A Decision Procedure
for Restricted Intensional Sets

Maximiliano Cristia! and Gianfranco Rossi?

! Universidad Nacional de Rosario and CIFASIS, Rosario, Argentina
2 Universita di Parma, Parma, Italy
cristia@cifasis—-conicet.gov.ar gianfranco.rossi@unipr.it

Abstract. In this paper we present a decision procedure for Restricted
Intensional Sets (RIS), i.e. sets given by a property rather than by enu-
merating their elements, similar to set comprehensions available in speci-
fication languages such as B and Z. The proposed procedure is parametric
with respect to a first-order language and theory X, providing at least
equality and a decision procedure to check for satisfiability of X'-formulas.
We show how this framework can be applied when X is the theory of
hereditarily finite sets as is supported by the language CLP(SET). We
also present a working implementation of RIS as part of the {log} tool
and we show how it compares with a mainstream solver and how it helps
in the automatic verification of code fragments.

1 Introduction

Intensional sets, also called set comprehensions, are sets described by a prop-
erty that the elements must satisfy, rather than by explicitly enumerating their
elements. Intensional sets are widely recognized as a key feature to describe
complex problems. Hence, having a decision procedure for an expressive class
of intensional sets should be of interest to different communities, such as SMT
solving, model finding and constraint programming.

In this paper we consider Restricted Intensional Sets (RIS). RIS are a subclass
of the set comprehensions available in the formal specification languages Z [24]
and B [20]. We say that this class of intensional sets is restricted because they
denote finite sets, while in Z and B they can be infinite. In effect, given that
the domain of a RIS fixes the maximum number of elements that the RIS can
have and that the domain is necessarily a finite set, then RIS cannot have an
infinite number of elements. Nonetheless, RIS can be not completely specified.
In particular, as the domain can be a variable, RIS are finite but unbounded.

We define a constraint language, called Lrzs, which provides both RIS and
extensional sets, along with basic operations on them, as primitive entities of
the language. Lrzs is parametric with respect to an arbitrary theory X', for
which we assume a decision procedure for any admissible X'-formula is available.
Elements of Lrzs sets are the objects provided by X', which can be manipulated
through the primitive operators that X offers (at least, X-equality). Hence, RIS

in Lrzs represent untyped unbounded finite hybrid sets, i.e. unbounded finite
sets whose elements are of any sort.

We provide a set of rewrite rules for rewriting RZS-formulas that are proved
to preserve satisfiability of the original formula. These rules are used to define
a decision procedure for Lrzs, called SATr7s, which is proved to be correct,
complete and terminating. SATrzs will be able to decide any propositional
combination of the admissible RZS-constraints and X-formulas. Furthermore,
for any satisfiable formula, SATrzs returns a finite representation of all its
possible solutions.

Lrzs has been implemented in Prolog, and integrated with {log} (pro-
nounced ‘setlog’), the freely available Prolog implementation of CLP(SET) [9].
This implementation is compared to ProB [16] w.r.t. intensional set manipula-
tion and an example using {log} to verify program correctness is also shown.

Section 2 introduces Lrzs. Section 3 describes the solver which is proved
to be a decision procedure for Lrzs in Sect. 4. A discussion of our approach is
provided in Sect. 5. A working implementation of this solver is shown in Sect.
6. Section 7 compares our results with similar approaches.

2 Lrzs: Syntax, Semantics and Applicability

Lrzs is parametric w.r.t. a first-order theory A which must include: a class of
admissible X-formulas based on a non-empty set of function symbols Fy and a
set of predicate symbols I1y; an interpretation structure Zy with domain Dy and
interpretation function (-)**; and a decision procedure SAT y for X-formulas.
We assume that Iy contains at least the = operator, which is interpreted as
the identity in Dx.

