
µ-Modelica Language Specification.

Joaqúın Fernández Ernesto Kofman
CIFASIS-CONICET, Rosario, Argentina

{fernandez, kofman}@cifasis-conicet.gov.ar

Abstract

This document defines the µ-Modelica language. µ-Modelica is
part of the Stand–Alone QSS solver, which is an implementation of
the Quantized State System (QSS) integration methods for continu-
ous and hybrid system simulation. A difficulty imposed by the QSS
methods is that it makes use of structural information of the model
and this information must be given on the form of incidence matri-
ces. To overcome this difficulty, the solver has a Modeling Front–End
that allows the user to describe models in a standard way and then it
automatically generates all the structure matrices required.

µ-Modelica is defined as a sub–set of the standard Modelica lan-
guage. Modelica is a free high level, object-oriented language for mod-
eling of large, complex, and heterogeneous systems. Models in Model-
ica are mathematically described by differential, algebraic and discrete
equations.

The µ-Modelica specification is based on the Modelica Specifica-
tion, version 3.3 and it contains only the necessary Modelica keywords
and structures to define an ODE based hybrid model.

https://www.modelica.org
https://www.modelica.org/documents
https://www.modelica.org/documents

Contents

1 Lexical Structure 5
1.1 Character Set . 5
1.2 Comments . 5
1.3 Identifiers, Names, and Keywords 6

1.3.1 Identifiers . 6
1.3.2 Names . 6
1.3.3 µ-Modelica Keywords 7

1.4 Literal Constants . 7
1.4.1 Floating Point Numbers 7
1.4.2 Integer Literals . 8
1.4.3 Boolean Literals . 8

2 Operators and Expressions 9
2.1 Expressions . 9
2.2 Operator Precedence and Associativity 9
2.3 Arithmetic Operators . 10
2.4 Equality, Relational, and Logical Operators 11

2.4.1 Built-in Variable time 12
2.4.2 Built-in Intrinsic Operators with Function Syntax . . 12
2.4.3 Numeric Functions and Conversion Functions 12
2.4.4 Built-in Mathematical Functions and External Built-

in Functions . 12
2.4.5 Derivative and Special Purpose Operators with Func-

tion Syntax . 13

3 Predefined types and Declarations 14
3.1 Component Variability Prefixes discrete, parameter, constant 14
3.2 Predefined Types . 15
3.3 Attribute start . 16

4 Equations 17
4.1 Equation Categories . 17
4.2 Equations in Equation Sections 17

2

4.2.1 Simple Equality Equations 17
4.2.2 For-Equations – Repetitive Equation Structures 18
4.2.3 reinit . 19
4.2.4 assert . 19

4.3 Synchronous Data-flow Principle and Single Assignment Rule 20
4.4 Events and Synchronization 21
4.5 Initialization, initial equation, and initial algorithm 22

5 Arrays 24
5.1 Array Declarations . 24

5.1.1 Array Dimension Lower and Upper Index Bounds . . 24
5.2 Array Indexing . 25

6 Statements and Algorithm Sections 26
6.1 Algorithm Sections . 26

6.1.1 Initial Algorithm Sections 26
6.1.2 Execution of an algorithm in a model 26

6.2 Statements . 27
6.2.1 Simple Assignment Statements 28
6.2.2 For-statement . 28
6.2.3 Return-Statements . 29
6.2.4 If-Statement . 29
6.2.5 When-Statements . 30

6.3 Special Statements . 31

7 Functions 32
7.1 Function Declaration . 32

7.1.1 Ordering of Formal Parameters 33
7.1.2 Function Return-Statement 33

7.2 Pure Modelica Functions . 34
7.3 Function Call . 35

7.3.1 Output Formal Parameters of Functions 35
7.3.2 Initialization and Declaration Assignments of Compo-

nents in Functions . 36
7.4 Built-in Functions . 36
7.5 External Function Interface 37

7.5.1 Argument type Mapping 38
7.5.2 Return Type Mapping 38

7.6 Annotations for External Libraries and Include Files 38

8 Packages 40
8.1 Motivation and Usage of Packages 40
8.2 Importing Definitions from a Package 40

8.2.1 Lookup of Imported Names 41

3

8.2.2 Summary of Rules for Import Clauses 41
8.2.3 Mapping Package/Class Structures to a Hierarchical

File System . 41

9 Annotations 42
9.1 Vendor-Specific Annotations 42
9.2 Annotations for Simulation Experiments 43

10 µ-Modelica Concrete Syntax 44
10.1 Lexical conventions . 44
10.2 Stored Definition . 44
10.3 Class Definition . 45
10.4 Component Clause . 45
10.5 Modification . 45
10.6 Equations . 45
10.7 Expressions . 46

4

Chapter 1

Lexical Structure

This section describes several of the basic building blocks of µ-Modelica
such as characters and lexical units including identifiers and literals. With-
out question, the smallest building blocks in µ-Modelica are single characters
belonging to a character set. Characters are combined to form lexical units,
also called tokens. These tokens are detected by the lexical analysis part of
the µ-Modelica translator. Examples of tokens are literal constants, iden-
tifiers, and operators. Comments are not really lexical units since they are
eventually discarded. On the other hand, comments are detected by the
lexical analyzer before being thrown away.

1.1 Character Set

The character set of the µ-Modelica language is Unicode, but restricted to
the Unicode characters corresponding to 7-bit ASCII characters in several
places.

1.2 Comments

There are two kinds of comments in µ-Modelica which are not lexical units
in the language and therefore are treated as whitespace by a µ-Modelica
translator. The whitespace characters are space, tabulator, and line sepa-
rators (carriage return and line feed); and whitespace cannot occur inside
tokens, e.g., <= must be written as two characters without space or com-
ments between them. [The comment syntax is identical to that of C++].
The following comment variants are available:

// comment Characters from // to the end of the line are
ignored.

/* comment */ Characters between /* and */ are ignored, in-
cluding line terminators.

5

µ-Modelica comments do not nest, i.e., /* */ cannot be embedded within
/* */ . The following is invalid:

/* Commented out - erroneous comment, invalid nesting of comments!

/* This is a interesting model */

model interesting

...

end interesting;

*/

1.3 Identifiers, Names, and Keywords

Identifiers are sequences of letters, digits, and other characters such as un-
derscore, which are used for naming various items in the language. Certain
combinations of letters are keywords represented as reserved words in the
µ-Modelica grammar and are therefore not available as identifiers.

1.3.1 Identifiers

µ-Modelica identifiers, used for naming classes, variables, constants, and
other items, must always start with a letter or underscore (), followed by
any number of letters, digits, or underscores (unlike Modelica which also
allows the definition of quoted literal strings). Case is significant, i.e., the
names Inductor and inductor are different. The following BNF-like rules
define µ-Modelica identifiers, where curly brackets { } indicate repetition
zero or more times, and vertical bar | indicates alternatives.

〈IDENT 〉 = NONDIGIT { DIGIT | NONDIGIT }

〈NONDIGIT 〉 = "_" | letters "a" to "z" | letters "A" to "Z"

〈STRING〉 = " S-CHAR | S-ESCAPE "

〈S-CHAR〉 = any member of the Unicode character set except double-quote """, and
backslash \.

〈S-ESCAPE〉 = "’" | \" | "?" | "\" | "\a" | "\b" | "\f" | "\n" | "\r" | "\t" | "\v"

〈DIGIT 〉 = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈UNSIGNED INTEGER〉 = DIGIT { DIGIT }

〈UNSIGNED NUMBER〉 = UNSIGNED INTEGER [. [UNSIGNED INTEGER]] [(e | E
) [+ | -] UNSIGNED INTEGER]

1.3.2 Names

A name is an identifier with a certain interpretation or meaning. A name
may denote an Integer variable, a Real variable, a function, etc. In µ-
Modelica the name always have the same meaning in all the model given

6

that all models arew flattened, i.e. there is only one scope defined where all
the names are visible. The exception to this rule are for indexes which
are only visible inside the for loop definition.

