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Abstract. Model-based testing (MBT) studies how to generate test cases from
a model of the system under test (SUT). Many MBT methods rely on building
an automaton from the model and then they generate test cases by covering the
automaton with different path coverage criteria. However, if a model of the SUT
is a logical formula over some complex mathematical theories (such as the Z
notation) it may be more natural or intuitive to apply coverage criteria directly
over the formula. In this paper we propose a set of coverage criteria for log-
ical specifications based on domain partition. We call them testing strategies.
Testing strategies play a similar role to path- or data-based coverage criteria.
Furthermore, we show a partial order of testing strategies as is done in struc-
tural testing. We also describe an implementation of testing strategies for the
Test Template Framework, which is a MBT method for the Z notation.

1. Introduction

Testing is the predominant verification technique used in the software industry. At the
same time, testing is a time-consuming activity that needs lot of resources to produce
good results. Since many years ago the testing community works on the automation of
the testing process as a means to reduce its costs and improve its efficiency. Model-based
testing (MBT) is a collection of testing methods that aims at automatically generating test
cases from the analysis of a model of the system under test (SUT) [22]. MBT methods
have achieved impressive theoretical and practical results in recent years such as [13, 8,
21, 15, 23], to name just a few.

Some MBT methods generate test cases by first building an automaton from the
model of the SUT and then covering the automaton with different criteria. For exam-
ple, ProTest [17] is a test case generation tool based on B machines [1]. It first writes
each given machine operation into DNF and then it builds a finite state machine (FSM)
“whose initial node is the initial state of the B machine. Each node in the FSM represents
a possible machine state and each edge is labeled by an operation”. Finally, ProTest “tra-
verses the FSM to generate a set of operation sequences such that each operation in the
FSM appears in the generated sequences at least once”. As another example consider the
method proposed by Hierons et al. [11]. In this case a Z specification [18] is accompa-
nied by a Statechart [10] that represents all the possible execution paths of the operations
defined in the Z specification. Then, some test sequence generation methods, based on
FSM test techniques, are defined. These criteria are based on covering the paths of the
Statechart in different ways. Since the Statechart is built from the Z specification then the
test sequences will cover the Z specification.



As can be seen, even when the model of the SUT is (essentially) a logical formula
(i.e. a B machine or a Z operation) test cases are generated by covering the paths of an
automaton derived from the model, and not by covering the structure of the formula. In
a sense, there is an assumption that the logical formula is covered by covering the au-
tomaton generated from it. In this paper we would like to propose an alternative method
that generates test cases by applying criteria that cover directly the logical formula. These
criteria are defined by conveniently assembling together rules that indicate how to parti-
tion an input domain. Our criteria do not need an automaton because they analyze the
structure, semantics and types of a logical formula. These criteria can be organized in a
partial order to help users to select the most appropriate for each project.

We also show how these criteria have been implemented in FASTEST [5], a tool
that supports the Test Template Framework (TTF) [20] which, in turn, is a MBT method
for the Z notation.

The paper starts by introducing the concept of domain partition in Section 2. Test-
ing strategies are introduced in Section 3 where they are accommodated in partial order
and a prototype implementation is shown. We also discuss the contribution of this paper
along with its conclusions in Section 4.

2. Domain Partition
In this section we show some rules for domain partition that are already available. These
rules are later combined to define criteria that provide different levels of coverage of the
logical specification to which they are applied.

Consider the following logical formula as an example of some specification:

(s? ∈ dom st ∧ st′ = {s?} −C st) ∨ (s? /∈ dom st ∧ st′ = st) (1)

where st : SYM 7→ Z is a partial function; SYM is a given, underspecified set; s? : SYM
is an input variable; st is a state variable; st′ represents the value of st in the next state;
and −C is a relational operator called domain anti-restriction. This formula formalizes the
elimination of a symbol (s?) from a symbol table (st) that associates elements of SYM with
integer numbers. In other words, (1) represents a state transition of some state machine.

