
Representing Parnas’ Uses Relation in Z for the
Test Template Framework

Maximiliano Cristiá1, Joaqúın Mesuro1, and Claudia Frydman2

1 CIFASIS and UNR, Rosario, Argentina
cristia@cifasis-conicet.gov.ar, joaquin.mesuro@gmail.com

2 LSIS-CIFASIS, Marseille, France
claudia.frydman@lsis.org

Abstract. The Test Template Framework (TTF) is a model-based test-
ing method for the Z notation, originally proposed for unit testing. In
this paper we analyze how the TTF can be extended to integration test-
ing. Since integration testing is related to software design, we decided to
investigate the relation between the TTF and the uses relation, a key el-
ement of David Parnas’ design theory. We propose how a Z specification
should be structured for the TTF to be able to generate integration tests
by following the uses relation. The problem of stub generation and the
kinds of errors that these integration tests can discover are also discussed.

1 Introduction

The Test Template Framework (TTF) is a model-based testing (MBT) method
proposed for the Z notation [26]. In the TTF each Z operation schema is analyzed
to generate (abstract) test cases. Each operation schema in a Z model is the
specification of a piece of code in the implementation that sometimes corresponds
to a unit of implementation. This is why we say that the TTF generates unit
tests. Recently the TTF was automated roughly to the same degree of other
MBT methods by a tool called Fastest [8]. This makes the TTF and Fastest
appealing options for unit testing within the Z community.

According to the accepted practice of Software Engineering, after each unit
of implementation has been tested in isolation, they should be incrementally in-
tegrated and tested [15, 25]. This phase or level of testing is known as integration
testing. On the other hand, software design is defined as the decomposition of a
system into software elements, the description of what each element is intended
to do and the relations among these elements [15]. Therefore, integration test-
ing is influenced by the design. Furthermore, the design and the structure of the
functional specification influence a MBT method when is applied during integra-
tion testing because test cases are derived from the specification and executed on
the elements of the design. On the other hand, if software elements are related
to each other then errors in one of them may cause errors in the others. The
accepted solution is to build so-called stubs units which mimic the behavior of
the real units but only for a few inputs. Manually crafting such stubs is a source
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of costs and errors. Building the minimum number of correct stubs avoiding as
much manual work as possible can be considered as the stub generation problem.
Stubs are necessary because, in general, units are tested correct (and not proven
correct), so these units cannot be used while other units are tested (because the
formers can induce errors in the latter).

The contributions of this paper are the following: a) a set of guidelines for
writing Z specifications that will simplify (TTF-based) test case generation dur-
ing integration testing; b) an integration strategy based on Parnas’ uses relation
that reduces the number of manually crafted stubs; c) a set of conditions that
guarantee that a unit can be used as stub of itself without inducing errors (in
other units) during integration testing; and d) an analysis of the types of (inte-
gration) errors this method can discover.

An example motivatiing the issues discussed in this paper is given in Sect. 2.
After introducing the TTF in Sect. 3, three main problems are addressed: a) how
a Z specification should be structured and linked with the design to best serve
for integration testing, in Sect. 4; b) what is the best strategy in the TTF to
incrementally integrate units so integration testing can benefit from unit testing,
in Sect. 5; and c) the stub generation problem, in Sect. 6. The kinds of errors
that the extended TTF can find are analyzed in Sect. 7. All the results obtained
in these sections are discussed in Sect. 8. A comparison with similar approaches
can be found in Sect. 9 and our conclusions in Sect. 10.

In this paper “unit” means “subroutine” which in turn includes “function”,
“procedure” and “method”. Our work aims at integrating units for which the
source code is available. All the units that are integrated belong to the same
executable but can belong to different modules. This work does not make any
assumptions about the implementation technology. A general theory of software
design and first-order logic over a set theory (i.e. Z) are the fundamentals.

This paper is a summary of an unpublished paper available on-line [11]. We
assume the reader is familiar with the Z notation.

2 Motivation

In this section we want to show some of the issues that MBT faces when integra-
tion testing is considered. We will do it by means of a simple example. Assume
we need to implement the following functionality: receive an integer number,
check whether it belongs to a list and, if it does not, then add it to the list and
sort the list. A possible Z specification for this requirements is as follows.