1.3.3 µ-Modelica Keywords

The following µ-Modelica keywords are reserved words and may not be used
as identifiers:

in for loop end if

then else elseif output each

model elsewhen annotation equation when

reinit algorithm time pre function

end output input initial der

parameter constant boolean discrete start

Real Integer description external

The following keywords are used by the QSS solver, they are defined as
annotations in µ-Modelica and may not be used as identifiers:

comminterval sampled dense step

dqmin dqrel linear include

symDiff searchmethod binary derDelta

StepSize QssSettings minStep zcHist

Tolerance AbsTolerance solver StepSize

experiment StartTime StopTime description

QSS CQSS LIQSS QSS2

LIQSS2 QSS3 LIQSS3

1.4 Literal Constants

Literal constants are unnamed constants that have different forms depending
on their type. Each of the predefined types in µ-Modelica has a way of
expressing unnamed constants of the corresponding type, which is presented
in the ensuing subsections.

1.4.1 Floating Point Numbers

A floating point number is expressed as a decimal number in the form of a
sequence of decimal digits optionally followed by a decimal point, optionally
followed by an exponent. At least one digit must be present. The exponent
is indicated by an E or e, followed by an optional sign (+ or −) and one
or more decimal digits. The minimal recommended range is that of IEEE
double precision floating point numbers, for which the largest representable

7

positive number is 1.7976931348623157E + 308 and the smallest positive
number is 2.2250738585072014E − 308.

For example, the following are floating point number literal constants:

• 22.5

• 3.141592653589793

• 1.2E-35

The same floating point number can be represented by different literals.
For example, all of the following literals denote the same number:

• 13.

• 13E0

• 1.3e1

• 0.13E2

1.4.2 Integer Literals

Literals of type Integer are sequences of decimal digits, e.g. as in the
integer numbers:

• 33

• 0

• 100

• 30030044

[Negative numbers are formed by unary minus followed by an integer
literal]. The minimal recommended number range is from −2147483648 to
+2147483647 for a two’s-complement 32-bit integer implementation.

1.4.3 Boolean Literals

The two Boolean literal values are true and false .

8

Chapter 2

Operators and Expressions

The lexical units are combined to form even larger building blocks such as
expressions according to the rules given by the expression part of the µ-
Modelica grammar. This chapter describes the evaluation rules for expres-
sions, the concept of expression variability, built-in mathematical operators
and functions, and the built-in special µ-Modelica operators with function
syntax.

Expressions can contain variables and constants, which have predefined
types. The predefined built-in types of µ-Modelica are Real, Integer and
Boolean types which are presented in more detail in Section 3.2.

2.1 Expressions

µ-Modelica equations, assignments and declaration equations contain ex-
pressions. Expressions can contain basic operations, +,−, ∗, /,̂ , etc. with
normal precedence as defined in Section 3.2. It is also possible to define
functions and call them in a normal fashion.

2.2 Operator Precedence and Associativity

Operator precedence determines the order of evaluation of operators in an
expression. An operator with higher precedence is evaluated before an op-
erator with lower precedence in the same expression. The following table
presents all the expression operators in order of precedence from highest
to lowest. All operators are binary except the postfix operators and those
shown as unary together with expr, the conditional operator. Operators
with the same precedence occur at the same line of the table:

The following µ-Modelica keywords are reserved words and may not be
used as identifiers:

9

Operator
Group

Operator Syntax Examples

postfix array
index operator

[] arr[index]

postfix func-
tion call

funcName(function −
arguments)

sin(3.46)

exponentiation ˆ 2^3

multiplicative ∗ / 2*3, 2/3

aditive + − +expr − expr a+b, a-b, +a, -a

relational < > <= >= a < b, a > b,...

unary negation not expr not a

logical and and a and b

logical or or a and b

conditional if expr then expr else expr if b then 3 else x

named argu-
ment

ident = expr x = 2.26

The conditional operator may also include elseif-clauses. Equality =
and assignment := are not expression operators since they are allowed only
in equations and in assignment statements respectively. All binary ex-
pression operators are left associative, except exponentiation which is non-
associative.

2.3 Arithmetic Operators

µ-Modelica supports five binary arithmetic operators that operate on any
numerical type:

ˆ Exponentiation

* Multiplication

/ Division

+ Addition

- Subtraction

The syntax of these operators is defined by the following rules from the
µ-Modelica grammar:

〈arithmetic expression〉 ::= [〈add op〉] 〈term〉 { 〈add op〉 〈term〉 }

〈add op〉 ::= "+"

| "-"

〈term〉 ::= 〈factor〉 { 〈mul op〉 〈factor〉 }

〈mul op〉 ::= "*"

| "/"

〈factor〉 ::= 〈primary〉 ["^" 〈primary〉]

10

2.4 Equality, Relational, and Logical Operators

µ-Modelica supports the standard set of relational and logical operators, all
of which produce the standard boolean values true or false.

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

A single equals sign = is never used in relational expressions, only in
equations. The following logical operators are defined:

not Negation, unary operator

and Logical and

or Logical or

The grammar rules define the syntax of the relational and logical oper-
ators.

〈logical expression〉 ::= 〈logical term〉 { or 〈logical term〉 }

〈logical term〉 ::= 〈logical factor〉 { and 〈logical factor〉 }

〈logical factor〉 ::= [not] 〈relation〉

〈relation〉 ::= 〈arithmetic expression〉 [〈rel op〉 〈arithmetic expression〉]

〈rel op〉 ::= "<"

| "<="

| ">"

| ">="

| "=="

| "<>"

The following holds for relational operators:

• Relational operators<,<=, >,>=,==, <>, are only defined for scalar
operands of simple types. The result is Boolean and is true or false
if the relation is fulfilled or not, respectively.

• In relations of the form v1 == v2 or v1 <> v2, v1 or v2 shall not be
used in zero–crossing functions, i.e. as expressions of when statements,
unless used in a function.

• Relations of the form v1 rel op v2, with v1 and v2 variables and
rel op a relational operator are called elementary relations. If either
v1 and v2 shall be Real varaibles and the relation is called a Real
elementary relation.

11

2.4.1 Built-in Variable time

All declared variables are functions of the independent variable time. The
variable time is a built-in variable available in all models, which is treated
as an input variable. The initial value of the time variable is set to the time
instant at which the simulation is started.

2.4.2 Built-in Intrinsic Operators with Function Syntax

Certain built-in operators of µ-Modelica have the same syntax as a function
call. However, they do not behave as a mathematical function, because
the result depends not only on the input arguments but also on the status
of the simulation. The following built-in intrinsic operators/functions are
available:

1. Mathematical functions and conversion functions.

2. Derivative and special purpose operators with function syntax.

All operators in this section can only be called with positional arguments.

2.4.3 Numeric Functions and Conversion Functions

The following mathematical operators and functions, also including some
conversion functions, are predefined in µ-Modelica.

sqrt(v) Returns the square root of v if v >= 0, oth-
erwise an error occurs. Argument v needs to
be an Integer or Real expression.

boolToReal(x) Convert the boolean argument x to 1.0 if x =
true or 0.0 if x = false

2.4.4 Built-in Mathematical Functions and External Built-in
Functions

The following built-in mathematical functions are available in µ-Modelica
and can be called directly.