Definition 1. The signature Y'rzs of Lrzs is a triple (F,II,V) where: (i) F
is the set of function symbols, partitioned as F = Fs U Fx, where Fs = {0,
{ru-},{ | e-}}; (#) II is the set of primitive predicate symbols, partitioned as
II = 15 U Ily where I = {=s, €s, set, isX }3; (#i1) V is a denumerable set of
variables, partitioned as V = Vs U Vy.

Fs-terms are called set terms. In particular: {tuA} is an extensional set term,
where ¢ (element part) is a X-term and A (set part) is a set term; {e[z] : D |
Uer[x]}isa RIS term, where e (control term) is a X-term and & = (x1,...,Z,),
n > 0, are all the variables occurring in it; D (domain) is a set term; ¥ (filter) is a
X-formula; and 7 (pattern) is a X-term containing z>. When useful, the domain
D can be represented also as an interval [m, n], m and n integer constants, which
is intended as a shorthand for {m,m +1,...,n}. Moreover, when the pattern is
the control term and the filter is true, they can be omitted (as in Z), although one
must be present. Both extensional set and RIS terms can be partially specified
because elements and sets can be variables. A RIS term is a variable-RIS if its

3 The form of RIS terms is borrowed from the form of set comprehension expressions
available in Z.

domain is a variable or (recursively) a variable-RIS; otherwise it is a non-variable
RIS. As a notational convenience, we will write {t;u{tou--- {t,uA}---}} (resp.,
{tiu{tau - {to,ud} - }}) as {t1,t2,..., tnuA} (vesp., {t1,t2,...,tn}). Fs-terms
are of sort Set, while Fy-terms are of sort X.

Definition 2. A RZS-constraint is any atomic predicate of the form A =g B,
u €s A, set(t) or isX(t), where A and B are set terms, u is a X-term, t is
any term. The set Przs of RIS-formulas is given by the following grammar:
Przs = true | Crzs | "Crzs | Przs A Przs | Pris V Przs | Px, where Crzs
represents any RIS -constraint and Py represents any X -formula.

If 7 is an infix predicate symbol, then —7 is written as # (e.g. - ¢ -). For the
sake of presentation, in coming examples, we will assume that the language of
X, Ly, provides the constant, function and predicate symbols of the theories of
the integer numbers and ordered pairs. Moreover, we will write = (resp. €) in
place of =y and =g (resp. €x and €s) whenever is clear from context.

Ezxample 1. The following are RZS-formulas involving RIS terms.

—{z:[-2,2] |zrmod2=0ez} ={-2,0,2}
— B,y)e{z:D|xz>0e(z,x*xx)}, where D is a variable
- (5,0) € {(z,y) : {zu X} |y #0e(z,y)}, where z and X are variables. 0O

Symbols in Yrzs are interpreted according to the structure R = (D, (-)7),
where D is the interpretation domain and (-)® is the corresponding interpretation
function.

Definition 3. The interpretation domain D is partitioned as D = Dse; U Dy
where: (1) Dset is the collection of all finite sets built from elements in Dx; and
(ii) Dx is a collection of any other objects (not in Dset).

The interpretation function (-)* for symbols in F is informally defined as
follows (see [4] for details): () is interpreted as the empty set; {tu A} is interpreted
as the set {t}UA; {e[x] : D | ¥[x, v]eT[x,v]}, where v is a vector of free variables,
is interpreted as the set {y : Jx(e[x] € D A¥[z,v] Ay =x T[x,v])}. As concerns
predicate symbols in IT, A =s B is interpreted as the identity relation in Dset,
u €g A as the set membership relation in Dset, isX (¢) (resp. set(t)) as a predicate
testing whether ¢ belongs to the domain Dy (resp. Dset) or not. Note that in
RIS terms, « are bound variables whose scope is the RIS itself, while v are free
variables possibly occurring in the formula where the RIS is participating in.

