ComputerPDevices
Users

∀ u : USER | u ∈ working • usc u � SUP {outdevmsc 1, outdevmsc 2, outdevmsc 3, }

88

We close this section with a schema composed by the conjuction of all the properties introduced
up to here.

SSInvariants =̂
CPDConsistency
∧ CPDSecureOutput
∧ UConsistency
∧ SOConsistency
∧ SOObjectContent
∧ PLConsistency
∧ CConsistency
∧ CBounds
∧ IPCMBounds
∧ SSConsistency
∧ SSSecureLogins

9.2 The Missed Property

9.3 Simple Security

Simple security is a property formalized in [BL73a, BL73b]. It is stated as follows:

(BLP) If subject s with access class cs has opened object o with access class co then, cs � co .

The intention behind this property is to fulfil the fundamental requirement of the DoD’s security
policy1:

(DoD) Person p with clearance cp may read document d with classification2 cd if and only if cp domi-
nates cd [Gas88].

In requirement engineering, (DoD) is a requirement and (BLP) is its specification [ZJ97]. We want
to implement (DoD) in a different way because we consider that (BLP) is unnecesary restrictive. As
stated, (DoD) says nothing about processes, files, computer memory, and so on. It only talks about
persons, documents and certain access attributes of them. If we succed in implementing a system that
prevents persons to see information they are unauthorized to see, then our system obeys (DoD).

In our model, persons are elements of USER (they are not processes), and users can see information
only on their physical terminals. If we build a system that never writes information on a physical
screen when an a user not unathorized to see it is seated in front of this terminal, then we have a
secure system3. Moreover, nobody should matter about what the system does with characters, files
and processes: it could merge files in strange ways, it cuould manage processes in bizarre ways.

We are strongly convinced that if our system verify SFSInv then the previous situation will be
impossible.

On the other hand, by not implementing (BLP) we are allowing that higher files be contaminated
with lower data. But this is an integrity problem, it does not compromise confidentiality. Integrity
will not be assured by implementing (BLP) [CW87]. Moreover, some tasks and features of Linux will
be easier to implement with an apropriate configuration. Consider, for example, /dev/null or how
to make backups. We belive that in doing so trusted processes will be seldom needed.

1DoD is Department of Defense (of the United States of America).
2Clearance and classification are synonimous of access class.
3Ovbiously, physical security must work too.

89

9.4 Where Can Users Work?

In our model users can log in on terminals not trusted as they. One may be tempted to impose
stronger restrictions on where users can work. For example, we could have stated that users can work
only at terminals with their access classes. The reason to impose such a restriction is based on the
fact that, otherwise, we left a door open to some attacks regarding the authentication of users to the
system. A possible scenario is as follows.

• Let us say user u with access class cu is willing to log in on physical terminal pt with maximun
access class cpt , where cu � cpt .

• pt has this access class because it is exposed to certain attacks. For example, pt lays in a public
place, or it is close to a window or outside a TEMPEST room; moreover, pt ’s hardware could
had been built by a company not trusted enough.

• The secret used by u to authenticate to the system must be as trusted as himself, so it must be
classified at cu . If this is not true, then, for example, u may be careless in protecting this secret.

• In order to authenticate to the system u has to show his secret to pt . Here, to show means to
write a password, to use a piece of pt ’s hardware to calculate a key, to enter a PIN, etc.

• Hence, if pt is not trusted as u, then u’s secret could be inadvertly disclosed by u or pourposedly
stolen by pt or an attacker with access to pt ’s room.

• Note that, once u has logged in, the system will not write on pt information with an access class
not dominated by cpt even if u request such an action.

However, by imposing stronger a restrictions as the one stated above we cannot avoid this scenario:
a user can always go and try to log in on a non trusted terminal giving the chance to an attacker to
steal his or her authentication secret4. In consecuence, imposing such a restriction will not make the
system more secure but it certanly make it less usable.

4Tahnks to Felipe Manzano for noticing this fact.

90

Chapter 10

Security Classes

In this chapter we describe security or access classes (SC). Usually a SC is repesented as an ordered
pair which first component is called level and the second is a set of categories (see [Gas88, Cri02]
for more details). SCs should be implemented as an ADT where the hidden data structure will be
an implementation of the state schema, and the interface will comprise the state operations defined
below.

