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Abstract. {log} (pronounced ‘setlog’) is a Constraint Logic Program-
ming language that embodies the fundamental forms of set designation
and a number of primitive operations for set management. As such, it
can find solutions of first-order logic formulas involving set-theoretic op-
erators. The Test Template Framework (TTF) is a model-based testing
method for the Z notation. In the TTF, test cases are generated from test
specifications, which are predicates written in Z. In turn, the Z notation
is based on first-order logic and set theory. In this paper we show how
{log} can be applied as a test case generator for the TTF. According
to our experiments, {log} produces promising results compared to other
powerful constraint solvers supporting the Z notation, such as ProB.

1 Seeking a Test Case Generator for the TTF

Model-Based Testing (MBT) attempts to generate test cases to test a program
from its specification. These techniques have been proposed for, and applied to,
several formal notations such as Z [1], finite state machines and their exten-
sions [2], B [3], algebraic specifications [4], etc. The Test Template Framework
(TTF) was first proposed by Stocks and Carrington [1] as a MBT method for
the Z notation. Recently, Cristiá and others provided tool support for the TTF
by means of Fastest [5–7], and extended it to deal with Z constructs not included
in the original presentation [8] and beyond test case generation [9, 10].

Given a Z specification, the TTF takes each Z operation and partitions its
input space in a number of so-called test specifications. For the purpose of this
paper, it does not really matter how these test specifications are generated be-
cause the problem we are approaching here starts once they are given. In this
context, a test specification is a conjunction of atomic predicates written in the
Z notation. That is, a test specification is a conjunction of atomic predicates
involving sets as well as binary relations, functions and partial functions, se-
quences and other mathematical structures as defined in the Z Mathematical
Toolkit (ZMT) [11]. Clearly, a test specification can also be seen as the set of
elements satisfying the conjunction of atomic predicates.



According to the TTF, a test case is an element belonging to a test spec-
ification. In other words, a test case is a witness satisfying the predicate that
characterizes a test specification. Hence, in order to find a test case for a given
test specification it is necessary to find a solution for a Z formula. When Fastest
was first implemented (early 2007) a rough, simple satisfiability algorithm was
implemented, which proved to be reasonable effective and efficient [5, 7]. How-
ever, this algorithm tends to be slow on complex test specifications. Furthermore,
given the advances in the field of tools such as SMT Solvers [12] and Constraint
Solvers [13, 14] it is worth to evaluate them as test case generators for the TTF
since this is a clear application for them.

In [16] we have analyzed the application of SMT Solvers for this task. Con-
cerning the TTF and the way it works, our results with SMT Solvers were not
entirely satisfactory since these tools found just a few test cases. It is important
to observe that the ZMT defines some mathematical concepts in a different way
with respect to SMT Solvers. For example, in the ZMT the set of functions is
included in the set of partial functions, which is included in the type of binary
relations, which in turn is the power set of any cross product. SMT Solvers usu-
ally do not define the concept of partial functions but only total functions, and
in that case they are primitive objects (i.e. they are not defined as sets of ordered
pairs). This makes it difficult to use these tools for the TTF.

In this paper we extend our analysis to two Constraint Solvers, namely ProB
[17] and {log} [18, 19]. {log} is a Constraint Logic Programming (CLP) language
that embodies the fundamental forms of set designation and a number of primi-
tive operations for set management; and ProB is an animator and model checker,
featuring constraint solving capabilities, for the B-Method but also accepting a
significant subset of the Z notation. Both ProB and {log} natively support sets
and set-theoretic operations.

In order to apply these solvers to the problem of finding test cases from test
specifications within the TTF it is necessary to define an encoding of (at least a
significant portion of) the ZMT into the input languages of the solvers. While the
embedding of the ZMT into ProB turns out to be quite natural, the embedding
of the ZMT into {log} has not been investigated before.

Thus, an original contribution of this paper is to show how {log} can be
adapted to work with concepts and operators defined in the ZMT and how the
latter can be embedded into the former. Furthermore, we present the results of an
empirical assessment of {log} and ProB used as test case generators for the TTF,
in which we compare the effectiveness and efficiency of both systems in finding
solutions (i.e. test cases) out of a number of satisfiable test specifications. While
both {log} and ProB show good performances when compared with Fastest, it
seems that the former, with the proposed extensions, can get better results than
the latter as regards the specific application taken into account (i.e. it finds more
test cases in less time).