If formula (1) is the specification of some implementation, then the MBT theory
says that engineers should analyze (1), instead of its implementation, to generate test
cases to test the implementation. Note that it would be difficult to build an automaton
from (1), as suggested by some MBT methods [17, 12, 11], because we have only one
transition. On the other hand, the implementation of (1) is not trivial because, for instance,
it seldom will be based on sets and set operators (such as −C). Sets and set operators will
probably be implemented as arrays or linked lists and operations over them. Hence, the
implementation of (1) is worth to be tested.

Following the foundation of structural testing we may ask to ourselves, how (1)
can be covered? That is, how can we be sure that all aspects of (1) are going to be tested?
An answer given by some methods is to use domain partition [20, 2]. First, the input
domain or space of the specification is defined, then it is partitioned in subsets called
test conditions and finally one element of each test condition is taken as a test case. For
example, the input space of (1) is defined as:

IS = {st : SYM 7→ Z; s? : SYM} (2)



R = ∅
R 6= ∅ ∧ S = ∅
R 6= ∅ ∧ S = domR
R 6= ∅ ∧ S 6= ∅ ∧ S ⊂ domR
R 6= ∅ ∧ S 6= ∅ ∧ S ∩ domR = ∅
R 6= ∅ ∧ S 6= ∅ ∧ S ∩ domR 6= ∅ ∧ domR ⊂ S
R 6= ∅ ∧ S 6= ∅ ∧ S ∩ domR 6= ∅ ∧ ¬ (domR ⊆ S) ∧ ¬ (S ⊆ domR)

Figure 1. Standard partition for S−C R

and we can partition it by taking the precondition of each disjunct in (1):

IS1 = {IS | s? ∈ dom st} (3)
IS2 = {IS | s? /∈ dom st} (4)

With this partition we can define two test cases:

TC1 = {IS1 | st = {(s1, 3)} ∧ s? = s1} (5)
TC2 = {IS2 | st = ∅ ∧ s? = s1} (6)

However, are these test cases enough? Do they cover all the specification? Proba-
bly not because, for example, there is no test case removing an ordered pair from st when
it has more than one element. So, if st is implemented as, say, a linked list these test
cases will not test whether the iteration over the list is well implemented or not. Is there
something in (1) that indicates to us that this (and possibly others) test case is missing?
Yes, it is. The iteration over the (possible) list implementing st is specified by both the −C
and dom operators, and we have not used them to generate test cases.

In this example we use −C to guide the partitioning process. In order to do that
we can define a so-called standard partition for −C as shown in Figure 1. Then, we can
substitute R by st and S by {s?} and use this to partition IS1 as follows:

IS1
1 ={IS1 | st = ∅} (7)

IS2
1 ={IS1 | st 6= ∅ ∧ {s?} = ∅} (8)

IS3
1 ={IS1 | st 6= ∅ ∧ {s?} = dom st} (9)

IS4
1 ={IS1 | st 6= ∅ ∧ {s?} 6= ∅ ∧ {s?} ⊂ dom st} (10)

IS5
1 ={IS1 | st 6= ∅ ∧ {s?} 6= ∅ ∧ {s?} ∩ dom st = ∅} (11)

IS6
1 ={IS1 | st 6= ∅ ∧ {s?} ∩ dom st 6= ∅ ∧ dom st ⊂ {s?}} (12)

IS7
1 ={IS1 | st 6= ∅ ∧ {s?} ∩ dom st 6= ∅ ∧ ¬ dom st ⊆ {s?} (13)
∧ ¬ {s?} ⊆ dom st}

Note that now a test case derived from IS4
1 will test whether removing an ordered

pair from a symbol table containing more than one element is correct or not, which is the
missing test case analyzed above. Also observe that s ∈ dom st is implicitly conjoined to
every predicate of (7)-(13).



Surely more test cases are needed to test the implementation of (1) but we think
we have make it clear that logical specifications contain enough information as to derive
a good test case set without necessarily resorting to an automaton.

