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Abstract. The Consejo Nacional de Investigaciones Cient́ıficas y Técni-
cas (CONICET) is the most important research institution in Argentina.
Its internal authorities are elected by around 8,000 researches across the
country. During 2011 the CONICET developed a web voting system to
replace the traditional mail-based system. In this paper we present the
verification process conducted to assess the functional correctness of the
voting system. This process is the result of integrating automatic and
semi-automatic verification activities from formal proof to code inspec-
tion and model-based testing.

1 Introduction

The Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)
is the most important research institution in Argentina. Some of its internal
authorities, including some of the members of its Board of Directors, are elected
by some of the more of 8,000 CONICET’s researchers. Traditionally, the election
process was carried out manually. In 2011 the Board of Directors commissioned
the development of an electronic voting system. Eventually, it was decided that
CONICET’s Systems Department would develop a web-based system.

The Board of Directors required the Systems Department to subject the
system to an external evaluation to determine whether it fulfilled functional,
security and availability quality attributes, before moving it into production.
Although the program is not large it uses some complex technologies and a
failure may have a high political impact. However, the time frame assigned to
this activity was only one calendar month. Since the external evaluators could not
have any political interests in the system, the System Department contacted us to
perform the evaluation. We conducted the functional evaluation, and two security
researchers performed the security and availability evaluation. This paper is an
experience report on the verification activities conducted during the functional
evaluation of the voting system. It is important to remark two points: a) we are
reporting only on the functional verification which means that we do not make
any comments about security, although this attribute is important for the overall
quality of the system; and b) the aim of the task was to assess the quality of an
existing system and not to develop it from scratch.
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Given the potential risk of a functional error we decided to conduct an evalu-
ation as formal as possible within the available time frame (one month). So, the
first step was to write a formal specification of the set of regulations governing
the election process issued by the Board of Directors (Section 2). Secondly, we
formally proved that the specification verifies some state invariants as a way to
have some confidence that the model is correct (Section 3). The third step con-
sisted in inspecting the source code to find each pre and postcondition of each
operation of the model, and annotating the source code with links to the corre-
sponding predicates of the formal specification (Section 4). In the last step we
applied Fastest, a model-based testing (MBT) tool, to generate test cases (Sec-
tion 5). In this way, the formal specification written in the first step was used in
all the latter activities. In the rest of the paper we further discuss these and other
issues (Section 6) and survey some related papers (Section 7); our conclusions
are in Section 8. This paper is a reduced version of a technical report including
the full Z specification and the Z/EVES proof scripts. It can be downloaded
from https://www.dropbox.com/s/c6bawikdrd608c9/votingSystem.tar.gz.

It is worth noticing that this project presents two important differences with
respect to other verification efforts that are reported in the academic community.
Firstly, in most other reports on verified software the development team can ei-
ther write a formal specification of the system and then develop the implementa-
tion using many different techniques, or the verification consist on proving some
non-functional properties of a given implementation—for instance, code-level
safety properties such as memory safety. In this project, however, the implemen-
tation was already developed and a full functional verification was requested.
Therefore, we were not allowed to generate the implementation we liked, and we
had to go beyond of code-level safety properties. Secondly, the implementation
was developed by average programmers, and not, for instance, by people holding
a PhD in software engineering, formal methods or formal verification. This is the
case for almost all the software produced in the world.

On June, 15, 2012 the first web-based election of two members of the Board
of Directors was carried out without any noticeable disruption or failure of the
new election system.

2 From Requirements to Formal Specification

In this project the functional requirements are the regulations set by CONICET
for the election process. This document is essentially a legal document written
in Spanish stipulating all the conditions for an election. It is divided in sections
(for example, “On the Voters”, “On the Candidates to Be Elected”, etc.) and
each section is organized as a list of articles or clauses. We derived a formal
specification for the system from this document plus just a few questions to
administrative personnel of CONICET (i.e. no intermediate representation of
the requirements was developed).

We wrote a formal functional specification as the fundamental cornerstone
of the functional verification process. We knew in advance that we could use it
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for many different verification activities. The Z notation [31, 21] was the chosen
language because: a) we are fluent in it and some of its tools; b) Z is a very good
notation to formalize this kind of requirements; and c) our research and tools
on MBT [10] would be of great help (and conversely, this would become a case
study for our investigations).

