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Abstract.-  The Lower Jurassic Ab-Haji Formation of the Kalmard, Tabas and Lut blocks, east-central Iran, has been 
studied using an integrated stratigraphic-sedimentologic approach. The Ab-Haji Formation is mostly composed of 
greenish sandstones and siltstones and locally contains thin coal seams. Four well exposed sections were measured 
and studied in order to identify lithofacies and facies associations and to interpret the palaeoenvironment. This 
formation reaches a thickness up to 350 m in northern Tabas Block but may locally be reduced to few tens of meters or 
even missing. Field studies have led to the recognition of sixteen lithofacies grouped into five facies associations: 
fluvial plain, coastal plain, delta front, prodelta and shallow siliciclastic shelf. Reconstruction of the palaeogeography 
of east-central Iran marks a west–east continental-to-marine gradient. Thickness variations, lateral facies changes and 
basal unconformity of the siliciclastic rocks of the Ab-Haji Formation on the Kalmard, Tabas and Lut blocks show 
palaeo-relief on the fault-bounded Yazd Block in the west and the Shotori Swell at the eastern edge of the Tabas Block. 
The pattern of thickness variations and rapid EW facies changes is best explained by a tectonic model showing large 
tilted fault blocks in an extensional basin. The obtained results are important for palaeogeographic and 
palaeoenvironmental reconstructions of the east-central Iran since its sediments record the geodynamic history of this 
region, as well as an even larger area, during and in the aftermath of the main Cimmerian event, from the beginning of 
the Early Jurassic.
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Resumen.- Paleoambientes y architectura de cuenca de la Formación Ab-Haji (Lower Jurassic), centro-este de 
Irán.- Los depósitos de la Formación Ab-Haji (Jurásico Inferior) en los bloques Kalmard, Tabas y Lut se han 
estudiado integrando métodos estratigráficos y sedimentológicos. Esta formación se compone primariamente de 
areniscas y limolitas verdosas las cuales localmente contienen delgados niveles carbonosos. El estudio comprende 
cuatro secciones bien expuestas, seleccionadas para la identificación de litofacies y asociaciones de facies con el 
objetivo de interpretar el paleoambiente. En el sector norte del Bloque Tabas la Formación Ab-Haji alcanza un espesor 
de hasta 350 m aunque localmente puede observársela reducida a pocas decenas de metros o inclusive estar ausente. 
Las observaciones de campo nos permitieron reconocer dieciseis litofacies que hemos agrupado en cinco asociaciones 
faciales: planicie fluvial, planicie costera, frente de delta, prodelta y plataforma somera siliciclástica.  La 
reconstrucción paleogeográfica del centro-este de Irán obtenida para el Jurásico Temprano indica un pasaje gradual en 
sentido oeste-este, de ambientes continentales a marinos. Las variaciones de espesor, los cambios laterales de facies y 
la discordancia de las rocas siliciclásticas de la Formación Ab-Haji en la región estudiada indican un paleorelieve 
sobre el Bloque Yazd en el oeste y el altofondo Shotori en el borde oriental del Bloque Tabas. La conjunción del patrón 
de variaciones de espesor y los rápidos cambios faciales en sentido este-oeste se explica satisfactoriamente a partir de 
un modelo tectónico que incluye grandes bloques basculantes en una cuenca extensional. Los resultados obtenidos 
son importantes para las reconstrucciones paleogeográficas y paleoambientales de la región centro-oriental de Irán 
donde sus sedimentos registran la historia geodinámica de esta región. Esto es extensible a un área mayor durante el 
Evento Cimmérico principal, a partir del inicio del Jurásico Temprano.
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INTRODUCTION

The Cimmerian Orogeny largely governed the Late Triassic 
and Jurassic sedimentation patterns of the composite Iran Plate, 
including the Central-East Iranian Microcontinent (CEIM; see 
Wilmsen et al. 2009a, b). The CEIM (name introduced by Takin 
1972) consists of three large fault-bounded structural units of 
north–south-orientation, named the Lut, Tabas and Yazd blocks 
(Fig. 1A). The tectonic instability of the area is reflected by 
several sedimentologic and stratigraphic signatures (see 
Fürsich et al. 2003, Wilmsen et al. 2003, Seyed-Emami et al. 
2004a, Fürsich et al. 2009b, Wilmsen et al. 2009a, 2009b, 
Wilmsen et al. 2010, Zamani-Pedram 2011).
 Geodynamic models place Jurassic deposits of east-central 
Iran in an extensional continental back-arc basin (Brunet et al. 
2003, Wilmsen et al. 2009b; Fig. 2 this report). Previous 
lithostratigraphic and palaeoenvironmental studies of the 
underlying Upper Triassic deposits and the overall stratigraphy 
and facies of Jurassic strata in east-central Iran in fact 
suggested that the three blocks Lut, Tabas, and Yazd represent 
large tilted fault blocks in an extensional basin (Fürsich et al. 
2005, Wilmsen et al. 2009a, Wilmsen et al. 2010).

On this framework, the Lower Jurassic Ab-Haji Formation 
has been proposed to be largely non-marine and to show a west-
east continental-marine gradient (Wilmsen et al. 2009a). 
However, because the formation had not yet been studied in 
detail, its large thickness variations and facies distribution 
patterns remained unexplored.