10.1 Basic Types, Parameters, and State Definition

Z Section sc, parents: toolkit

CATEGORY ≈ all the possible categories, departments or need-to-know

scCatFull ≈ is returned when the size of the set of categories reaches its maximun capacity

scOk ≈ is returned when there are no errors in the invocation of some operation

scError ≈ is returned when a non previously specified error occurs in the invocation of some operation

[CATEGORY]

SCREPORT ::= scCatFull | scOk | scError

MAXLEVEL ≈ maximun possible value of a security level

MAXNCAT ≈ maximun size of a category set

MAXLEVEL,MAXNCAT : N

MAXNCAT > 0

We model a SC as a schema comprising to variables with obvious meanings.

SecClass
level : Z
categs : F CATEGORY

The ADT’s invariant says that the level of any SecurityClass must belong to a finite interval, and
that the size of the set of categories must be less or equal to MAXNCAT .

91

SCInv
SecClass

level ∈ 0 . . MAXLEVEL
#categs ≤ MAXNCAT

Domain check proof
prove by reduce;

end proof.

Now, we define the standard partial order over the set of access classes. The symbol � it is read
dominates.
syntax � inrel

� : SecClass ↔ SecClass

∀ x , y : SecClass •
x � y ⇔ x .level ≥ y .level ∧ y .categs ⊆ x .categs

SUP is the least upper bound operator on the set of security classes [Den76]. We define it with
domain on P SecClass and Sup with domain on SecClass × SecClass. Similarly, the greatest lower
boud operators are defined (INF and Inf).

SUP : P1 SecClass → SecClass

∀SC : P1 SecClass •
(SUP SC).level = max{s : SecClass | s ∈ SC • s.level}
∧ (SUP SC).categs =

⋃
{s : SecClass | s ∈ SC • s.categs}

Sup : SecClass → SecClass → SecClass

∀ sc1, sc2 : SecClass •
(Sup sc1 sc2).level = if sc1.level ≥ sc2.level then sc1.level else sc2.level
∧ (Sup sc1 sc2).categs = sc1.categs ∪ sc2.categs

INF : P SecClass → SecClass

∀SC : P SecClass •
(INF SC).level = min{s : SecClass | s ∈ SC • s.level}
∧ (INF SC).categs =

⋂
{s : SecClass | s ∈ SC • s.categs}

Inf : SecClass → SecClass → SecClass

∀ sc1, sc2 : SecClass •
(Inf sc1 sc2).level = if sc1.level ≥ sc2.level then sc2.level else sc1.level
∧ (Inf sc1 sc2).categs = sc1.categs ∩ sc2.categs

On the initial state a security class equals L, i.e. the lower bound of the set of access classes.

SCInit
SecClass

level = 0
categs = ∅

L =̂ SCInit

92

10.2 Operations

SCGetSize returns the number of categories in a given access class.

SCGetSize
ΞSecClass
size! : N
rep! : SCREPORT

size! = #categs
rep! = scOk

SCGetCat returns a list with the catagories of a given access class.

SCGetCat
ΞSecClass
lcategs! : seqCATEGORY
rep! : SCREPORT

ran lcategs! = categs
#lcategs! = #categs
rep! = scOk

SCGetLevel returns the level of a given access class.

SCGetLevel
ΞSecClass
l ! : Z
rep! : SCREPORT

l ! = level
rep! = scOk

SCSetAddCat adds a category to the category set of an access class whenever the current amount
of categories do not equals MAXNCAT . The other precondition (c? /∈ categs) is there just to warn
the programer who will not have a set at implementation level.

SCAddCatOk
∆SecClass
c? : CATEGORY
rep! : SCREPORT

c? /∈ categs
#categs < MAXNCAT
categs ′ = categs ∪ {c?}
level ′ = level
rep! = scOk

There are two possible errors: when categs is full and when an existing category is to be added.

93

SCAddCatE1
ΞSecClass
c? : CATEGORY
rep! : SCREPORT

c? ∈ categs
rep! = scError

SCAddCatE2
ΞSecClass
rep! : SCREPORT

#categs = MAXNCAT
rep! = scCatFull

The total operation is summarized below.

SCAddCatE =̂ SCAddCatE1 ∨ SCAddCatE2

SCAddCat =̂ SCAddCatOk ∨ SCAddCatE

SCSetLevel sets the level of an access class whenever the input level lays in the appropriate interval.