12

sin(x) sine

cos(x) cosine

tan(x) tangent

asin(x) inverse sine (−1 ≤ x ≤ 1)

acos(x) inverse cosine (−1 ≤ x ≤ 1)

atan(x) inverse tangent

atan2(y, x) the atan2(y, x) function calculates the princi-
pal Modelica Language Specification 3.3 value
of the arc tangent of y/x, using the signs of
the two arguments to determine the quadrant
of the result.

sinh(x) hyperbolic sine

cosh(x) hyperbolic cosine

tanh(x) hyperbolic tangent

exp(x) exponential, base e

log(x) natural (base e) logarithm (x > 0)

log10(x) base 10 logarithm (x > 0)

2.4.5 Derivative and Special Purpose Operators with Func-
tion Syntax

The following derivative operator and special purpose operators with func-
tion syntax are predefined:

der(expr) The time derivative of expr. If the expres-
sion expr is a scalar it needs to be Real. The
expression and all its subexpressions must be
differentiable. [For Real parameters and con-
stants the result is a zero scalar.]

13

Chapter 3

Predefined types and
Declarations

This chapter describes µ-Modelica predefined types, variability prefixes and
the restrictions impossed to varaibles declarations. All µ-Modelica model
variables are of type Real and each varaible can belong to one of the following
cathegories:

• continuous states.

• discretes states.

• algebraic variables.

3.1 Component Variability Prefixes discrete, pa-
rameter, constant

The prefixes discrete, parameter and constant of a component declara-
tion are called variability prefixes and define in which situation the variable
values of a component are initialized (see Section 4.4 and Section 4.5) and
when they are changed in transient analysis (= solution of initial value prob-
lem of the hybrid DAE):

• A variable vc declared with the parameter or constant prefixes re-
mains constant during transient analysis.

• A discrete-time variable vd has a vanishing time derivative (informally
der(vd) = 0 , but it is not legal to apply the der() operator to discrete-
time variables) and can change its values only at event instants during
transient analysis (see Section 4.4).

• A continuous-time variable vn may have a non-vanishing time deriva-
tive (der(vn) <> 0 possible) and may also change its value discontin-

14

uously at any time during transient analysis (see Section 4.4). If there
are any discontinuities the variable is not differentiable.

If a Real variable is declared with the prefix discrete in a simulation
model it must be assigned in a when-clause by an assignment. A Real

variable not assigned in any when-clause and without any type prefix is a
continuous-time variable. A constant variable is similar to a parameter

with the difference that constants cannot be changed after translation and
usually not changed after they have been given a value, their values remains
constant during simulation.

3.2 Predefined Types

µ-Modelica has three predefined types:

• Real

• Integer

• Bool

These predefined types are the only types allowed on µ-Modelica, the
names are reserved such that it is illegal to declare an element with these
names.

The different combinations of predefined types and types refixes allowd
in µ-Modelica are described by following rules:

• The constant prefix can only be used with Integer variables.

• The parameter or discrete prefixes can only be used with Real vari-
ables.

Variables prefixes are not allowed with Boolean type.
Unlike Modelica, in µ-Modelica all discrete-time variable must be defined

with the discrete prefix, it is an error to modify a variable inside a when-
clause that is not declared with the discrete prefix. [Example:

model bball

Real y(start = 10),vy(start = 0), F;

parameter Real m = 1, b = 30, g = 9.8, k = 1e6;

Real contact(start = 0); // Error, contact must be declared discrete.

equation

F = k*y+b*vy;

der(y) = vy;

der(vy) = -g - (contact * F)/m;

algorithm

15

when y < 0 then

contact := 1;

elsewhen y > 0 then

contact := 0;

end when;

end bball;

The model above represents a bouncing ball with valid Modelica code, but
if the contact variable is not defined with the discrete prefix it is not valid
µ-Modelica code.]

3.3 Attribute start

The attribute start is only allowed for Real types (the variable can have
the discrete prefix), furthermore, if the variable is not declare as discrete
is must be a state variable, i.e., the der() operation has to be defined for
that variable. It is an error to assign initial values using the start attribute
to an algebraic variable.

[Example:

model bball

// Error, F is an algebraic variable.

Real y(start = 10),vy(start = 0), F(start=10);

parameter Real m = 1, b = 30, g = 9.8, k = 1e6;

discrete Real contact(start = 0);

equation

F = k*y+b*vy;

der(y) = vy;

der(vy) = -g - (contact * F)/m;

algorithm

when y < 0 then

contact := 1;

elsewhen y > 0 then

contact := 0;

end when;

end bball;

]

16

Chapter 4

Equations

4.1 Equation Categories

Equations in Modelica can be classified into different categories depending
on the syntactic context in which they occur:

• Normal equality equations occurring in equation sections.

• Initial equations, which are used to express equations for solving ini-
tialization problems (Section 4.5)

4.2 Equations in Equation Sections

The following kinds of equations may occur in equation sections. The syntax
is defined as follows: equation :

〈simple expression〉 "=" 〈expression〉
| 〈name〉 〈function call args〉

No statements are allowed in equation sections, including the assignment
statement using the := operator.

4.2.1 Simple Equality Equations

Simple equality equations are the traditional kinds of equations known from
mathematics that express an equality relation between two expressions.
There are two syntactic forms of such equations in µ-Modelica. The first
form below is equality equations between two expressions, whereas the sec-
ond form is used when calling a function with several results. The syntax
for simple equality equations is as follows:

〈simple expression〉 "=" 〈expression〉

17

The types of the left-hand-side and the right-hand-side of an equation need
to be compatible in the same way as two arguments of binary operators.
Two examples:

• simpleexpr1 = expr2;

• (out1, out2, out3) = functionname(inexpr1, inexpr2);

4.2.2 For-Equations – Repetitive Equation Structures

The syntax of a for-equation is as follows:

〈for equation〉 := for 〈for index 〉 loop { 〈equation〉 ";" } end for ";"

Multiple iterators are not allowed in µ-Modelica, the syntax of the indexes
is the following:

〈for index 〉 ::= 〈IDENT 〉 in 〈expression〉

The following is one example of a prefix of a for-equation:

for IDENT in expression loop

The expression of a for-equation shall be a vector expression. It is eval-
uated once for each for-equation, and is evaluated in the scope immediately
enclosing the for-equation. The expression of a for-equation shall be a pa-
rameter expression. The loop-variable (IDENT) is in scope inside the loop-
construct and shall not be assigned to. The loop-variable has the same type
as the type of the elements of the vector expression. [Example:

for i in 1:10 loop // i takes the values 1,2,3,...,10

for r in 1.0:1.5:5.5 loop // r takes the values 1.0, 2.5, 4.0, 5.5

The loop-variable may hide other variables as in the following example.
Using another name for the loop-variable is, however, strongly recommended.

constant Integer j=4;

Real x[j];

equation

for j in 1:j loop // The loop-variable j takes the values 1,2,3,4

x[j]=j; // Uses the loop-variable j

end for;

]

18

4.2.3 reinit

The reinit operator can only be used in the body of a when-statement. It
has the following syntax:

reinit(x, expr);

The operator reinitializes x with expr at an event instant, x is a Real

variable (or an array of Real variables) that must be selected as a state
(resp., states) at least when the enclosing when clause becomes active, expr
needs to be type-compatible with x. The reinit operator can for the same
variable (resp. array of variables) only be applied (either as an individual
variable or as part of an array of variables) either in one equation (having
reinit of the same variable in when and else-when of the same variable is
allowed) or one or more times in one algorithm section.

The reinit operator does not break the single assignment rule, because
reinit(x,expr) evaluates expr to a value (values), and then performs the
assignment “x := value” in an algorithm section.