2.1. More Partitioning Rules
Free Types (FT) helps to partition an input domain when variables whose type is enumer-
ated are used. If x is a variable of an enumerated type, T , FT generates test conditions
whose characteristic predicates are of the form x = val for each val ∈ T . In this way,
the FT guarantees that the implementation will be exercised on all these values, which
are usually part of conditional expressions and represent important states or operational
conditions of the system.

Numeric Ranges (NR) waits for an arithmetic expression, expr, and an ordered
list of numbers, n1, . . . nk, and generates the following partition: expr < n1, expr = n1,
n1 < expr < n2, . . . , expr = ni, ni < expr < ni+1, expr = ni+1, . . . , expr < nk,
expr = nk and nk < expr. NR is very useful, for instance, to test how programs behaves
when numeric variables reach or go beyond their implementation limits. For example, in
a C program a variable of type short can assume values in the range [−32768, 32767].
So, it would be reasonable to test the program with values less than, equal and greater
than −32768 and 32767 for each input or state variable of type short. If one of such
variables is x, likely, it was abstracted at the Z specification as an expression of type Z.
For instance, a potential C implementation of the symbol table described in the previous
section might be as follows: st can be a simply-linked list of nodes defined as:

struct st_node {char* sym; short val; struct st_node* nxt}

Therefore, if one wants to test the behavior of the program when a sym has a val
in the limits of the range for short, then the following list of values can be used
[−32768, 32767] to test the expression st(s?). In this case NR would generate, for ex-
ample, st(s?) < −32768 as a test condition.

In Set Extension (ISE) applies to specifications including preconditions of the
form expr ∈ {expr1, . . . , exprn}. In this case, it generates n + 1 test conditions such
that expr = expri, for i in 1 . . n, and expr /∈ {expr1, . . . , exprn} are their characteristic
predicates.

3. A Partial Order of Testing Strategies
Although domain partition is not a very complex activity, engineers need to analyze the
specification, to select some partitioning rules and to decide what expressions, operators,
variables, etc. are going to be used when these rules are applied. Besides, engineers
working with domain partition do not have criteria that tell them “how much” the SUT is
going to be tested. So far, they only have a set of unrelated partitioning techniques. Our
proposal in this regard is to define so-called testing strategies. A testing strategy uses one
or more partitioning rules in such a way that some significant part of the specification is
covered. In this sense, testing strategies are (logic-)specification-based covering criteria.

Having the seminal work of Rapps and Weyuker [16] as an inspiration, we orga-
nized the strategies according to a partial order as is depicted in Figure 2. The strategies
closer to the bottom of the graph are those that produce a better coverage and those closer
to the root produce a worse coverage. Informally, the strategies are as follows:



basic-functions

some-arithmetic some-enumerationssets

all-arithmetic sets-with-integers

full-coverage

some-functions

integers

all-enumerations

all-functions

Figure 2. Testing strategies are partially ordered

• BASIC-FUNCTIONS applies only disjunctive normal form (DNF) so it covers the
logical structure of the specification. Since all the other strategies are stronger
than this one we will not mention the logical coverage unless necessary.
• SOME-ENUMERATIONS covers all enumerated types. In this way it guarantees that

sensible values declared in enumerated types will all be exercised at least once.
• ALL-ENUMERATIONS is a stronger form of SOME-ENUMERATIONS since it not

only considers enumerated types but also all extensional sets defined in the speci-
fication.
• INTEGERS instead of tackling enumerations it looks for integer overflows by cov-

ering all the integer expressions of the specification. It requires at least five test
cases for each integer expression by applying NR.
• SOME-ARITHMETIC covers the arithmetic operators with the defined standard par-

titions.
• ALL-ARITHMETIC puts together INTEGERS and SOME-ARITHMETIC.
• SETS covers all the set operators with the defined standard partitions.
• SETS-WITH-INTEGERS puts together INTEGERS and SETS.
• SOME-FUNCTIONS combines SETS and SOME-ENUMERATIONS, thus covering

some interesting values (i.e. constants of enumerations) and all the set operators.
• ALL-FUNCTIONS combines SETS, SOME-ARITHMETIC and SOME-ENUMERATIO-

NS covering in this way the essential elements appearing in the specification.
• FULL COVERAGE combines ALL-FUNCTIONS, INTEGERS and ALL-ENUMERA-

TIONS.