The encoding of the ZMT into {log}, plus the results of the empirical as-
sessment and those presented in [16], may have a non trivial impact on tools
for notations such as VDM, B and even TLA+ and Alloy. In effect, all of these



notations are based on similar set theories and, thus, can benefit from the en-
coding presented here since their users can use {log} as a satisfiability solver or
a specification animator.

This paper assumes the reader is familiar with the mathematics underlying
either Z or B and with general notions of formal software verification. Sections
2 and 3 introduce the TTF and {log}, respectively. In Section 4 we show the
modifications and extensions introduced in {log} to make it more suitable as a
test case generator for the TTF. Section 5 presents an encoding of a significant
portion of the ZMT into the input language of {log}. The results of an empirical
assessment comparing {log} and ProB are shown in Section 6. Finally, in Sections
7 and 8 we discuss the results shown in this paper and give our conclusions.

2 Test Cases in the TTF

In the TTF, test cases are derived from test specifications. The work presented in
this paper starts once test specifications have been generated, making it unnec-
essary to explain the process to get them. Test specifications are sets satisfying
predicates that depend on input and state variables. In the TTF, both test speci-
fications and test cases are described in Z by means of schemata. For example, the
first schema in Fig. 1 corresponds to a test specification borrowed from one of our
case studies, which is a Z specification of a real satellite software. In the figure,
BYTE is a given type (i.e. uninterpreted sort) and DTYPE ::= SD |HD |MD .
Observe that although mem does not participate in TransmitSDSP

24 , a test case
generator must be able to bind to it a set of 1024 ordered pairs representing a
function. The second schema in Figure 1 is a test case (generated by {log}) for
TransmitSDSP

24 . Note how the TTF uses schema inclusion to link test cases with
test specifications.

Although this example does not use partial functions nor sequences, these
features are heavily used in Z specifications and the TTF works with them.
Hence, many of the test specifications used in our empirical assessment include
partial functions and sequences, and other set operators as well. Any tool that
could be used as test case generator for the TTF should be able to deal with
such mathematical objects. Note that the problem here is not the logic structure
of the test specification (it is just a conjunction of atomic predicates), but rather
the ability to manage efficiently such mathematical objects.

TransmitSDSP
24 is a satisfiable test specification. However, the TTF tends to

generate many unsatisfiable test specifications. Fastest implements a test spec-
ification pruning method that proved to be effective, efficient and easily exten-
sible [6, 7]. Hence, we are more concerned in finding a better test case generator
rather than a replacement for the pruning method.

3 Solving Set Formulas with {log}

{log} [18–20] is a CLP language that extends Prolog with general forms of set
data structures and basic set-theoretic operations in the form of primitive con-



TransmitSDSP
24

c, t : DTYPE → N; mem : 1 . . 1024→ BYTE ; sdwp : N

c SD = 0 ∧ sdwp < 3 ∧ 33 . . 160 6= ∅
33 + (t SD − c SD) ∗ 2 . . 33 + (t SD − c SD + 1) ∗ 2 6= ∅
33 . . 160 ∩ 33 + (t SD − c SD) ∗ 2 . . 33 + (t SD − c SD + 1) ∗ 2 6= ∅
¬ 33 . . 160 ⊆ 33 + (t SD − c SD) ∗ 2 . . 33 + (t SD − c SD + 1) ∗ 2

¬ 33 + (t SD − c SD) ∗ 2 . . 33 + (t SD − c SD + 1) ∗ 2 ⊆ 33 . . 160

33 + (t SD − c SD) ∗ 2 . . 33 + (t SD − c SD + 1) ∗ 2 6= 33 . . 160

TransmitSDTC
24

TransmitSDSP
24

c = {sd 7→ 0, hd 7→ 1,md 7→ 2}
t = {sd 7→ 63, hd 7→ 0,md 7→ 1}
sdwp = 0

mem = {1 7→ G11084, 2 7→ G11116, . . . and 1022 more elements . . .}

Fig. 1. Typical test specification and test case in the TTF.

straints. Sets are primarily designated by set terms, that is, terms of one of the
forms: {}, whose interpretation is the empty set, or {t1, . . . , tn | s}, where s is a
set term, whose interpretation is the set {t1} ∪ {t2} ∪ · · · ∪ {tn} ∪ s. The kind
of sets that can be constructed in {log} are the so-called hereditarily finite sets,
that is finitely nested sets that are finite at each level of nesting. For example,

{1,2,3}, {X,{{},{a}},{{{b}}} }, and {X|S}
are all admissible set terms. Note that properties of the set constructor, namely
permutativity and right absorption, allow the order and repetition of elements in
the set term to be immaterial. Thus, for example, the set terms {1,1,2}, {2,1},
and {1,2} all denote the same set composed of two elements, 1 and 2. Note
that similarly to Prolog’s lists, a set {t1, . . . , tn | s} can be partially specified, in
that either some of its elements t1, . . . , tn or the remaining part s can contain
unbound variables (hence “unknowns”).

