
Submitted to:
MBT 2012

c© M. Cristiá, & C. Frydman
This work is licensed under the
Creative Commons Attribution License.

Applying SMT Solvers to the Test Template Framework

Maximiliano Cristiá
CIFASIS and UNR
Rosario, Argentina

cristia@cifasis-conicet.gov.ar

Claudia Frydman
LSIS-CIFASIS

Marseille, France
claudia.frydman@lsis.org

The Test Template Framework (TTF) is a model-based testing method for the Z notation. In the TTF,
test cases are generated from test specifications, which are predicates written in Z. In turn, the Z
notation is based on first-order logic with equality and Zermelo-Fraenkel set theory. In this way, a
test case is a witness satisfying a formula in that theory. Satisfiability Modulo Theory (SMT) solvers
are software tools that decide the satisfiability of arbitrary formulas in a large number of built-in
logical theories and their combination. In this paper, we present the first results of applying two
SMT solvers, Yices and CVC3, as the engines to find test cases from TTF’s test specifications. In
doing so, shallow embeddings of a significant portion of the Z notation into the input languages of
Yices and CVC3 are provided, given that they do not directly support Zermelo-Fraenkel set theory
as defined in Z. Finally, the results of applying these embeddings to a number of test specifications
of eight cases studies are analysed.

1 Introduction

The Test Template Framework (TTF) is a model-based testing (MBT) method for the Z notation, spe-
cially well-suited for unit testing [30]. The Z notation is a formal specification language based on first-
order logic with equality and Zermelo-Fraenkel set theory [29, 19]. Our group was the first in providing
tool support for the TTF by implementing Fastest [11, 8], and in extending the TTF beyond test case
generation [10, 9].

Within the TTF, each operation of a Z specification is analysed to produce test cases to later test its
implementation. This analysis is performed by partitioning the input space of the operation. Partition-
ing, in turn, is conducted through the application of one or more testing tactics. Each element of the
resulting partition is an equivalence class. In this context, equivalence classes are called test classes, test
objectives, test templates or test specifications in the literature. The latter will be used in this paper. Test
specifications obtained in this way can be further subdivided into more test specifications by applying
other testing tactics. The net effect of this technique is a progressive partition of the input space into
more restrictive test specifications. One of the features that makes the TTF particularly appealing for the
Z community, is that all of its main concepts are expressed in Z. Hence, the engineer has to know only
one notation to perform the analysis down to the generation of abstract test cases.

Each test specification is characterized by a Z predicate. Finding a test case for a test specification
in the TTF means, thus, finding a witness satisfying its predicate. Clearly, this is a problem of satisfia-
bility at the presence of a complex and rich mathematical theory. Currently, Fastest implements a rough
algorithm to solve this problem [11]. On the other hand, Satisfiability Modulo Theory (SMT) solvers are
tools that, precisely, solve the problem of satisfiability for a range of mathematical and logical theories
[25]. In this paper, we present the first results of applying two SMT solvers, Yices [14] and CVC3 [2],
to the problem of finding test cases from test specifications within the TTF.

Applying a SMT solver to this problem is not a trivial task, in part, due to the fact that, as far as
we have investigated, currently there is no SMT solver natively supporting the Zermelo-Fraenkel set

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Applying SMT Solvers to the TTF

theory. Hence, one needs to rest on defining a shallow embedding of that theory in the language of a
SMT solver. In doing so, a key question arises: is the language of a SMT solver expressive enough to
allow an embedding of Zermelo-Fraenkel set theory? Then, if that embedding is possible, is it the only
one? Will the chosen embedding solve all the satisfiable test specifications appearing in the TTF and
real Z specifications? Which SMT solver and which embedding will be the best in satisfying more test
specifications in less time? Finally, some questions more specific to our project: will that SMT solver be
better than Fastest in finding test cases? Or should the SMT solver complement Fastest in this task?

In this paper we give first answers to all these questions. In Section 2 we describe some issues
about the Z notation that pose some requirements on the expressiveness of SMT solvers’ languages.
Section 3 shows the complexity of typical test specifications derived by applying the TTF, and Section
4 briefly describes the algorithm implemented in Fastest to search for test cases. A research plan for
the application of SMT solvers to this problem is established in Section 5. Sections 6 and 7 present
the embeddings for Yices and CVC3 and the results of an empirical assessment of them, respectively.
Finally, in Sections 8 and 9 we compare our work with other approaches and give our conclusions.

2 The Z Notation

In this section we do not pretend to introduce the Z notation but only to highlight some peculiarities
of its type system—for a comprehensive presentation of Z there are many fine textbooks [27, 21]. An
important component of the Z notation is the Z Mathematical Toolkit (ZMT) [29]. The ZMT defines
a number of mathematical data structures and operations on them. It contains all the elements of the
Zermelo-Fraenkel set theory and other elements built on them. In this context, we will refer to the ZMT
as a synonym of first-order logic with equality and Zermelo-Fraenkel set theory.

Z is a typed formalism. Z is the only built-in type in the language. Specifiers can introduce basic
types as they wish by simply declaring them as: [X]. The structure of the elements of such a type are
unknown. It is also possible to introduce so-called free types, which are recursive data types. In their
simplest form they are just enumerations: Y ::= y1| . . . |yn.

Basically, Z has three type constructors. If X is a type, then PX builds the type of all the sets whose
elements are of type X. If X and Y are types then, X×Y is the type of ordered pairs or Cartesian product1.
Finally, if X1, . . . ,Xk are k types, then [x1 : X1; . . . ; xk : Xk] is the type of records whose fields are x1, . . . ,xk.
In Z records are called schema types, or just schemas, and are central to the notation—they are used to
specify states, operations, properties, etc. These type constructors can be applied recursively to form
more and more complex types.