In order to precisely characterize the language for which we provide a decision
procedure, the control term e and the pattern 7 of a RIS term are restricted to
be of specific forms. Namely, if x and y are variables ranging on Dy, then e can
be either = or (z,y); while 7 can be either e or (e,t) or (¢,e), where ¢ is any
(uninterpreted/interpreted) X-term, possibly involving the variables in e. As it
will be evident from the various examples in this and in the next sections, in spite
of these restrictions, Lrzs is still a very expressive language. In particular, note
that the restriction on patterns allows “plain” sets and partial functions (see

examples below) to lay inside the decision procedure. Relaxing this assumption
is feasible but it may compromise decidability (see Sect. 5).

One interesting application of RIS is to represent restricted universal quanti-
fiers. That is, the formula Vz € D : ¥[z| can be easily represented by the Lrzs
equality D = {z : D | ¥[z]} (see [4]). Then, as Lrzs is endowed with a decision
procedure, it can decide a large fragment of quantified formulas.

Ezample 2. The minimum y of a set of integers S can be stated by means of
the quantified formula y € S AVx € S : y < z. This formula is encoded in
Lrzs as follows: y € SAS ={z: S |y < z}. Hence, if S = {2,4,1,6}, then
y is bound to 1; and if S is a variable and y = 5, then one of the solutions is
S={5u{z:N|5<x}}, where N is a new variable. O

Another important application of RIS is to define (partial) functions. In gen-
eral, a RIS of the form {z : D | We(z, f(x))}, where f is any £ function symbol,
defines a partial function. Such a RIS contains ordered pairs whose first com-
ponents belong to D, which cannot have duplicates (because it is a set). Given
that RIS are sets, then, in Lr7s, functions are sets of ordered pairs. Therefore,
through standard set operators, functions can be evaluated, compared and point-
wise composed; and by means of constraint solving, the inverse of a function can
also be computed. The following examples illustrate these properties.

Ezample 3. The square of 5 can be calculated by: (5,y) € {z : D e (z,z x)},
yielding y = 25. The same RIS calculates the square root of a given number:
(x,36) € {x : De(x, x*x)}, returning = 6 and x = —6. Set membership can also
be used for the point-wise composition of functions. The function f(x) = 2% + 8
can be evaluated on 5 as follows: (5,y) € {x : De (z,xxx)} A (y,2) € {v:
E e (v,v + 8)} returning y = 25 and z = 33. O

Finally, note that we allow RIS terms to be the set part of extensional sets,
e.g. {ru{y: A|y+#z}}, as well as to be the domain of other RIS.

3 A Solver for Lrzs

In this section we present a decision procedure for Lrzs, called SATrzs. Ac-
tually, SATrzs is a complete constraint solver which is able not only to decide
satisfiability of Lrzs formulas, but also to compute a concise representation of
all the concrete (or ground) solutions of the input formula. It is important to
note that decidability of RZS-formulas depends on the existence of a decision
procedure for X-formulas.

3.1 The solver

SATRr7zs is a rewriting system whose global organization is shown in Algorithm
1, where STEP is the core of the algorithm. sort_infer is used to automatically add
sort information to the input formula @ to force arguments of RZS-constraints

to be of the proper sort (see Remark 1 below). sort_infer is called at the beginning
of the Algorithm and within STEP for the constraints that are generated during
constraint processing. sort_check checks sort constraints occurring in @: if they
are satisfiable, then @ is returned unchanged; otherwise, @ is rewritten to false.