S =̂ [list : seqZ]
InList =̂ [ΞS ; x? : Z | x? ∈ ran list ]

InsertOk =̂
[∆S ; x? : Z | x? /∈ ran list ∧ ran list ′ = ran list ∪ {x?}

∧ (∀ i , j : dom list ′ • i < j ⇒ list ′ i < list ′ j )]
InsertAndSort =̂ InsertOk ∨ InList
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Clearly, a first design could be to implement InsertAndSort with a single
subroutine. However, since InsertAndSort includes the specification of a sorting
algorithm, it is reasonable to decompose (i.e. design) its implementation into
two subroutines, insert and sort, with the following functionality: insert reads the
element to be inserted, checks whether it belongs to the list and, if not, calls sort,
which inserts the element in the list and sorts it1. Then, a possible Z specification
reflecting this design is as follows.

Sort1
∆S
x? : Z

#list ′ = #list + 1

list ′ � {x?} = (list � {x?})a 〈x?〉
∀ y : (ran list) \ {x?} • list � {y} = list ′ � {y}
∀ i , j : dom list ′ • i < j ⇒ list ′ i ≤ list ′ j

Input1 =̂ [∆S ; x? : Z | x? /∈ ran list ]
InsertAndSort1 =̂ (Input1 ∧ Sort1) ∨ InList

where S and InList are the same as above. In this case, sort implements Sort1
whereas insert implements InsertAndSort1 replacing Sort1 by a call to sort. Sort1
is more complex than InsertOk because it can sort lists with or without du-
plicates. In other words, Sort1 is more general than InsertOk , although in our
example it is called only when a new element is to be inserted.

In summary, we have two designs with different subroutines for the same
requirements. Given that the specification of each unit is different in each design,
test cases generated by a MBT method should be different when applied to each
design. Furthermore, the specification is saying that the correctness of insert
depends upon the correctness of sort because Sort1 is part of InsertAndSort1.
This dependency should impose an order for testing these units that should be
taken into account by the MBT method. If, on the contrary, insert is tested
before sort has passed all of its test, errors in insert may be difficult to track
down because they may come from itself or from sort. However, even if sort has
passed all of its test, an error found while insert is tested cannot be blamed
just to itself because sort has not been proven correct, it was just tested. Then,
we either build a (correct) stub of sort for testing insert, or we prove that test
cases run on insert always call sort as it was called when it was tested—and
since it passed all its test then errors found while insert is tested can be blamed
just to itself. Finally, if, for instance, insert calls an error reporting routine, say
err, when x? ∈ ran list , should err be tested before insert? We believe it should
not necessarily be the case because err is not part of insert’s specification (i.e.
InsertAndSort1). In other words, the correctness of insert does not depend on

1 In this paper, we use math text to represent the specification of subroutines written
in sans serif. For example, InsertAndSort1 is the specification of insert.
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err. This implies, in turn, that any stub of err will do during insert’s testing. In
summary, a convenient adaptation of a MBT method can help in many ways
during integration testing as we will show in the rest of this paper.

3 Introduction to the TTF and Fastest

In this section we present just the main concepts of the TTF and Fastest; for
deeper presentations consult [26, 8, 12, 9, 10]. Fastest generates test cases for each
operation schema selected by the user in a Z model. If A is an operation then
its valid input space (VIS) is defined as the following Z schema:

AVIS =̂ [x1 : X1; . . . ; xn : Xn | pre A]

where x1 : X1; . . . ; xn : Xn are all the input and state variables declared in A
after full schema expansion, and pre A is the precondition of A.

The goal of the TTF is to partition AVIS by applying so-called testing tac-
tics. A testing tactic is a systematic way of dividing the VIS of a Z operation.
Some tactics are: disjunctive normal form (DNF), standard partitions (SP), free
types (FT), etc. [8, 10]. After a testing tactic is applied to AVIS a family of test
conditions2 is obtained. These test conditions usually form a partition of the
VIS . In Fastest they are formalized as Z schemas as follows:

AT1
1 =̂ [AVIS | PT1

1 (x1, . . . , xn)] . . . AT1
m1

=̂ [AVIS | PT1
m1

(x1, . . . , xn)]

where T1 is the name of the tactic and PT1
i (x1, . . . , xn) for i ∈ 1 . . m1 are

predicates generated by T1. These predicates are called characteristic predicates
of the test conditions. PT1

i defines the conditions for a test case. In other words,
a test condition is a set of test cases satisfying a given condition or predicate.