The ZMT also defines a number of synonyms for some important sets. The set of all binary relations
between X and Y , noted as X↔ Y , is defined as P(X×Y). Furthermore, the ZMT next defines the set of
partial functions from X to Y , X 7→ Y , and the set of total functions, X→ Y , as:

X 7→ Y == {f : X↔ Y|∀x : X; y1,y2 : Y • x 7→ y1 ∈ f ∧ x 7→ y2 ∈ f ⇒ y1 = y2}
X→ Y == {f : X 7→ Y|dom f = X}

That is, in Z functions are sets of ordered pairs. In other words, functions are built up from more
basic elements, are not always total, they are extensional, and can be higher-order—i.e. a function can
have another function as an argument. Being sets of ordered pairs, set theory operators can be applied to
them: if f : X 7→ Y; x : X; y : Y then the following are all type correct x 7→ y ∈ f , f ∪{x 7→ y}, f \{x 7→ y},

1In Z an ordered pair is usually written as x 7→ y as a synonym of (x,y).

M. Cristiá, & C. Frydman 3

etc. However, they are also functions so function application is also defined: f x = f (x). Therefore,
Z functions have two characters: they are functions but they are also sets. The Z type system cannot
guarantee that, for instance f ∪{x 7→ y}, is still a partial function, it can only guarantee that it is a binary
relation. Moreover, f x is not always defined since it might be the case that x 6∈ dom f . That is, Z cannot
guarantee that function application is always correct. All this is crucial to the complexity of embedding
Z in other languages because usually functions are types in their own and are total, like in Yices [14],
sometimes they are just first-order objects like in Z3 [24] and they may be non-extensional and total like
in CVC3 [2] and Coq [6].

P builds all the sets of a given type, both finite and infinite. Therefore, the ZMT defines the set of
finite sets of a type:

FX == {S : PX|∃n : N • ∃ f : 1 . .n→ S • ran f = S}

over which the cardinality operator, #, can be applied. That is, # cannot be applied to A : PX unless
you can prove that A is actually in FX. The ZMT also defines the sets of finite partial functions and
sequences:

X 7 7→ Y == {f : X 7→ Y|dom f ∈ FX}
seqX == {f : N 7 7→ X|dom f = 1 . .#f}

The last issue we want to remark about the Z notation is that set theory operators are polymorphic.
In other words, symbols like ∪, ∩, ∈ and ∅, can be applied to any type.

3 Test Specifications and Test Cases in the TTF

Test specifications and test cases in the TTF are represented as Z schemas. In its more complex form a Z
schema has two parts: the declaration part, where variables are declared; and the predicate part, where a
predicate depending on that variables can be written. The next schemas are test specifications borrowed
from two of our case studies:

DetectReferenceEventNR
18

now, fa : N; ot : REVENT 7→ N
tli, tls,X : REVENT→ N
sysState : STATUS; e? : REVENT

e? = LiftOff
sysState = normal
e? 6∈ domot
now ∈ tli e? . . tls e?
X e?≤ fa
ot 6=∅
{e? 7→ now} 6=∅
ot∩{e? 7→ now}=∅
1 < now < 3

RetrieveEDataSP
24

mem : seqMDATA
m : N
d? : seqMDATA

43 < m+#d?
mem 6=∅
{i : 1 . .#d? • m+ i 7→ d? i} 6=∅
dommem∩dom{i : 1 . .#d? • m+ i 7→ d? i} 6=∅
¬ dom{i : 1 . .#d? • m+ i 7→ d? i} ⊆ dommem
¬ dommem⊆ dom{i : 1 . .#d? • m+ i 7→ d? i}

As it can be seen, test specifications are conjunctions of atomic predicates making heavy use of
sets, functions, sequences and set theory operators. A test case is, then, a schema further restricting its

4 Applying SMT Solvers to the TTF

test specification so the declared variables can take only one value. For example, the following schema
represents a test case generated from DetectReferenceEventNR

18 .

DetectReferenceEventTC
18

DetectReferenceEventNR
18

tli = {LiftOff 7→ 2,ThrustDrop1E 7→ 5,ThrustDrop2E 7→ 4,ThrustDrop3E 7→ 10}
tls = {LiftOff 7→ 10,ThrustDrop1E 7→ 12,ThrustDrop2E 7→ 14,ThrustDrop3E 7→ 16}
X = {LiftOff 7→ 3,ThrustDrop1E 7→ 5,ThrustDrop2E 7→ 7,ThrustDrop3E 7→ 9}
e? = LiftOff
sysState = normal
now = 2
fa = 10
ot = {ThrustDrop1E 7→ 3}

Note how schema inclusion is used to link a test case with its corresponding test specification.

4 A Simple Algorithm for Searching Test Cases

Before searching test cases from test specifications, Fastest’s users can run a command to eliminate unsat-
isfiable test specifications. The method behind this command has been extensively described elsewhere
[8]. This method has proved to be efficient and effective in eliminating most of the unsatisfiable test
specifications. Hence, when users want to find test cases from test specifications, most of them are satis-
fiable. Fastest implements a very simple algorithm to search test cases from test specifications, which has
been introduced in another paper [11]. At the time we started Fastest (early 2007) SMT solvers were not
an option since most of them were being developed at the same time. Then, we implemented a primitive
algorithm that can be regarded as a “brute force ZMT solver”2. Fastest builds a finite model for each
test specification by calculating the Cartesian product between a very small finite set of values bound to
each variable declared in the test specification. Later, Fastest evaluates the test specification for some
elements in the finite model. These finite models are calculated by considering the following heuristics:

• Only the types of variables are considered when building the finite model; i.e. the structure of the
predicate appearing in the test specification is not taken into account.

• There is a configuration variable, FSS, whose value sets the size of the finite sets for basic types,
Z and N. FSS must be strictly positive—usually it is 2 or 3.

• There is a configuration variable, MAX, whose value sets the maximum size for a finite model.

• The finite sets for types N or Z are built from the first FSS numerical constants appearing in the
test specification. If there are no such constants then [0 . .FSS−1] is chosen for N and [−(FSS div
2+(FSS mod 2−1)) . . (FSS div 2)] for Z.

• The finite sets for enumerated types are their elements.

• The finite sets for basic types are built by generating FSS constant names of each type.

• If a variable declared in the test specification does not appear in its predicate, then the finite set for
that variable is any singleton—since the value of such a variable has no influence whatsoever on
the evaluation of the predicate.