[Example for the usage of the reinit operator:

der(h) = v;

der(v) = flying*-g;

when h <= 0 then

flying := 0;

reinit(v, -e*pre(v));

end when;

when h > 0 then

flying := 1;

end when;

]

4.2.4 assert

An equation or statement of the following form:

assert(condition, message, level = AssertionLevel.error);

is an assertion, where condition is a Boolean expression, message is a string
expression, and level is a built-in enumeration with a default value. It can
be used in equation sections or algorithm sections. If the condition of an
assertion is true, message is not evaluated and the procedure call is ignored.
If the condition evaluates to false different actions are taken depending on
the level input:

• level = AssertionLevel.error : The current evaluation is aborted.
The simulation may continue with another evaluation [e.g., with a

19

shorter step-size, or by changing the values of iteration variables]. If
the simulation is aborted, message indicates the cause of the error.
Failed assertions takes precedence over successful termination, such
that if the model first triggers the end of successful analysis by reaching
the stop-time, but the evaluation with terminal() = true triggers an
assert, the analysis failed.

• level = AssertionLevel.warning : The current evaluation is not
aborted. message indicates the cause of the warning [It is recom-
mended to report the warning only once when the condition becomes
false, and it is reported that the condition is no longer violated when
the condition returns to true. The assert(...) statement shall have no
influence on the behavior of the model.].

[The AssertionLevel.error case can be used to avoid evaluating a model out-
side its limits of validity; for instance, a function to compute the saturated
liquid temperature cannot be called with a pressure lower than the triple point
value. The AssertionLevel.warning case can be used when the boundary of
validity is not hard: for instance, a fluid property model based on a poly-
nomial interpolation curve might give accurate results between temperatures
of 250 K and 400 K, but still give reasonable results in the range 200 K
and 500 K. When the temperature gets out of the smaller interval, but still
stays in the largest one, the user should be warned, but the simulation should
continue without any further action. The corresponding code would be:

assert(T > 250 and T < 400, "Medium model outside full

accuracy range",AssertionLevel.warning);

assert(T > 200 and T < 500, "Medium model outside

feasible region");

]

4.3 Synchronous Data-flow Principle and Single
Assignment Rule

µ-Modelica is based on the synchronous data flow principle and the single
assignment rule, which are defined in the following way:

1. All variables keep their actual values until these values are explicitly
changed. Variable values can be accessed at any time instant during
continuous integration and at event instants.

2. At every time instant, during continuous integration and at event in-
stants, the active equations express relations between variables which
have to be fulfilled concurrently (equations are not active if the cor-
responding if-branch, when-clause or block in which the equation is
present is not active).

20

3. Computation and communication at an event instant does not take
time. [If computation or communication time has to be simulated, this
property has to be explicitly modeled].

4. The total number of equations is identical to the total “number of
unknown variables” (= single assignment rule).

4.4 Events and Synchronization

The integration is halted and an event occurs whenever a Real elementary
relation, e.g. “x > 2”, changes its value. The value of such a relation can
only be changed at event instants [in other words, Real elementary relations
induce state or time events]. The relation which triggered an event changes
its value when evaluated literally before the model is processed at the event
instant [in other words, a root finding mechanism is needed which determines
a small time interval in which the relation changes its value; the event occurs
at the right side of this interval]. Relations in the body of a when-clause
are always taken literally. During continuous integration a Real elementary
relation has the constant value of the relation from the last event instant.
[Example:

equation

y = du;

algorithm

when u > uMax then

du := uMax;

end when;

when u < uMin then

du:= uMin;

elsewhen u >= uMin then

du := u;

end when;

The integration is halted whenever u−uMax or u−uMin crosses zero.
At the event instant, the correct statement is selected and the integration
is restarted. Numerical integration methods of order n (n >= 1) require
continuous model equations which are differentiable up to order n. This re-
quirement can be fulfilled if Real elementary relations are not treated literally
but as defined above, because discontinuous changes can only occur at event
instants and no longer during continuous integration.] [It is a quality of
implementation issue that the following special relations

time >= discrete expression

time < discrete expression

21

trigger a time event at “time = discreteexpression”, i.e., the event instant
is known in advance and no iteration is needed to find the exact event instant.
] µ-Modelica is based on the synchronous data flow principle. [The rules
for the synchronous data flow principle guarantee that variables are always
defined by a unique set of equations. It is not possible that a variable is
e.g. defined by two equations, which would give rise to conflicts or non-
deterministic behavior. Furthermore, the continuous and the discrete parts
of a model are always automatically “synchronized”.

There is no guarantee that two different events occur at the same time
instant.

[As a consequence, synchronization of events has to be explicitly pro-
grammed in the model, e.g. via counters.]

4.5 Initialization, initial equation, and initial al-
gorithm

Before any operation is carried out with a µ-Modelica model [e.g., simula-
tion or linearization], initialization takes place to assign consistent values
for all variables present in the model. During this phase, also the deriva-
tives, der(..) , and the pre-variables, pre(..) , are interpreted as unknown
algebraic variables. The initialization uses all equations and algorithms that
are utilized in the intended operation [such as simulation or linearization].

Further constraints, necessary to determine the initial values of all vari-
ables, can be defined in the following two ways:

1. As assignments in an initial algorithm section. The assignments in
these initial sections are purely algebraic, stating constraints between
the variables at the initial time instant. It is not allowed to use when-
clauses in these sections.

2. Implicitly by using the attributes start=value in the declaration of
variables:

• For all continuous-time Real variables v , the equation v =
startExpression is added to the initialization equations, if start =
startExpression.

• For all discrete variables vd , the equation vd = startExpression
is added to the initialization equations, if start = startExpression.

• For all variables declared as constant and parameter; no equa-
tion is added to the initialization equations.

If a parameter has a start-expression, and neither has a binding equation
nor is part of a record having a binding equation, the start-expression can be

22

used as parameter-expression although a diagnostic message is recommended
when initializing the model without setting the parameter value.

[This is used in libraries to give non-zero defaults so that users can
quickly combine models and simulate without setting parameters; but still
easily find the parameters that need to be set.]

23

Chapter 5

Arrays

An array can be regarded as a collection of values, all of the same type.
Each array has a certain dimensionality, i.e. number of dimensions. The
degenerate case of a scalar variable is not really an array, but can be regarded
as an array with zero dimensions. An array is allocated by declaring an array
variable. Elements of an array are indexed by an Integer value.

5.1 Array Declarations

The following restrictions are defined for array declarations in µ-Modelica:

• Only one dimension arrays are allowed (i.e. vectors).

• All arrays must have Real type.

• The only valid form of declaration is:

{discrete} Real x[n];

where n is the size of the array and must be an Integer constant.
Additionaly, the discrete type prefix can be used to define a discrete
variable array.

Upper and lower array dimension index bounds are described in Section
5.1.1.

5.1.1 Array Dimension Lower and Upper Index Bounds

The lower and upper index bounds for a dimension of an array are indexed
by Integer values and have a lower bound of 1 and an upper bopund being
the size of the array.

24

5.2 Array Indexing

The array indexing operator name [...] is used to access array elements for
retrieval of their values or for updating these values. An indexing opera-
tion is subject to upper and lower array dimension index bounds (Section
5.1.1). [An indexing operation is assumed to take constant time, i.e., largely
independent of the size of the array.]

The indexing operator takes two operands, where the first operand is
the array to be indexed and the second operand are index expressions:

arrayname[indexexpr]

It is also possible to use the array access operator to assign to elemen-
t/elements of an array in algorithm and equation sections. If the index
is an array the assignments take place in the order given by the index ar-
ray. For assignments to arrays and elements of arrays, the entire right-hand
side and the index on the left-hand side is evaluated before any element is
assigned a new value.