Sets can be also denoted intensionally by set formers of the form {X :
exists([Y1, . . . ,Yn ],G) }, where G is a {log}-goal (see below) and X ,Y1, . . . ,Yn

are variables occurring in G . The logical meaning of the intensional definition
of a set s is ∀X (X ∈ s ↔ ∃X ,Y1, . . . ,Yn(G)). The procedural treatment of
an intensional definition in {log}, however, is based on set grouping (see, e.g.,
[21]): collect in the set s all instances of X satisfying G for some instantiation
of Y1, . . . ,Yn . Thus intensional set formers are always replaced by the corre-
sponding extensional sets. Obviously, this limits the applicability of intensional
set formers to cases in which the denoted set is finite and relatively “small”.

Finally, sets can be denoted by interval terms, that is terms of the form
int(a,b), where a and b are integer constants, whose interpretation is the inte-



ger interval [a, b]. Differently from intensional sets, however, intervals are not
converted to the corresponding extensional sets; rather, constraints dealing with
intervals directly work on the endpoints of the intervals.

Basic set-theoretic operations are provided in {log} as predefined predicates,
and dealt with as constraints. For example, the predicates in and nin are used
to represent membership and not membership, respectively, the predicate subset
represents set inclusion (i.e., subset(r , s) holds iff r ⊆ s holds), while inters rep-
resents the intersection relations (i.e., inters(r , s, t) holds iff t = r ∩ s). Basically,
a {log}-constraint is a conjunction of such atomic predicates. For example,

1 in R & 1 nin S & inters(R,S,T) & T = {X}
where R, S, T and X are variables, is an admissible {log}-constraint, whose in-
terpretation states that set T is the intersection between sets R and S, R must
contain 1 and S must not, and T must be a singleton set.

The original collection of set-based primitive constraints has been extended
in [22] to include simple integer arithmetic constraints over Finite Domains as
provided by CLP(FD) systems (cf. e.g. [15]). Thus the set of predefined pred-
icates in {log} includes predicates to represent the usual comparison relations,
such as <, >, =<, etc., whereas the set of function symbols includes integer
constants and symbols to represent the standard arithmetic operations, such as
+,−, ∗, div, etc. Accordingly, a {log}-constraint can be formed by set predicates
as well as by integer comparison predicates. For example,

inters(R,S,T) & size(T,N) & N =< 2

states that the cardinality of R ∩ S must be not greater than 2.
The {log}-interpreter contains a constraint solver that is able to check satis-

fiability of {log}-constraints with respect to the underlying set and integer arith-
metic theories. Moreover, when a constraint c holds, the constraint solver is able
to compute, one after the other, all its solutions (i.e., all viable assignments of
values to variables occurring in c). In particular, automatic labeling is called at
the end of the computation to force the assignment of values from their domains
to all integer variables occurring in the constraint, leading to a chronological
backtracking search of the solution space. For example, the constraint:

X in int(1,5) & Y in int(4,10) & inters({X},{Y},R) & X >= Y

is proved to be satisfiable and the following three solutions are computed:

X = 4, Y = 4, R = {4}; X = 5, Y = 5, R = {5}; X = 5, Y = 4, R = {}.
Possibly remaining irreducible constraints are also returned as part of the com-
puted answer for a given constraint. For example, solving the constraint
inters({1},{Y},R) will return the two following answers:

R = {1}, Y = 1; R = {}, Y neq 1.