In order to test the hypothesis that the Ab-Haji Fm records 
Early Jurassic tilting, uplift and erosion of the above mentioned 
central-east Iranian blocks, we performed a detailed 
lithostratigraphic study, as well as a facies analysis of these 
deposits. The obtained results also document the facies 
development and evolution of the Ab-Haji Basin. This case 
study provides an important piece for understanding the 

complex geodynamic puzzle of the Mesozoic evolution of the 
Tethysides super-orogenic complex (Sengör 1984, Sengör et 
al. 1988).

TECTONIC AND PALAEOGEOGRAPHIC 
FRAMEWORK

The Iran Plate, an element of the Cimmerian microplate 
assemblage, became detached from Gondwana during the 
Permian and collided with the Turan Plate of Eurasia during the 
Late Triassic, thereby closing the Palaeotethys (Eo-Cimmerian 
event; e.g., Stöcklin 1974, Stampfli & Borel 2002, Fürsich et al. 
2009a, Wilmsen et al. 2009b, Zanchi et al. 2009; see Fig. 2A 
this report). This Eo-Cimmerian Orogeny transformed the 
northern margin of the Iran Plate into an underfilled Carnian-
Rhaetian flexural foreland basin (Wilmsen et al. 2009b). At the 
same time, Neotethys subduction started at the southern margin 
of the Iran Plate. This process reduced the compression of the 
Iran Plate so that subsequently extensional basins formed 
which were filled with up to 3000 m of marine Norian-Rhaetian 
sediments (Nayband Formation of central Iran; see e.g. Fursich 
et al. 2005).

Palaeogeographic reconstructions for the Early Jurassic 
(Thierry 2000, Barrier & Vrielynck 2008) place the Iran Plate at 
the northern margin of the Neo-Tethys (Fig. 2A). 
Sedimentological and stratigraphical analyses (i.e., 
distribution of marine and non-marine strata) indicate that the 
Lut and part of Tabas blocks were mostly covered by the sea 
during the Early Jurassic whereas most of the Yazd Block 
remained emergent (Lower Jurassic stratigraphic gap).

The main Cimmerian uplift and foreland deformation event 
during the Cimmerian Orogeny occurred at the Triassic-
Jurassic boundary, followed by a rapid denudation of the 
Cimmerian Mountains in northern Iran (Wilmsen et al. 2009b, 

Figure 1. A: Structural, geological and geographic framework of Iran showing the main structural units and geographic areas. B: Locality map of east-
central Iran with major structural units (blocks and block-bounding faults modified from Wilmsen et al. 2009a). The studied sections are indicated by black 
rectangles: Kuh-e-Rahdar (1), Simin-Sepahan (2), Parvadeh (3), Kuh-e-Shisui (4). The broken line through sections 1-4 indicates the lithostratigraphic W-
E cross section shown in Fig. 8.
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Figure 2. A: Early Jurassic palaeogeography of the central Tethys 
(modified after Barrier & Vrielynck 2008). The Lut, Tabas and Yazd blocks 
are shown in assumed Early Jurassic orientation. Ab: Alborz, CI: Central 
Iran, Tb: Tabas, Ya: Yazd, Bi: Binalud. B: Geodynamic model of Iran 
during the Hettangian-Pliensbachian (main-Cimmerian event) through the 
transect - indicated in A. Modified from Wilmsen et al. 2009b.

2009c). This event also resulted in the termination of the 
marine sedimentation, followed by non-deposition or erosion, 
source-area rejuvenation, and deposition of the Lower Jurassic 
Ab-Haji Fm in east-central Iran (Wilmsen et al. 2009a).

Evidence of the Mid-Cimmerian tectonic event (Bajocian 
in age) is observed all across the Iran Plate (northern and east-
central Iran) where it is documented by conspicuous inter-
regional unconformities. Their origin can be related to plate-
tectonic processes in the South Caspian area (Brunet et al. 
2003, Fürsich et al. 2009b) and at the southern margin of the 
Iran Plate (Wilmsen et al. 2009a). On the Tabas Block, the Mid-
Cimmerian unconformity is well developed and associated 
with considerable erosion and, locally, mild folding (Wilmsen 
et al. 2003, Wilmsen et al. 2009a). The Late Cimmerian event 
(Late Jurassic-earliest Cretaceous) resulted in intensive block-
faulting in east-central Iran (Wilmsen et al. 2010).

Published geodynamic models (e.g., Davoudzadeh et al. 
1981, Soffel & Förster 1984, Soffel et al. 1996, Alavi et al. 
1997, Besse et al. 1998) have suggested that the CEIM 
experienced post-Triassic counterclockwise rotation (about 
135°) around a vertical axis to its present-day position, and that 
this rotation was associated with considerable lateral 
movements along the block-bounding faults (Figs. 1A, 2A). 
Rotation took mainly place in post-Jurassic times (Esmaeily et 
al. 2007, Bagheri & Stampfli 2008, Wilmsen et al. 2009b) 
although the timing has been questioned by some recent studies 
(e.g., Muttoni et al. 2009). Nevertheless, Cifelli et al. (2013) 
recently suggested that the block-bounding fault between the 
Tabas and Lut blocks changed from an extensional regime 
during the Jurassic to a right-lateral transpressional regime 

between the Early Cretaceous and Palaeocene. Furthermore, 
Mattei et al. (2012) have documented significant Neogene 
counterclockwise rotation (20–35°) of the Tabas and Yazd 
blocks.