Table 1 lists the set of domain partition rules that are applied for each strategy.
Note that, due to the way domain partition is performed (i.e. by logical conjunction, see
Section 2), it is not relevant the order in which rules are applied. This also explains the
partial order used to build the graph of Figure 2. In effect, if S1 and S2 are two testing
strategies such that there is an arrow pointing from S1 to S2, then S2 will produce at least
the same set of test conditions than S1. This is so because all the domain partition rules
that are applied by S1 are also applied by S2 plus some more. In general, these extra



Strategy Rules
BASIC-FUNCTIONS DNF
SOME-ENUMERATIONS DNF, FT
ALL-ENUMERATIONS DNF, FT, ISE
INTEGERS DNF, NR
SOME-ARITHMETIC DNF, SP over arithmetic operators
ALL-ARITHMETIC DNF, NR, SP over arithmetic operators
SETS DNF, SP over set and relational operators
SETS-WITH-INTEGERS DNF, NR, SP over set and relational operators
SOME-FUNCTIONS DNF, FT, SP over set and relational operators
ALL-FUNCTIONS DNF, FT, SP
FULL-COVERAGE DNF, FT, SP, NR, ISE

Table 1. Domain partition rules used in testing strategies

domain partition rules not necessarily produce new test conditions although they will
produce them in many cases. For example, ALL FUNCTIONS will not produce different
results than SETS if there are no variables of enumerated types; but if there are, then it
will produce more test conditions.

When we partitioned the input space declared in (2) we applied the standard parti-
tion of−C only to IS1, and not to IS2. The reason to proceed in this way is that it is unlikely
that an error in the implementation of −C can be revealed when the symbol to be removed
is not in the symbol table (i.e. IS2). In effect, a possible pseudo-code implementation of
(1) might be:

if s? is an element of the symbol table
then remove s? from st

where “s? is an element of the symbol table” is the implementation of s? ∈ dom st and
“remove s? from st” is the implementation of s? −C st, which may entail several lines
of code depending on the data structure defined to hold the symbol table. Note that if
s? /∈ dom st nothing is done. Therefore, the implementation of s?−C st will be tested only
if s? ∈ dom st, so it makes no sense to exercise the implementation in different ways
when s? /∈ dom st. This is equivalent to not partition IS2.

In summary, testing strategies will produce good coverage with a minimum num-
ber of test cases if domain partition is applied only to some test specifications. Then every
testing strategy defined above applies domain partition as follows:

• Consider that SP is applied to the expression α� β, where � is any Z operator
and α and β are two subexpressions. If α� β is part of the precondition of the
operation, then SP is applied to all test conditions where some variable in α or β
is present. If α� β is part of the postcondition, then SP is applied to all test con-
ditions whose predicates imply the precondition that leads to that postcondition.
• FT and NR are applied to all test conditions where the variable or expression being

considered is present.
• ISE is applied to all test conditions where any of expr, expr1, . . . , exprn is present.



3.1. Testing Strategies in Practice
In this section we show how we have implemented in FASTEST the concept of testing
strategy. FASTEST [5] is a MBT tool providing support for the Test Template Framework
(TTF) [20]. The TTF is a MBT method that uses Z specifications as models from which
test cases are generated. The tool if freely available from http://www.fceia.unr.
edu.ar/˜mcristia/fastest-1.6.tar.gz.

FASTEST already implements the concept of domain partition by so-called testing
tactics. Testing tactics are applied to Z schemas. FASTEST implements testing strategies
as structural testing tools implement coverage criteria. Therefore, FASTEST’s users need
to indicate what testing strategy they want to use and the tool applies testing tactics (i.e.
domain partition) according to the strategy definition. Different strategies can be chosen
for different operations in the specification. Strategies completely hide from users the
complexities of domain partition.