Clauses, goals, and programs in {log} are defined as usual in CLP. In particu-
lar, a {log}-goal is a formula of the form B1 & B2 & . . . & Bk , where B1, . . . ,Bk

are either user-defined atomic predicates, or atomic {log}-constraints, or dis-
junctions of either user-defined or predefined predicates, or Restricted Universal
Quantifiers (RUQs). Disjunctions have the form G1 or G2, where G1 and G2



are {log}-goals, and are dealt with through nondeterminism: if G1 fails then
the computation backtracks, and G2 is considered instead. RUQs are atoms of
the form forall(X in s, exists([Y1, . . . ,Yn ],G)), where s denotes a set and G
is a {log}-goal containing X ,Y1, . . . ,Yn . The logical meaning of this atom is
∀X (X ∈ s → ∃Y1, . . . ,Yn(G)), that is G represents a property that all ele-
ments of s are required to satisfy. When s has a known value, the RUQ can
be used to iterate over s, whereas, when s is unbound, the RUQ allows s to be
nondeterministically bound to all sets satisfying the property G . For example,
the goal forall(X in S,X in {1,2,3}) will bound S to all possible subsets of
the set {1,2,3}. The following is an example of a {log} program:

is_rel(R) :- forall(P in R, exists([X,Y], P = [X,Y])).

dom({},{}).

dom({[X,Y]/Rel},Dom) :- dom(Rel,D) & Dom = {X/D} & X nin D.

This program defines two predicates, is rel and dom. is rel(R) is true if R is
a binary relation, that is a set of pairs of the form [X,Y]. dom(R,D) is true if D
is the domain of the relation R. The following is a goal for the above program:

R = {[1,5],[2,7]} & is rel(R) & dom(R,D)

and the computed solution for D is D = {1,2}. It is important to note that
is rel(R) can be used both to test and to compute R; similarly, dom(R,D)

can be used both to compute D from R, and to compute R from D, or simply to
test whether the relation represented by dom holds or not.
{log} is fully implemented in Prolog and can be downloaded from [20]. It

can be used both as a stand-alone interactive interpreter and as a Prolog library
within any Prolog program.

4 Improving {log} for the TTF

In order to use {log} as a test case generator for the TTF we need to shown
how (at least) a significant portion of the ZMT can be embedded into {log}’s
language. This requires primarily the definition of new predicates that implement
fundamental notions of the ZMT that are not directly supported by {log}.

The new predicates are defined in a {log}’s library specially developed for the
TTF. They include predicates for checking whether a set is a binary relation or
a partial function, for determining the range of a binary relation or the domain
of a sequence, for calculating a function on an argument, and so on.

An example of one of such predicates is the predicate is rel shown in Section
3: is rel(R) is true if the set R is a binary relation.

As another example, the following clauses restate the usual ZMT definition
of a partial function as a {log} predicate: is pfun(F) is true if F is set of ordered
pairs where any two of them cannot have the same first component:

is_pfun(F) :- forall(P1 in F, forall(P2 in F, nofork(P1,P2))).

nofork([X1,Y1],[X2,Y2]) :- (X1 neq X2 or (X1 = X2 & Y1 = Y2)).



Note that if the the second disjunct in nofork is omitted then is pfun(F) can
only be used to test if F is a partial function or not, but it cannot be used to
build a partial function. In that case, calling is pfun(F) with F unbound, will
return only the solution F = {} and nothing else. Therefore, the second disjunct
in nofork is crucial to make {log} a test case generator for the TTF.

Other fundamental notions of the ZMT are implemented in a similar manner
within the {log}-TTF library. The availability of general forms of set designation
in {log} makes this task relatively easy. However, the procedural behavior of this
straightforward approach may turn out to be quite unsatisfactory in many cases.

One of the main problems with this solution is the “generality” of the defined
predicates. As a matter of fact, the same predicate can be used either to test or
to compute values for its arguments, values can be either completely or partially
specified and, in the case of set variables, they can be represented either as
sets or as intervals. For example, dom(Rel ,Dom) can be used both to compute
the domain of a given relation and to compute the relation associated with
a given domain This means that, for example, the goal dom(Rel,int(1,10))
succeeds but it generates through backtracking 10! equivalent solutions—which
are permutations of each other—simply because int(1,10) is computed as a
set. Similarly, that goal but with a bigger interval, e.g. int(1,1000), takes too
much time even to compute the first solution. Though abstractly an interval is
just a special case of a set, in practice some operations (e.g., iterating over all its
elements) can be performed much more efficiently over intervals than over sets.

To overcome these weaknesses we split the definitions of many of the pred-
icates added to support part of the ZMT into different subcases, which are
selected according to the different possible instantiations of their parameters.
For example, predicate dom has now two different subcases:

dom1({},{}).

dom1({[X,Y]/R},D) :- D = {X/S} & X nin S & dom1(R,S).

dom2({[A,Y]},D) :- D = int(A,A).

dom2({[A,Y]/R},D) :-

D = int(A,B) & A < B & A1 is A + 1 & dom2(R,int(A1,B)).