Algorithm 1 The SAT rzs solver. @ is the input formula.

procedure STEP(®) procedure SATrzs(P)
P rwe(rwg (rwx (rw=(2)))) @ + sort_infer(P)
® + sort_check(sort_infer(®)) repeat
return ¢ P P
procedure rw,(P) repeat
if false € @ then " +— P
return false & + STEP(®)
else until ¢ = ¢”
repeat ® <+ remove_neq(P)
select any literal ¢; wt3 in & until @ = &’
apply any applicable rule to t; 7 t2 D is Ps NPy
until no rule applies to ¢ D Ps NSAT x(Dx)
return ¢ return ¢

remove_neq deals with the elimination of #-constraints involving RIS do-
mains. For example, in D # O A{x : D | ¥ e 7} = (}, remove_neq rewrites
D # 0 as y € D, where y is a new fresh variable. In turn, y € D is rewritten as
D = {yu N} for another new variable N. Finally, the whole formula is rewritten
as D ={yuN}A{x:{yu N} | ¥ et} = (), which fires one of the rules given
in Sect. 3.2. This rewriting chain is fired only because D is the domain of a
RIS; otherwise remove_neq does nothing with D # (). The complete definition of
remove_neq is in [4].

STEP applies specialized rewriting procedures to the current formula ¢ and
returns the modified formula. Each rewriting procedure applies a few non-deter-
ministic rewrite rules which reduce the syntactic complexity of RZS-constraints
of one kind. Procedure rw, in Algorithm 1 represents the rewriting procedure
for literals t; 7 to, m in {=,#, €, ¢}. The execution of STEP is iterated until
a fixpoint is reached—i.e. the formula cannot be simplified any further. STEP
returns false whenever (at least) one of the procedures in it rewrites @ to false.
Some rewrite rules are described in detail in Sect. 3.2 and the rest in [4].

SAT x is the constraint solver for X'-formulas. The formula @ can be written
as s A Py, where Ps (Px) is a conjunction of IIg- (I1x-)literals. SAT y is
applied only to the @y conjunct of @. Note that, conversely, STEP rewrites
only I1g-literals, while it leaves all other literals unchanged. Nonetheless, as the
rewrite rules show, SATrzs generates X-formulas that are conjoined to @y so
they are later solved by SAT y.

Remark 1. Lrzs does not provide variable declarations. The sort of a variable
is enforced by adding suitable sort constraints to the formula to be processed.

Sort constraints are automatically added by the solver. Specifically, a constraint
set(y) (resp., isX(y)) is added for each variable y which is required to be of
sort Set (resp., X). For example, given X = {y u A}, sort_infer conjoins the
sort constraints set(X), isX (y) and set(A). If the set of function and predicate
symbols of Lr7zs and Ly are disjoint, each variable occurring in the formula has
a unique sort constraint. O

3.2 Rewrite rules

The rules are given as ¢ — @1 V --- V &,,, where ¢ is a Ilg-literal and P;,
i > 1, are RZS-formulas. Each IIs-literal matching ¢ is non-deterministically
rewritten to one of the @;. In all rules, variables appearing in the right-hand side
but not in the left-hand side are assumed to be new, fresh variables, implicitly
existentially quantified over each @;. Moreover, A, B and D are extensional set
terms, X and D are variables of sort Set, while ¢, ¢;, v and d are any X-terms.

Set equality between extensional sets implements set unification [11]. In turn,
membership is strongly based on set equality. Some of the key rewrite rules for
equality, membership and their negations dealing with extensional set terms
(adapted from [9]) are shown in Fig. 1. In particular, rule =3 deals with equality
between two set terms: the second and third disjuncts take care of duplicates in
the right-hand side and the left-hand side term, respectively, while the fourth
disjunct takes care of permutativity of the set constructor {- u-}.

X = A — substitute X by A in the rest of the formula (=1)
X ={to,...,thuX} — X ={to,...,tn u N} (=2)

{tuA} ={uuB} —
t=uANA={uuvB}Vt=uA{uuvA}=B (=3)
Vt=uANA=BVA={uuN}A{tuN} =B

{tuvA} #{uuB} —

WeltuA} Ay {uu BNV (y ¢ {tuA} Ay € {uuBY) (=)
tef{fuvA} —t=uVvte A (€1)
te X — X ={tuN} (€2)
tg{uvA} —tA£unté¢ A (€3)

Fig. 1. Rewrite rules dealing with extensional set terms

Basically, Lrzs extends the rewrite rules for equality, membership and their
negations to allow them to deal with RIS terms. Figure 2 lists all the rules applied

by STEP to deal with constraints of the form R = U and R # U, where either
R or U are RIS terms. In order to make the presentation more accessible: a) the
rules are given for RIS whose domain is not another RIS; b) the control term of
RIS is wvariable x in all cases and it is omitted to save space. Generalization to
cases in which these restrictions are removed is discussed in [4].