As an example, consider the following Z operation over the symbol table:

Update == [st, st′ : SYM 7→ Z; s? : SYM; v? : VAL | st′ = st ⊕ {s? 7→ v?}]

Clearly, the specification uses a complex relational operator (⊕) but it also deals with in-
teger numbers. In Z the set of integer numbers is infinite. So when an integer Z variable is
implemented, some programming language type is usually chosen (such as int, short,
etc.). Therefore, it would be important to check whether ⊕ and the restriction to say,
short, are correctly implemented. A testing strategy that covers all these situations is
SET-WITH-INTEGERS. If this strategy is used, FASTEST generates 20 tests specifications.
Due to space restrictions only two of them are shown below:

UpdateNR
18 ==

[UpdateVIS |
st 6= ∅ ∧ dom st ∩ dom{s? 7→ v?} = ∅ ∧ v? > −32768 ∧ v? < 32767]

UpdateNR
20 ==

[UpdateVIS |
st 6= ∅ ∧ (dom st ∩ dom{s? 7→ v?}) = ∅ ∧ v? > 32767]

FASTEST also features a scripting language that allows engineers to define new
testing strategies that later are automatically applied.

4. Discussion and Conclusions
There are several MBT methods that use specification languages whose models are com-
plex formulas over some logic and mathematical theories [2, 9, 11, 12, 14, 3, 19]. Some
of these methods also rely on domain partition. None of them show how coverage criteria
can be defined directly over the logical specifications. These methods may be benefited
by the ideas proposed in this paper. As we have said in the introduction, some MBT
methods [11, 12] think of test cases as sequences of operations that execute the imple-
mentation. In these cases, users can extract these sequences by traversing an automaton,
which is derived from the specification. In turn, they can apply different testing criteria
that traverse the automaton in different ways, thus generating different sets of sequences.
This concept is somewhat similar to testing strategies as proposed in this paper, although
perhaps strategies provide more intuitive coverage criteria for logical specifications.



The concept of testing strategy came form the realization that domain partition
rules provide only local or partial coverage over the specification. Strategies are appli-
cable to the whole specification like path- or data-based coverage criteria from structural
testing.

Besides, testing strategies embody the experience and knowledge gained after ap-
plying MBT to several projects and case studies [6, 4]. In this sense, the concept of test-
ing strategy is not the mere assembly of partitioning rules nor their blind application to
each statement of the specification. Strategies really relieve testers from some non-trivial
analysis by, as we have said, implementing known testing heuristics. For example, SOME-
ARITHMETIC applies SP only over arithmetic operators because its focus is on the correct
implementation of arithmetics. Similarly, a structural criterion like condition-coverage
[7] tests conditions not in its most general way. As another example, BASIC-FUNCTIONS,
SOME-ENUMERATIONS and ALL-ENUMERATIONS provide a minimal coverage like state-
ment or branch coverage.

Observe that testing strategies do not change the underlying theory nor the basic
techniques of MBT. This implies that engineers can combine strategies and domain par-
tition to produce test sets as they wish. The partial order that organizes strategies can
be extended or modified as new partitioning rules are created or more insight about the
existing ones is gained.

The presentation made in Section 2 is essentially that of the TTF. However, in this
paper we go one step further by defining some criteria that generate test cases by covering
the logical specification in different ways. Also note that the presentation made in this
paper is more general than that made by Stocks and Carrington since we do not rely on
any particular notation.

The main conclusion we can draw from this paper is that it is possible to define
coverage criteria for MBT methods based on logic and mathematics that play a similar
role to path- or data-based coverage criteria in structural testing. This gives a very ab-
stract and testing-oriented view of MBT methods based on this kind of specifications.
Furthermore, the partial order that can be defined among testing strategies allows testers
to choose the right strategy by what will be tested at the implementation level rather than
by how an input domain is partitioned. This partial order can be modified and extended
with new strategies as they are defined or improved.

In the future we plan to finish the implementation of all the testing strategies de-
scribed here; to write descriptive cards that help testers to informally understand what
each strategy will test and the relation between them; and to explore whether some parti-
tioning rules that have not be considered so far, can be used to define new strategies.
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