The Z specification resulting from the requirements document is a rather
standard Z model although we introduced two style changes. First, we used a
form of Jackson’s designations [22] as a means of linking the formal model with
the requirements. For instance, before introducing the set representing CON-
ICET’s researchers we provide the following designation:

x is an active or retired researcher of CONICET ≈ x ∈ RSCH

so, then, we introduce the following Z paragraph:

[RSCH ]

As can be seen, the left hand side of a designation is an informal sentence over
the requirements while the right hand side is a formal term of the model.

After declaring types representing the main concepts involved in the election
rules, we can give the main components of the state of the system. Endorsements
records preliminary candidates and their endorsements, while Votes records firm
candidates and voting data.

Endorsements
cand : RSCH 7→ KA
endors : RSCH 7→ FRSCH

Votes
firmCand : PRSCH
voted : FRSCH
votes : seq(FRSCH )

The second change in style introduced in this model concerns state invariants.
As can be seen, we have not included state invariants in the state schemas as is
customary in Z. Rather, we write them in a separate schema as shown in Fig. 1.
Some of the predicates in Invariants are the formalization of CONICET rules.
For example, CONICET established that after the end of the period reserved for
endorsements (fEndors) only candidates who have got at least 20 endorsements
become firm candidates (see the seventh predicate in Invariants)3. In a sense,
this way of writing invariants changes “calculate the full precondition of an
operation” by “discharge a proof obligation” [30, 10]. Precisely, to be sure that
these predicates are indeed invariants, we include a proof obligation such as the
following, for each operation in the model (Vote is one of the operations):

theorem VotePreservesInvariants
Invariants ∧ Vote ⇒ Invariants ′

In other words, if this theorem cannot be proved it means that operation Vote
does not verify one of the expected properties of the model. The same holds for
all the invariants and operations.

3 A complete description of the invariants can be found in the technical report asso-
ciated to this paper, as mentioned in the introduction.
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Invariants
Endorsements; Votes; Time

cand ⊆ CanBeCandidates
dom endors = dom cand⋃

(ran endors) ⊆ CanVote
∀ i : dom endors • endors i 6= ∅ ⇒ {myKA i} = myKA(|endors i |)
∀ i , j : dom endors | i 6= j • endors i ∩ endors j = ∅
today ≤ fEndors ⇒ firmCand = ∅
fEndors < today ⇒ firmCand = dom(endors B {A : ran endors|20 ≤ #A})
today < bVote ⇒ voted = ∅ ∧ votes = 〈〉⋃

(ran votes) ⊆ firmCand
#votes = #voted
voted ⊆ CanVote

Fig. 1. States invariants for CONICET’s election system.

We close this section by introducing the operation representing a voter issuing
his or her vote with the following schema expression:

Vote ==
VoteOk
∨ VoteWrongDate ∨ ResearcherCannotVote
∨ AlreadyVoted ∨ VoteMoreThanThree
∨ VoteNonCandidates ∨ KACandidatesIsWrong
∨ GRCandidatesIsWrong

where VoteOk , shown in Fig. 2, formalizes the situation when a voter successfully
issues his or her vote; all the other schemas describe possible errors. The labels
written to the right of the schemas, such as Pre− 1, will be used to identify each
predicate as is explained in Sect. 4. In VoteOk , e? is the researcher issuing the
vote and C ? is his or her vote. According to CONICET rules a vote may contain
up to three candidates (#C ? ≤ 3). Below we include one of the “error” schemas
just to illustrate them:

AlreadyVoted == [ΞES ; e? : RSCH | e? ∈ voted Pos− 3]