Perhaps the most important feature of the TTF is that it proposes to apply
other tactics to one or more of the test conditions already generated, thereby
getting progressively more detailed test conditions. For example, if testing tactic
T2 is applied to AT1

1 the following test conditions are generated:

AT2
1 =̂ [AT1

1 | P
T2
1 (x1, . . . , xn)] . . . AT2

m2
=̂ [AT1

1 | PT2
m2

(x1, . . . , xn)]

Observe how schema inclusion is used to link test conditions between them
and with the VIS . Note, also, that schema inclusion adds more predicates to a
test condition. In effect, if AT1

1 is expanded, for instance, inside AT2
2 we have:

AT2
2 =̂ [AVIS | PT1

1 (x1, . . . , xn) ∧ PT2
2 (x1, . . . , xn)]

Schema inclusion organizes test conditions in a so-called testing tree which has
the VIS in the root, the first test conditions in the first level, and so forth.

In the TTF a test case is a Z schema where each variable declared in the VIS
is equal to a constant value such that the predicate of the corresponding leaf is
satisfied. For example, a test case for AT1

2 is:

ATC
2 =̂ [AT1

2 | x1 = c1 ∧ . . . ∧ xn = cn ]

2 Also called test templates, test specifications, test classes, etc.
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4 Structuring a Z Specification for Integration Testing

As we have said in the introduction, integration testing is strongly related to
software design. The approach to integration testing based on a MBT method
proposed in this paper is based on what David L. Parnas calls “uses relation” or
“uses structure” [23], a key concept of his seminal work on software design. The
uses relation is a binary relation between subroutines. If P and Q are two sub-
routines, then Puses Q if “there exist situations in which the correct functioning
of P depends upon the availability of a correct implementation of Q” [23]. Note
that the uses relation differs from the calls (or invokes) relation3 because: (a)
if P’s specification requires only that P calls Q then it is enough for P to call
Q when its specification says so, from P’s perspective Q can be correct or not;
and (b) P may use Q by sharing some data structures although the former never
calls the latter. According to Parnas, “the design of the uses hierarchy should
be one of the major milestones in a design effort”.

The uses relation is relevant to MBT methods since it is based on the speci-
fication of a subroutine. In effect, Puses Q means that the specification of P says
that it needs a correct version of Q. From a functional perspective P and Q could
be implemented in a single unit whose specification is, roughly, the conjunction
of P’s and Q’s specifications. However, from a design perspective it is better to
split this unit into two in such a way that one uses the other. We have shown an
example of this situation in Sect. 2. Given that the TTF uses Z specifications,
it is worth to study how to write them so it is easy to find the uses relation.

We propose the following guidelines for writing Z specifications that will be
used during integration testing.

– Each subroutine is specified by a schema. More precisely, for each subroutine
P there must be a named schema A which is its specification.

– Users must generate test cases only for those schemas that are the spec-
ifications of subroutines. For example, users must generate test cases for
InsertAndSort1 and Sort1 but not for Input1 and InList . In fact, test cases
covering the functionality specified in Input1 and InList will be generated as
part of the test cases generated from InsertAndSort1 [8].

– Let A and B be Z schemas describing the specification of subroutines P and
Q, respectively4. If Puses Q and Pcalls Q, then A must be written as follows:

A =̂ SE(B ,A1, . . . ,An) (†)

where SE is some schema expression depending on schemas B and A1, . . . ,An .
That is, Q’s specification is part of P’s which is completed by the Ai schemas.
An example of this is InsertAndSort1 given in Sect. 2. If P uses other sub-
routines besides Q, then their corresponding Z schemas will also participate

3 P calls Q includes the case where P calls Q indirectly by a chain of calls through
some intermediate subroutines. uses is also a transitive relation.

4 This convention is used across the paper. Recall: math is specification and sans serif
is implementation.
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in (†) like B . For the remaining of this paper we will use (†) but all the
results can be extended to the more complex case where P uses more than
one subroutine.