2The ‘Z’ in ‘ZMT solver’ is not a mistake, but an indication that our algorithm is only for the Z Mathematical Toolkit.

M. Cristiá, & C. Frydman 5

• If the predicate of a test specification contains an atomic predicate of the form var = val, where
var is a variable and val is a constant value, then the finite set for var is just {val}—since it will
be impossible to satisfy the predicate with any other value.

• The finite sets for the types or sets that result from applying a type constructor or by following a
ZMT definition—i.e. ×, P, 7→, etc.—to other types or sets, are built recursively from the finite sets
considered for its arguments.

• Given that test specifications are conjunctions of atomic predicates, the algorithm reduces the
initial finite model to the subset satisfying the first atomic predicate. This subset is used as the
finite model on which the second atomic predicate is evaluated, and the algorithm reduces it once
more to the subset satisfying this second predicate. This continues until the last atomic predicate
is considered, in which case the first element satisfying it is returned; or until an atomic predicate
cannot be satisfied, in which case “unknown” is returned.
During this step: (a) MAX is considered to put a limit on the number of elements of the finite
model to be explored; and (b) the evaluation of the predicate on a particular element of the finite
model is performed by the ZLive component of the CZT project [15, 23].

Although this algorithm might appear inefficient and is certainly inelegant, it has proved to find an
average of 80% of test cases from satisfiable test specifications [11]. However, SMT solvers can be good
complements or alternatives to this algorithm, as we will show shortly.

5 Contribution of this Paper

Replacing the algorithm described in the previous section, is not a trivial task because, just to begin with,
no SMT solver works directly with the Z notation. Therefore, at a bare least we need to write a translator
from Z into the language of the chosen SMT solver, and another from the output language back to Z—for
converting the witness found by the SMT solver into Z—, when even the subset of Z supported by Fastest
is a complex language. Not to mention that it might be necessary to try out different SMT solvers with
different shallow embeddings. Hence, we plan to attack this problem as follows:

1. Chose some SMT solvers that are powerful and stable as to be used for the problem at hand.

2. Define one or more shallow embeddings for them.

3. Apply the embeddings to the satisfiable test specifications that were not solved by Fastest.

4. Analyse the results.

5. If the combination of SMT solver and shallow embedding works well for these test specifications—
i.e., it finds many test cases fast—, then see whether it also finds test cases for those test specifica-
tions for which Fastest works well.

6. Since ZLive has some limitations, see if the shallow embedding can overcome them.

7. Complete and optimise the embedding.

8. If everything goes well, write the traducers.

9. Measure the end-to-end computing time—i.e., translating from Z to the SMT solver, executing the
SMT solver, and translating back the results to Z—to compare it with the current algorithm.

10. Investigate whether the SMT solver can be used to eliminate unsatisfiable test specifications.

6 Applying SMT Solvers to the TTF

Until step 8 all the work is manual and many alternatives should be constantly evaluated. For ex-
ample, is a single SMT solver good enough? Is better to use many of them because some solve some
test specifications while others solve the rest? Must the current algorithm be replaced or used as another
solver? At the end, would it be better to write a decision procedure for the ZMT and include it in some
SMT solver instead of using a shallow embedding?

In this paper we address steps 1 to 4. More specifically, the problem attacked in this paper is, thus,
using SMT solvers to find witnesses satisfying those test specifications for which Fastest failed—two of
which are shown in Section 3. Our contributions are: (i) defining shallow embeddings of a significant
portion of the ZMT for two mainstream SMT solvers, namely Yices and CVC3; and (ii) running Yices
and CVC3 on 69 satisfiable test specifications (borrowed from eight cases studies, three of which are real
industrial problems) written with the shallow embeddings, to measure the efficiency and effectiveness of
the embeddings and the SMT solvers for this particular testing problem. The embeddings shown in this
paper are not only useful for our problem but also for others as they embed the Zermelo-Fraenkel set
theory in general [22].

6 Shallow Embeddings of Z into Two SMT Solvers

In this section we present two shallow embeddings of a significant portion of the ZMT for Yices [14]
and CVC3 [2]—in Section 8 we explain why we have chosen these two SMT solvers. The embeddings
are given by means of embedding rules of the following form:

name Z notation
SMT solver syntax

where the text above the line is some Z term and the text below the line is one or more, either Yices
or CVC3, sentences; the name of the rule identifies the Z term being considered. Some Z features are
omitted because they are outside the scope of this paper; and some rules are not given because they can
be easily deduced from the others (for example, we give a rule for set intersection but not for set union).

The files resulting from applying these embeddings to 69 test specifications along with the Z test
specifications themselves are available at: www.fceia.unr.edu.ar/~mcristia/smt-ttf-cs.tar.gz.

6.1 Notation

We decided to describe the embeddings in terms of the input languages of Yices and CVC3 because
we would like readers to be able to check all the empirical data mentioned in Section 7. We do not
use the SMT-LIBv2 [4] language because it does not support all the features of all SMT solvers—for
instance, Yices’ lambda expressions and CVC3’s instantiation patters. We believe that, in general, the
input languages of both SMT solvers are rather easy to understand for readers knowledgeable in formal
methods.

Yices uses a language similar to SMT-LIBv2. That is, operators and type constructors are all prefix.
For instance, x+y is written (+ x y), and a function from X to Y is declared as (→ X Y). nat, int and bool
are all built-in types, with their obvious meanings. Yices support lambda expressions to define functions,
as in lambda calculus. The keyword select is used to access members of record-types; it is also a prefix
operator.

CVC3 uses a more human-readable input language. All the reserved words are written in capitals.
The most difficult construction is the definition of an array. If A is an array then it is possible to associate
a value for each of its components by means of the construction ARRAY (x : T) : expr(x), where T is the

M. Cristiá, & C. Frydman 7

type of the indexes of A, and expr is an expression of the type of the components of A which may depend
on x. The result is an array in which the value of the component with index x is the result of expr(x).