Indexes in arrays inside for statements in algorithm or equation sec-
tions are restricted to expressions of the form:

α · i+ β

where α and β are integer expressions and i is the iteration index.

25

Chapter 6

Statements and Algorithm
Sections

Whereas equations are very well suited for physical modeling, there are sit-
uations where computations are more conveniently expressed as algorithms,
i.e., sequences of statements. In this chapter we describe the algorithmic
constructs that are available in µ-Modelica. Statements are imperative con-
structs allowed in algorithm sections.

6.1 Algorithm Sections

Algorithm sections is comprised of the keyword algorithm followed by a
sequence of statements. The formal syntax is as follows:

〈algorithm section〉 ::= [initial] algorithm { 〈statement〉 ";"
| annotation ";" }

Equation equality = or any other kind of equation (see Chapter 4) shall not
be used in an algorithm section.

6.1.1 Initial Algorithm Sections

See Section 4.5 for a description of both initial algorithm sections and initial
equation sections.

6.1.2 Execution of an algorithm in a model

An algorithm section is conceptually a code fragment that remains together
and the statements of an algorithm section are executed in the order of ap-
pearance. Whenever an algorithm section is invoked, all variables appearing
on the left hand side of the assignment operator ”:=” are initialized (at least
conceptually):

26

• A non-discrete variable is initialized with its start value (i.e. the value
of the start-attribute).

• A discrete variable v is initialized with pre(v).

[Initialization is performed, in order that an algorithm section cannot
introduce a ”memory” (except in the case of discrete states which are explic-
itly given), which could invalidate the assumptions of a numerical integration
algorithm. Note, a Modelica tool may change the evaluation of an algorithm
section, provided the result is identical to the case, as if the above conceptual
processing is performed.

An algorithm section is treated as an atomic vector-equation, which is
sorted together with all other equations. Conceptually the algorithm can be
viewed as (lhs1, lhs2, ...) = someFunction(nonLhs1, nonLhs2, ...), where
lhs are the variables assigned and nonLhs are other appearing variables.
For the sorting process (BLT), every algorithm section with N different left-
hand side variables, is treated as an atomic N-dimensional vector-equation
containing all variables appearing in the algorithm section. This guarantees
that all N equations end up in an algebraic loop and the statements of the
algorithm section remain together.]

6.2 Statements

Statements are imperative constructs allowed in algorithm sections. A flat-
tened statement is identical to the corresponding nonflattened statement.
Names in statements are found as follows:

• If the name occurs inside an expression: it is first found among the
lexically enclosing reduction functions (see Section 10.3.4) in order
starting from the inner-most, and if not found it proceeds as if it were
outside an expression:

• Names in a statement are first found among the lexically enclosing
for-statements in order starting from the inner-most, and if not found:

• Names in a statement shall be found by looking up in the partially
flattened enclosing class of the algorithm section.

The syntax of statements is as follows:

〈statement〉 ::= (〈component reference〉 (":=" 〈expression〉 | 〈function call args〉
)

| "(" 〈output expression list〉 ")" ":=" 〈component reference〉
〈function call args〉

| return

| 〈if statement〉

27

| 〈for statement〉
| 〈when statement〉)

6.2.1 Simple Assignment Statements

The syntax of simple assignment statement is as follows:

〈component reference〉 ":=" 〈expression〉

The expression is evaluated. The resulting value is stored into the variable
denoted by component_reference.

Assignments from Called Functions with Multiple Results

There is a special form of assignment statement that is used only when
the right-hand side contains a call to a function with multiple results. The
left-hand side contains a parenthesized, comma-separated list of variables
receiving the results from the function call. A function with n results needs
m <= n receiving variables on the left-hand side.

(out1, out2, out3) := function name(in1, in2, in3, in4);

It is possible to omit receiving variables from this list:

(out1, , out3) := function name(in1, in2, in3, in4);

[Example: The function f called below has three results and two inputs:

(a, b, c) := f(1.0, 2.0);

(x[1], x[2], x[3]) := f(3, 4);

]
The syntax of an assignment statement with a call to a function with

multiple results is as follows:

”(”output expression list”)”” := ”component reference(function call args)

[Also see Section 4.2.1 regarding calling functions with multiple results
within equations.]

6.2.2 For-statement

The syntax of a for-statement is as follows:

〈for statement〉 := for 〈for index 〉 loop { 〈statement〉 ";" } end for ";"

28

〈for index 〉 ::= 〈IDENT 〉 in 〈expression〉

The following is an example of a prefix of a for-statement:

for IDENT in expression loop

The expression of a for-statement shall be a vector expression. It is eval-
uated once for each for-statement, and is evaluated in the scope immediately
enclosing the for-statement. The loop-variable (IDENT) is in scope inside
the loop-construct and shall not be assigned to. The loop-variable has the
same type as the type of the elements of the vector expression.

[Example:

for i in 1:10 loop // i takes the values 1,2,3,...,10.
for i in 1: 1.5: 5.5 loop // r takes the values 1.0, 2.5, 4.0, 5.5

The loop-variable may hide other variables as in the following example.
Using another name for the loop-variable is, however, strongly recommended.

constant Integer j=4;

Real x[j];

equation

for j in 1:j loop // The loop-variable j takes the values 1,2,3,4

x[j]=j;

// Uses the loop-variable j

end for;

]

6.2.3 Return-Statements

Can only be used inside functions, see Section 7.1.2.

6.2.4 If-Statement

If-statements have the following syntax:

〈if statement〉 ::= if 〈expression〉 then { 〈statement〉 ";" } { elseif 〈expression〉
then { 〈statement〉 ";" } [else { 〈statement〉 ";" }]
end if

The expression of an if- or elseif-clause must be scalar Boolean ex-
pression. One if-clause, and zero or more elseif-clauses, and an optional
else-clause together form a list of branches. One or zero of the bodies of
these if-, elseif- and else-clauses is selected, by evaluating the conditions of
the if- and elseif-clauses sequentially until a condition that evaluates to true

29

is found. If none of the conditions evaluate to true the body of the else-
clause is selected (if an else-clause exists, otherwise no body is selected). In
an algorithm section, the selected body is then executed. The bodies that
are not selected have no effect on that model evaluation.

6.2.5 When-Statements

A when-statement has the following syntax:

〈when statement〉 ::= when 〈expression〉 then { 〈statement〉 ";" } { elsewhen
〈expression〉 then { 〈statement〉 ";" } } end when

The expression of a when-statement shall be a discrete-time Boolean

scalar or vector expression. The algorithmic statements within a when-
statement are activated when the scalar or any one of the elements of the
vector-expression becomes true.

[Example: Algorithms are activated when x becomes > 2:

when x > 2 then

y1 := sin(x);

y3 := 2*x + y1+y2;

end when;

This is a valid Modelica condition that is not supported in µ-Modelica.
(Completar) The statements inside the when-statement are activated when
either x becomes > 2 or sample(0, 2) becomes true or x becomes < 5:

when {x > 2, sample(0,2), x < 5} then

y1 := sin(x);

y3 := 2*x + y1+y2;

end when;

For when-statements in algorithm sections the order is significant and
it is advisable to have only one assignment within the when-statement and
instead use several algorithm sections having when-statements with identical
conditions, e.g.:

algorithm

when x > 2 then

y1 := sin(x);

end when;

equation

y2 = sin(y1);

algorithm

when x > 2 then

y3 := 2*x +y1+y2;

end when;

30

Merging the when-statements can lead to less efficient code and different
models with different behavior depending on the order of the assignment to
y1 and y3 in the algorithm.]

