
Helping Programmers to Adopt Set-Based
Specifications

Maximiliano Cristiá1, Gianfranco Rossi2, and Claudia Frydman3

1 CIFASIS and UNR, Rosario, Argentina
cristia@cifasis-conicet.gov.ar

2 Università degli studi di Parma, Parma, Italy
gianfranco.rossi@unipr.it

3 Aix Marseille Univ., CNRS, ENSAM, Univ. de Toulon, LSIS UMR 7296, France
claudia.frydman@lsis.org

Abstract. Set theory is a key component of formal notations such as
B, Z and Alloy. Set-based specifications are short while precise enough
as to start the implementation. However, according to our experience,
practitioners without a mathematical background find difficulties in us-
ing them. In this paper we propose the set-based programming language
{log} as an aid to teach programmers to write set-based specifications.
In one hand, a large class of set-based specifications can be automati-
cally translated into {log} programs, which can be used as prototypes;
on the other hand, plain {log} programs can be used as contracts, which
are closer to the implementation. This could help in a widest adoption of
set-based specifications since programmers seem to be adopting contracts
as a form of specification.

1 Set-Based Specifications

We start by considering a simple requirement and we show three different for-
mal specifications for it. The objective is to informally discuss different aspects
of each specification in terms of abstraction level, conciseness, readability and
whether programmers would like to use them or not. The ultimate goal is to see
whether it is possible to think of a teaching methodology taking advantage of
the best of each of the considered approaches.

Consider a bank which offers savings accounts to its clients. Given a savings
account anyone can deposit money in it. Say the savings accounts are identified
by some account ID’s. From a mathematical perspective we can see all the savings
accounts of this bank as a partial function from the set of account ID’s onto the
set of their balances. This can be formalized as sa ∈ ID 7→ Z, if we consider that
balances are integer numbers. Hence, if a ∈ dom sa then sa(a) is the balance
of account a. sa is a partial function because in any given moment not all of
the account ID’s are used in the bank. Now, a formalization for the requirement
about a person depositing money in an account can be as follows:

a? ∈ dom sa ∧ m? > 0 ∧ sa ′ = sa ⊕ {a? 7→ sa(a?) + m?} (Set)

∨ (a? /∈ dom sa ∨ m? ≤ 0) ∧ sa ′ = sa



where variables decorated with ’?’ are meant to be input parameters; variables
decorated with a prime are meant to be the value of a state variable in the
next state; a? is the account where the amount m? is intended to be deposited;
and the ⊕ operator roughly updates a function [14, page 102]. Note that in this
model, partial functions are sets of ordered pairs. For this reason we call it a
set-based specification.

From now on, the term set will include binary relations, partial and total
functions, and bags (multisets). In effect, all these structures can be expressed
in terms of set theory as shown for example in [14]. So a set-based specification
will be any specification using sets as the main mathematical structure.

An alternative model, and perhaps closer to a possible implementation, is
based on lists instead of partial functions. In this case we can define sa ∈ seq(ID×
Z) and the specification for depositing money becomes1:

∃ s1, s2 ∈ seq(ID × Z); b ∈ Z : (List)

m? > 0 ∧ sa = s1 a 〈(a?, b)〉a s2 ∧ sa ′ = s1 a 〈(a?, b + m?)〉a s2

∨ ((a?, b) /∈ sa ∨ m? ≤ 0) ∧ sa ′ = sa

where a is is the list concatenation operator. This specification is more complex
because there is no easy way of expressing the modification of a list element
without having its position.

As can be seen, the list-based specification is harder to understand than
the set-based one. We think that the true problem is that the savings accounts
of a bank are not a list but, essentially, a partial function. This is a recurring
observation in software specification: many real-life entities are, essentially, sets,
binary relations or partial functions (seen as sets). They are not lists, trees
or hash tables. Therefore, set-based specifications should be favored over other
notations if the goal is to describe the essence of the problem to be implemented.

A third model could be based on design-by-contract (DBC) notations such as
the Java Modeling Language (JML) [3], Spec# [2] or the Eiffel contract language
[10]. In this case, programmers can give a contract directly as program annota-
tions in terms of the variables and types used in the implementation. Assume
the programmer uses some implementation of Java’s Map interface [12] to store
the savings accounts. Then by declaring sa as, for instance, HashMap〈ID ,Z〉 we
can give the following JML contract for the deposit operation:

public normal behavior (JML)

requires sa.containsKey(a?) && m? > 0

ensures sa == old(sa).put(a?, old(sa).get(a?) + m?)

public exceptional behavior

requires !(sa.containsKey(a?) && m? > 0)

assignable nothing

1 We are assuming sa has no duplicate elements.



where containsKey, put and get are methods of Map. In a sense, this contract is
better than (List) because Map is closer to the notion of partial function.