The definition of dom(Rel,Dom) is modified accordingly so to allow it to select
the proper subcase: dom1 is selected when Dom is either an unbound variable or
it is bound to a set; vice versa, dom2 is selected when Dom is bound to an interval
(in both cases, Rel can be either bound or unbound). With these definitions,
the goal shown above, dom(Rel,int(1,1000)), terminates in a few milliseconds
and it generates one solution only.

Moreover, cases in which the presence of unbound variables may lead to a
huge number of different solutions are avoided as much as possible by making
use of the delay mechanism offered by {log}. For example,

dsubset(S1,S2) :- delay(subset(S1,S2), nonvar(S1)).

defines a version of the predicate subset that delays execution of subset(S1,S2)
while S1 is unbound. Thus, for example, given the goal dsubset(S,int(1,100))
& S = {0|R}, where S is an unbound variable, it will be immediately proved to



be unsatisfiable since {0|R} is trivially proved to be not a subset of int(1,100),
whereas the same goal using subset would cause 2100 different solutions for S

to be attempted before concluding it is unsatisfiable, leading to unacceptable
execution time in practice. Note that, if at the end of the whole computation,
a delayed goal is still suspended then it is anyway executed, disregarding its
delaying condition.

The second main problem with the straightforward solution presented at the
beginning of this section is that often intervals need to be processed even if
their endpoints are not precisely known yet. For example, we would like to solve
a goal such as subset(int(A1,B1),int(A2,B2)), where some of the interval
endpoints A1, A2, B1, B2 are unbound variables. Unfortunately, the current ver-
sion of {log} does not allow this kind of generality in interval management. As
is common in constraint solvers dealing with Finite Domains (e.g., CLP(FD)),
interval endpoints in {log} must be integer constants. However, differently from
many other solvers, {log} allows intervals to be managed as first-class objects
of the language, being intervals just a special case of sets. For example, we can
compute the intersection of two intervals, or the union of two intervals, or the
union of an interval and a set, and so on. The endpoints of the involved intervals,
however, must be known.

To overcome these limitations, at least for those cases that are of interest
for our specific application, we define new versions of the primitive constraints
dealing with intervals whose endpoints can be unknown. For example, the im-
proved version of constraint subset, called isubset, deals efficiently with the
case where both of its arguments are intervals, through the following predicate:

intint_subset(S,T) :-

S=int(I,J) & T=int(K,N) & I =< J & K =< N & I >= K & J =< N.

If some endpoints of the involved intervals are unknown, then calling isubset

simply causes the proper integer constraints over the endpoints to be posted.
Note that we require that in an interval int(a, b), b is always greater or equal
than a. We exclude the possibility that int(a, b) with b > a is interpreted as
the empty set, which conversely was previously allowed in {log}. In fact, giving
this possibility would cause the empty set to have an infinite number of different
denotations, which may turn out to be very unpractical when interval endpoints
are allowed to be unknown and solutions for them must be computed explicitly.
Finally, note that the delayed version of the {log} predicates for the TTF are
modified so as to use these improved versions in place of the usual set constraints
(e.g., dsubset uses isubset in place of subset).

The improved versions of the set constraints have been added to {log} as
user-defined predicates but they will possibly be moved to the interpreter level
once a general algorithm for all these special cases is found. As a matter of
fact, allowing partially specified sets and intervals with unknown endpoints to
be used freely in set constraints requires non-trivial problems to be solved. For
instance, even the simple equation int(A,B) = {1,Y , 5,X , 4 |R}, where X , Y ,
A, B , and R are unbound variables, has no obvious solution. Therefore such kind
of generalizations are left for future work.



5 Embedding the ZMT into {log}

In this section we present an embedding of the ZMT into {log}, in which we
extensively exploit the new features added to {log} introduced in the previous
section. The embedding rules are given as follows:

rule name
Z notation
{log} language

where the text above the line is some Z term and the text below the line is one
or more {log} formulas. Some embedding rules are listed in Fig. 2. The rules not
shown here can be consulted in [23]. The Z terms are syntactic entities sometimes
annotated with their types. For example, in rule seq, X is any type.