Restrictions on When-Statements

• A when-statement shall not be used within a function.

• When-statements cannot be nested.

• When-statements may not occur inside if, and for-clauses in algo-
rithms.

[Example: The following nested when-statement is invalid:

when x > 2 then

when y1 > 3 then

y2 := sin(x);

end when;

end when;

]

6.3 Special Statements

These special statements have the same form and semantics as the corre-
sponding equations, apart from the general difference in semantics between
equations and statements.

Reinit Statement

See Section 4.2.3.

Assert Statement

See Section 4.2.4. A failed assert stops the execution of the current algo-
rithm.

31

Chapter 7

Functions

This chapter describes the Modelica function construct.

7.1 Function Declaration

A µ-Modelica function is an algorithm section that contains procedural
algorithmic code to be executed when the function is called or alterna-
tively an external function specifier, functions are defined using the key-
word function. Formal parameters are specified using the input keyword,
whereas results are denoted using the output keyword. [The structure of a
typical function declaration is sketched by the following schematic function
example:

function functionname

input TypeI1 in1;

input TypeI2 in2;

input TypeI3 in3;

...

output TypeO1 out1;

output TypeO2 out2;

...

protected

< local variables >

...

algorithm

...

< statements >

...

end functionname;

] It is not allowed to use default values with any input or output formal
parameter through declaration assignments. [Example:

32

function functionname

input TypeI1 in1 := default1;

...

output TypeO1 out1 := default2;

...

end functionname;

In the above example, both formal parameters definitions are wrong (note
that this example is valid Modelica code).

[All internal parts of a function are optional; i.e., the following is also a
legal function:

function functionname

end functionname;

]

7.1.1 Ordering of Formal Parameters

The relative ordering between input formal parameter declarations is sig-
nificant since that determines the matching between actual arguments and
formal parameters at function calls with positional parameter passing. Like-
wise, the relative ordering between the declarations of the outputs is signifi-
cant since that determines the matching with receiving variables at function
calls of functions with multiple results. However, the declarations of the
inputs and outputs can be intermixed as long as these internal orderings are
preserved. [Mixing declarations in this way is not recommended, however,
since it makes the code hard to read.] [Example:

function <functionname>

output TypeO1 out1; // Intermixed declarations of inputs and outputs

input TypeI1 in1; // not recommended since code becomes hard to read

input TypeI2 in2;

...

output TypeO2 out2;

input TypeI3 in3;

...

end < functionname >;

]

7.1.2 Function Return-Statement

The return-statement terminates the current function call. It can only be
used in an algorithm section of a function. It has the following form:

return;

[Example:

33

function max

input Real x;

input Real y;

output Real res;

algorithm

index := x;

if y > x then

res := y;

return;

end if;

return;

end max;

]

7.2 Pure Modelica Functions

µ-Modelica functions are pure, i.e., are side-effect free with respect to the
µ-Modelica state (the set of all µ-Modelica variables in a total simulation
model), apart from the exceptional case specified further below. This means
that:

• Pure µ-Modelica functions are mathematical functions, i.e. calls with
the same input argument values always give the same results.

• A pure µ-Modelica function is side-effect free with respect to the inter-
nal µ-Modelica simulation state. Specifically, the ordering of function
calls and the number of calls to a function shall not influence the
simulation state.

• A µ-Modelica function which does not have the pure function proper-
ties is impure and needs to be declared as stated below.

[Comment: The Modelica translator is responsible for maintaining this
property for pure non-external functions. Regarding external functions, the
external function implementor is responsible. Note that external functions
can have side-effects as long as they do not influence the internal Modelica
simulation state, e.g. caching variables for performance or printing trace
output to a log file.]

With the prefix keyword impure it is stated that a Modelica function is
impure and it is only allowed to call such a function from within:

• another function marked with the prefixes impure or pure

• a when-statement.

With the prefix keyword pure it is stated that a µ-Modelica function is
pure even though it may call impure functions.

34

7.3 Function Call

Functions can be called as described in this section.

Positional or Named Input Arguments of Functions

µ-Modelica function calls has only positional arguments, such as
f(3.5, 5.76, 5, 8.3);

The formal syntax of a function call:

〈primary〉 ::= 〈name〉 〈function call args〉

〈name〉 ::= 〈IDENT 〉

〈function call args〉 ::= "(" [〈function arguments〉] ")"

〈function arguments〉 ::= 〈function argument〉 ["," 〈function arguments〉
]

〈function argument〉 ::= 〈expression〉

The interpretation of a function call is as follows: A list of unfilled slots
is created for all formal input parameters. There shall be no remaining
unfilled slots [otherwise an error occurs] and the list of filled slots is used as
the argument list for the call. The type of each argument must agree with
the type of the corresponding parameter, except where the standard type
coercions can be used to make the types agree.

7.3.1 Output Formal Parameters of Functions

A function may have more than one output component, corresponding to
multiple return values. The only way to use more than the first return value
of such a function is to make the function call the right hand side of an
equation or assignment. In this case, the left hand side of the equation or
assignment shall contain a list of component references within parentheses:

(out1, out2, out3) = f(...);

The component references are associated with the output components
according to their position in the list. Thus output component i is set equal
to, or assigned to, component reference i in the list, where the order of
the output components is given by the order of the component declarations
in the function definition. The type of each component reference in the
list must agree with the type of the corresponding output component. A
function application may be used as expression whose value and type is given
by the value and type of the first output component, if at least one return
result is provided. It is possible to omit left hand side component references
and/or truncate the left hand side list in order to discard outputs from a
function call.

35

The only permissible use of an expression in the form of a list of expres-
sions in parentheses, is when it is used as the left hand side of an equation
or assignment where the right hand side is an application of a function.

7.3.2 Initialization and Declaration Assignments of Compo-
nents in Functions

Components in a function can be divided into three groups:

• Public components which are input formal parameters.

• Public components which are output formal parameters.

• Protected components which are local variables, parameters, or con-
stants.

When a function is called components of a function do not have start-
attributes. However, a declaration

assignment (:= expression)

with an expression may be present for a component. A declaration as-
signment for a non-input component initializes the component to this expres-
sion at the start of every function invocation (before executing the algorithm
section or calling the external function). These bindings must be executed
in an order where a variable is not used before its declaration assignment
has been executed; it is an error if no such order exists (i.e. the binding must
be acyclic). Declaration assignments can only be used for components of a
function. If no declaration assignment is given for a non-input component
its value at the start of the function invocation is undefined. It is a quality
of implementation issue to diagnose this for non-external functions.

7.4 Built-in Functions

There are basically four groups of built-in functions in Modelica:

• Intrinsic mathematical and conversion functions.

• Derivative and special operators with function syntax.

• Event-related operators with function syntax.

• Built-in array functions.

36

7.5 External Function Interface

Here, the word function is used to refer to an arbitrary external routine,
whether or not the routine has a return value or returns its result via out-
put parameters (or both). The µ-Modelica external function call interface
provides the following:

• Support for external functions written in C.

• Mapping of argument types from Modelica to the target language and
back.

• Natural type conversion rules in the sense that there is a mapping
from µ-Modelica to standard libraries of the target language.

• Handling arbitrary parameter order for the external function.

• Passing arrays to and from external functions where the dimension
sizes are passed as explicit integer parameters.

• Handling of external function parameters which are used both for input
and output.