According to our experience, programmers feel more comfortable with con-
tracts such as (JML) than with specifications such as (Set). The reasons may be
in the following facts: a) the contract language is closer to the implementation
language thus increasing the learning curve; b) the possibility of using data struc-
tures present in the standard library of the programming language and program
variables as part of the contract; c) contracts can involve structural properties
such as inheritance, information hiding, etc.; d) contracts are given as program
annotations rather than as a separate description; and e) some of these DBC
notations include tool support for runtime checking, static verification and test
case generation [8, 9, 11].

However, the Software Engineering and Formal Methods communities for
years have supported the notion that specifications should be more abstract
than their implementations. Clearly, each DBC notation is tightly coupled with
a given programming language, thereby, necessarily oriented towards specific
implementation choices.

Hence, as Software Engineering instructors we are faced with two problems
regarding set-based formal specifications: a) specifications should be abstract
and set theory provides a sound foundation for this for many systems; and b)
contracts are more appealing to programmers but not as abstract as specifica-
tions and they seldom use set theory.

In order to tackle these problems from an educational perspective, in this
paper we propose to use a combination of set-based specifications, such as (Set),
and {log} (pronounced ‘setlog’) programs. {log} is a constraint logic program-
ming (CLP) language implementing a very general theory of sets. As such it can
determine satisfability for a wide range of set formulas. Therefore, {log} can be
used both as a tool beneath a set-based specification language such as Z or B,
and as the basis of a set-based contract language. In this way, it can be closer to
an implementation, like DBC contracts, but it enables set-based specifications,
like specification languages.

We believe that {log} can help during the teaching process of software spec-
ification. It can give an operational, programming-oriented view of set theory to
students while forcing them to write set-based specifications.

2 Problems Teaching Set-Based Specifications

The problems listed below were identified by the authors while teaching set
theory, programming and formal specification in mandatory courses of several
undergraduate degrees in Argentina, France and Italy for many years, and as
occasional trainers for practitioners.

From now on student means a person enrolled as a student in a university
degree as well as a practitioner taking a training course.

We have identified the following problems regarding the use of set theory as
the basis for software formal specification.



Students tend to think in terms of the data structures they have already learned
and used. This means that it is hard for them to represent a particular concept
in the requirements as a set. They hardly “see” a set in the requirements. For
example, in the context of information systems, the first data structure they
think of is a table. Only after they learn that tables are either relations or
partial functions, they start to feel comfortable with them.

Often they think that it is a waste of time to find the best set-based structure
for a concept if they are going to end up implementing it as a hash table, a tree
or any other implementation-level data structure. They need to see how concise
many properties become when they are expressed in terms of sets rather than
in terms of implementation-oriented data structures.

This problem may be originated in two sources: the complexity of working at
more than one level of abstraction; and the fact that students are used to work
with certain kind of languages and data structures.

The lack of control structures is a source of problems rather than an aid. Stu-
dents, but mostly experienced programmers, find many troubles in formalizing
a requirement without control structures. A declarative language seems to be
incomplete for them. Even specifications that take the form of state machines
pose problems. A typical case is representing a loop as a state transition that
is enabled until some precondition becomes false (and thus the transition is dis-
abled) and at that moment another state transition becomes enabled. Another
typical case is to make them understand that many times it is not even necessary
at all to specify a loop because a (declarative) set formula does the job.

Sometimes they have doubts about the result of a particular set formula. This
is a problem that surfaces during the initial classes due to the many set and
relational operators they need to learn. Some times you can see them figuring
out if a given formula yields the desired result by computing some examples.
Frequently they use universal quantifications when a quantification-free formula
would work.

They experience problems in reconciling the specification with the implementa-
tion. Set-based notations are meant to produce a specification document sep-
arated from the implementation. From a Software Engineering perspective we
completely agree with this approach. However, from an educational perspective
we observe that students do not clearly see the role and implications of the spec-
ification document in the development process. Perhaps the major difficulty is
to comprehend the relation between the specification and the design document
(i.e. the document describing the software components, their functionality and
the relationships between them [7, chapter 4]). For instance, they ask questions
such as “is a state transition the specification of a method?”, “where the state
invariant must be implemented?”, “should the caller be responsible for checking
the precondition or should be the callee?”.



We think that a combination of {log}, DBC and set-based specifications can
help students in solving many of these problems making it easier for them to
adopt the latter.