– If PcallsQ but P 6uses Q, then B must not be part of A because P 6uses Q means
that P’s specification says that it does not depend on Q. So including B in
A would be an error because this would indicate a functional dependency
of P on Q. An example of this second scenario is when insert calls err, also
discussed in Sect. 2.

– If P uses Q but P 6calls Q, then B must not be part of A, at least concerning
integration testing. This case is further discussed in Global errors in Sect. 7.

Since the case P uses Q ∧ P calls Q is analyzed several times in this paper,
from now on we will write P uses Q as a shorthand for it. Furthermore, we will
write uses as a synonym of “use and call”.

Capturing the differences between the uses and calls relations in the specifi-
cation has important consequences for integration testing. Assume that PcallsQ.
Then, a stub of Q will be necessary when P is unit-tested. In general, this stub
should verify B (i.e. Q’s specification) because otherwise P might look erro-
neous when, actually, the errors may come from Q’s stub. Now, also assume that
P 6uses Q. Then, Q’s stub can be anything complying with Q’s signature (even
Q itself) because P’s correctness does not depend on Q’s. Therefore, if P calls Q
but P 6uses Q we can conclude that when P is tested: (a) Q’s stub can be au-
tomatically generated or Q can be used if it is available; and (b) if integration
testing shows errors in P they cannot be due to the presence of an incorrect Q.

5 Integration Testing within the TTF

Guiding integration testing by the uses relation has a number of benefits. If
Puses Q the very nature of testing impedes to restrict the search for the cause of
an error exposed during the testing of P just to itself because it depends at least
on Q which, at best, was already tested, but not proven correct. This is one of
the greatest difficulties during integration testing as testing of subroutines who
use dozens of others tend to exacerbate that problem. If integration testing is
guided by the uses relation this problem is minimized, as we will show below.

Parnas restricts the uses relation to a hierarchy because otherwise “one may
end up with a system in which nothing works until everything works” [23]. If
uses is a hierarchy, there is a set of subroutines, U0, which do not use other
subroutines. These should be the first to be tested because the cause of an error
in one of them should be located only in itself. Then, there is another set of
subroutines, U1, whose members only uses subroutines in U0. These should be
the second to be tested, right after those in U0 have passed all of their tests.
Moreover, in general, there will be a family of sets U0

1(i) ⊆ U1, for i ∈ 1 . .#U0,
whose subroutines use exactly i subroutines (of U0)5. Then, it would be better to
test the subroutines of U1 according to the following order: U0

1(1), . . . ,U0
1(#U0).

5 In general, some of the U0
1(i) will be empty.
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In this way subroutines using less subroutines are tested before those using more,
which is helpful when searching for the cause of an error.

Clearly, a family of sets Ui , with i ∈ 2 . . n for some n, whose subroutines
uses one or more subroutines in U0 ∪ · · · ∪ Ui−1 should be defined to organize
integration testing as was just explained for U0 and U1. This is what we call
integration testing guided by the uses relation. Note that all these sets can be
computed automatically from the Z specification if our guidelines are followed
(cf. Sect. 4). See [11] for more details, examples and formal definitions of sets Uk

and Uj
k (i).

Test case generation during integration testing. If P and Q are going to be tested
using a MBT method then their specifications, A and B , must be analyzed in
order to generate their abstract test cases. The question is whether the relation
Puses Q, and thus the fact that A includes B , would change the standard way in
which the MBT method is applied. If the MBT method analyses the inner details
of formulas A and B then some adaptation is required because otherwise it will
expand B inside A meaning that test cases generated for P will be influenced
by Q as well. However, Q was already tested as a unit and has passed all of
its tests, so, in principle, there is no point in considering it again. Moreover, if
the transitive closure of uses includes a long chain of subroutines starting from
P, then fully expanding A will result in a huge formula which will be hard to
analyze by any implementation of the MBT method. This is in line with the
idea that during integration testing units already tested should be treated as
black boxes. On the other hand, if B is not expanded inside A it might be the
case that Q is not tested as thoroughly as it would if the expansion had been
performed. This point will be discussed in Sect. 7.