The format of an external function declaration is as follows.

function IDENT

{ component_clause ";" }

[protected { component_clause ";" }]

external [language_specification] [external_function_call]

[annotation] ";"

[annotation ";"]

end IDENT;

Components in the public part of an external function declaration shall
be declared either as input or output. [This is just as for any other function.
The components in the protected part allows local variables for temporary
storage to be declared.] The language_specification must be C̈̈. The
external-function-call specification allows functions whose prototypes
do not match the default assumptions as defined below to be called. It also
gives the name used to call the external function. If the external call is
not given explicitly, this name is assumed to be the same as the µ-Modelica
name. The only permissible kinds of expressions in the argument list are
identifiers and scalar constants. The annotations are used to pass additional
information to the compiler when necessary.

37

7.5.1 Argument type Mapping

The arguments of the external function are declared in the same order as in
the µ-Modelica declaration, unless specified otherwise in an explicit external
function call. Protected variables (i.e. temporaries) are passed in the same
way as outputs, whereas constants are passed as inputs.

Simple Types

Arguments of simple types are by default mapped as follows for C:

Modelica C
Input Output

Real double double *
Integer int int *
Boolean int int *

Arrays

Unless an explicit function call is present in the external declaration, an array
is passed by its address followed by n arguments of type size t with the
corresponding array dimension sizes, where n is the number of dimensions.
[The type size t is a C unsigned integer type.]

7.5.2 Return Type Mapping

If there is a single output parameter and no explicit call of the external
function, or if there is an explicit external call in the form of an equation,
in which case the LHS must be one of the output parameters, the external
routine is assumed to be a value-returning function.

7.6 Annotations for External Libraries and Include
Files

The following annotations are useful in the context of calling external func-
tions from Modelica:

• The annotation(Library="libraryName"), used by the linker to in-
clude the library file where the compiled external function is available.

• The annotation(Library={"libraryName1","libraryName2"}), used
by the linker to include the library files where the compiled external
function is available and additional libraries used to implement it. For
shared libraries it is recommended to include all non-system libraries
in this list.

38

• The annotation(Include="includeDirective"), used to include source
files, [e.g., header files or source files that contain the functions ref-
erenced in the external function declaration], needed for calling the
external function in the code generated by the µ-Modelica compiler.

[Example: to show the use of external functions and of object libraries:

39

Chapter 8

Packages

8.1 Motivation and Usage of Packages

Packages in µ-Modelica can only contain function definitions. Parameters,
constans, variables and models cannot be declared in a package. The def-
initions in a package should typically be related in some way, which is the
main reason they are placed in a particular package. Packages are useful for
a number of reasons:

• Definitions that are related to some particular topic are typically
grouped into a package. This makes those definitions easier to find
and the code more understandable.

• Packages provide encapsulation and coarse-grained structuring that
reduces the complexity of large systems.

• Name conflicts between definitions in different packages are eliminated
since the package name is implicitly prefixed to names of definitions
declared in a package.

8.2 Importing Definitions from a Package

The import-clause makes functions definitions declared in some package
available for use by shorter names in a model or a package. It is the only
way of referring to definitions declared in some other package for use inside
an encapsulated package or function. [Import-clauses in a package or class
fill the following two needs:

• Making definitions from other packages available for use (by shorter
names) in a package or model.

• Explicit declaration of usage dependences on other packages.

40

] An import-clause can occur in the following syntactic form:
import packagename; (single definition import)

Here packagename is the fully qualified name of the imported package
including possible dot notation.

8.2.1 Lookup of Imported Names

This section only defines how the imported name is looked up in the import
clause. Lookup of the name of an imported package, e.g. A in the clause
import A;. Is defined in the following way:

• Look for the package A in the local working directory.

• Look for the package A in the package folder specified in the directory
structure. This feature is implementation dependent.

8.2.2 Summary of Rules for Import Clauses

The following rules apply to import-clauses:

• Import-clauses are not inherited.

• Import-clauses are not named elements of a class or package.

• The order of import-clauses does not matter.

• One can only import from packages.

• An imported package or definition should always be referred to by its
fully qualified name in the import-clause.

8.2.3 Mapping Package/Class Structures to a Hierarchical
File System

Packages in µ-Modelica are represented as nonstructured entities [e.g. a file
in the file system] where all the function definitions are located.

Mapping a Package/Class Hierarchy into a Single File (Nonstruc-
tured Entity)

A nonstructured entity [e.g. the file A.mo] shall contain only a stored-
definition that defines a package [A] with a name matching the name of
the nonstructured entity.

41

Chapter 9

Annotations

Annotations are intended for storing extra information about a model, such
as graphics, documentation or versioning, etc. A Modelica tool is free to
define and use other annotations, in addition to those defined here, according
to Section 9.1. The only requirement is that any tool shall save files with
all annotations from this chapter and all vendor-specific annotations intact.
To ensure this, annotations must be represented with constructs according
to the Modelica grammar. The specification in this document defines the
semantic meaning if a tool implements any of these annotations.

9.1 Vendor-Specific Annotations

A vendor may – anywhere inside an annotation – add specific, possibly un-
documented, annotations which are not intended to be interpreted by other
tools. Two variants of vendor-specific annotations exist; one simple and one
hierarchical. Double underscore concatenated with a vendor name as initial
characters of the identifier are used to identify vendor-specific annotations.
[Example:

annotation (

Icon(coordinateSystem(extent={{-100,-100}, {100,100}}),

graphics={__NameOfVendor(Circle(center={0,0}, radius=10))})

);

This introduces a new graphical primitive Circle using the hierarchical vari-
ant of vendor-specific annotations.

annotation (

Icon(coordinateSystem(extent={{-100,-100}, {100,100}}),

graphics={Rectangle(extent={{-5,-5},{7,7}}, __NameOfVendor_shadow=2)})

);

This introduces a new attribute NameOfVendor shadow for the Rectangle
primitive using the simple variant of vendor-specific annotations.]

42

9.2 Annotations for Simulation Experiments

〈experiment annotation〉 ::= annotation "(" experiment "(" [〈experiment option〉]
{ , 〈experiment option〉}] ")"

〈experiment option〉 ::= StartTime "=" ["+" | "-"] UNSIGNED NUMBER
| StopTime "=" ["+" | "-"] UNSIGNED NUMBER
| Interval "=" UNSIGNED NUMBER
| Tolerance "=" UNSIGNED NUMBER

The experiment annotation defines the default start time (StartTime)
in [s], the default stop time (StopTime) in [s], the suitable time resolution
for the result grid (Interval) in [s], and the default relative integration
tolerance (Tolerance) for simulation experiments to be carried out with
the model or block at hand.

43

Chapter 10

µ-Modelica Concrete Syntax

10.1 Lexical conventions

The following syntactic meta symbols are used (extended BNF):
[] optional
{ } repeat zero or more times
| or
”text” The text is treated as a single token (no whitespace between any

characters) The following lexical units are defined (the ones in boldface are
the ones used in the grammar, the rest are just internal to the definition of
other lexical units):

〈IDENT 〉 ::= 〈NONDIGIT 〉 { 〈DIGIT 〉 | 〈NONDIGIT 〉 }

〈NONDIGIT 〉 ::= "_" | letters "a" to "z" | letters "A" to "Z"

〈STRING〉 ::= " 〈S-CHAR〉 | 〈S-ESCAPE〉 "

〈S-CHAR〉 = any member of the Unicode character set except double-quote """, and
backslash \.

〈S-ESCAPE〉 = "’" | \" | "?" | "\" | "\a" | "\b" | "\f" | "\n" | "\r" | "\t" | "\v"

〈DIGIT 〉 = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈UNSIGNED INTEGER〉 = 〈DIGIT 〉 { 〈DIGIT 〉 }

〈UNSIGNED NUMBER〉 = 〈UNSIGNED INTEGER〉 ["." [〈UNSIGNED INTEGER〉]] [(
"e" | "E") ["+" | "-"] 〈UNSIGNED INTEGER〉]

• µ-Modelica uses the same comment syntax as C++ and Java (i.e.,
// signals the start of a line comment and /* */ is a multi-line
comment); comments may contain any Unicode character.