Z Z
int(−109, 109)

basic types
[X ]

set(X )
free types

X ::= c1| . . . |cn
X = {c1, . . . , cn}

× x 7→ y

[X ,Y ]
seq

s : seqX

list(s)
P |F

A : (P |F)X

dsubset(A,X )

↔ R : X ↔ Y
is rel(R)

7→ f : X 7→ Y

is pfun(f )
→ f : X → Y

is pfun(f ) & dom(f ,X )

⊆ A ⊆ B

dsubset(A,B)
6⊆ ¬ A ⊆ B

dnsubset(A,B)
apply

f : X 7→ Y f x

apply(f ,X ,Y )

#
A : FX #A

size(A,N )
∩ A ∩ B

dinters(A,B ,C )
dom

R : X ↔ Y domR

dom(R,D)

Fig. 2. Some typical embedding rules.

The embedding rule labeled “basic types” is not really necessary. In effect,
given that the elements of basic types have no structure and no properties be-
yond equality, declaring them in {log} is unnecessary because the tool will au-
tomatically generate constants as needed. Furthermore, {log} will deduce that
X is a set if that name participates in a set expression. It should be noted that
the constants declared in rule “free types” must all start with a lowercase let-
ter because otherwise {log} will regard them as variables. Note that ordered
pairs are embedded as Prolog lists of length two. Some rules, such as apply
or size, need to introduce fresh variables. In that case, the expression, for in-
stance f x , is replaced by the new variable. For example, f x > 0 is embedded
as apply(F ,X ,Y ) & Y > 0. is rel, is pfun, dom, dinters, dsubset and apply are
predicates included in the {log}’s-TTF library.

There are some embedding rules not shown in the figure. Lower-case vari-
ables declared in Z are embedded with a name starting with upper-case, since



otherwise {log} takes them as constants. Given a Z arithmetic expression, each
sub-expression is given a name by introducing a new variable which is later
used to form the full expression. For example, x ∗ (y + z ) is embedded as
M is Y +Z & N is X ∗M . In this way, {log} can identify common sub-expressions
improving its constraint solving capabilities.

This encoding works as long as the following hypotheses are satisfied:

Hypothesis 1. The Z specification has been type-checked and all proof obliga-
tions concerning domain checks have been discharged [24].

Hypothesis 2. All the test specifications where a partial function is applied
outside its domain have been eliminated by running the pruning algorithm
implemented in Fastest.

Hypothesis 3. Domain and ranges of binary relations have been normalized.

We believe these hypothesis are reasonable and easy to achieve. If they are
not verified before the translation is performed, the solutions returned by {log}
may turn out to be inconsistent at the Z level. Hypothesis 3 makes it unnecessary
to explicit the domain and range of binary relations because {log} will generate a
binary relation populated by any terms provided they verify the other predicates
in the goal (while normalization introduces domain and ranges as predicates).
For example, R : 1 . . 10 ↔ X is normalized as R : Z ↔ X ∧ dom R ⊆ 1 . . 10,
which is simply translated as is rel(R) & dom(R,D) & dsubset(D , int(1, 10)).

Besides, note that the untyped character of {log} does not conflict with
Z, at least as a test case generator for the TTF. Consider a Z specification
with two basic types, X and Y , and the test specification [A : PX ; B :
PY ; v : X ; w : Y | v ∈ A ∧ w ∈ B ]. When this is translated into {log}
it becomes: dsubset(A,X ) & dsubset(B ,Y ) & V in A & W in B . Since X and
Y are unbound variables, part of a possible solution for this goal could be
A = {a}, B = {a}, V = a, W = a. Although in this paper we are concerned
only with the translation from Z to {log}, we want to emphasize that when a test
case returned by {log} is translated back to Z the types of the variables at the Z
level must be considered. For example, the solution above must be translated as
A = {aX } ∧ B = {aY } ∧ v = aX ∧ w = aY , where aX and aY are assumed
to be constants of type X and Y , respectively, created during the translation by
noting that A and B , at the Z level, have different types.

6 Empirical Assessment

In this section we empirically assess {log} as a test case generator for the TTF.
In order to evaluate its effectiveness and efficiency we compare it with ProB,
which is a mainstream tool with constraint solving capabilities for the B notation
(which in turn uses a mathematical toolkit similar to the ZMT).