3 Proving Properties of the Specification

The Z specification was verified under the Z/EVES system [30]. Z/EVES gen-
erates a proof obligation, called domain check, every time a partial function is
applied to an argument. The proof obligation asks to prove that the argument
belongs to the domain of the function. For example, the following is part of the
proof obligation generated by Z/EVES for the Vote operation:
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VoteOk
∆Votes; ΞEndorsements
e? : RSCH
C ? : FRSCH

bVote ≤ today ≤ fVote Pre− 1
e? ∈ CanVote Pre− 2
e? /∈ voted Pre− 3
#C ? ≤ 3 Pre− 4
C ? ⊆ firmCand Pre− 5
{myKA e?} = myKA(|C ?|) Pre− 6
#C ? = #(myGR(|C ?|)) Pre− 7
voted ′ = voted ∪ {e?} Pos− 1

votes ′ = votes a 〈C ?〉 Pos− 2
firmCand ′ = firmCand

Fig. 2. VoteOk is the main schema of the Vote operation.

theorem axiom Vote$domainCheck
∆Votes ∧ ΞEndorsements ∧ ΞTime
∧ e? ∈ RSCH ∧ C ? ∈ FRSCH
⇒ (iVote ≤ today ∧ · · · ∧ {myKA e?} = myKA(|C ?|)
⇒ C ? ∈ dom # ∧ myGR(|C ?|) ∈ dom #)

. . . . . . . . .

where the difficult part is to prove that myGR(|C ?|) ∈ dom # because it requires
to prove that the relational image of a finite set through a function is a finite
set. We proved this and other theorems involving the cardinality operator with
the help of the extension to the Z mathematical toolkit (ZMT) proposed in [15].

Then we proved that all operations preserve the state invariants shown in
Fig. 1. We did this by proving a theorem like VotePreservesInvariants shown
above, for each operation of the model. However, proving such a theorem can be
cumbersome because some parts of the proof can be quite difficult and there are
many cases to consider since each operation includes many schemas and there
are many invariants. But, on the other hand, many of these cases are trivial to
prove. Hence, we analyzed which invariants would be, in principle, non trivial
to prove for a given operation and thus we defined a theorem for each of these
cases. For example we have:

theorem EndorseOkPI5
dom cand = dom endors
∧ (∀ i , j : dom endors | i 6= j • endors i ∩ endors j = ∅)
∧ EndorseOk ⇒ ∀ i , j : dom endors ′ | i 6= j • endors ′ i ∩ endors ′ j = ∅

as an intermediate theorem for the operation representing a voter endorsing a
preliminary candidate. Note that in this case we prove that only the schema cor-
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responding to the successful case (EndorseOk) preserves only the fifth invariant
(see the fifth predicate in schema Invariants at Fig. 1).

Finally, in this project we needed to prove five theorems involving mathe-
matical results. For example, we proved that the relational image of a finite set
through a partial function is a finite set:

theorem grule finiteRelimgIsFinite [X ,Y ]
∀ f : X 7→ Y ; A : FX • f (|A|) ∈ FY

All the proofs performed during this step gave us a reasonable confidence
that the specification is a faithful formalization of the requirements document,
hence the specification can be used as the guide for verification.

4 Specification-Guided Code Inspection

Having confidence on the correctness of the specification is of no help to users if
it is not used as a means to gain confidence on the correctness of the implementa-
tion. Our approach to gain confidence on the correctness of the implementation
was based on: a) inspecting the code to see if it refines the specification; and
b) run some test cases derived from the specification. In this section we explain
how we used the specification to inspect the source code of the application.

CONICET decided to program the web voting system as a Grails application.
Grails [32] is a web application framework for the Java Virtual Machine which
in turn takes advantage of the Groovy programming language [33]. That is, the
application is an object-oriented program written in a combination of high-level
programming languages (Java and Groovy) and complex frameworks (Grails).
We cannot show nor make public the full application for confidentiality issues,
but we will show excerpts of it.

We used the specification as the guide to conduct the inspection of the source
code. Therefore, the first step was to identify the implementation data structures
and variables that refine4 the state variables declared in schemas Endorsements
and Votes and the input variables declared in the operation schemas like Vote
(Sect. 2). This is documented in a table similar to Table 1. Note that building
such a table might not be trivial because the specification was written from the
requirements document and not from the code. For example, the requirements
document, and thus the specification, does not mention data encryption at all,
but it is used in the implementation. As another example, the implementation of
variable firmCand is a table in a database called BallotPaper which holds data
about the candidates that voters may vote and a variable in memory, papers,
which, at some point, is assigned with the contents of that table through a Grails’
mechanism.