Intuitively, the key idea behind the rules dealing with RIS terms is a sort of
lazy partial evaluation of RIS. That is, a RIS term is treated as a block until
it is necessary to identify one of its elements. When that happens, the RIS is
transformed into an extensional set whose element part is the identified element
and whose set part is the rest of the RIS. More formally, if y is known to be in
{z : D | ¥ e 7} then this RIS is rewritten as the extensional set {y u {zx : D" |
Uer}}, where {x: D' | ¥ e} is semantically equal to {z : D | ¥ e 7} \ {y}.

Equality between a RIS and an extensional set is governed by rules (=s5)—
(=s). In particular, rule (=¢) deals with the case in which a RIS with a non-
empty domain must be equal to the empty set. It turns out that to force a RIS
{D | ¥ e 7} to be empty it is enough that the filter ¥ is false for all elements in
D,ie. Yz € D: —W[z]. This (restricted) universal quantification is conveniently
implemented through recursion, by extracting one element d at a time from
the RIS domain. Rule (=g) deals with equality between a variable-RIS and an
extensional set. The intuition behind this rule is as follows. Given that {y u A}
is not empty, then D must be not empty in which case it is equal to {z u E} for
some z and E. Furthermore, z must satisfy ¥ and 7(z) must be equal to y. As
the first element of {y u A} belongs to the RIS, then the rest of the RIS must
be equal to A. It is not necessary to consider the case where =¥ (z), as in rule
(=7), because z is a new fresh variable.

{0|Per}=0— true (=s)
{{duD} |Ver}=0—-W(d)AN{D|VeT}=0 (=s)

If B is any set term except :
{{duD} |V et} =B — (=7)
U(d)AN{r(d)u{D |V er}} =BV-Y(d)A{D|Per}=DB
{D|Wer}={yuA} —
D={zuE}ANP)Ay=xT)A{E|Ter}=A

{D|Ver}#A— (ye{D|PeriAyg A)V(y¢g{D|PeT}AycA) (=o)

Fig. 2. Rewrite rules for R = U and R # U; R or U RIS terms

Rules of Fig. 2 exhaust all, but three, of the possible combinations of equality
between a RIS and other Lrzs set terms. The cases not considered (i.e. equality

between a variable and a variable-RIS, between a variable-RIS and the empty
set, and between two variable-RIS) are dealt with as irreducible (Sect. 4.1).

Rules dealing with constraints of the form ¢t € R and ¢ ¢ R, where ¢ is a
Ly term and R is a RIS term, are listed in Fig. 3. The case ¢t ¢ R where R is
a variable-RIS is dealt with as irreducible (Sect. 4.1), while constraints of the
form t € R are eliminated in all cases.

te{d|¥er} — false (€4)
te{D|Ver} —deDAU)At=x T(d) (€5)
te{{duD}|Ver} — (€0)
V() Ate{r(d)u{D|Ver}}V-U(d)Atec{D|Ver}

td {0|Wer} —s true (€7)
t¢{{duD}|Ver} — (€5)

U(d) At #x T(d)Atd {D|VertV—W(d)At¢{D|Ver)

Fig. 3. Rewrite rules for t € R and t ¢ R; R RIS term

4 Decidability of Lzrzs Formulas

Decidability of the set theory fragment considered in this paper can be obtained
by showing a reduction of RZS-formulas to formulas of the V{ , language stud-
ied in [2]. Vf , is a two-sorted quantified fragment of set theory which allows re-
stricted quantifiers of the forms (Vz € A), (3x € A), (V(z,y) € R), (3(x,y) € R)
and literals of the forms x € A, (z,y) € R, A= B, R =S, where A and B are
set variables (i.e., variables ranging over sets) and R and S are relation variables
(i.e., variables ranging over binary relations). Semantics of this language is based
on the von Neumann standard cumulative hierarchy of sets, which is the class
containing all the pure sets.