Since Fastest was first implemented, it has been tested and validated with
eleven Z specifications, some of which are formalizations of real requirements.
For each of them, a number of test specifications are generated. After eliminating
those that are unsatisfiable, Fastest tries to find a test case for the remaining



ones. However, it fails to find test cases for 154 out of 475 satisfiable test speci-
fications. In [16], we have chosen 68 of these test specifications for which Fastest
fails to evaluate different tools as test case generators for the TTF4. We consider
that these test specifications are representative of the problem at hand since,
although they are satisfiable, Fastest was unable to solve them, meaning that
they are among the most complex.

In order to evaluate {log} and compare it with ProB we make use of this same
collection of test specifications. Each specification is translated from Z into the
input languages of {log} by applying the encoding described in Sect. 5, and to
ProB (in this case the encoding is straightforward requiring only a syntactic
translation). So far, the translation is done “by hand”, since we consider that
implementing an automatic translator before having some evidence of what tool
is the best test case generator for Fastest could have been a waste of time. At the
same time, the manual translation can be as unreliable as an unverified program
implementing the translation. To minimize errors in the translations, however,
all the test specifications were manually verified by two different persons besides
who wrote them. The Z test specifications and their corresponding translations
will become test cases for the automatic translator that has been started after
the assessment was completed.

These experiments were ran on the following platform: Intel CoreTM i5-
2410M CPU at 2.30GHz with 4 Gb of main memory, running Linux Ubuntu
12.04 (precise) of 32-bit with kernel 3.2.0-30-generic-pae. {log} 4.6.16 over SWI-
Prolog 5.8.0 for i386 and ProB 1.3.5-beta14 over SICStus Prolog 4.2.0 (x86-
linux-glibc2.7) were used during the experiments. The original Z test speci-
fications and their translation into {log} and ProB can be downloaded from
http://www.fceia.unr.edu.ar/~mcristia/setlog-ttf.tar.gz. The transla-
tion of each test specification is saved in a file ready to be loaded into the corre-
sponding tool. Scripts to run the experiments are also provided. The results can
be analyzed with simple grep commands.

We ran two experiments for each tool differing in the timeouts set to let the
tools to find a solution for each test specification (otherwise they may run forever
in some goals). The two timeouts are 1 second and 1 minute. Hence, both tools
can return two possible answers: a) the solution for the goal; or b) some error
condition like timeout or an indication that the goal cannot be solved due to
some limitation of the tool.

The intention of Table 1 is to provide some measure of the complexity and
size of each case study from which the 68 test specifications were taken (for
more information see [7]). R/T means whether the Z specification was writ-
ten from real requirements or not. LOZC stands for lines of Z code in LATEX
mark-up. Columns State and Oper represent the number of state variables and

4 We have chosen 68 test specifications out of 154 because the unchosen specifications
belong to the same case study, they are all very similar to each other (in many
of them only a variable ranging over an enumerated type changes its value leaving
the problematic predicates the same), and similar to some of those included in the
experiments.



N Case study R/T LOZC State Oper. Unsolved

1 Savings accounts (3) Toy 165 3 6 8
2 Savings accounts (1) Toy 171 1 5 2
3 Launcher vehicle Real 139 4 1 8
4 Plavis Real 608 13 13 29
5 SWPDC Real 1,238 18 17 12
6 Scheduler Toy 240 3 10 4
7 Security class Toy 172 4 7 4
8 Pool of sensors Toy 46 1 1 1

Table 1. Complexity and size of the case studies.

operations, respectively, defined in each specification. Unsolved is the number
of satisfiable test specifications that Fastest failed to solve in each case study.
Table 2 summarizes the results of this empirical assessment. As can be seen, the
table is divided in two parts. The first one shows the figures for ProB, and the
second those for {log}. Each part, in turn, is divided into the two experiments
ran for each tool. For each experiment the number of solved goals (Sol) and
unsolved goals (Uns) of each case study, are shown. The last row of the table
shows the time spent by each tool in processing the 68 goals for each experiment.

As can be seen, these experiments show that {log} outperforms ProB in
the number of solved goals and in the time spent in doing that. In the 1 second
experiment, {log} solves 52 goals in 29 seconds while ProB solves 40 in 1 minute,
that is a 30% increase in effectiveness and a 50% increase in efficiency. Despite
of what Table 2 may suggest, {log} does not solve all the goals that ProB does.
Indeed, in case studies 4 and 5 both tools discover the same number of test cases
but each tool solves goals that the other does not. Combining all the goals solved
by both tools, in the 1 minute experiment we get a total of 58 goals solved. This
suggests that combining both tools can be beneficial for Fastest and that there
are more improvements to add to {log}. Note that the tools differ the most in
the 1 second experiments, where {log} solves 52 goals and ProB 40. This might
suggest that {log} implements rules that initially narrow the search space better
than ProB. The fact that sets in ProB are implemented as Prolog’s lists whereas
in {log} they are first-class objects, might also have a non-negligible impact.