6.2 Yices

The most relevant rules of the shallow embedding of Z into Yices3 are given in Figure 1. We are going
to discuss only those rules that deserve some attention. As it can be seen sets, functions, partial func-
tions, binary relations, sequences and finite sets are all represented, essentially, with Yices uninterpreted
functions. In Yices uninterpreted functions4 are total, extensional and higher-order, making them a good
choice to represent ZMT’s mathematical structures. In our opinion, there are no other elements in Yices
better than functions on which to build the embedding.

Basic types are embedded as type definitions thus preserving the Z semantics in that there is no clue
about the structure of their elements. The embedding defines a set of type X as a function from X to bool.
If A : PX and x : X, the interpretation is trivial: x ∈ A⇔ (A x). Note that these two rules imply that a
set may be infinite. Also, note that Yices’ type system impedes us to define polymorphic operators (cf.
rules ∅, ⊆, etc.). The workaround is to define one per type. This is not a serious problem because the
intention is that the embedding will be transparent for Fastest users.

A partial function is represented as a record with two fields: dom, is a Yices function representing the
domain of the function—as with sets—; and law is the actual map between the types. The intention is that
(law x) is meaningful if and only if (dom x) is true. However, this intention cannot be guaranteed unless
the Z specification is consistent—and not only type correct. If the Z specification is verified in a system
like, for instance, Z/EVES [28], then some proof obligations should have been discharged proving that
all partial functions are correctly applied. Besides, Fastest eliminates test specifications where a partial
function is explicitly applied outside its domain—i.e., for example where x 6∈ dom f ∧ . . . f x . . . holds. Our
embedding assumes these two hypothesis. This representation of partial functions has two advantages:
(i) the domain is a set as in Z; and (ii) it is easy to apply a function to its argument. However, it has
a disadvantage: (partial) functions are not sets; in other words, the embedding for (partial) functions is
semantically different from the embedding for sets. For instance, if we have f : X 7→ Y and R : X↔ Y , then
at the Z level f = R is type-correct, but its representation through the embedding is not. Nevertheless, this
can be overcome by calculating the “set” corresponding to a (partial) function. For example (assuming
f : X 7→ Y):

(define fSet :: (→ X Y bool)
(lambda (x :: X y :: Y) (and ((select f dom) x) (= ((select f law) x) y))))

Then, at the Yices level we can write (= fSet R) for f = R, but we still use f for function application;
for instance, ((select f law) x = y1). We have tried other representations for partial functions, sets and
functions but in our opinion this is the best one for our purposes. For instance, the Yices’ manual suggests
representing partial functions through dependent types:

(define f :: (tuple dom :: (→ X bool) (→ (subtype (x :: X) (dom x)) Y)))

However, it has a problem in the context of embedding Z specifications. In effect, if x : X then f x is
type-correct in Z, but ((select f 2) x) is not in Yices—because the type of x is X and not (subtype (x ::
X) (dom x)). This representation may be good for other theories of partial functions.

3Actually we used Yices 1.
4From now on we will just say “functions”.

8 Applying SMT Solvers to the TTF

Z Z
int

N N
nat

basic types
[X]

(define− type X)

free types
X ::= c1| . . . |cn

(define− type X (scalar c1 . . .cn))
× x : Y×Z

(define x :: [Y,Z])

P
A : PX

(define A :: (→ X bool))
ranges

a . .b
(lambda (i :: int) (and (≤ a i) (≤ i b)))

↔ R : X↔ Y
(define R :: (→ X Y bool))

→
f : X→ Y

(define f :: (→ X Y))

7→
f : X 7→ Y

(define f :: (record dom :: (→ X bool) law :: (→ X Y)))

∅
∅ : X

(define emptysetX :: (→ X bool) (lambda (x :: X) false))

∩
A,B : PX A∩B

(define capX :: (→ (→ X bool) (→ X bool) (→ X bool))
(lambda (A :: (→ X bool) B :: (→ X bool)) (lambda (x :: X) (and (A x) (B x)))))

⊆
A,B : PX A⊆ B

(define subseteqX :: (→ (→ X bool) (→ X bool) bool)
(lambda (A :: (→ X bool) B :: (→ X bool)) (forall (x :: X) (⇒ (A x) (B x)))))

F
A : FX

(define A :: (record set :: (→ X bool) bij :: (→ X nat1) card :: nat))
(assert (forall (x :: X) (⇐⇒ ((select A set) x) (≤ ((select A bij) x) (select A card)))))
(assert (forall (n :: nat1 x1 :: X x2 :: X)

(⇒ (and (≤ n (select A card))
((select A set) x1)
((select A set) x2)
(= ((select A bij) x1) n)
(= ((select A bij) x2) n))

(= x1 x2))))

seq
s : seqX

(define s :: (record dom :: (→ nat1 bool) law :: (→ nat1 X) card :: nat))
(assert (forall (n :: nat1) (⇐⇒ (≤ n (select s card)) ((select s dom) n))))

Figure 1: Embedding rules for Yices.

M. Cristiá, & C. Frydman 9

As it can be seen, finite sets are harder to represent. We embed them by representing the definition of
finiteness given in Section 2—i.e., a set has cardinality n if there is a bijection between itself and the first
n natural numbers. That is, a finite set is a record with three fields: set, is the actual set; bij, is intended
to be a bijection from a subset of its domain onto a subset of its range; and card, is the cardinality of the
set. To keep set finite and consistent with the other two fields we assert two axioms. The first one says
that an element is in set if and only if bij x is less than or equal to card. This ensures that the image of
bij for those x : X such that set x is true, has a finite number of elements. The second axiom asserts that
the inverse of bij for all the natural numbers less than or equal to card, is a function. Therefore, bij is a
bijection between the range [1 . .card] and all x : X such that set x is true. Observe, that this representation
is compatible with the one for sets. In effect, if A : PX; B : FX and B⊆ A, then at the Yices level we can
simply say (subseteqX (select B set) A) (cf. rule ⊆).

The rules in Figure 1 are completed by a rule saying that each Z atomic predicate appearing in a test
specification must be embedded as an assert command. This is justified because a test specification is a
conjunction of atomic predicates and a sequence of assert commands is also a conjunction. Therefore,
checking the satisfiability of a test specification is performed by executing a check command.