The extensional finite sets and the primitive set-theoretical operators pro-
vided by Lrzs are easily mapped to the general sets and operators of v ,. The
same mapping can be provided also for RIS as follows (for simplicity the control
term is just a variable and the pattern is the control term itself—so it can be
omitted). First, RIS are expressed in terms of a quantified formula:

S={z:D|V¥[z])} =
Ve(r € S = x € DAVY[z]) AVz(x € DAV[z] = x€5)
which then can be immediately written as the following Vg o-formula:

(Vz e S)(x e DAP[z]) AN (Vx € D)(P[z] = z€5)

Note that the fact that the control variable is restricted to range over a set (i.e.
the RIS domain) is crucial to allow both implications to be written as restricted
universal quantifiers, hence as V{ ,-formulas.

Since V(o has been shown to be a decidable fragment of set theory, the
availability of a complete mapping of Lrzs to V(o proves the decidability of
Lrzs as well. However, it is important to note that V{ , is mainly intended as a
language to study decidability rather than as an effective tool to solve formulas
of a constraint language, as Lrzs is instead designed for.

In the rest of this section we show that SAT rzs is indeed a decision procedure
for RZS-formulas. This is obtained by: (¢) proving that formulas returned by
SATRzs, other than false, are trivially satisfiable; (éi) proving that SATrzs
always terminates; and (¢4¢) proving that the disjunction of the returned formulas
is equisatisfiable to the input formula. Detailed proofs are given in [4].

4.1 Satisfiability of solved form

As stated in Sect. 3.1, the formula @ handled by SATxzs can be written as
s N Py where all I1g-literals are in &g. Right before Algorithm 1 calls SAT v,
®s is in a particular form referred to as solved form. This fact can be easily
proved by analyzing the rewrite rules given in Sect 3.2 and [4].

Definition 4 (Solved form). Let &s be a I1s-formula; let X and x be variables
of sort Set and X, respectively, and t any term of sort X; let S be any set term
but not a RIS; and let D and E be either variables of sort Set or variable-RIS.
A literal ¢ in &g is in solved form if it has one of the following forms:

true

X=SorX={D|W¥er}, and X does not occur in S nor in s\ {¢}
X # 8, and X does not occur in S nor as the domain of a RIS in $s*
t¢ X and X does not occur int, ort ¢ {D|Ver}

set(X) or isX(x)

(D] Fert =10

{D | Lpl .7'1} = {E | WQOTQ}.

NS G Lo o~

Ds is in solved form if all its literals are simultaneously in solved form.

Ezample 4. The following are Lrzs literals in solved form (X, D and D; vari-
ables; X does not occur elsewhere in the given RZS-formula):

— X ={z:D]|z#0} (X and D may be the same variable)
—1¢{z:D|z+#0}
—{z:Dy|zmod2=0e(z,2)} ={z:Dy|xz>0e(x,x+2)} O

Right before Algorithm 1 calls SAT y, ®s is either false or it is in solved
form, but in this case it is satisfiable.

4 This is guaranteed by procedure remove_neq (see Sect. 3).

Theorem 1 (Satisfiability of solved form). Any RZIS-formula in solved
form is satisfiable w.r.t. the interpretation structure of Lrzs.

Therefore, if &5 is not false, the satisfiability of @ depends only on 4.

Theorem 2 (Satisfiability of &s A®x). Let & be s A Py right before Algo-
rithm 1 calls SAT x. Then either @s is false or the satisfiability of ® depends
only on the satisfiability of @y .