UPPER TRIASSIC-MIDDLE JURASSIC 
STRATIGRAPHY

There is a conspicuous change from Middle Triassic platform 
carbonates (Shotori Fm) to Norian-Bajocian siliciclastic rocks 
of the Shemshak Group of east-central Iran (Seyed-Emami 
2003, Fürsich et al. 2005, Fürsich et al. 2009a). This 
unconformity-bounded group is bordered by the Eo-
Cimmerian unconformity at its base and the Mid-Cimmerian 
unconformity at its top (Fig. 3).
 In all the studied areas (Kalmard Block, northern Tabas 
Block, Lut Block), the Upper Triassic Nayband Fm of the lower 
Shemshak Group is well developed (Fig. 3). This widespread 
unit consists mainly of fine-grained marine siliciclastics and 
carbonates containing abundant fossils (Hautmann 2001, 
Fürsich et al. 2005, Senowbari-Daryan et al. 2010, Hautmann 
et al. 2011). Upwards the Nayband Fm is overlain by the 
siliciclastic strata of the Lower Jurassic Ab-Haji Fm. The type 
area of the formation is located in the Kalmard area, near Kuh-
e-Rahdar, northwestern Tabas Block (Aghanabati 1975) 
where, however, it is only 82 m thick (see below and Fig. 1B).
 The Ab-Haji Fm crops out from the eastern margin of the 
Yazd Block throughout much of the Tabas Block, except at its 
eastern margin (Shotori Mountains), and onto the western Lut 
Block (Fig. 3). It reaches a thickness of up to 350 m, but locally 
may be reduced to a few tens of meters. It mainly consists of 
thin- to thick-bedded greenish sandstones and siltstones and 
locally contains rare thin coal seams (Fig. 4A). Over much of 
the Tabas Block, the basal contact is marked by coarse-grained 
quartzarenite (Fig. 4B, C). Depositional environments range 
from fluvial plain, coastal plain, delta and shallow marine (see 
below).
 During the Aalenian in the southern Tabas Block and 
already in the Toarcian on the Lut Block, a pronounced 
transgression initiated the deposition of the comparatively 
condensed, ammonite-rich and dark, often oolitic limestones, 
marls and siliciclastic rocks of the Badamu Fm (Seyed-Emami 
1971, Seyed-Emami et al. 2000, Seyed-Emami et al. 2004b; 
Figs. 3, 4D this report).
 The overlying Early Bajocian Hojedk Fm is usually easily 
identified as the siliciclastic package between the carbonates of 
the underlying Badamu Fm and the overlying Parvadeh Fm 
(see Fig. 3). Its top is below the Mid-Cimmerian unconformity. 
In the eastern part of the Tabas Block and on the Lut Block, the 
Hojedk Fm is generally marine and can be dated by its 
ammonites (e.g. Seyed-Emami et al. 2004b). Towards the west, 
its character changes to marginal marine and fluvial, and 
includes coal seams. The Hojedk Fm, like the Ab-Haji Fm, is 
characterized by rapid lateral facies and thickness changes.
 The pronounced transgression following the Middle 
Bajocian Mid-Cimmerian unconformity initiated deposition of 
the Late Bajocian to Early–Middle Bathonian condensed, 
oncolitic-microbial limestones and siliciclastic rocks of the 
Parvadeh Fm (30 to 150 m; Wilmsen et al. 2009a; Fig. 3 this 
report). Strata of the Parvadeh Fm were deposited across the 
Tabas Block and also onlap the Shotori Swell. In the western 
part of the Lut Block, the Parvadeh Fm is replaced by the 
marine sandstones of the informal Qal'eh Dokhtar Sandstone 
formation (Fig. 3).
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Figure 3. Lithostratigraphic framework of the Upper Triassic to Lower Middle Jurassic series of the northern Tabas Block, as well as the western Lut 
Block, east-central Iran (modified from Wilmsen et al. 2009a).

MATERIAL AND METHODS

This study integrates lithostratigraphic and sedimentologic 
data collected during three field seasons in the Lut, Tabas and 
Kalmard blocks. Four stratigraphic sections were measured 
bed-by-bed in considerable detail using a Jacob Staff (Sdzuy & 
Monninger 1985). Analysis of sedimentary structures, grain-
size and components (using hand-lens), study of stratal 
architecture and field tracing of individual strata to document 
lateral and vertical stacking patterns and facies distribution 
supplemented the data.
 Lithofacies were defined based on sedimentary structures 
and lithology. We used a modified lithofacies classifications of 
Miall (1985, 2006) for facies analysis. Sixteen lithofacies types 
(Table 1) and five facies associations were established. Facies 
associations were defined by stratal characteristics or by 
groups of genetically related strata sets, grain size, constituent 
lithofacies, and vertical and lateral relationships which allowed 
the interpretation of depositional settings and the 
palaeogeography of east-central Iran during the Early Jurassic. 
In addition, paleocurrent indicators were measured at eight 
locations to constrain dispersal patterns.

THE STUDIED SECTIONS

The four studied sections are part of a cross-section trending 
east-west through the Kalmard, Tabas, and Lut blocks (Fig. 
1B). In the following, the Ab-Haji Fm is briefly described from 

base to top in the four stratigraphic sections.