SCSetLevelOk
∆SecClass
l? : Z
rep! : SCREPORT

0 ≤ l? ≤ MAXLEVEL
level ′ = l?
categs ′ = categs
rep! = scOk

SCSetLevelE
ΞSecClass
l? : Z
rep! : SCREPORT

l? < 0 ∨ MAXLEVEL < l?
rep! = scError

SCSetLevel =̂ SCSetLevelOk ∨ SCSetLevelE

The following operation allows to set both the level and the set of categories at the same time. Its
preconditions are obvious if SCAddCat and SCSetLevel have been read.

94

SCSetSCOk
∆SecClass
l? : Z
C ? : F CATEGORY
rep! : SCREPORT

0 ≤ l? ≤ MAXLEVEL
#C ? ≤ MAXNCAT
level ′ = l?
categs ′ = C ?
rep! = scOk

SCSetSCE1 =̂ SCSetLevelE

SCSetSCE2
ΞSecClass
C ? : F CATEGORY
rep! : SCREPORT

#C ? > MAXNCAT
rep! = scError

SCSetSCE =̂ SCSetSCE1 ∨ SCSetSCE2
SCSetSC =̂ SCSetSCOk ∨ SCSetSCE

The interface of this ADT is summarized below.

SCInterface =̂
SCGetLevel
∨ SCGetSize
∨ SCGetCat
∨ SCSetLevel
∨ SCAddCat
∨ SCSetSC

10.3 Proof Obligations

theorem SCSetLevelPI
SCInv ∧ SCSetLevel ⇒ SCInv ′

theorem SCAddCatPI
SCInv ∧ SCAddCat ⇒ SCInv ′

theorem SCSetSCPI
SCInv ∧ SCSetSC ⇒ SCInv ′

theorem SCInterfacePI
SCInv ∧ SCInterface ⇒ SCInv ′

end of Z Section sc

95

Chapter 11

Subject Security Classes

This chapter describes the reationship between users and access classes. Every user have a unique
security class. Moreover, new users may be added to the system and users may have their security
classes changed by MAC administrators. Thus, we model this relation as a partial function from
USER onto SecClass. This relation must be implemented as an abstract data type (ADT).

11.1 Basic Types, Parameters, and State Definition

Z Section subjectsc, parents: sc

USER ≈ all the possible users of the system.

uscOk ≈ is returned when there are no errors in the invocation of some operation.

uscError ≈ is returned when a non previously specified error occurs in the invocation of some opera-
tion.

[USER]

USCREPORT ::= uscOk | uscError

secadm ≈ is the MAC administrator delivered with the system

SECADMIN ≈ is a category reserved for those users enabled to change security classes, i.e. MAC
administrators

secadm : USER
SECADMIN : CATEGORY

As we said above, the relation between users and their security classes is modeled as a partial
function.

UserSecClass
usc : USER 7→ SecClass

The invariant for this ADT says that secadm cannot be removed, and that if a user has category
SECADMIN , then this must be the only one category in her or his access class.

96

USCInv
UserSecClass

secadm ∈ dom usc
(usc secadm).categs = {SECADMIN }
∀ u : USER |

u ∈ dom usc •
SECADMIN ∈ (usc u).categs ⇒ (usc u).categs = {SECADMIN }

Initially the ADT is in a state that, by definition, verifies the invariant.

USCInit =̂ USCInv

11.2 Operations

We will descibe the operations on UserSecClass in part by promoting operations of SecClass (see
chapter 10). Thus, we start this section by introducing the appropriate framing schema for operation
promotion [PST96, Jac97]. This schema defines how usc must be updated when a SecClass operation
is invoked from this level. The last D in the schema name stands for Delta, that is, this framing
schema is used just for operations that change the state. Latter, another framing schema will be
defined for those operations that consult the state.

SecClassToUserSecClassD
∆SecClass
∆UserSecClass
u? : USER
rep1! : USCREPORT

u? ∈ dom usc
(usc u?) = θSecClass
usc′ = usc ⊕ {u? 7→ θSecClass ′}
rep1! = uscOk

The schema above is intended to be used only in successful cases, hence we need to define schemas
for the error cases. We have one implicit error case, when a SecClass operation fails, and one explicit
when user u? does not exist.