4.2 Termination and equisatisfiability
Termination of SATrzs is stated by the following theorem.

Theorem 3 (Termination). The SATrzs procedure can be implemented in
such a way it terminates for every input RLZS-formula .

The termination of SATrzs and the finiteness of the number of non-determi-
nistic choices generated during its computation guarantee the finiteness of the
number of RZS-formulas non-deterministically returned by SAT zzs. Therefore,
SATrzs applied to a RZS-formula ¢ always terminates, returning either false
or a finite collection of satisfiable RZS-formulas in solved form.

In order to prove that Algorithm 1 is a decision procedure for RZS-formulas,
we still need to prove that it is correct and complete in the sense that it preserves
the set of solutions of the input formula.

Theorem 4 (Equisatisfiability). Let @ be a RZS-formula and {¢;}7_, be the
collection of RIS-formulas returned by SATrzs(P). /i, ¢i is equisatisfiable
to @, that is, every possible solution® of ® is a solution of one of {¢;}", and,
vice versa, every solution of one of these formulas is a solution for ®.

Thanks to Theorems 1-4 we can conclude that, given a RZS-formula @, ¢
is satisfiable with respect to the intended interpretation structure if and only if
there is a non-deterministic choice in SATrzs(®) that returns a RZS-formula
in solved form—i.e. different from false. Hence, SAT rzs is a decision procedure
for testing satisfiability of RZS-formulas.

It is worth noting that the set of variables ranging on RZS-terms and the
set of variables ranging on X-terms are assumed to be disjoint sets. This fact
prevents us from creating recursively defined RIS, which could compromise the
finiteness property of the sets we are dealing with. In fact, a formula such as
X = {D | ¥[X] e 7} is not an admissible RZS-constraint, since the outer and
the inner X must be of different sorts according to the definition of RIS (recall
that the filter is a X-formula). Note that, on the contrary, a formula such as
X ={D[X] | ¥ e 7} is an admissible RZS-constraint, and it is suitably handled
by our decision procedure.

5 More precisely, each solution of & expanded to the variables occurring in ¢; but not
in @, so to account for the possible fresh variables introduced into ¢;.

5 Discussion

The formula @ of a (general) intensional set {z : &[z]} may depend on existen-
tially quantified variables, declared inside the set. For example, if R is a set of
ordered pairs and D is a set, then the subset of R where all the first components
belong to D can be denoted by {p: Iz,y(x € DA (z,y) € RAp = (z,y))}. We
will refer to these existentially quantified variables as parameters.

Allowing parameters in RIS rises major problems when RIS have to be ma-
nipulated through the rewrite rules considered in the previous section. In fact,
if p is the vector of parameters possibly occurring in a RIS, then literals of the
form —%(d), occurring in the rules (e.g. (=7)), should be replaced with the more
complex universally quantified formula Vp(—=¥[p](d)). This, in turn, would re-
quire that the theory X is equipped with a solver able to deal with such kind of
formulas. To avoid relying on such a solver, RIS cannot depend on parameters.

Nevertheless, it can be observed that many uses of parameters can be avoided
by a proper use of the control term and pattern of a RIS (see [4]). For example,
the intensional set considered above can be expressed with a RIS (hence, without
parameters) as follows: {(z,y) : R | € D}. Then, for instance, for {(z,y) :
{(a,1),(b,2),(a,2)} | x € D} = {(a,1),(a,2)}, Lrzs returns D = {au N} Ab &
N as the only solution; and for {(x,y) : {(a,1), (b,2),(a,2)} | x € D} = {(a,1)},
it returns false.

Therefore, it would be interesting to extend RIS to allow more general forms
of control expressions and patterns. Concerning patterns, from the proof of The-
orem 4, it turns out that the necessary and sufficient condition for the equisat-
isfiability result is that patterns adhere to the following definition.