Adapting the TTF to Integration Testing. The TTF is applied to elements
belonging to U0 as it is [8]. If P ∈ U1, then A =̂ SE(B ,A1, . . . ,An) for some B
such that it is the specification of some Q ∈ U0. In this case, when the TTF is
applied to A, B is not fully expanded, contradicting the original presentation
of both the TTF and Fastest. Only variables declared in B and referenced by
some Ai are exported from B to A, for consistency reasons. This implies that
test cases for A are generated solely by analyzing P’s own functionality, i.e. the
structure of SE and the predicates in A1, . . . ,An . In other words, B influences
A’s test case generation only as a whole and by its place in SE . This means that
the TTF will generate, at least, test cases that are going to make P to call Q from
different places and with different parameters. For example, if the DNF tactic
[8] is applied to InsertAndSort1 there will be test cases that are going to test
insert with an element belonging to the list and with one that does not. That is,
these test cases will test whether or not insert correctly implements x? ∈ ran list
and if it calls sort when it should. In a sense, this is all that it is worth to be
tested of insert given that the correctness of the sorting algorithm implemented
by sort was already tested. Indeed, for example, if tactics SP [8] and UQ [10] are
applied to InsertSort1, then sort will be tested with empty and non-empty lists
of several lengths and where x? belongs and does not belong to them.
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6 Subroutines as Stubs of Themselves

The distinction between the uses and calls relations reduces the need for man-
ually crafted stubs (cf. last paragraph in Sect. 4). However, a stub of Q is still
needed when Puses Q. One way to avoid building a stub of Q would be to use Q
itself, but it cannot be done because Q is not proven correct, it was just tested.
Nevertheless, if Q has passed some tests then we can be sure that it is correct for
those inputs. Now, if P is tested in such a way that Q is always called as when
it was tested, then Q itself can be used as stub. Furthermore, the cause of an
error found during P’s testing can only be blamed to P since Q has been “tested
correct” for those inputs. We have made an attempt to formalize these ideas,
thus yielding the basis for the mechanization of the search of those subroutines
that can be stubs of themselves.

We have proved a theorem that gives conditions for a subroutine to be used
as stub. Its proof relies on the uniformity hypothesis as stated in [17, page 17].
In order to state Theorem 1 we need a little bit of notation. Consider schemas
A,A1, . . . ,An and B like in (†). According to Sect. 5 only A1, . . . ,An are unfolded
in A. Let vars(A) be the set of the variables declared in schema AVIS that are
declared in at least one Ai . That is, vars(A) does not include variables declared
only in B . If a is a test case derived from schema A and B is another schema,
then BA(a) means the substitution of variables in vars(B) ∩ vars(A) by the
values of the same variables in a (recall, from Sect. 3, that a test case in the
TTF is a conjunction of equalities between variables in the VIS and constant
values). We will note AA(a) simply as A(a).

Theorem 1 assumes that A performs only one state change. This is the case,
for instance, of InsertAndSort1 in Sect. 2. See [11] for a theorem dealing with
two state changes (one for P and one for Q).

Theorem 1. Let P and Q be two subroutines such that P uses Q and let A and
B be their Z specifications, which in turn comply with (†). Assume there is just
one state change in A. Let B1, . . . ,Bn be the leaves of the testing tree generated
by applying the TTF to B . Assume Q has passed all the tests derived from all
these test specifications. Let a be a test case for P derived from A. If there is a
Bj such that BA

j (a) 6= ∅, then Q can be used as a stub when P is tested on a.

Proof. If there is one state change in A then Q executes with the same values
than P for variables in vars(A) ∩ vars(B).

If BA
j (a) 6= ∅, then there is b ∈ Bj such that a and b are equal on variables

in vars(A) ∩ vars(B). Since Q has passed all its tests then it has passed a test
from Bj . By the uniformity hypothesis Q is also correct on b ∈ Bj . Therefore,
when P is executed on a, Q will be executed on b, thereby returning a correct
answer to P. So Q can be used as a stub when P is tested on a. 2

This theorem will be further discussed in Sect. 8.
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7 Errors Detected During Integration Testing

Leung and White give a classification of errors that can be detected during
integration testing [20, 21]. They try to make a distinction between those errors
that could have been detected during unit testing and those that are specific to
integration testing. Below we briefly explain each of these errors and show that
the TTF extended to integration testing can detect them.