Kuh-e-Rahdar section (Fig. 5A): The Ab-Haji Fm reaches 82 
m in thickness in its type area, Kuh-e-Rahdar in northwestern 
Tabas Block. The thickness of 480 m reported by Aghanabati 
(1975) also included the overlying Badamu Fm, which is very 
thick at this locality, consisting of more than 200 m of 
intercalated packages of oolitic limestone, sandstone and shale 
(Wilmsen et al. 2009a). The contact with the bioclastic 
limestone of the underlying Permian Khan Fm is sharp, being 
marked by a 1-m-thick, red conglomerate (Figs. 4A, 5A). Up-
section, the Ab-Haji Fm continues with 30 meters of  inter-
bedded shale and green sandstones with small climbing ripple 
lamination and hummocky cross-stratification (at 16 m; Fig. 
5A). This unit gradually grades into about 10 m of laminated 
green shale. The uppermost part of the succession constitutes a 
40 m thick coarsening-upward sequence with thick-bedded, 
grey to green, fine- to medium-grained sandstone rich in plant 
debris. The boundary to the overlying oolitic limestone of the 
Badamu Fm is sharp.

Simin-Sepahan section (Fig. 5B): The Ab-Haji Fm in western 
Tabas Block was measured at Simin-Sepahan, approximately 
60 km west of Tabas, north of the road from Tabas to Yazd. The 
contact to the underlying Nayband Fm is gradual and was 
placed on the top of thick-bedded, grey marginal-marine 
sandstones (Fig. 5B). The overlying fine-grained siliciclastic 
strata have been logged as the Ab-Haji Fm. In the lower 160 m 
of the section, green siltstones and shales which are rich in plant 
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Figure 4. Overviews field photographs of the Ab-Haji Fm at different sections. A. Overview of the Kuh-e-Rahdar section, view to the north from the 
top of the Permian Khan to the Lower Jurassic Ab-Haji and Badamu formations. B. Overview of the Parvadeh section, view to the south from the top 
of the Upper Triassic Nayband to the Lower Jurassic Ab-Haji and Badamu formations. C. Sharp contact (erosional surface) of the fine-grained 
siltstones of the Nayband Fm and coarse-grained sandstones of the Ab-Haji Fm (Parvadeh section). D. Interbedded sandstones and siltstones of the 
upper part of the Ab-Haji Fm are overlain by the Badamu Fm with erosional boundary (Kuh-e-Rahdar section). View to the northwest.

debris with thin lenses of sandstone predominate. They are 
followed by several fining-upward sandstone packages that are 
usually cross-bedded, rich in plant debris, and with sharp but 
shallow erosional bases, alternating with shales. The upper 70 
m of the section consists of fine-grained green to grey shales. 
Limestones of the Badamu Fm overlie the siliciclastic Ab-Haji 
Fm.

Parvadeh section (Fig. 5C): The Parvadeh section was 
measured at the Parvadeh Coal Mine area where the Ab-Haji 
Fm reaches a thickness of about 75 m (Fig. 4B). In this section 
large-scale trough and planar cross-bedded sandstones overlie 
with erosional contact the fine-grained siliciclastics of the 
Nayband Fm. Locally, a palaeosol is developed. Characteristic 
features are two fining-upward, fine- to medium-grained 
channelized sandstone packages (60 m), interbedded between 
siltstones and shales rich in plant debris. Below the upper 
sandstone, a thin coal seam occurs (at 39 m, Fig. 5C). The 
remaining section consists of 15 m of laminated, green shales 
with marine fauna including bivalves and brachiopods. This 
unit is capped by a thick oolitic limestone of the Badamu Fm. 

Kuh-e-Shisui section (Fig. 5D): The section at Kuh-e-Shisui 
lies on the Lut Block about 30 km south of the road from 

Boshrouyeh to Ferdows. Here the sedimentary succession 
differs totally from those of other localities. The basal contact 
overlies the uppermost limestone bed of the underlying 
Nayband Fm which contains a coral patch reef at this location 
(at 391.5 m, Fig. 5D). The succession begins with about 130 m 
of green siltstones and shales with interbedded white, thin-
bedded and quartzose sandstones. Occasionally, thin beds of 
calcareous sandstone with marine bivalves occur, and 
disarticulated bivalve shells occur as pavements in the topmost 
bed of this unit (at 518 m, Fig. 5D). Plant debris is rare. The 
upper part of the succession consists of several thick-bedded, 
fine- to medium-grained coarsening-upward sandstones. The 
Ab-Haji Fm is overlain by thick-bedded oolitic limestones of 
the Badamu Fm. 

FACIES ANALYSIS AND DEPOSITIONAL 
ENVIRONMENTS

Identification and description of sedimentary facies are 
frequently considered as the most important factors for 
interpreting the palaeoenvironmental conditions (Walker 
2006). In the present study sixteen lithofacies have been 
identified in the field. Our analysis indicates the following 
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o oFigure 5. Stratigraphic logs of the Ab-Haji Fm at different sections. A. Kuh-e-Rahdar section (33 38'40"N, 56 21'10"E). B. Simin-Sepahan section 
o o o o o o(33 15'44"N, 56 28'48"E). C. Parvadeh section (33 00'10"N, 56 50'14"E). D. Kuh-e-Shisui section (33 37'11"N, 58 00'8"E). Grain-size code: vf: very fine-

; f: fine-; m: medium-; c: coarse-; vc: very coarse sand. FP: flood plains, DF: delta front, CP: costal plain, PD: pro delta, SM: shallow siliciclastic sea.

lithofacies: two siliciclastic coarse-grained (Gcm, Gt), eight 
medium-grained (St, Se, Sp, Sr, Sh, Shc, Sl, Shs), three fine-
grained (Fl, Fm, Fc), two interbedded sandstone-claystone 
(Fl(Sr), Sr/Fl) and one of coal (C). Details of the lithofacies are 
presented in Table 1 and their distribution along the study area 
is shown in representative logs in Fig. 5.