3 {log} as an Aid for Set-Based Specifications

{log} is a CLP language based on Prolog where sets are first-class entities [6, 13].
It supports all the classic set theoretic operators (such as union, intersection,
and so forth), user-defined operators, partially specified sets (i.e. sets whose
some of its elements are variables), etc. As a CLP language {log} can decide the
satisfiability of a large class of set formulas. Moreover, it can compute all the
solutions of a satisfiable formula one after the other.

For example, (Set) can be translated into the following {log} code:

dom(Sa,D) & (A in D & M > 0 & apply(Sa,A,B) &

oplus(Sa, {[A,B + M ]},NSa)) or ((A nin D or M =< 0) & NSa = Sa)

which is operationally interpreted as a sequence of calls to predefined procedures
that implement the basic operations on sets, partial functions and integers. If
the {log} interpreter executes this code it will end up in one of three ways (much
as SAT or SMT solvers would do): returning a solution to the goal, answering
“no”, or getting a timeout.

For example, if oplus(Sa, {[A,B ]},NSa) is executed the first answer of the
interpreter is2 NSa = {[A,B]\Sa}, where {[A,B]\Sa} means {[A,B ]} ∪ Sa.

We have shown that a very general fragment of set-based specifications can
be automatically translated into {log} [5]. Consequently, students could compile
their specifications into {log} and use the interpreter to check if their formulas
are what they meant.

Although {log} is a declarative programming language, students may feel
more comfortable with it than with plain set-based specifications since many of
them are experienced programmers. Thus {log} can help in reducing the gap
between specifications and programs. Moreover, it could be used to describe
contracts. For instance, (JML) can be expressed in {log} terms as follows:

public normal behavior ({log}-JML)

requires dom(Sa,D) & A in D & M > 0

ensures apply(Sa,A,B) & oplus(Sa, {[A,B + M ]},NSa)

public exceptional behavior

requires dom(Sa,D) & A nin D or M =< 0

ensures NSa = Sa

where a simple naming convention between contract (or specification or {log})
variables and program variables can be established. Given that the {log} pred-
icates present in the requires and ensures clauses are executable programs, this

2 We have simplified the output generated by the interpreter for presentation issues.



contract could in principle be used for runtime checking as the JML contract,
and it can also be used for test case generation [5].

Although (JML) and ({log}-JML) may give the impression that contracts
written in JML and {log} have a similar complexity, it is not true in general.
{log} contracts will tend to be simpler because they can take advantage of a
larger set of operators like domain restriction, relational image, and so forth.
These operators are not implemented in the Java classes delivered with the
standard library.

In a sense, ({log}-JML) is at an intermediate abstraction level between (JML)
and (Set), enjoying some of the properties of both ends. Since students feel com-
fortable with programming languages, then taking them from an imperative
programming language to contracts written in terms of sets to set-based specifi-
cations may help them in overcoming all the difficulties they find when they are
directly introduced into the world of formal specification.

4 Teaching Proposal for Set-Based Software Specification

In this section we set forth a teaching proposal to introduce students into the
world of set-based specifications. The proposal is based upon the idea of grad-
ually taking students from DBC to formal notations such as Z and B. This
proposal uses {log} as the linking tool between the world of DBC and that of
set-based specifications.

Our proposal assumes that students:

– Are aware of a programming language such as Java;
– Understand the definition of program correctness. Specifically, they are con-

scious of: a) the existence of two distinct documents: the specification (S )
and the implementation (P); and b) that S is authoritative over P ; and

– If they have not had previous exposure to DBC, they will find it natural and
intuitive as an extension of their programming skills.

Based on these assumptions, we propose the following teaching process:

1. Teach DBC.
Pick the notation that best suits the programming skills of your audience.
If your goal is to introduce students to set-based formal notations do not
go deep into DBC. Recall that the final idea is that students use set-based
specifications as contracts.

2. Teach set theory by means of {log}.
We suggest to follow the work plan set forth by Abrial in Z and B [1]. That
is, first teach basic set theory, then add Cartesian product and then binary
relations and relational operators. Finally, introduce the concept of partial
function and function application. Optionally show that sequences and bags
(and their operators) can also be expressed in terms of set theory.
Every time a new set theoretic concept is introduced show how it can be
programmed in {log}. Do not necessarily go into the details of either Prolog
or {log} programming; basic features will suffice for students to use {log} as
a set calculator.



3. Teach how {log} can be used to describe program contracts.
This is perhaps the most difficult step because it implies to force students
to think in set terms rather than in implementation-level data structures.
The best course of action we have found is to show to them that many
implementation-level data structures either: a) obscure the essential prop-
erties of the data being represented because they were thought as efficient
representations (but efficiency need not to be part of a specification); or b)
usually the operations defined on their interfaces complicate the formaliza-
tion of simple properties.