USCErrorReport =̂ [ΞUserSecClass; rep1! : USCREPORT | rep1! = uscError]

USCUserNotExist =̂ [ΞUserSecClass; u? : USER | u? /∈ dom usc]

The following operation sets the level of the access class of a given user. It is specified by promoting
SCSetLevel . Note how in the third case we take into account all of the possible failures of SCSetLevel .

USCSetLevelOk =̂ SecClassToUserSecClassD ∧ SCSetLevelOk

USCSetLevelE1 =̂ SCSetLevel ∧ USCUserNotExist ∧ USCErrorReport

USCSetLevelE2 =̂ SCSetLevelE ∧ USCErrorReport

USCSetLevelE =̂ USCSetLevelE1 ∨ USCSetLevelE2

USCSetLevel =̂ USCSetLevelOk ∨ USCSetLevelE

97

The addition of a category to the access class of a given user cannot be described just by promotig
SCAddCat because at this level we must see whether SECADMIN category is to be added or not.
Note that the category set of secadm cannot be changed; this precondition is redundant given the
second one but we belive it is a good idea to reinforce this property.

USCAddCatOk
SecClassToUserSecClassD
SCAddCatOk

u? 6= secadm
c? = SECADMIN ⇒ (usc u?).categs = ∅

USCAddCatE1 =̂ SCAddCat ∧ USCUserNotExist ∧ USCErrorReport

USCAddCatE2
SCAddCat
USCErrorReport
u? : USER
c? : CATEGORY

u? = secadm ∨ (c? = SECADMIN ∧ (usc u?).categs 6= ∅)

USCAddCatE3 =̂ SCAddCatE ∧ USCErrorReport

USCAddCatE =̂ USCAddCatE1 ∨ USCAddCatE2 ∨ USCAddCatE3

USCAddCat =̂ USCAddCatOk ∨ USCAddCatE

Now, we introduce an operation that sets the level and the category set at the same time. Again,
a little bit of extra preconditions should be considered.

USCSetSCOk
SecClassToUserSecClassD
SCSetSCOk

u? 6= secadm
SECADMIN ∈ C ? ⇒ ((usc u?).categs = ∅ ∧ C ? = {SECADMIN })

USCSetSCE1 =̂ SCSetSC ∧ USCUserNotExist ∧ USCErrorReport

USCSetSCE2
SCSetSC
USCErrorReport
u? : USER
C ? : P CATEGORY
l? : Z

u? = secadm
∨ (SECADMIN ∈ C ?

∧ ((usc u?).categs 6= ∅ ∨ C ? 6= {SECADMIN }))

98

USCSetSCE3 =̂ SCSetSCE ∧ USCErrorReport

USCSetSCE =̂ USCSetSCE1 ∨ USCSetSCE2 ∨ USCSetSCE3

USCSetSC =̂ USCSetSCOk ∨ USCSetSCE

Below we define the framing schema for promoting operations that consult the state; the X at the
end of the name stands for Xi (i.e. Ξ).

SecClassToUserSecClassX
ΞSecClass
ΞUserSecClass
u? : USER
rep1! : USCREPORT

u? ∈ dom usc
(usc u?) = θSecClass
usc′ = usc
rep1! = uscOk

The rest of this section describes the promotion of operations that consult the state; their names
are self explanatory. The last schema defines the ADT’s interface.

USCGetSizeOk =̂ SecClassToUserSecClassX ∧ SCGetSize

USCGetSizeE =̂ USCUserNotExist ∧ USCErrorReport

USCGetSize =̂ USCGetSizeOk ∨ USCGetSizeE

USCGetCatOk =̂ SecClassToUserSecClassX ∧ SCGetCat

USCGetCatE =̂ USCUserNotExist ∧ USCErrorReport

USCGetCat =̂ USCGetCatOk ∨ USCGetCatE

USCGetLevelOk =̂ SecClassToUserSecClassX ∧ SCGetLevel

USCGetLevelE =̂ USCUserNotExist ∧ USCErrorReport

USCGetLevel =̂ USCGetLevelOk ∨ USCGetLevelE

USCInterface =̂
USCGetLevel
∨ USCGetSize
∨ USCGetCat
∨ USCSetLevel
∨ USCAddCat
∨ USCSetSC

99

11.3 Proof Obligations

theorem USCSetLevelPI
USCInv ∧ USCSetLevel ⇒ USCInv ′

theorem USCAddCatPI
USCInv ∧ USCAddCat ⇒ USCInv ′

theorem USCSetSCPI
USCInv ∧ USCSetSC ⇒ USCInv ′

theorem USCInterfacePI
USCInv ∧ USCInterface ⇒ USCInv ′

end of Z Section subjectsc

100

Chapter 12

Global Terms and Synonimous

In this chapter we gathered some types and schemas that are used in the definition of several operations.