Based on lithofacies, textures, and spatial associations, we 
identified five major facies associations, representing fluvial to 

shallow marine depositional environments within the Ab-Haji 
Fm. Each facies association consists of a number of lithofacies 
characteristic of specific sub-environments (Table 1).

Facies Association I

This facies association includes three sub-associations: 
channels, floodplains and swamps.

34 Salehi et al. - Lower Jurassic Ab-Haji Formation, East-Central Iran.



Table 1. Description and interpretation of sedimentary facies (codes modified after Miall 1985, 2006).
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Sub-association 1: Channel deposits. Lenticular (mostly with 
convex base and flat top) to more rarely tabular, fining-upward 
conglomerates (Gcm, Gt) and sandstones (St, Se, Sr) show a 
sharp erosional base (Fig. 7A). The sandstone bodies are best 
developed in the Parvadeh area where they form a belt that 
consists of multiple isolated lenses (Fig. 7A). The sandstone 
bodies consist of 5 to 8 m, rarely up to 10 m thick, tens of meters 
wide, large-scale trough cross-bedded, medium- to coarse-
grained, mostly quartzose sandstone that fines upward into 
interbedded fine-grained sandstone and siltstone, occasionally 
displaying current ripples. The basal part of the sandstone units 
is commonly conglomeratic, and bears plant debris and wood 
fragments. Presence of vertically stacked channels is evidence 
for limited lateral migration.

The trough cross-bedding in this facies resulted from the 
migration of large three-dimensional subaquatic dunes that are 
common in fluvial channels (Miall 2006). The complex, mostly 
lenticular sandstone belts, occasionally exhibiting lateral 
migration, likely represent channel deposits of low-sinuosity 
rivers (e.g. Collinson 1996, Veiga et al. 2002) that drained the 
adjacent exposed area. Paleocurrent analyses of fluvial 
channels in the Parvadeh section show unimodal patterns with 
a very low spread flow direction to the west (Fig. 8A). Fluvial 
channels also occur in the western Tabas Block, in the Simin-
Sepahan section.

Sub-association 2: Floodplain deposits. Green to grey silty 
claystones, argillaceous siltstone or siltstone (Fl, Fm), and 
parallel-laminated or ripple-bedded 10 to 30-cm-thick of fine-
grained sandstone beds (Sh, Sr), bearing plant debris and 
coalified wood fragments form thick deposits at Parvadeh and 
Simin-Sepahan. Strata of this facies are comparatively thin at 
Parvadeh, but are well developed at Simin-Sepahan.

Deposition of greenish grey, unfossiliferous siltstone and 
argillaceous siltstone took place in inter-channel floodplains. 
Sand was likely deposited by crevasse splays during periods of 
flooding (e.g. Farrell 1987). The absence of mudcracks infers 
that deposition took place under semi-humid to humid climatic 
conditions (e.g. Smoot 1983, Fralick & Zaniewski 2012).

Sub-association 3: Swamp deposits. The facies are dominated 
by fine-grained siliciclastic rocks such as dark-grey laminated 
siltstone, carbonaceous claystone (Fc), coal, and coaly shale 
(C) with intercalations of grey horizontal to low-angle cross-
stratified, very fine-grained sandstones (Fig. 6G−H).

Where coal beds and carbonaceous clay- and siltstones 
occur associated with other fluvial sub-environments, they 
probably formed in swampy areas of vegetated flood plains 
(e.g. McCabe 1987). The occasional presence of this facies 
association in the Ab-Haji Fm (at Parvadeh and Simin-
Sepahan) suggests a peat swamp environment undergoing 
rapid plant accumulation under a humid palaeoclimate.

Facies Association II

In the upper part of the Ab-Haji Fm at Parvadeh and Simin-
Sepahan sections, beds of coal (C) and carbonaceous, dark 
green shale (Fc, Fl, Fm), commonly with abundant plant 
remains and shells of marine bivalves and brachiopods occur at 
the top of the uppermost fining-upward fluvial plain deposits 
(Fig. 7B−C). These strata also include 5-10 cm thick, 
interbedded rippled, fine-grained sandstone lens in clyastone 
beds (Fl(Sr)) with ferruginous concretions.

The fine-grained, structureless nature of the bulk of the 
fine-grained sediment suggests a prevalence of low-energy 
conditions and probably deposition in a protected coastal 
setting such as bay or low-energy shoreline. This facies is not 

associated with any subenvironments of the deltaic system. A 
marginal marine setting is most probable for the close 
association of clay and silt with marine shells and coal or highly 
carbonaceous beds. Because the coal beds are never associated 
with rootlets, it is likely allochthonous and results from 
transported plant material derived from densely vegetated 
coastal plains and swamps into a marginal marine setting. The 
presence of this facies association in the upper part of the Ab-
Haji Fm just below the Badamu Limestones at the Parvadeh 
and Simin-Sepahan sections represent periods of reduced 
siliciclastic influx, possibly related to transgression.

Facies associations III and IV

Deltas are generally subdivided in delta plain, delta front, and 
prodelta environments (e.g. Wright 1985, Elliott 1986, 
Bhattacharya 2006). In the Ab-Haji Fm, two facies associations 
characteristic of the delta front and prodelta environments are 
recognized.