7 Discussion

According to [17], in ProB “sets are represented by Prolog lists” and “any global
set of the B machine, . . . , will be mapped to a finite domain within SICStus Pro-
log’s CLP(FD) constraint solver”. Conversely, {log} is based on a well-developed
theory of sets and deals with sets and set constraints as first-class entities of the
language. Moreover, in order to get better efficiency it combines general set
constraint solving with efficient constraint solving over Finite Domains. This
combination allows {log} to offer various advantages compared to CLP(FD). On
the one hand, the presence of very general and flexible set abstractions in {log}



ProB {log}

N 1 s 1 m 1 s 1 m

Sol Uns Sol Uns Sol Uns Sol Uns

1 7 1 7 1 8 8
2 1 1 1 1 2 2
3 8 8 8 8
4 17 12 17 12 17 12 17 12
5 12 10 2 10 2 10 2
6 2 2 2 2 2 2 4
7 4 4 4 4
8 1 1 1 1

Totals 40 28 50 18 52 16 54 14

Time 1 m 0 s 19 m 40 s 0 m 29 s 13 m 43 s

Table 2. Summary of the empirical results.

provides a convenient framework to model problems that are naturally expressed
in terms of sets, whereas CLP(FD) may require quite unnatural mappings to in-
tegers and sets of integers. On the other hand, the deep combination of the two
models, i.e. that of hereditarily finite sets and that of Finite Domains, allows
domains in {log} to be constructed and manipulated as other sets through gen-
eral set constraints, rather than having to be completely specified in advance as
usual in FD constraint programming. The improvement added to {log} for the
TTF, which allows intervals to have endpoints with unknown values (see Section
4) is another step ahead with respect to CLP(FD).

The results shown in this paper might indicate that treating sets as first-class
objects of a CLP language would be the right choice to further enlarge the class
of goals that can be solved in a reasonable time. All this, in turn, might be an
indication that sets present fundamental differences with respect to other data
structures—such as functions, lists, arrays, etc.—requiring specific theories and
algorithms to solve the satisfiability problem of set theory. The results shown
in [16] would also indicate that set processing would require a theory such as
the one underlying {log}, and not those underlying SMT solvers. The previous
analysis might partially conflict with [25, 26], since in these papers the authors
are able to discharge a number of proof obligations generated in B specifications
by encoding its mathematical model in some SMT solvers. However, although
dual problems, satisfiability is not exactly the same than proof.

Yet another indication reinforcing the previous analysis is the fact that we
have observed that {log} might not solve some goals because binary relations,
partial functions and lists are not treated as first-class entities. For instance, if
a goal requires some partial functions to have different cardinalities, but there
is no constraint over their elements, {log} may iterate over sets of, say, size one
trying with different elements, but not different sizes. If there is a large number of
elements it would make {log} to run for a long time before finding the solution—if



it ever terminates. According to the ZMT, lists and (total and partial) functions
are all binary relations. Adding specific constraint solving capabilities for binary
relations including concepts such as domain and range could make {log} to be
more effective in dealing with all of them. So far, as shown in sections 4 and 5,
binary relations are treated as sets of ordered pairs, i.e. not as first-class objects.

8 Conclusions

We have shown how {log} has been improved to use it as a test case generator
for the TTF. An empirical assessment suggests that {log} would perform better
than ProB, in finding more test cases in less time. After these experiments we
can say that {log} should be considered as a good constraint solver candidate
for Fastest and, probably, for other tools of model-based notations such as Z, B,
TLA+, Alloy and VDM, given that they are based on similar set theories.

In the near future we plan to write the translator between Z and {log} in order
to automatize test case generation in Fastest. Also, we will investigate whether
or not binary relations (and thus partial functions, sequences, etc.) should be
promoted to first-class objects of the CLP language embodied by {log}, so it
improves once again its constraint solving capabilities.
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7. Cristiá, M., Albertengo, P., Frydman, C., Plüss, B., Monetti, P.R.: Tool support
for the Test Template Framework. Software Testing, Verification and Reliability
pp. n/a–n/a (2012), http://dx.doi.org/10.1002/stvr.1477
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