Once we had clear how state variables were implemented we identified in the
source code all the major operations of the specification. This involves to find

4 In this paper the word “refine” is not used with the formal meaning it has in Z. The
intention of the code inspection is to informally evaluate whether the program is a
correct implementation of the specification.
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Table 1. Implementation variables associated to specification variables.

Specification Implementation Comments

firmCand BallotPaper, papers BallotPaper is a table in the database. papers
is a variable in memory.

voted Elector Is a table in the database. If Date is non-empty,
elector has voted.

votes EncryptedVote Is a table in the database. Each record is an en-
crypted instance of Vote.

C ? Vote Includes also the election and GR of candidates.

the relation between the signature of operations at the specification level and
subroutines in the implementation, and check whether they match or not.

The last step during the code inspection was to check whether all the pre
and postconditions recorded in operation schemas, like Vote, are correctly im-
plemented. Due to the differences in the structure of the implementation and
the specification and those introduced by the (implicit or de-facto) refinement
made by programmers, this step is perhaps the most difficult to do although the
more likely to uncover errors. Firstly, we labeled each pre and post-condition
in the specification as can be seen in schema VoteOk (Fig. 2). Secondly, we
used the information gathered in the two previous steps to focus the inspec-
tion on specific implementation units. For example, in order to inspect the
implementation of operation Vote we read code in VoteController.groovy

and VoteService.groovy, and we looked for the refinement of variables voted ,
firmCand , votes, etc.

class VoteController {

VoteService voteService

def beforeInterceptor = {

def userPrincipal = (AttributePrincipal)

RCH.currentRequestAttributes().request.userPrincipal

def elector =

Elector.findByUserId(userPrincipal.attributes.usrnum)

//Begin Vote::Pre-3, Vote::Pos-3

if (elector.voteDate) {

render ’You already voted.’

return false

}

//End Vote::Pre-3, Vote::Pos-3

...

Fig. 3. Class VoteController annotated with links to the specification.
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Every time we found the implementation of a pre or post-condition we an-
notated the program as shown in Fig. 3, i.e. by using the labels introduced in
operation schemas. See the comments before and after the conditional structure.
Pre− 3 is one of the preconditions of schema VoteOk (e? /∈ voted); Pos− 3 is
a postcondition present in schema AlreadyVoted . Observe how the precondition
was implemented: instead of having a table or file storing all the persons who
have issued their votes so far, programmers decided to augment the electoral
roll with an extra column that if empty means that the corresponding person
has not voted and otherwise it stores the date when the person issued his or her
vote. As can be seen, pre and postconditions may be annotated together because
the “else” branch of conditional sentences is not always present.

Clearly, the mere presence of a sentence implementing a given condition
in the specification does not guarantee the correctness of the implementation.
Correctness depends also on the sentences before and after the one that has been
annotated. However, once the implementation has been inspected, evaluated as
correct and annotated in this way, a convenient IDE can assist the development
team during maintenance because the tool can bring specifics predicates of the
specification into attention, can show all the pieces of code implementing a given
condition, etc.

5 Generating Test Cases from the Specification

The Z specification was also used to generate test cases to exercise the imple-
mentation. Testing the implementation is important even after code inspection
because many third-party components with which the application interacts may
fail. This is particularly important for the application being considered because
it is implemented over and interacts with very complex components like the
JVM, Groovy, Grails, MySQL, etc.

Test cases were generated by following a model-based testing method known
as Test Template Framework (TTF) and by using Fastest, a tool that semi-
automates the TTF. Given that the TTF and Fastest have been extensively
described [10], here we will show, by means of an example, how we applied them
to generate test cases. They are used for functional unit testing.