Interpretation errors. There are three subclasses of these errors.

– Wrong function errors (WFE). Q does not provide the functionality indicated
by its specification and P does not know that.

Given that the TTF (and other MBT methods) generates test cases for Q
from its specification, then WFEs will be detected when Q is tested as a unit.
In other words, if a test case for Q, generated by the TTF, finds an error in
Q this is an indication that it does not provide the functionality indicated
by its specification

– Extra function errors (EFE). Q provides more functionality than P needs.
P’s developers know this but they wrongly implement P making it to call
these extra functions.

The TTF will generate at least one test case for each of the functionalities in
the specification of Q. For instance, testing tactics such as DNF and FT will
be very useful [8]. If P is tested in such a way that Q is called as to exercise
all these functionalities, then P’s problems will surface (because the extra
functions will be called). In other words, it is necessary to apply the TTF to
A in such a way that it generates enough test cases for P which will make it
call Q in such a way that executes all its functionalities. In turn, this will be
achieved if test cases derived from A verify the following theorem (the proof
is omitted for brevity).

Theorem 2. Let a1, . . . , am be the test cases for P; and B1, . . . ,Bn be the
leaves of the testing tree of Q. Assume these leaves represent all the function-
alities provided by Q. The TTF will detect all EFE in P if for each j ∈ 1 . .n
there exists i ∈ 1 . .m such that BA

j (ai) 6= ∅.

– Missing function errors (MFE). Inputs used by P to call Q are outside the
domain of Q making it to behave unexpectedly.

If B is total then P cannot make Q behave unexpectedly because there is a
specified behavior for each input expected by Q. If B is partial then P should
call Q with b /∈ BVIS to execute it outside its input domain. But from b the
input for P, a, must be found. It is easier to calculate a if A performs only
one state change. For this case, we define a new testing tactic, called MF,
that should be applied to operations whose corresponding subroutines are
in the domain of the uses relation. The test specifications generated by MF
are: AMF

1 =̂ [AVIS | ∃ x1, . . . , xn • pre B ] and AMF
2 =̂ [AVIS | ∃ x1, . . . , xn •

¬ pre B ], where x1, . . . , xn are the variables declared in B but not in A. Note
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that MF is applied to A, not to B but B is part of A as in (†). The TTF
then encourages to further partition these test specifications by applying
more testing tactics. Certainly MF will help to discover MFE because it will
force P to call Q outside its domain due to AMF

2 .

Miscoded Call errors. P calls Q from wrong places. There are three subclasses.

– Extra call instruction (ECI). The calling instruction is placed on a path that
should not contain such invocation.

– Wrong call instruction placement (WCI). The call is located on the right
path, but in a wrong place.

– Missing instruction (MIC). Missing call on a path that should contain it.

Detecting these errors is one of the reasons for defining A as in (†). If A
specifies exactly all the calls that P should make to Q, then the TTF will help to
discover all of these errors. In effect, DNF applied to SE(B ,A1, . . . ,An) will gen-
erate test specifications for all the situations where Q is called and those where it
is not; other tactics, such as FT and UQ, will generate more detailed conditions
under which Q is called. For example, when DNF is applied to InsertAndSort1 it
will generate a test specification characterized by the precondition under which
Sort1 is called and another characterized by its negation. Then, if insert does
not call sort in the first case (MIC) the result will be list ′ = list when it should
be #list ′ = #list + 1; if it calls sort in the second case (ECI), the result will be
#list ′ = #list + 1, when it should be list ′ = list .

Global errors (GER). These are errors related to the wrong use of global vari-
ables [20]. If Puses Q but P 6calls Q, it means that they interact through a shared
resource that can be thought of as a global variable, g . In this case Q defines a
value for g that is later used by P. If this value is not what P expects, then P
may fail. There are two causes that can make P to find an unexpected value in
g : (a) Q does not verify B ; or (b) Q does verify B but P assumes Q implements

a different specification, say B̂ .
In analyzing how the TTF can detect GER we will assume that Puses Q but

P 6calls Q, because when also Pcalls Q, all the previous results apply. If (a) causes
the error, then it reduces to WFE because it means to see whether Q verifies its
specification. Therefore, the true problem of integration testing regarding global
variables is given under the following conditions: P uses Q but P 6calls Q and Q
verifies B but P assumes Q implements a different specification, B̂ . One possible
way of detecting these errors is by executing Q before P while testing P. This
way, however, complicates P’s testing because now it is necessary to run other
units before it, and they must be run in such a way as to make P fail.