6.3 CVC3

The most relevant rules of the shallow embedding of Z into CVC3 are given in Figure 2. Due to space
restrictions we write BV1 for BITVECTOR(1), 0 for 0bin0 and 1 for 0bin1. As it can be seen, the
embedding is essentially the same to the previous one, the main difference being that it uses arrays instead
of functions. Although CVC3 supports functions, they are not extensional nor higher-order making them
less useful to represent the ZMT. On the other hand, CVC3 provides a general theory of extensional,
higher-order arrays. In particular they can be indexed by any type, finite or infinite. Therefore, in this
case we opted for arrays as the main mathematical structure for the embedding. For sets and the like we
used arrays of bit vectors of size one, because in CVC3 arrays cannot have Boolean components. This
makes the embedding more verbose than the one for Yices. Note, however, that we have used functions
for defining set theory operators like intersection and subset. We believe that this embedding deserves
no further comments due to its similarities with respect to the previous one.

6.4 A Variant

Besides the embeddings shown in Figures 1 and 2, we also tried out a variant for each of them. In this
variant the rules for basic types are replaced by the following ones:

Yices
[X]

(define− type X (scalar x1 x2 x3))
CVC3

[X]
DATATYPE X = x1|x2|x3 END

In other words, a basic type is replaced by a type with only three values. Fastest proceeds in a
similar fashion as we have explained in Section 4. Given that the elements of a basic type have an
uncertain structure, we have observed that in many test specifications there is no need in having all of
them. Changing the rules in this way may have a great impact on the effectiveness of the SMT solvers
because all the quantifications over X become finite. It is a known fact that SMT solvers turn out to be
incomplete at the presence of quantifications over infinite sets. Therefore, in this way it may be possible
to avoid a number of such quantifications thus increasing the likelihood of finding more test cases.

10 Applying SMT Solvers to the TTF

Z Z
INT

basic types
[X]

X : TYPE

free types
X ::= c1| . . . |cn

DATATYPE X = c1| . . . |cn END
× x : Y×Z

x : [Y,Z]

P
A : PX

A : ARRAY X OF BV1
ranges

a . .b
[a..b]

↔ R : X↔ Y
A : ARRAY [X,Y] OF BV1

→
f : X→ Y

A : ARRAY X OF Y

N N
NAT : TYPE = SUBTYPE(LAMBDA (x : INT) : 0≤ x)

7→
f : X 7→ Y

f : [# dom : ARRAY X OF BV1, law : ARRAY X OF Y #]

∅
∅ : X

emptysetX : ARRAY X OF BV1 = (ARRAY (y : Y) : 0)

∩
A,B : PX A∩B

capX : (ARRAY X OF BV1,ARRAY X OF BV1)→ ARRAY X OF BV1
ASSERT FORALL (A,B : ARRAY X OF BV1) :

capX(A,B) = (ARRAY (x : X) : IF A[x] = 1 AND B[x] = 1 THEN 1 ELSE 0 ENDIF)

⊆
A,B : PX A⊆ B

subseteqX : (ARRAY X OF BV1,ARRAY X OF BV1)→ BOOLEAN
ASSERT FORALL (A,B : ARRAY X OF BV1) :

subseteqINT(A,B)⇐⇒ FORALL (x : INT) : A[x] = 1⇒ B[x] = 1

F
A : FX

A : [# set : ARRAY X OF BV1,bij : ARRAY X OF NAT1,card : NAT #]
ASSERT FORALL (x : X) : A.set[x] = 1⇐⇒ A.bij[x]≤ A.card
ASSERT FORALL (n : NAT1,x1,x2 : X) :

(n≤ A.card AND A.set[x1] = 1 AND A.set[x2] = 1 AND A.bij[x1] = n AND A.bij[x2] = n)
⇒ x1 = x2

seq
s : seqX

s : [# dom : ARRAY X OF BV1, law : ARRAY NAT1 OF X,card : NAT #]
ASSERT FORALL (n : NAT1) : n≤ s.card⇐⇒ s.dom[n] = 1

Figure 2: Embedding rules for CVC3.

M. Cristiá, & C. Frydman 11

Embeddings of Figure 1 and 2 Variant described in Section 6.4
Case study Yices CVC3 Yices CVC3

Sat Unk Sat Unk Sat Unk Sat Unk
Savings accounts (3) 8 8 8 8
Savings accounts (1) 2 2 2 2
Launching vehicle 8 8 8 8
Plavis 29 29 29 29
SWPDC 13 13 13 13
Scheduler 4 4 4 4
Security class 4 4 4 4
Pool of sensors 1 1 1 1
Totals 9 60 17 52 9 60 17 52

Table 1: Results of running Yices and CVC3 on 69 test specifications.

7 Empirical Assessment

Since we started with the Fastest project we used a number of case studies (Z specifications) to test and
validate different aspects of the tool [11, 8, 12, 10, 7]. At the moment we have eleven case studies to test
the test case generation algorithm described in Section 4. Fastest finds 100% of the test cases for two of
the eleven case studies. Of the remaining nine, we discarded one for the present experiments because it
has very long test specifications as to write them by hand. Therefore, we assessed Yices and CVC3 and
the embeddings with test specifications from eight case studies. The 69 test specifications chosen for this
assessment are those for which Fastest was unable to find a test case, although they are satisfiable. The
satisfiability of these test specifications was determined by manual inspection.

All these experiments were conducted on the following platform: an Intel Centrino Duo of 1.66 GHz
with 1 Gb of main memory, running Linux Ubuntu 10.04 LTS with kernel 2.6.32-35-generic. As we
have said, the original Z test specifications, and their translation to Yices and CVC3 can be downloaded
from http://www.fceia.unr.edu.ar/~mcristia/smt-ttf-cs.tar.gz. The translation of each
test specification is saved in a file ready to be loaded into Yices or CVC3. We also provide scripts to run
the experiments. The results can be analysed with simple grep commands.