12.1 Basic Types

12.1.1 Error Reports

Z Section definitions, parents: state

The following labels are used in many operations to signal error conditions.

SFSREPORT ::=
ok
| objectDoesNotExist
| objectAlreadyExists
| objectIsNotOpenForReading
| objectIsNotOpenForWriting
| userDoesNotExist
| permissionDenied
| wrongParameter
| processDoesNotExist
| maxReached
| notInChannel
| noData

12.1.2 Basic Modes

Files can be opened in two modes:

read ≈ is pure read, that is the process can read from anywhere in the file but cannot modify it in
any way

write ≈ is pure write, that is the process can modify it anywhere but cannot see nothing of it

MODE ::= read | write

If a process needs to edit a file then it should open it in both modes.

101

12.2 Some Global Parameters

As was introduced in [Den76] we need a general and abstract n-ary operator that combines its argu-
ments to produce a result. We define it as follows:

combine : P N → CHAR

where the domain is intended to be used as a set of indexes pointing to elements of mem. combine
will be used just in the Assigment operation.

Also, in some operations we need to extract the access classes of a set of CCHAR’s; we do it with
the following function:

ccharToSC : P CCHAR → P SecClass

∀C : P CCHAR • ccharToSC C = {c : C • c.2}

Since for some operations we need to know the name of each object, and for programs its sintactical
structure and set of variables, we introduce the following oracles.

objName : OBJECT → seqCCHAR
progStruct : OBJECT → seq(P N)
progVars : OBJECT → seqCCHAR

parentDir o ≈ is the parent directory of o

parentDir : OBJECT → OBJECT

suidto o ≈ the user to whom a process (which was created by running program o) can set its identity
by invoking Setuid ; objects that are not programs or programs that do not have their SUID
bits on, are mapped by suidto to some default, non existent user; in other words this function
represents a combination of the state of the SUID bit of each file and its owner.

suidto : OBJECT → USER

12.3 Auxiliar Schemas

12.3.1 Building Processes

PGetError
∆Process
esc : SecClass

mem ′ = mem ⊕ {0 7→ ((mem 0).1,Sup (mem 0).2 esc, (mem 0).3)}
vics ′ = vics ∧ prog ′ = prog ∧ ncs ′ = ncs ∧ cstack ′ = cstack
usr ′ = usr ∧ suid ′ = suid ∧ or ′ = or ∧ ow ′ = ow
mmfr ′ = mmfr ∧ mmfw ′ = mmfw

PGetTwoErrors =̂ PGetError [oesc/esc] o
9 PGetError [nesc/esc]

PGetErrorRead =̂ PGetError \ (or , or ′)

PGetErrorWrite =̂ PGetError \ (ow , ow ′)

102

POpenRead
∆Process
PGetErrorRead
o? : OBJECT

or ′ = or ∪ {o?}

POpenWrite
∆Process
PGetErrorWrite
o? : OBJECT

ow ′ = ow ∪ {o?}

PRead
∆Process
sc : SecClass
buff : seqCCHAR

mem ′ = mem a {v : dom buff • v + #mem 7→ ((buff v).1, sc, (buff v).3)}
vics ′ = vics ∧ prog ′ = prog ∧ ncs ′ = ncs ∧ cstack ′ = cstack
usr ′ = usr ∧ suid ′ = suid ∧ or ′ = or ∧ ow ′ = ow
mmfr ′ = mmfr ∧ mmfw ′ = mmfw

PCRead
∆Process
buff : seqCCHAR

mem ′ = mem a buff
vics ′ = vics ∧ prog ′ = prog ∧ ncs ′ = ncs ∧ cstack ′ = cstack
usr ′ = usr ∧ suid ′ = suid ∧ or ′ = or ∧ ow ′ = ow
mmfr ′ = mmfr ∧ mmfw ′ = mmfw

In some operations we need to update the process’ memory with the error returned by the system
and the data read from somewhere. This is specified in the following schema.