Consider schema Vote (Sect. 2) and its input space—i.e., all its input and
state variables. First, we partition the input space of Vote by applying Disjunc-
tive Normal Form (DNF) in which case Fastest generates nine test conditions,
including the three shown in Fig. 4. Note that these schemas include only input
and (unprimed) state variables. DNF guarantees that the main situations de-
scribed in Vote are going to be tested. For instance, a user successfully issuing
the vote (VoteDNF

1 ); a user trying to vote after the election (VoteDNF
3 ); and a

user trying to vote more than once (VoteDNF
5 ). Any of these test conditions can

be further partitioned. For example, we can partition VoteDNF
1 by applying a

standard partition to the operator ∪ in voted ′ = voted ∪ {e?}, thus yielding the
following test conditions among others:



9

VoteDNF
1

VoteIS

bVote ≤ today ≤ fVote
e? ∈ CanVote
e? /∈ voted
0 ≤ #C ?
#C ? ≤ 3
C ? ⊆ firmCand
{myKA e?} = myKA(|C ?|)
#C ? = #(myGR(|C ?|))

VoteDNF
3

VoteIS

fVote < today

VoteDNF
5

VoteIS

e? ∈ voted

Fig. 4. Some test conditions. VoteIS represents Vote’s input space.

VoteSP
1

VoteDNF
1

voted = ∅
{e?} = ∅

VoteSP
4

VoteDNF
1

voted 6= ∅
{e?} 6= ∅
voted ∩ {e?} = ∅

VoteSP
2

VoteDNF
1

voted = ∅
{e?} 6= ∅

VoteSP
7

VoteDNF
1

voted 6= ∅
{e?} 6= ∅
{e?} = voted

As can be seen, some of the conditions are unsatisfiable (VoteSP
1 , for instance)

but Fastest implements an algorithm that can eliminate many of them [10]. Note
that these test conditions include the conditions of VoteDNF

1 because this schema
is included in the others. Therefore, for example, a test case derived from VoteSP

2

will exercise the system when a user is allowed to vote, issues a valid vote and
is the first person to vote; while VoteSP

4 will do the same but there should be
another user who has already voted.

Once engineers are done with partitioning they can generate test cases from
the last test conditions. Below we show two typical test cases generated by
Fastest (rsch0 is a constant of type RSCH identifying a particular researcher).

VoteTC
2

VoteSP
2

today = 5
e? = rsch5
C ? = {rsch0}
firmCand = {rsch0}
voted = ∅
votes = 〈〉
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VoteTC
4

VoteSP
4

today = 5
e? = rsch5
C ? = {rsch0}
firmCand = {rsch0}
voted = {rsch0}
votes = 〈{rsch0}〉

These test cases, however, are Z terms that cannot be executed by the appli-
cation. Hence, we gave developers precise instructions on how to write JUnit [1]
test cases from the Z test cases, and we translated some of them as examples. For
writing JUnit test cases we used some of the information gathered during the
code inspection activity. For example, we used the data structures we identified
as the refinement of the state and input variables. That is, each activity provides
useful data for the other activities.

6 Discussion

The Z specification presented here is about 450 lines of Z code in a 20 pages
document. The implementation has approximately 2,575 lines of Grails and Java
code. We proved 31 theorems, 7 of which were discharged automatically. 9 of the
theorems are domain checks automatically generated by Z/EVES; 5 are theorems
about mathematical properties; 6 are the main theorems (i.e. those proving that
each operation preserves all the invariants); and 11 are auxiliary theorems about
the specification. The proof scripts total 2,045 lines of commands. We generated
only 68 test cases mainly because we were running out of time and because
developers will not have time to run more. However, we estimate that Fastest
could generate around 200 test cases. The test cases that were generated cover
the main functional alternatives of all the operations.

The specification was written in 20 man-hours and its verification took around
80 man-hours. Code inspection was performed in 32 man-hours although it could
have been less provided we have had a deeper knowledge of the implementation
technologies. Generating the test cases took less than 8 man-hours mainly be-
cause the specification contains many axiomatic descriptions whose values are
underspecified and must be fully specified before test case generation. Then, our
work totaled around 140 man-hours. We do not have figures about test case
refinement and execution because it was performed by developers.