Hence, we propose a different approach based on specification verification
rather than on testing. In effect, the problem is a mismatch at the specification
level, causing errors at the implementation level. That is, A assumes B̂ rather
than B , so the problem is to find out this wrong assumption. If the involved
operations are proven to verify some properties (state invariants, for instance)
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then these wrong assumptions will be detected. In this way, B will be changed
for B̂ and it will become Q’s specification. Therefore, B̂ cannot be wrong with
respect to A, because the proven properties act as a common consistency ground
for them. Then, if Q verifies B̂ it cannot set a wrong value for g from P’s
perspective. From here, all reduces to ensure that P and Q implement their
specifications which means performing a thorough unit testing of each of them
in isolation from each other. This is why in Sect. 4 we proposed not to include
B in A when P uses Q but P 6calls Q.

8 Discussion

Although we are interested in extending the TTF to integration testing, our
results use only some of its details. Therefore, they can be used in other speci-
fication languages and MBT methods. Most of the results are based on funda-
mental concepts of Software Engineering like the uses relation, first-order logic
and MBT in general.

Describing operations as in (†) is not a severe restriction on the use of the
language and it has a non negligible impact on the application of the TTF to
integration testing. The form of (†) makes it possible to automatically calcu-
late the uses relation in the relevant cases for integration testing. That is, all
the ordered pairs belonging to uses can be automatically computed. In turn,
organizing integration testing around the uses relation provides several places
for optimizing this process. The first one is given by the definition of the family
of sets Ui . If integration is based on these sets then many errors can be caught
with as less units already integrated as possible. The definition of the families
of sets Uk

i (j ) provides a finer level for guiding integration testing. All this aims
at making the search for the cause of an error as simple as possible, discarding
errors as earlier as possible.

The fact that uses would have an important impact on reducing the costs of
testing and that it can be automatically computed from a Z specification, might
turn Z and uses more cost-effective. In this way they will be used not only as
essential documents but they will be reused during testing as well.

Testing a unit in isolation is a rather ambiguous statement. In effect, if
P uses Q, what it means testing P in isolation? If it means not using Q but
a stub of it, then unit testing is faced with the problem of building correct
stubs. Manually-crafted stubs are not only error prone but costly [16, 4, 19]. The
approach presented here also aims at reducing the costs of stub generation and
at making them reliable enough as not introducing errors. If integration follows
the uses relation and each unit is certified at least for the inputs used during its
testing, then they can be used as stubs for themselves, provided they are always
called as when they were tested. Furthermore, those stubs implied by the calls
relation can be automatically built, as was discussed in Sect. 4. Theorem 1 gives
rather simple conditions under which a subroutine can be used as a stub for
itself—although they are probabilistic given that the proofs depend upon the
uniformity hypothesis. In this way, we are trading the cost and risk of building
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stubs for the cost of describing the uses relation and applying Theorem 1, which
is almost automatic in many cases—see below. Finally, if this theorem cannot
be proved for a given test case of P, i.e. this test case satisfies no leaf used to
test Q, it is an indication that Q was poorly tested because one of its callers will
call it in a functional situation not covered during its testing.

The use of subroutines as stubs for themselves somewhat blurs the distinction
between unit and integration testing. However, integration testing may find new
errors that are difficult or impossible to find during unit testing, as was shown
in Sect. 7. In fact, the TTF extended to integration testing can cope with almost
all the errors classified by Leung and White. Z and the TTF enable a formal
analysis of some of these classes of errors. Theorem 2 and testing tactic MF
show that the TTF can be further extended to deal with particular issues of
integration testing.

A case study applying all these results can be found in [11].

More Detailed Issues. In Theorem 1, proving that BA
j (x ) 6= ∅ involves either

the evaluation of a constant Z predicate or solving a satisfiability problem. In
effect, if vars(B) ⊆ vars(A) then all the free variables in Bj will be replaced by
constant values when BA

j (x ) is calculated; otherwise, there will be free variables

in BA
j (x ). In the first case BA

j (x ) 6= ∅ can always be automatically solved; in

the second case it is necessary to decided whether BA
j (x ) is satisfiable or not.