Facies association III - Delta front deposits.- Thick sandstone 
bodies occur at the Kuh-e-Rahdar in Kalmard Block and at 
Kuh-e-Shisui in the Lut Block. Their characteristic features are 
sequences that coarsen upward from fine- to coarse-grained 
sandstone (Fig. 7D, E). The sandstones are nearly invariably 
large-scale trough cross-bedded (St), horizontal lamination 
(Sh) and occasionally slump-folded and contain plant debris 
and wood fragments with wave and current ripples (Sr). Beds 
increase in thickness up-section until they form thick packages 
(Fig. 7D). The base of the sandstones is usually gradational 
from the underlying siltstones which are interpreted as prodelta 
deposits (see below; Fig. 7E). The sandstone bodies are usually 
stacked. Individual packages range from 30 to 50 m. The 
coarsening-upward sandstone packages show a clear stacking 
pattern at Kuh-e-Rahdar and Kuh-e-Shisui.

The systematic changes in grain size, bed thickness, and 
sedimentary structures are characteristic of delta-front deposits 
(e.g. Wright & Coleman 1974, Wright 1985, Elliott 1986, 
Bhattacharya 2006). The thickening- and coarsening-upward 
cycles can be interpreted as shallowing cycles within a deltaic 
system. This facies association consists of two sub-
associations, i.e., upper and lower delta front. Likely, the large 
cross-bedded (up to 10° dipping), coarse-grained sandstones 
are related to the upper delta-front deposits (e.g. Li et al. 2010), 
which gradationally overlie large-scale trough cross-bedded, 
medium to fine-grained sandstones of the lower delta front 
(mouth-bar), the latter in close association with pro-delta 
sediments. Several slump horizons indicate a depositional 
slope and sediment instability, probably related to high 
sedimentation rates or over steepening (e.g. García-García et 
al. 2011). The general stacking pattern in thickening-upward 
packages reflects periodic progradation of the delta front by 
strong variations in sediment supply to the delta, possibly due 
to changes in the tectonic activity.

Facies association IV - Prodelta deposits.- This facies 
association is dominated by laminated clystone (Fl) along with 
subordinate alternations of siltstone and fine-grained 
sandstones (Sr/Fl), the latter of which contain plant debris, 
wood fragments and occasionally marine fossils (Fig. 7E-F). 
Some sandstone beds have hummocky cross-stratification 
(Shc), and a few show current ripples (Sr). Usually, these 
sediments represent a coarsening-upward pattern and grade 
into overlying delta-front sandstones (Fig. 7E). Another 
common sedimentary feature in this package is the presence of 
slump folds. 
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Figure 6. Representative lithofacies of the Ab-Haji Fm at Parvadeh section. A. Gcm lithofacies is overlain by Se, Sh and Sr lithofacies sandstone. B. 
Trough cross-bedding in conglomerate (Gt) and sandstone (St) lithofacies. C. Trough cross-bedded sandstone lithofacies (St). D. Planar cross-bedded 
sandstone lithofacies Sp. E. Beds of horizontal and laminated sandstone (Sh). F. Sr lithofacies with wavily-rippled  sandstone. G. Beds of fine-grained 
siltstone interbedded with mudstone, showing Fm, Fc lithofacies overlain by coal (C) lithofacies. H. Beds of laminated siltstone and mudstone (Fl) 
lithofacies.
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Figure 7. Field aspects of the Ab-Haji Fm. A. Channel sandstone of the fluvial facies association (Parvadeh section). B. Carbonaceous claystone (Fc), 
siltstone to fine-grained sandstone (Sr/Fl) and coal (C) of the coastal plain facies association (Simin-Sepahan section). C. Interbedded fine-grained rippled 
sandstones lens in green siltstone and claystone (Fl(Sr)) of coastal plain, capped by oolitic limestones of the Badamu Fm (Parvadeh section). D. 
Coarsening-upward (CU) delta front sandstones of the Ab-Haji Fm (Kuh-e-Shisui section). E. Fine-grained, green siltstone of prodelta deposit overlain by 
a thick coarsening-upward delta front succession (Kuh-e-Rahdar section). F. Plant imprint form dark green shales interbedded with siltstone and fine-
grained sandstone (Sr/Fl) of prodelta origin (Kuh-e-Rahdar section). G. Shallow-marine hummocky cross-stratified sandstone (Shc) (Kuh-e-Rahdar 
section). H. Shell-dominated sandstone (Shs) of shallow-marine shelf (Kuh-e-Shisui section).
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All claystones in this facies association are interpreted to be 
the result of settling from suspension in very low-energy 
conditions. The interbedded sandstone layers are interpreted to 
record flood events that spread sand over the prodelta. Based on 
their lithological characters and their close association with 
delta-front sandstones, this facies association is interpreted as 
representing a prodelta environment with a low to intermediate 
energy regime (e.g. Wright 1985). Prodelta sediments are 
developed at the western margin of the northern Tabas Block 
and at Kuh-e-Shisui in the Lut Block.