The first experiment started by manually writing each test specification according to the embedding
rules shown in Figures 1 and 2. Then Yices and CVC3 were fed with each of them followed by a check-
sat command. The output was redirected to files to be analysed later. The second experiment consisted
in applying the variant embedding described in Section 6.4. After a check-sat command they both return
either “satisfiable” or “unknown”—because “unsatisfiable” is impossible as all the test specifications are
satisfiable. In both cases “unknown” means that the SMT solver cannot decide whether the formula is
satisfiable or not. When the answer is “satisfiable” both solvers return a witness satisfying the formula.
Furthermore, if the answer is “unknown” they return a “potential witness”. That is, they are not sure
whether the formula is satisfiable or not but they “believe” it is and return a possible witness.

The results of these experiments are shown in Table 1. Column Sat (Unk) is the number of test
specifications for which the SMT solver returned “satisfiable” (“unknown”). As it can be seen, the
variant embedding produced exactly the same results for both SMT solvers. Also it is easy to see that
CVC3 discovered all the test cases discovered by Yices plus eight more. However, while Yices, in both
experiments, took no more than 3 seconds in processing the 69 test specifications, CVC3 took around 7
minutes in doing the same. In turn, Fastest takes 6.5 minutes to process the same test specifications, but,

12 Applying SMT Solvers to the TTF

as we have already said, it discovers no test case. Yices could not solve all the test specifications that
include a quantification or a lambda expression over an infinite set; CVC3 could not solve all the test
specifications that include a quantification over an infinite set. It is very important to remark that these
quantifications or lambda expressions appear due to the embeddings; they are not present in the original
Z test specifications. The conclusions about these experiments are listed in Section 9.

8 Related Work

We chose Yices and CVC3 for this work after evaluating all the SMT solvers that participated in the
SMT-COMP 2010, 2009 and 2008, that is 22 tools [4, chapter 5]. The evaluation was based on the
following criteria: (i) the tool must be documented as to be used by a novice user, specifically its input
language must be thoroughly described; (ii) the tool must be stable and actively developed; (iii) the tool
must run on Linux; (iv) the tool must be clearly identified as a SMT solver, specifically it must return the
witness satisfying a formula; (v) the tool must be freely available to the general public; and (vi) the tool
must work with a general logical system, in particular it must support: (a) quantified formulas; (b) basic
and enumerated types; and (c) a general theory of extensional uninterpreted functions or arrays (index
and values over general types). This evaluation yielded only three candidates: Yices, CVC3 and Z3 [24].
In this paper we report on the results of applying Yices and CVC3; Z3 will be approached soon. Most of
the evaluated SMT solvers do not support quantified formulas over a sufficiently general mathematical
theory. veriT supports such theories but it does not provide a witness if a formula was satisfied [13];
Alt-Ergo looks powerful as to fulfil our needs but it is not documented as to start the project with it [5].
None of the evaluated SMT solvers implement decision procedures for a theory of sets.

Model-based testing (MBT) techniques and tools for constraint solving or satisfiability have been
integrated, and SMT developers have proposed to use their tools for test case generation. The results of
some of these works encouraged us to follow the same ideas but applied to the TTF and Z. For example,
Leonardo de Moura, in a tutorial given at Automated Formal Methods (AFM) 2006, includes test case
generation as one of the applications for Yices. Different people at Microsoft Research have integrated
Z3 into MBT or testing tools. Veanes and colleagues [32] use Z3 to generate test cases for parametrized
SQL queries. In this work the authors use a language which supports finite sets, but not the other ZMT
elements. Pex [31] and SAGE [17] are testing tools developed at Microsoft Research which integrate Z3.
The first one generates unit tests for .NET applications, and the second one is a fuzz tester for security
vulnerabilities. Grieskamp et al. [18] use Spec Explorer integrated with Z3 to generate combinations
of parameter values. This parameters appear in the actions of labelled transition systems abstracting the
system-under-test. Besides, Galler et al. [16] integrate Z3 in jCAMEL so it can derive test cases for
programs annotated with contracts. However, Z3 is used only for integer parameters. As it can be seen,
these works deal with formalisms quite different from and usually less expressive than Z.

The satisfiability algorithm presented in Section 4 is similar in conception to approaches like the Al-
loy Analyser which also defines a finite model for a given predicate and tries to see whether is it possible
to satisfy it within this model or not [20]. The Alloy Analyser uses some SAT solving techniques.

Peleska et al. [26] apply the SONOLAR SMT solver for generating test cases from a modelling
formalism based on Harel’s Statecharts. This formalism is less expressive than Z and does not include
any set or related theory. SONOLAR is one of the SMT solvers we evaluated but we could not use it
since it does not support quantified formulas nor a general theory of arrays or uninterpreted functions.

Kröning et al. [22] propose to add a new theory to the SMT-Lib standard [1], as the standard format
for formulas involving sets and finite sets, mappings and lists. Their proposal originates in VDM but

M. Cristiá, & C. Frydman 13

they acknowledge that it can be applied to other formalisms such as Z. However, they do not give the
embedding of this theory in the language of any concrete SMT solver; they suggest that arrays can be
used to encode it. Besides, the theory described in that work is not exactly Z—for example, they deal
with finite mappings and not functions as in Z.

9 Conclusions and Future Work

In this paper we have proposed shallow embeddings for two SMT solvers, Yices and CVC3, as a method
for finding test cases from Z test specifications. These test specifications are generated by Fastest, a
tool implementing the Test Template Framework. Given that these test specifications are predicates of
first-order logic and Zermelo-Fraenkel set theory, SMT solvers looked as promissory tools to solve this
problem. Besides, we experimented with these embeddings and the SMT solvers by manually codifying
69 satisfiable test specifications. Based solely on these experimental results we can conclude:

• CVC3 works better than Yices, as the former found around the double of test cases.

• Given that CVC3 discovered exactly the same test cases than Yices, combining both tools does not
seem to be fruitful, unless Yices is used first given that it runs faster than CVC3.