PReadComplete =̂ PGetError o
9 PRead

PCReadComplete =̂ PGetError o
9 PCRead

12.3.2 Common Errors

ParentDirForbbiden
ΞSecureSystem
o? : OBJECT
rep0! : SFSREPORT

¬ osc (parentDir o?) � SUP (ccharToSC (ran(objName o?)) ∪ ran(aprocs current).cstack)
rep0! = permissionDenied

103

UserNotExist
ΞSecureSystem
u? : USER
rep0! : SFSREPORT

u? /∈ users
rep0! = userDoesNotExist

end of Z Section definitions

104

Index

Symbols
Assigment 34
BConditional 35
BUFFERSIZE 18
BorrowDocument 84
BorrowDocumentOk 84
CATEGORIES 83
CATEGORY 91
CBounds 88
CCHAR 12
CConsistency 88
CHAR 12
CHARS 83
CID 19
CPDConsistency 86
CPDSecureOutput 86
Channel 18
Chdevsc 23
ChdevscE 23
ChdevscE1 23
ChdevscE2 23
ChdevscOk 23
ChdevscOk1 22
ChdevscOk2 22
Chinsc 25
ChinscE 25
ChinscE1 24
ChinscE2 24
ChinscOk 24
Chobjsc 26
ChobjscE 26
ChobjscE1 26
ChobjscE2 26
ChobjscOk 26
ChobjscOk1 25
ChobjscOk2 26
Chsubsc 27
ChsubscE 27
ChsubscE1 27
ChsubscE2 27
ChsubscOk 27
Close 38

CloseE 38
CloseE1 38
CloseOk 38
ComputerPDevices 14
Create 40
CreateE 40
CreateOk 40
CreateOk1 39
CreateOk2 40
DOCUMENTS 83
Die 53
EConditional 36
EMPLOYEES 83
Exec 43
ExecE 43
ExecOk 43
ExecOk1 41
ExecOk2 42
ExecOk3 42
Fork 44
ForkOk 44
INF 92
IPCMBounds 88
IPCMechanisms 19
Inf 92
Input 28
InputOk 28
IpcGetRead 45
IpcGetReadE 45
IpcGetReadE2 45
IpcmGetReadE1 45
IpcmGetReadOk 45
IpcmGetWrite 47
IpcmGetWriteE 47
IpcmGetWriteE1 46
IpcmGetWriteOk 46
IpcmRead 48
IpcmReadE 48
IpcmReadE1 48
IpcmReadE2 48
IpcmReadOk 47
IpcmReleaseRead 49

105

IpcmReleaseReadE 49
IpcmReleaseReadE1 49
IpcmReleaseReadOk 49
IpcmReleaseWrite 50
IpcmReleaseWriteE 50
IpcmReleaseWriteE1 50
IpcmReleaseWriteOk 50
IpcmWrite 52
IpcmWriteE 52
IpcmWriteE1 52
IpcmWriteE2 52
IpcmWriteE3 52
IpcmWriteOk 51
KillE 54
KillOk21 53
KillOk22 54
L 92
LEVELS 83
Link 58
LinkE 58
LinkOk 58
LinkOk1 57
LinkOk2 57
LinkOk3 58
LinkS 56
LinkSE 56
LinkSE1 56
LinkSE2 56
LinkSOk 56
LinkSOk1 55
LinkSOk2 55
Login 31
LoginE 31
LoginE1 30
LoginE2 31
LoginOk 31
LoginOk1 30
LoginOk2 30
MAXCHANNELS 19
MAXLEVEL 91
MAXNCAT 91
MAXRW 18
MODE 102
Mmap 61
MmapE 61
MmapOk 61
MmapOk1 60
MmapOk2 60
ModifyDocument 85
ModifyDocumentOk 85

OBJECT 15
OCONT 15
ObjectAlreadyExists 104
Open 62
OpenE 62
OpenE1 62
OpenFrame 62
OpenOk 62
OpenOk1 62
OpenOk2 62
OpenOk3 62
Organization 83
Oscstat 63
PAssigment 34
PBConditional 35
PCRead 104
PClose 38
PConsistency 87
PDID 13
PDInit 13
PDRead 66
PDevice 13
PEConditional 36
PExec 41
PGetError 103
PLConsistency 87
PLInit 17
PLogin1 29
PLogin2 29
PMmap 59
POpenRead 103
POpenWrite 103
PROCID 17
PRead 104
PSetuid 70
ParentDirDoesNotExist 104
ParentDirForbbiden 104
Process 17
ProcessList 17
PsE 64
PsOk1 64
PsOk2 64
Read 66
ReadDev 67
ReadDevE 67
ReadDevOk 67
ReadE 66
ReadOk 65
ReadRestriction 84
Rename 69