Facies association V

Very fine- to fine-grained, horizontally to very low-angle cross-
stratified sandstone (Sh, Sl), ranging in thickness from 0.3–0.5 
to more than 1 m are occasionally interbedded with siltstones 
and shales (Fl, Sr/Fl) (Fig. 5A, D). The base of the sandstone 
beds is either sharp or gradational, but generally not erosional. 
The sandstones are topped by ripple surfaces and commonly 
exhibit bioturbation. Hummocky cross-stratification (Shc) and 
high proportion of ripple cross-lamination was encountered in 
the Kuh-e-Rahdar sections (Fig. 7G). At the Kuh-e-Shisui 
section in the Lut Block, abundant marine bivalves in siltstone 
to very fine-grained sandstone (Shs) form a shell pavement 
between sandstone (Fig. 7H).

The sandstone units of this facies association represent 
several sub-environments within a shallow siliciclastic shelf. 
Large-scale low-angle cross-bedded sandstone, commonly 
coarsening-upward, is interpreted as shoreface sequence (e.g. 
Reineck & Singh 1973). Its sharp base is an indicator of high 
flow velocities, reflecting storm-induced currents (Hunter & 
Clifton 1982). Shell lags represent high-energy environments 
above the fair-weather wave-base, in which reworking was 
frequent (Fürsich & Pandey 2003). Alternating bioturbated and 
laminated sandstones are characteristic of the lower shoreface, 
where the effects of storm-induced currents alternate with quiet 
episodes during which the substrate becomes thoroughly 
bioturbated. Sandstone packages with large-scale cross-
stratification or ripple-lamination record upper shoreface 
conditions, permanently above the fair-weather wave-base. 
The hummocky cross-stratification in combination with 
horizontal lamination and oscillation ripples indicates 
deposition by combined flows, produced by storm-generated 
waves (Myrow & Southard 1996).  

DISCUSSION

The reconstruction of the palaeogeography of the CEIM during 
the Early Jurassic requires knowledge of the spatial and 
temporal distribution of facies within the siliciclastic Ab-Haji 
Fm. In the following, we discuss the lateral facies and thickness 
changes, and the tectonic controls on its deposition.
 

Facies development and thickness changes

The Ab-Haji Fm thickens towards the east from 82 m at Kuh-e-
Rahdar to 347 m at Simin-Sepahan (Fig. 8A−B). At Kuh-e-
Rahdar, this formation overlies the Permian Khan Fm with a 
significant stratigraphic gap. Local erosion down to Lower 
Palaeozoic levels on the Yazd Block confirms the phase of 
uplift and erosion of the Eo-Cimmerian orogeny (Bagheri & 
Stampfli 2008).

At Kuh-e-Rahdar, the Ab-Haji Fm is composed of 28 m of 
shallow-marine sandstone and shale at the base overlain by 54 
m of deltaic facies. This shallow-marine and deltaic facies 

progrades eastward and grades rapidly into a mud-dominated 
fluvial plain and thin coastal plain deposits at Simin-Sepahan 
(Fig. 8B).
 The fluvial facies –320 m thick at Simin-Sepahan– thins 
towards the southeast, reaching 60 m at Parvadeh where it is 
overlain by 15 m of coastal-plain mudstone. At this locality, the 
fluvial channels of Ab-Haji Fm erosively cut into the sediments 
of the underlying Nayband Fm. The well-developed channel 
facies and the poor development of the fine-grained flood plain 
deposits point to low-sinuosity rivers reaching the exposed 
area. The coastal plain facies is restricted to 15 m of green 
laminated shale in the upper part of the Ab-Haji Fm which 
precedes the transgression of the Badamu Fm.
 In the easternmost part of the study area, at Kuh-e-Shisui on 
the Lut Block, the Ab-Haji Fm consists of 110 m of shallow 
siliciclastic shelf deposits overlain by 10 m of prodelta 
sediments which grade into 90 m of stacked delta-front 
sandstones. There is clear evidence of a eastward-prograding 
deltaic system (Fig. 8A-B). The poor development of lower 
delta plain deposits at this locality may indicate a relatively 
steep gradient. 
 The observed pattern of facies and thickness changes are 
evidence of strong differential subsidence with a close 
association of erosional areas and depocenters which may best 
be explained by an array of tilted fault blocks (see below).