4. Teach a specification language such as Z or B and its relationship to {log}
and DBC.
Most text books on formal specification present specifications as documents
with no relation with the software design. In general, a specification is pre-
sented as a formalization of the functional requirements, which must not talk
about design features—such as information hiding, connectors, inheritance,
etc. We agree with this view, although we think that it may be too alien for
students used to program non trivial software. These students tend to think
in terms of components with interfaces which implement some functionality.
Therefore, we consider that the first students’ approach to formal specifi-
cation should be as a complement to a software design. More concretely,
formal specification should be introduced as a technique to clearly and con-
cisely document the functionality of design components. Particularly, the
fraction of a set-based formal notation that can be automatically translated
into {log} should be used as the DBC notation.
The full set-based notation can be used if you do not plan to introduce some
form of automatic verification, because it would need to link some tools.
If the fraction mentioned above is used, our approach allows to automatically
build prototypes from a combination of Z and user interface specifications
[4]. This and other automatic verification activities may convince students
about the added value of formal specifications since they can get for free
software artifacts that otherwise cost a lot of resources.

5 Conclusions

As advocates of formal methods we permanently look for ways to make industry
to adopt them more widely. One of the reasons we frequently see that impedes
a wider use of formal methods is the relatively poor mathematical background
of practitioners. This goes against techniques which require the explicit use of
some form of formal methods.

In this paper we intend to provide teachers with a more gentle way to intro-
duce students to the world of formal notations like B and Z. We propose to go
from DBC, to set theory, to {log} and finally to a set-based notation. Consider
that in order to fully use this teaching process some tools need to be developed.

However, our proposal might be just a patch. Maybe we should ask ourself
whether programming must be taught before specification as we currently do—
after all, our community has been advocating for years that, in development



projects, specification must precede implementation. Have we been mistaken all
these years? Or are we teaching the other way around?

To formalize or not to formalize that is... not the question: you are going to write
code anyhow. The real question is: how many times are you going to formalize?

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York, NY, USA (1996)

2. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81–91
(2011), http://doi.acm.org/10.1145/1953122.1953145

3. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced spec-
ification and verification with JML and esc/java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.P. (eds.) Formal Methods for Components and Ob-
jects, 4th International Symposium, FMCO 2005, Amsterdam, The Netherlands,
November 1-4, 2005, Revised Lectures. Lecture Notes in Computer Science, vol.
4111, pp. 342–363. Springer (2005), http://dx.doi.org/10.1007/11804192_16

4. Cristiá, M., Rossi, G.: Rapid prototyping and animation of Z specifications using
{log}. In: 1st International Workshop about Sets and Tools (SETS 2014). pp. 4–18
(2014), informal proceedings: http://sets2014.cnam.fr/papers/sets2014.pdf

5. Cristiá, M., Rossi, G., Frydman, C.S.: {log} as a test case generator for the Test
Template Framework. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM.
Lecture Notes in Computer Science, vol. 8137, pp. 229–243. Springer (2013)

6. Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic program-
ming. ACM Trans. Program. Lang. Syst. 22(5), 861–931 (2000)

7. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of software engineering (2nd
ed.). Prentice Hall (2003)

8. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of JML
accommodates both runtime assertion checking and formal verification. Sci. Com-
put. Program. 55(1-3), 185–208 (2005), http://dx.doi.org/10.1016/j.scico.

2004.05.015

9. Leino, K.R.M., Müller, P.: Using the Spec# language, methodology, and tools
to write bug-free programs. In: Müller, P. (ed.) Advanced Lectures on Soft-
ware Engineering, LASER Summer School 2007/2008. Lecture Notes in Com-
puter Science, vol. 6029, pp. 91–139. Springer (2008), http://dx.doi.org/10.

1007/978-3-642-13010-6_4

10. Meyer, B.: Touch of Class: Learning to Program Well with Objects and Contracts.
Springer (2009), http://dx.doi.org/10.1007/978-3-540-92145-5

11. Meyer, B., Fiva, A., Ciupa, I., Leitner, A., Wei, Y., Stapf, E.: Programs that test
themselves. Computer 42, 46–55 (Sep 2009), http://portal.acm.org/citation.
cfm?id=1638584.1638626

12. Oracle: JavaTM Platform, Standard Edition 7 – API Specification (1993), http:
//docs.oracle.com/javase/7/docs/api/, last access: 2014

13. Palù, A.D., Dovier, A., Pontelli, E., Rossi, G.: Integrating finite domain constraints
and CLP with sets. In: PPDP. pp. 219–229. ACM (2003)

14. Spivey, J.M.: The Z notation: a reference manual. Prentice Hall International (UK)
Ltd., Hertfordshire, UK, UK (1992)