106

RenameE 69
RenameOk 69
RenameOk1 68
RenameOk2 68
RenameOk3 69
SC 83
SCAddCat 94
SCAddCatE 94
SCAddCatE1 94
SCAddCatE2 94
SCAddCatOk 93
SCAddCatPI 95
SCGetCat 93
SCGetLevel 93
SCGetSize 93
SCInit 92
SCInterface 95
SCInterfacePI 95
SCInv 92
SCREPORT 91
SCSetLevel 94
SCSetLevelE 94
SCSetLevelOk 94
SCSetLevelPI 95
SCSetSC 95
SCSetSCE 95
SCSetSCE1 95
SCSetSCE2 95
SCSetSCOk 95
SCSetSCPI 95
SECADMIN 96
SFSInv 89
SFSREPORT 101
SOConsistency 87
SOInit 16
SOObjectContent 87
SSConsistency 88
SSSecureLogins 89
SUP 92
Sched 81
SchedE 81
SchedOk 80
SecClass 91
SecClassToUserSecClassD 97
SecClassToUserSecClassX 99
SecureSystem 19
Setuid 72
SetuidE 72
SetuidE1 72
SetuidE2 72

SetuidOk 72
SetuidOk1 70
SetuidOk2 71
SetuidOk3 71
Stat 54, 64, 73
StatOk1 73
StatOk2 73
Sup 92
SystemObject 15
UConsistency 87
UInit 15
UInit1 15
USCAddCat 98
USCAddCatE 98
USCAddCatE1 98
USCAddCatE2 98
USCAddCatE3 98
USCAddCatOk 98
USCAddCatPI 100
USCErrorReport 97
USCGetCat 99
USCGetCatE 99
USCGetCatOk 99
USCGetLevel 99
USCGetLevelE 99
USCGetLevelOk 99
USCGetSize 99
USCGetSizeE 99
USCGetSizeOk 99
USCInit 97
USCInterface 99
USCInterfacePI 100
USCInv 97
USCREPORT 96
USCSetLevel 98
USCSetLevelE 98
USCSetLevelE1 98
USCSetLevelE2 98
USCSetLevelOk 98
USCSetLevelPI 100
USCSetSC 99
USCSetSCE 99
USCSetSCE1 98, 99
USCSetSCE3 99
USCSetSCOk 98
USCSetSCPI 100
USCUserNotExist 97
Unlink 74
UnlinkOk1 74
UnlinkOk2 74

107

UserNotExist 105
UserSecClass 96
Users 14
Write 76
WriteDev 78
WriteDevE 78
WriteDevE1 78
WriteDevE2 78
WriteDevE3 78
WriteDevOk 77
WriteDocument 85
WriteDocumentOk 84
WriteE 76
WriteE1 76
WriteE2 76
WriteE3 76
WriteOk 75
� 92
aprocs 17
bsc 18
buffer 18
cstack 17
editDocuments 85
indev 14
indev(−1) 14
indevcsc 14
indevmsc 14
ipcm 18
mmfr 16
mmfw 16
ncs 17
nextinput 14
objs 15
ocont 15
or 16
osc 15
outdev 13
outdev(1) 13
outdev(2) 14
outdev(3) 14
outdevmsc 14
ow 16
parentDir 102
prog 16
put in mem 102
read inode 102
readers 18
root 15
rootdir 102
rsc 18

secadm 15, 96
secshell 16
shell 16
softtcb 16
suid 16
suidto 103
toproc 13
users 14
usr 16
vars 16
vics 17
working 14
write inode 102
writedev 102
writers 18
wsc 18

108

Bibliography

[AJP95] Marshall D. Abrams, Sushil Jajodia, and Harold J. Podell. Information Security: an inte-
grated collections of essays. IEEE Computer Society press, 1995.