Geodynamic significance and palaeogeography

The well constrained distribution pattern of the Ab-Haji Fm 
requires a tectonic explanation. Leeder & Gawthorpe (1987), 
Alexander et al. (1994), and Gawthorpe & Leeder (2000) 
suggested general scenarios of extensional-fault-bounded 
tilted blocks which readily explain thickness variations and 
rapid east-to-west facies changes of the Ab-Haji Fm. 
Extensional tectonic pulses were documented in east-central 
Iran during Late Triassic to Late Jurassic (Fürsich et al. 2003, 
Fürsich et al. 2005, Wilmsen et al. 2010). The extensional pulse 
in the Early Jurassic resulted in block faulting with regional 
differences in subsidence and synsedimentary block 
movements that produced several basins separated by uplifted 
areas. These tectonic movements resulted in thickness 
variations and rapid facies changes of the Ab-Haji Fm in an E-
W direction as well as in non-sedimentation and erosion along 
the N-S-oriented crests of the tilt blocks.
 During this time the Tabas Block would have tilted towards 
the west so that its uplifted part formed the axis of the present-
day Shotori Mountains (the so-called Shotori Swell; Fig. 8). 
The crest area of the tilted block was subaerially exposed 
(palaeo-relief) and became eroded. Likewise, the uplifted 
eastern part of the Yazd Block experienced erosion down to 
Palaeozoic strata (e.g., Kuh-e-Rahdar section). The Ab-Haji 
Fm through sections 1−4 (Fig. 8B) shows similar E-W oriented 
changes in thickness as shown by the Upper Jurassic Kamar-e-
Mehdi Fm documented by Wilmsen et al. (2010) in the 
northern Tabas Block. Furthermore, the Shotori Swell 
remained a topographically elevated area during the Late 
Cretaceous (Wilmsen et al. 2005). Sediment transport occurred 
predominantly towards the east and to a lesser extent also in a 
westerly direction (Fig. 8A). On the western part of the Yazd 
and Kalmard blocks (at Kuh-e-Rahdar) and on the Lut Block 
(at Kuh-e-Shisui), subsidence resulted in vertical stacking of 
thick deltaic sandstones (Fig. 8B). Deltas spread across the 
subsiding area and occasionally prodelta facies extended 
towards the east (Fig. 8A). A tendency for terminal deltaic 
lobes to migrate preferentially towards the axis of maximum 
tectonic subsidence was also reported by Leeder & Gawthorpe 
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Figure 8. Palaeogeography of east-central Iran, (A) showing the distribution of facies associations in the Ab-Haji Fm on the present-day position of three 
Yazd, Tabas and Lut blocks without considering major post-Jurassic counterclockwise rotation (blocks and faults; modified from Zamani-Pedram (2011). 
Rose diagrams represent paleocurrents, n indicates the number of paleocurrent measurements.  B. E–W transect of the assumed environments of the Ab-
Haji Fm. In the east, deltaic and shallow marine environments (Kuh-e-Shisui section) change into the exposed part of the Tabas Block (Shotori Swell). 
Towards the west (Simin-Sepahan and Parvadeh sections), the Ab-Haji Fm reappears again in a coastal and fluvial plain facies and finally grades into 
deltaic and shallow marine environments (Kuh-e-Rahdar section). Note the thickness variations and facies changes from E to W that follow the pattern of 
basement uplift and erosion of tilted fault blocks. 
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Figure 9. A. Early Jurassic siliciclastic systems of Iran (base map modified after Barrier & Vrielynck 2008). The Lut, Tabas and Yazd Blocks are shown in 
assumed Jurassic orientation. B. Cross section (A−B in A) through Yazd, Tabas and Lut blocks that shows locations of depocenters and emergents area.

A

B

(1987). In contrast, on the eastern margin of the Tabas Block, 
fluvial plains were fringed by coastal plains (Fig. 8A). Where 
the Ab-Haji Fm crops out, as at Parvadeh, the east-west 
trending fluvial channels of the formation cut erosively into the 
underlying fine-grained siliciclastic sediments of the Nayband 
Fm. This pattern, along with the westward-directed 
paleocurrent indicators, indicate the preferred sediment 
transport direction on the west-dipping tilted Tabas Block 
(Figs. 7A, 8A).

The source areas of the siliciclastic sediments of the Ab-
Haji Fm are reconstructed based on thickness variations, lateral 
facies changes, changes in the type of the basal contact (from 
sharp and erosional to gradual), and on their petrography and 
geochemistry (see Salehi et al. 2014). A likely source for the 
siliciclastic rocks along the Kalmard and western Tabas blocks 

must have been the Yazd Block (Fig. 8A). The source area of 
siliciclastic material of the northeastern Tabas and Lut blocks 
could have been the subaerially exposed eastern part of Tabas 
Block, i.e., an area approximately parallel to the present-day 
strike of the Shotori Mountains (Fig. 8A).

In the Fig. 9A the three blocks of the CEIM are placed in a 
pre-rotational position, roughly parallel to the Neotethys 
subduction zone, with the Lut Block in a back-arc setting close 
to an inferred volcanic arc (cf. Wilmsen et al. 2009a, Salehi et 
al. 2014). The high siliciclastic input into the depocenter 
clearly suggests a high relief of the emergent margin of Yazd 
and Tabas blocks and a semi-humid to humid climate (Salehi et 
al. 2014; see Fig. 9B herein). This interpretation is supported by 
the pattern of thickness variations and rapid facies changes in 
present day orientation of these three blocks.
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CONCLUSION

The results of the integrated stratigraphic and facies analysis of 
the Lower Jurassic Ab-Haji Fm of east-central Iran discussed 
above, lead us to the following conclusions:

(1) The Lower Jurassic Ab-Haji Fm was deposited across the 
three tilted fault blocks of the Central-East Iranian 
Microcontinent (CEIM) and reaches a thickness of up to 350 m 
in northern Tabas Block but may locally be reduced to a few 
tens of meters or even be missing.

(2) Lithofacies analysis of four well-exposed sections resulted 
in the recognition of sixteen lithofacies and five facies 
associations which are interpreted as representing: fluvial 
channels with associated flood plain and swamps, coastal plain, 
delta front, prodelta, and shallow shelf environments.

(3) The observed pattern of rapid E-W directed facies and 
thickness changes across the three blocks of the CEIM (from W 
to E: Yazd, Tabas and Lut blocks) is evidence of strong 
differential subsidence in response to block-tilting with a close 
association of erosional areas and depocentres.

(4) The Ab-Haji Fm records an Early Jurassic extensional 
tectonic setting for the three central-east Iranian blocks. 
Extension resulted in west-dipping fault blocks, differing 
regionally in their degree of subsidence and synsedimentary 
movements, and producing several half-graben basins. This 
configuration explains the variations of thickness and rapid 
east-west facies changes of the Ab-Haji Fm.
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