• However, CVC3 discovered test cases for only 25% of the test specifications. It seems a poor result
since it outperforms the rough algorithm implemented by Fastest in only 17 test cases. Assuming
CVC3 would also discover all the test cases that Fastest currently does—we are not sure it will,
though—, it would be an overall increment of 4%, given that we work with 475 satisfiable test
specifications. Furthermore, the time spent by CVC3 and Fastest in procssing these 17 test cases
is roughly the same.

• An issue that deserves more attention is the chances of using the potential witnesses returned by
the SMT solver when the answer is “unknown”. After a manual inspection we observed that many
of them are indeed witnesses. It might be possible to invoke ZLive to confirm that these witnesses
satisfy their corresponding test specifications. This constitutes a first sign that combining Fastest
with SMT solvers may be a good option.

• The previous item brings in another issue. Is it trivial to automatically translate back to Z the
witnesses returned by the SMT solver? At a first glance, the witnesses returned by Yices are far
easier to parse than those returned by CVC3—actually Yices returned a total of 1,221 lines of text
while CVC3 returned 33,145 lines; the main difference lies in the potential witnesses: less than
1,000 lines for Yices and more than 32,000 lines for CVC3.

• Replacing the embedding of Z basic types by enumerated types (as described in Section 6.4) proved
to be useless, in spite of looking promising at first. The problem may lay in the fact that this variant
still produces formulas with quantifications over the integers or the naturals—i.e. infinite quan-
tifications. It does not seem promising to change Z or N for a finite subset—like, for instance
[−10 . .10]—because each literal has its own properties. For example, if a test specification men-
tions “43” then not considering it in some way may lead to an “unsatisfiable” answer. This is not
the case for basic types, as all of their elements have only one property: equality.

In summary, we will keep exploring combining SMT solvers with Fastest since they discovered some
test cases that Fastest did not, their execution times are at least as good as Fastest’s, and there are chances
that potential witnesses become more test cases. Our next step is to see whether the embedding for CVC3

14 Applying SMT Solvers to the TTF

finds all the test cases that Fastest currently finds and study the translation of the witnesses returned by
CVC3. If the results of this step are not good, then we will consider proposing a decision procedure for
formulas of the ZMT. We also plan to repeat the work reported here with the Z3 SMT solver.

References
[1] Clark Barrett, Aaron Stump & Cesare Tinelli (2010): The SMT-LIB Standard: Version 2.0. Technical Report,

Department of Computer Science, The University of Iowa. Available at www.SMT-LIB.org.

[2] Clark Barrett & Cesare Tinelli (2007): CVC3. In Werner Damm & Holger Hermanns, editors: Proceedings
of the 19th International Conference on Computer Aided Verification (CAV ’07), Lecture Notes in Computer
Science 4590, Springer-Verlag, pp. 298–302. Berlin, Germany.

[3] Karin Breitman & Ana Cavalcanti, editors (2009): Formal Methods and Software Engineering, 11th In-
ternational Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, Decem-
ber 9-12, 2009. Proceedings. Lecture Notes in Computer Science 5885, Springer. Available at http:
//dx.doi.org/10.1007/978-3-642-10373-5.

[4] David R. Cok (2011): The SMT-LIBv2 Language and Tools: A Tutorial. GrammaTech, Inc.

[5] Sylvain Conchon & Evelyne Contejean: Alt-Ergo. Available at http://alt-ergo.lri.fr. Last access:
November 2011.

[6] Coq Development Team (2008): The Coq Proof Assistant Reference Manual, Version 8.2. LogiCal Project.

[7] Maximiliano Cristiá, Pablo Albertengo, Claudia Frydman, Brian Plüss & Pablo Rodrı́guez Monetti (2011):
Applying the Test Template Framework to Aerospace Software. In: Proceedings of the 34th IEEE Annual
Software Engineering Workshop, IEEE Computer Society, Limerik, Irland. — to be published.

[8] Maximiliano Cristiá, Pablo Albertengo & Pablo Rodrı́guez Monetti (2010): Pruning Testing Trees in the Test
Template Framework by Detecting Mathematical Contradictions. In José Luis Fiadeiro & Stefania Gnesi,
editors: SEFM, IEEE Computer Society, pp. 268–277.

[9] Maximiliano Cristiá, Diego Hollmann, Pablo Albertengo, Claudia S. Frydman & Pablo Rodrı́guez Monetti
(2011): A Language for Test Case Refinement in the Test Template Framework. In Shengchao Qin & Zongyan
Qiu, editors: ICFEM, Lecture Notes in Computer Science 6991, Springer, pp. 601–616. Available at http:
//dx.doi.org/10.1007/978-3-642-24559-6_40.

[10] Maximiliano Cristiá & Brian Plüss (2010): Generating Natural Language Descriptions of Z Test Cases. In
John D. Kelleher, Brian Mac Namee, Ielka van der Sluis, Anja Belz, Albert Gatt & Alexander Koller, editors:
INLG, The Association for Computer Linguistics, pp. 173–177. Available at http://www.aclweb.org/
anthology/W10-4218.

[11] Maximiliano Cristiá & Pablo Rodrı́guez Monetti (2009): Implementing and Applying the Stocks-Carrington
Framework for Model-Based Testing. In Breitman & Cavalcanti [3], pp. 167–185. Available at http:
//dx.doi.org/10.1007/978-3-642-10373-5_9.

[12] Maximiliano Cristiá, Valdivino Santiago & N.L. Vijaykumar (2010): On Comparing and Complementing
two MBT approaches. In Fabián Vargas & Erika Cota, editors: LATW, IEEE Computer Society, pp. 1–6.

[13] David Déharbe & Pascal Fontaine: The veriT Solver. Available at http://www.verit-solver.org. Last
access: November 2011.

[14] Bruno Dutertre & Leonardo de Moura (2006): System Description: Yices 1.0. In: Proceedings of the 2nd
SMT competition, SMT-COMP’06, Seattle, USA.

[15] Leo Freitas, Mark Utting, Petra Malik & Tim Miller: Community Z Tools (CZT) Project. Available at
http://czt.sourceforge.net. Last access: November 2011.