During the verification of the specification four minor errors were found.
Three of them concerned with declaring some variables as P instead of F. The
remaining one was a missing precondition in one operation. The code inspection
revealed that only two operations of the model were implemented (Vote and
Recount). That is, all the information regarding preliminary and firm candidates
and the electoral roll, is loaded manually from different sources. We are not sure
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whether top management was aware of this fact. In the implemented operations
code inspection revealed no errors. Performing a code inspection before engaging
in testing can make testing very cost-effective since many errors are discovered
during the inspection. Furthermore, the code inspection yields a documented
project (specification and implementation) making it easier to introduce changes
and bug-fixes. As far as we have been told, test cases were run and all the errors
found where corrected.

We know that there have been verification efforts producing verified software
that involve larger specifications and implementations than the one presented
here—see Section 7. However, our project presents the following crucial differ-
ences with many, if not all, of them:

1. Usually, these projects are performed entirely, including the programming
stage, by experts on formal verification (many of them are either PhD stu-
dents or people already holding a PhD); or

2. The verification stage does not cover a full functional assessment. In this case,
it usually encompass the verification of general properties such as code-level
safety, noninterference, etc. that in many cases can be fully automatized.

Furthermore, in many cases, the implementation is developed once the speci-
fication has been written and proved correct. Many formal techniques have been
thought to be applied if a correct specification exists. In many of these projects
the creators of the techniques being applied are those who run them.

In contrast, the project presented here involves the verification of a program
that was developed by average programmers before the verification activities
were even thought. This means, for example, that we were not allowed to chose
the programming language. In other words, verification was an afterthought and
the implementation was not done by researchers, as it is in almost all the soft-
ware produced nowadays. On the other hand, the verification comprised a full
functional verification which involved specific properties of this voting system.
Even the verification of general properties (such as code-level safety) was not
possible in this project due to the implementation technology chosen by devel-
opers. In summary, we think that the project presented here is closer to the way
the software industry works, making it more appealing to evaluate the applica-
bility of formal methods. It remains as a challenge to verify a lager project with
this methodology.

7 Related Work

The Z notation, and its extensions, is being used for formal specification since the
early eighties. It has been used to specify a wide range of systems; we will mention
just a few of the latest specifications to give an idea of the kind of requirements
formalized with Z. Perhaps one of the most praised Z specifications in recent
years is the Tokeneer abstract specification [4]. This project was an experiment
performed by NSA to prove that formal methods are cost-effective in real-world
software. Altran Praxis was finally hired for the job. They wrote a Z specification
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that was later verified to be correct by proving some security properties. Also a
low level design was written in Z and the SPARK code was formally verified and
reviewed. The net result was that only two errors were discovered after delivery
although more recent studies show that more errors exist [27]. Altran Praxis has
used these technologies in many projects of different application domains.

Cristiá and others have used Z for modeling aerospace software such as satel-
lite communication protocols, part of a launching vehicle control software and
the ECSS-E-70-41A aerospace standard [12, 11]. In all these projects the TTF
and Fastest were applied to generate test cases.

Frydman and her colleagues have combined Z with DEVS [41] for the val-
idation of discrete event systems via simulation and formal methods [34, 36].
Object-Z has been used in the formalization of the Web Service Modeling On-
tology for the Semantic Web [37] and also Z and Z/EVES were applied in the
same domain [24]. The main purpose of these works was to provide a precise and
unambiguous specification for concepts that have traditionally been informal.

Security systems has also been the focus of Z specifications. For example,
in [19] the authors combined Z and CSP [29] to provide a formal specification
for the Audited Credential Delegation architecture which would help virtual
organizations in managing the identities of their users. Security is often a critical
aspect of some systems, but there are systems that are critical in their own.
Gomes and Oliveira [18] have written a Z specification for a cardiac pacing
system which is one of the challenges proposed as part of the Verification Grand
Challenge. This specification comprises 4,000 lines of Z. As a last example, we
can mention the specification of the safety properties of a railway interlocking
system [40], which is one of the traditional targets of formal specification due to
the potential damages a failure may cause.