[BL73a] D. Elliot Bell and Leonard LaPadula. Secure computer systems: Mathematical foundations.
MTR 2547, The MITRE Corporation, May 1973.

[BL73b] D. Elliot Bell and Leonard LaPadula. Secure computer systems: Mathematical model.
ESD-TR 73-278, The MITRE Corporation, November 1973.

[CGM03] Maximiliano Cristiá, Gisela Giusti, and Felipe Manzano. Gúıa del diseño y la imple-
mentación de GTL 0.1. Grupo de Investigación y Desarrollo en Ingenieŕıa de Software
y Seguridad, www.fceia.unr.edu.ar/gidis, July 2003.

[Cri02] Maximiliano Cristiá. Formal verification of an extension of a secure, compatible unix file sys-
tem. Master’s thesis, Departamento de Computación, Universidad de la República, Uruguay,
2002.

[CW87] D. D. Clarke and D. R. Wilson. A comparison of commercial and military computer security
policies. In IEEE symposium on security and privacy, pages 184–194, 1987. IEEE Computer
Society Press.

[Den76] Dorothy E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–243, May 1976.

[Eva94] Andy S. Evans. Specifying and verifying concurrent systems using Z. In Maurice Naftalin,
Tim Denvir, and Miquel Bertran, editors, FME ’94: Industrial Benefit of Formal Methods,
pages 366–380, 1994.

[Gas88] Morrie Gasser. Building a Secure Computer System. Van Nostrand Reinhold, 1988.

[Jac97] Jonathan Jacky. The Way of Z. Cambridge University Press, 1997.

[Lan81] Carl E. Landwehr. Formal models for computer security. ACM Computing Surveys,
13(3):247–278, September 1981.

[Par89] Thomas J. Parenty. The incorporation of multi-level IPC into UNIX. In IEEE Symposium
on Security and Privacy, pages 94–99, 1989.

[PST96] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Specification and Z.
Prentice Hall International, 1996.

[ZJ97] Pamela Zave and Michael Jackson. Four dark corners of requirements engineering. ACM
Transactions on Software Engineering and Methodology, 6(1), January 1997.

109

	Overview of the Model
	Factors that Affect the Usability of MLS Systems
	Moving the Access Control
	All Inputs Are Not Equally Important
	Access Classes of New Objects
	Empty Objects

	Guiding Principles
	Physical Protection
	Trusted Computer Base
	Key Security Features of the GTL Formal Model
	Style conventions

	The State of the Secure System
	Physical Input and Output Devices
	Users Allowed to Work on the System
	Protected Objects
	The Access Class of Directories

	Processes
	Communication Channels
	The Whole State

	Operations Controlled by the User
	Chdevsc
	Chinsc
	Design and Implementation Comments

	Chobjsc
	Chsubsc
	Input
	Login
	Design and Implementation Comments

	The Interface for the User

	Programming Instructions
	Assignment
	Begin Conditional
	End Conditional
	The Programming Language

	Operations Controlled by Processes
	Close
	Create
	Exec
	Design and Implementation Comments

	Fork
	Design and Implementation Comments

	IpcGetRead
	IpcGetWrite
	IpcRead
	IpcReleaseRead
	IpcReleaseWrite
	IpcWrite
	Kill
	LinkS
	Link
	Mmap
	Open
	Oscstat
	Ps
	Read
	ReadDev
	Rename
	Setuid
	Stat
	Unlink
	Write
	WriteDev
	The Interface to be Used by Processes

	Operations Controlled by the System
	Sched
	System Internal Operations

	The Transition Relation
	A Formal Model for Military Security
	The Organization and its Components
	The User's Requirements
	Military Security

	Proof Obligations and Properties
	State Invariants
	Invariants of ComputerPDevices
	Invariants of Users
	Invariants of SystemObjects
	Invariants of Process
	Invariants of ProcessList
	Invariant of Channel
	Invariant of IPCMechanisms
	Secure System Properties

	The Missed Property
	Simple Security
	Where Can Users Work?

	Security Classes
	Basic Types, Parameters, and State Definition
	Operations
	Proof Obligations

	Subject Security Classes
	Basic Types, Parameters, and State Definition
	Operations
	Proof Obligations

	Global Terms and Synonimous
	Basic Types
	Error Reports
	Basic Modes

	Some Global Parameters
	Auxiliar Schemas
	Building Processes
	Common Errors