[16] Stefan J. Galler, Bernhard Peischl & Franz Wotawa (2008): Challenging Automatic Test Case Generation
Tools with Real World Applications. In: Proceedings of the IASTED International Conference on Software
Engineering and Applications, pp. 21–26.

http://dx.doi.org/10.1007/978-3-642-10373-5
http://dx.doi.org/10.1007/978-3-642-10373-5
http://alt-ergo.lri.fr
http://dx.doi.org/10.1007/978-3-642-24559-6_40
http://dx.doi.org/10.1007/978-3-642-24559-6_40
http://www.aclweb.org/anthology/W10-4218
http://www.aclweb.org/anthology/W10-4218
http://dx.doi.org/10.1007/978-3-642-10373-5_9
http://dx.doi.org/10.1007/978-3-642-10373-5_9
http://www.verit-solver.org
http://czt.sourceforge.net

M. Cristiá, & C. Frydman 15

[17] Patrice Godefroid: SAGE. Available at http://channel9.msdn.com/blogs/peli/

automated-whitebox-fuzz-testing-with-sage. Last access: November 2011.
[18] Wolfgang Grieskamp, Xiao Qu, Xiangjun Wei, Nicolas Kicillof & Myra B. Cohen (2009): Interac-

tion Coverage Meets Path Coverage by SMT Constraint Solving. In: Proceedings of the 21st IFIP
WG 6.1 International Conference on Testing of Software and Communication Systems and 9th Inter-
national FATES Workshop, TESTCOM ’09/FATES ’09, Springer-Verlag, Berlin, Heidelberg, pp. 97–
112, doi:http://dx.doi.org/10.1007/978-3-642-05031-2 7. Available at http://dx.doi.org/10.1007/

978-3-642-05031-2_7.
[19] ISO (2002): Information Technology – Z Formal Specification Notation – Syntax, Type System and Semantics.

Technical Report ISO/IEC 13568, International Organization for Standardization.
[20] Daniel Jackson (2006): Software Abstractions: Logic, Language, and Analysis. The MIT Press.
[21] Jonathan Jacky (1996): The way of Z: practical programming with formal methods. Cambridge University

Press, New York, NY, USA.
[22] Daniel Kröning, Philipp Rümmer & Georg Weissenbacher (2009): A Proposal for a Theory of Finite Sets,

Lists, and Maps for the SMT-Lib Standard. In: Informal proceedings, 7th International Workshop on Satisfi-
ability Modulo Theories at CADE 22.

[23] Petra Malik & Mark Utting (2005): CZT: A Framework for Z Tools. In Helen Treharne, Steve King, Martin C.
Henson & Steve A. Schneider, editors: ZB, Lecture Notes in Computer Science 3455, Springer, pp. 65–84.
Available at http://dx.doi.org/10.1007/11415787_5.

[24] Leonardo Mendonça de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In C. R. Ramakr-
ishnan & Jakob Rehof, editors: TACAS, Lecture Notes in Computer Science 4963, Springer, pp. 337–340.
Available at http://dx.doi.org/10.1007/978-3-540-78800-3_24.

[25] Robert Nieuwenhuis, Albert Oliveras & Cesare Tinelli (2006): Solving SAT and SAT Modulo Theo-
ries: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53, pp.
937–977, doi:http://doi.acm.org/10.1145/1217856.1217859. Available at http://doi.acm.org/10.1145/
1217856.1217859.

[26] Jan Peleska, Elena Vorobev & Florian Lapschies (2011): Automated test case generation with SMT-solving
and abstract interpretation. In: Proceedings of the Third international conference on NASA Formal methods,
NFM’11, Springer-Verlag, Berlin, Heidelberg, pp. 298–312. Available at http://dl.acm.org/citation.
cfm?id=1986308.1986333.

[27] B. Potter, D. Till & J. Sinclair (1996): An introduction to formal specification and Z. Prentice Hall PTR
Upper Saddle River, NJ, USA.

[28] Mark Saaltink (1997): The Z/EVES System. In J.P. Bowen, M.G. Hinchey & D. Till, editors: ZUM ’97: The
Z Formal Specification Notation, pp. 72–85.

[29] J. M. Spivey (1992): The Z notation: a reference manual. Prentice Hall International (UK) Ltd., Hertford-
shire, UK, UK.

[30] P. Stocks & D. Carrington (1996): A Framework for Specification-Based Testing. IEEE Transactions on
Software Engineering 22(11), pp. 777–793.

[31] The Pex Team: Pex. Available at http://research.microsoft.com/en-us/projects/pex/. Last
access: November 2011.

[32] Margus Veanes, Pavel Grigorenko, Peli de Halleux & Nikolai Tillmann (2009): Symbolic Query Ex-
ploration. In Breitman & Cavalcanti [3], pp. 49–68. Available at http://dx.doi.org/10.1007/

978-3-642-10373-5_3.

http://channel9.msdn.com/blogs/peli/automated-whitebox-fuzz-testing-with-sage
http://channel9.msdn.com/blogs/peli/automated-whitebox-fuzz-testing-with-sage
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-05031-2_7
http://dx.doi.org/10.1007/978-3-642-05031-2_7
http://dx.doi.org/10.1007/978-3-642-05031-2_7
http://dx.doi.org/10.1007/11415787_5
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/http://doi.acm.org/10.1145/1217856.1217859
http://doi.acm.org/10.1145/1217856.1217859
http://doi.acm.org/10.1145/1217856.1217859
http://dl.acm.org/citation.cfm?id=1986308.1986333
http://dl.acm.org/citation.cfm?id=1986308.1986333
http://research.microsoft.com/en-us/projects/pex/
http://dx.doi.org/10.1007/978-3-642-10373-5_3
http://dx.doi.org/10.1007/978-3-642-10373-5_3

	Introduction
	The Z Notation
	Test Specifications and Test Cases in the TTF
	A Simple Algorithm for Searching Test Cases
	Contribution of this Paper
	Shallow Embeddings of Z into Two SMT Solvers
	Notation
	Yices
	CVC3
	A Variant

	Empirical Assessment
	Related Work
	Conclusions and Future Work