Z/EVES has been the proof assistant used in many projects involving Z
specifications. Khan et al. [24] and Zafar and his colleagues [40] use Z/EVES
to discharge the proof obligations automatically generated by the tool itself.
However, some have used Z/EVES to prove properties of the specification as a
means to gain confidence on its correctness. For example, in [35] the authors used
this tool to prove 40 theorems about feature modeling. Amalio and others used
Z/EVES to prove properties of FTL, a formal language that allows the descrip-
tion of formal templates written in any formal language, in particular templates
for the Z notation [3] and for the UML modeling notation [2]. Dong and Wang
[13] explore the benefits of using Z/EVES to detect inconsistencies in semantic
web services, although it seems that they proved a small amount of properties.
Yuan and others [39] used Z/EVES to prove some security properties (separation
of duty, in this case) of a state-based role-based access control (RBAC) model.
Freitas and Woodcock have extensively used Z/EVES for proving properties of
complex systems such as the Mondex Electronic Purse [38, 17] and a POSIX file
store [16], contributing to the verified software repository. Cristiá and other have
used Z/EVES to prove that so-called pruning rules are sound and so they can
be used to eliminate inconsistent test conditions from testing trees [10].
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Program annotation has a long tradition in the formal methods community
and in other fields of programming; we will review some representative works.
Cataño and Huisman [8] annotate an application with ESC/Java [9] in such
a way that a formal functional specification is provided. The authors say that
application developers might be more inclined to write formal specifications if
specifications are written in a language closer to the programming language be-
ing used. While this might indeed be true, a disadvantage of this approach is
that the specification becomes less abstract. This work reports a serious im-
pact on the quality and documentation of the project. Developers at Altran
Praxis annotate their SPARK programs with data and information flow clauses
that are later analyzed by the SPARK Examiner [25]. They also annotate pro-
grams with pre and postconditions to perform a functional verification. In this
case the SPARK Examiner generates proof obligations that, in general, can-
not be discharged automatically. This work is also interesting because some of
the SPARK annotations are derived from the Z specification by following some
naming conventions and by running simple type translations. Note, however,
that the broader context of the project is quite different: in the Altran Praxis
case they developed the specification and the implementation allowing them to
select the latter; in our case, we could not select the implementation because it
was already given—for instance, we could not decide to implement the voting
system in SPARK. There are many other works investigating different aspects
of program annotation but they are not closely related with the ideas presented
here [5, 23, 26, 14]

Some properties of larger programs than the one presented here were au-
tomatically proved correct by means of many static analysis techniques. For
example, Berdine et al. describe a tool (Slayer) that can automatically prove
memory safety of industrial systems such as Windows device drivers [6]. An-
other advanced tool that was applied to large, safety-critical, embedded, real-
time software is presented by Blanchet and his colleagues [7]. They acknowledge
that their tool works for a restricted class of programs and properties. VeriFast
and Frama-C are another two static analysis tools that have been applied to
large programs [28, 20]. Although all these tools represent remarkable achieve-
ments in their field, the proven properties are not functional or do not fully cover
a functional verification of the implementation.

We could not find works presenting the combined application of all the tech-
niques shown in this paper in the same project, that is: formal specification,
formal verification of the specification, program annotation with respect to the
specification as the basis for code inspection, and model-based testing as a com-
plementary verification activity.

8 Conclusions

During the verification of the voting system reported in this paper we applied
four techniques ranging from formal to informal ones. Given the resources and
time available we were able to transmit to senior management a reasonable level
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of confidence on the correctness of the application. The first election was carried
out without any noticeable failure.

In our opinion, the most valuable contribution of this report is that these
techniques were applied to an industrial project under very realistic conditions.
That is, a project where average developers implemented a program whose full
functional verification was scheduled once it was finished. When this is the case,
verification has a very low budget and tight schedule. In this context, these tech-
niques proved to be effective and efficient. Moreover, the separation between a
standard team of developers and a group of researchers in charge of the verifi-
cation may be a good strategy in many projects. However, this setting posses
some challenges to formal methods. The main reason is that the verification
team has practically no influence on the implementation technologies. In turn,
this implies that many formal techniques and tools cannot be applied or they
must be adapted or lightened.

We believe that the combination between a formal specification, a code in-
spection guided by the specification and model-based testing (as was done in
this project) might be the basis of a verification methodology for mission critical
applications whose verification is requested once the implementation is finished.
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