This problem is undecidable because BA
j (x ) can be a first-order predicate over

the set theory. However, Fastest uses advanced Constraint Logic Programming
techniques (the {log} tool) for solving these predicates with very good results
for real specifications [?,8]. Then, even when BA

j (x ) has free variables Theorem
1 can be automatically applied in many situations.

9 Related Work

There is a lot of research on integration testing, from a MBT perspective [1, 24, 5,
3, 14, 16] or not [13, 2, 6, 22, 19, 18, 21], but we could not find articles analyzing in
detail how Parnas’s design theory and the Z notation can be used for integration
testing. Clements and others [7, pages 68–71] pay attention to the uses relation
and remark its importance in integration testing. In particular they say it can
be used to narrow the search for the cause of an error found during integration
testing but they do not go any deeper.

Leung and White [20, 21] study integration testing in the context of regression
testing. Although they use the calls relation, they define sets of test cases to test
subroutines during integration testing that have some similarities to those pre-
sented here. Apparently they are not interested in the stub generation problem,
but in reducing the number of tests during regression.

Benz [5] acknowledges the fact that critical relationships for integration test-
ing are not explicitly modeled and that MBT methods applied to integration
testing may yield large state spaces. In his work Benz uses task models for spec-
ifying the interaction between components. Ali et al. [3] use UML collaboration
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diagrams to model interactions among classes and Statecharts for specifying
their behavior. They propose a list of mutation operators that can be used to
assess the effectiveness of integration testing methods. Since this list is aimed
at object-oriented programs we preferred the taxonomy of errors proposed by
Leung and White, also used by Orso [22]. Class State Machines (CSTM) are
used by Gallagher, Offutt and Cincotta as the specification method for classes
of object-oriented programs. These CSM are then combined into a component
flow graph which is used to derive integration tests.

Testing components that can only be accessed through a system interface is
the goal of the work by Schätz and Pfaller [24]. They use transition systems to
model the behavior of components and hierarchical transition systems to model
component interactions. The authors define the notion of Satisfied Integrated
Test Case which plays a similar role as Theorem 1 in the present work. Another
work that focuses on a specific problem, carving and replay based integration
testing, is that of Elbaum and his colleagues [13]. However, the four steps of unit
testing they use are the same used in Fastest: identify a program state, set it,
execute the unit from it and evaluate the results.

Hartmann, Imoberdorf and Meisinger [16] use a method based on category
partition to generate test cases from UML Statecharts specifying the behavior
of components whose interactions are described be means of concepts borrowed
from CSP. Category partition is essentially what the TTF does with the VIS of
a Z operation. The authors aim at the stub generation problem but is not clear
to us how their method reduces the number of manually-crafted stubs.

Labiche et al. [19] define an integration strategy based on class diagrams
with the goal of minimizing the stub generation problem. Essentially they test
a class after the classes it depends on. Labiche’s integration order is an exten-
sion of Kung’s [18] when dynamic dependencies and abstract classes are present.
However, class or similar diagrams seldom include the functional specification of
classes. In fact, these methods make a syntactic analysis of these diagrams re-
sulting in a larger number of dependencies because they include not only “used”
classes but also “called” classes.

10 Conclusions and Future Work

The TTF has been extended to integration testing providing, in principle, a
good coverage during this level of testing because it covers almost all the errors
in Leung and White’s classification. Organizing integration testing around the
uses relation shows several advantages that should be further investigated. The
favorable impact that uses has on testing may make developers to describe it
thereby reusing a key design document. Moreover, if a logical specification is
cleverly structured, uses can be computed automatically. The extension mini-
mizes the need for manually-crafted stubs by giving simple conditions that say
when a stub can be automatically generated or when a subroutine can be used
as a stub of itself.
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However, it should be investigated what testing tactics should be applied to
two subroutines belonging to the uses relation to prove Theorem 1 for all test
cases, while still providing good unit coverage for both of them. Another issue
that should be studied is the relation of Z’s θ operator and operation promotion
with integration testing.
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