• Boldface denotes keywords of the µ-Modelica language. Keywords are
reserved words and may not be used as identifiers.

10.2 Stored Definition

〈stored definition〉 ::= { 〈class definition〉 ";" }

44

10.3 Class Definition

〈class definition〉 ::= 〈class prefixes〉 〈class specifier〉

〈class prefixes〉 ::= model

| package

| [(pure | impure)] function

〈class specifier〉 ::= 〈IDENT 〉 〈string comment〉 〈composition〉 end 〈IDENT 〉

〈composition〉 ::= 〈element list〉 { protected 〈element list〉 | 〈equation section〉 | 〈algorithm section〉
} [external [〈language specification〉] [〈external function call〉] [
annotation] ";"] [annotation ";"]

〈language specification〉 ::= STRING

〈external function call〉 ::= [〈component reference〉 "="] 〈IDENT 〉 ([〈expression list〉])

〈element list〉 ::= { 〈element〉 ";" }

〈element〉 ::= 〈import clause〉
| 〈class definition〉
| 〈component clause〉

〈import clause〉 ::= import 〈name〉

10.4 Component Clause

〈component clause〉 ::= 〈type prefix〉 〈type specifier〉 [〈array subscripts〉] 〈component list〉

〈type prefix〉 ::= [discrete | parameter | constant] [input | output]

〈type specifier〉 ::= Real

| Integer

| Boolean

〈component list〉 ::= 〈component declaration〉 { "," 〈component declaration〉 }

〈component declaration〉 ::= 〈declaration〉

〈declaration〉 : 〈IDENT 〉 [〈array subscripts〉] [〈modification〉]

10.5 Modification

〈modification〉 ::= 〈class modification〉 ["=" 〈expression〉]
| "=" 〈expression〉
| ":=" 〈expression〉

〈class modification〉 ::= "(" [〈argument list〉] ")"

〈argument list〉 ::= 〈argument〉 { "," 〈argument〉 }

〈argument〉 ::= 〈element modification or replaceable〉

〈element modification or replaceable〉 ::= [each] 〈element modification〉

〈element modification〉 ::= 〈name〉 [〈modification〉]

10.6 Equations

〈equation section〉 ::= equation { 〈equation〉 ";" }

〈algorithm section〉 ::= [initial] algorithm { 〈statement〉 ";" }

45

〈equation〉 ::= 〈simple expression〉 "=" 〈expression〉
| 〈for equation〉
| 〈name function call args〉

〈statement〉 ::= 〈component reference〉 (":=" 〈expression〉 | 〈function call args〉)
| "(" 〈output expression list〉 ")" ":=" 〈component reference〉 〈function call args〉
| return

| 〈if statement〉
| 〈for statement〉
| 〈when statement〉

〈if statement〉 ::= if 〈expression〉 then { 〈statement〉 ";" } { elseif 〈expression〉 then {

〈statement〉 ";" } [else { 〈statement〉 ";" }] end if

〈for equation〉 ::= for 〈for index〉 loop { 〈equation〉 ";" } end for

〈for statement〉 ::= for 〈for index〉 loop { 〈statement〉 ";" } end for

〈for index〉 ::= 〈IDENT 〉 in expression

〈when statement〉 ::= when 〈expression〉 then { 〈statement〉 ";" } { elsewhen 〈expression〉 then
{ 〈statement〉 ";" } } end when

10.7 Expressions

〈expression〉 ::= 〈simple expression〉

〈simple expression〉 ::= 〈logical expression〉 [":" 〈logical expression〉 [":" 〈logical expression〉
]]

〈logical expression〉 ::= 〈logical term〉 { or 〈logical term〉 }

〈logical term〉 ::= 〈logical factor〉 { and 〈logical factor〉 }

〈logical factor〉 ::= [not] 〈relation〉

〈relation〉 ::= 〈arithmetic expression〉 [〈rel op〉 〈arithmetic expression〉]

〈rel op〉 ::= "<"

| "<="

| ">"

| ">="

| "=="

| "<>"

〈arithmetic expression〉 ::= [〈add op〉] 〈term〉 { 〈add op〉 〈term〉 }

〈add op〉 ::= "+"

| "-"

〈term〉 ::= 〈factor〉 { 〈mul op〉 〈factor〉 }

〈mul op〉 ::= "*"

| "/"

〈factor〉 ::= 〈primary〉 ["^" 〈primary〉]

〈primary〉 ::= UNSIGNED NUMBER
| false

| true

| (name | der) 〈function call args〉
| 〈component reference〉
| "(" 〈output expression list〉 ")"

〈name〉 ::= 〈IDENT 〉

〈component reference〉 ::= 〈IDENT 〉 [〈array subscripts〉]

46

〈function call args〉 ::= "(" [〈function arguments〉] ")"

〈function arguments〉 ::= 〈function argument〉 ["," 〈function arguments〉]

〈function argument〉 ::= 〈expression〉

〈output expression list〉 ::= [〈expression〉] { "," [〈expression〉] }

〈expression list〉 ::= 〈expression〉 { "," 〈expression〉 }

〈array subscripts〉 ::= "[" 〈subscript〉 { "," 〈subscript〉 } "]"

〈subscript〉 ::= 〈expression〉

〈annotation〉 ::= annotation 〈class modification〉

47

	Lexical Structure
	Character Set
	Comments
	Identifiers, Names, and Keywords
	Identifiers
	Names
	-Modelica Keywords

	Literal Constants
	Floating Point Numbers
	Integer Literals
	Boolean Literals

	Operators and Expressions
	Expressions
	Operator Precedence and Associativity
	Arithmetic Operators
	Equality, Relational, and Logical Operators
	Built-in Variable time
	Built-in Intrinsic Operators with Function Syntax
	Numeric Functions and Conversion Functions
	Built-in Mathematical Functions and External Built-in Functions
	Derivative and Special Purpose Operators with Function Syntax

	Predefined types and Declarations
	Component Variability Prefixes discrete, parameter, constant
	Predefined Types
	Attribute start

	Equations
	Equation Categories
	Equations in Equation Sections
	Simple Equality Equations
	For-Equations – Repetitive Equation Structures
	reinit
	assert

	Synchronous Data-flow Principle and Single Assignment Rule
	Events and Synchronization
	Initialization, initial equation, and initial algorithm

	Arrays
	Array Declarations
	Array Dimension Lower and Upper Index Bounds

	Array Indexing

	Statements and Algorithm Sections
	Algorithm Sections
	Initial Algorithm Sections
	Execution of an algorithm in a model

	Statements
	Simple Assignment Statements
	For-statement
	Return-Statements
	If-Statement
	When-Statements

	Special Statements

	Functions
	Function Declaration
	Ordering of Formal Parameters
	Function Return-Statement

	Pure Modelica Functions
	Function Call
	Output Formal Parameters of Functions
	Initialization and Declaration Assignments of Components in Functions

	Built-in Functions
	External Function Interface
	Argument type Mapping
	Return Type Mapping

	Annotations for External Libraries and Include Files

	Packages
	Motivation and Usage of Packages
	Importing Definitions from a Package
	Lookup of Imported Names
	Summary of Rules for Import Clauses
	Mapping Package/Class Structures to a Hierarchical File System

	Annotations
	Vendor-Specific Annotations
	Annotations for Simulation Experiments

	-Modelica Concrete Syntax
	Lexical conventions
	Stored Definition
	Class Definition
	Component Clause
	Modification
	Equations
	Expressions