Definition 5 (Bijective pattern). Let {x : D | ¥[z,v] e T[x,v]} be a RIS,
then its pattern is bijective if 7 : {(x,v) : (z,v) € DX V AP[z,v]} = Y isa
bijective function (where: Y images of 7; and V' domain of variables v).

Note that all the admissible patterns of Lrzs are bijective patterns. Besides
these, however, other terms can be bijective patterns. For example, = + n, n
constant, is also a bijective pattern, though it is not allowed in Lzzs. Conversely,
x*x is not bijective as x and —z have x xx as image (note that, though, (z,z*x)
is a bijective pattern allowed in Lrzs).

The intuitive reason to ask for bijective patterns is that if y belongs to a RIS
whose pattern, 7, is not bijective then there may be two or more elements in
the RIS domain, say 1 and z9, such that 7(x1) = 7(x2) = y. If this is the case,
then eliminating, say, 1 from the domain is not enough to eliminate y from the
RIS. And this makes it difficult, for instance, to prove the equality between a
variable-RIS and a set (extensional or RIS) having at least one element.

Unfortunately, the property for a term to be a bijective pattern cannot be
easily syntactically assessed. Thus we prefer to leave it out of the definition of
Lrzs and to adopt a more restrictive definition of admissible pattern. From a
more practical point of view, however, we could admit also more general patterns,
with the assumption that if they are bijective patterns the result is surely safe;
while if they are not, it is not safe.

Finally, observe that if Ly provides other function symbols, Lrzs could
allow other control terms and patterns which are (syntactically) guaranteed to
be bijective patterns. All the extensions mentioned above for control terms and
patterns are included in the implementation of Lrzs within {log} (see Sect. 6).

Complezity. SATrzs strongly relies on set unification. Basically, rewrite rules
dealing with RIS “extract” one element at a time from the domain of a RIS by
means of set unification and construct the corresponding extensional set again
through set unification. Hence, complexity of our decision procedure strongly
depends on complexity of set unification. As observed in [11], the decision prob-
lem for set unification is NP-complete. A simple proof of the NP-hardness of this
problem has been given in [8]. The proof is based on a reduction of 3-SAT to a
set unification problem. Concerning NP-completeness, the algorithm presented
here clearly does not belong to NP since it applies syntactic substitutions. Never-
theless, it is possible to encode this algorithm using well-known techniques that
avoid explicit substitutions, maintaining a polynomial time complexity along
each non-deterministic branch of the computation.

Besides, the detection of a solution of a unification problem (i.e. solving the
function problem) clearly implies solving the related decision problem. Thus,
the complexity of the function problem can be no better than the complexity
of the decision problem. Finally, since SATrzs is parametric w.r.t. SAT v, its
complexity is at least the maximum between the complexity of both.

6 RIS in Practice

RIS have been implemented in Prolog as an extension of {log} [19], a freely
available implementation of CLP(SET) [9,6]. In this case, the theory X is ba-
sically the theory of CLP(SET), that is the theory of hereditarily finite hybrid
sets. This theory is endowed with a constraint solver which is proved to be a
decision procedure for its formulas, provided each integer variable is associated
to a finite domain. Syntactic differences between the abstract syntax used in this
paper and the concrete syntax used in {log} are made evident by the following
examples.

Ezample 5. The RZS-formula:
{bte{z:{yuD} |z #0A5 ¢ zex}

is written in {log} as:
{5} inris(X in{Y/D}, X neq {} & 5nin X, X)

where ris is a function symbol whose arguments are: i) a constraint of the form
xin A where z is the control term and A the domain of the RIS; i7) the filter given
as a {log} formula; and 4) the pattern given as a {log} term. Filters and patterns
can be omitted as in Lrzs. Variables must start with an uppercase letter; the

set constructor symbols for both Lrzs and {log} sets terms are written as
{-/-}. If this formula is provided to {log} it answers no because the formula is
unsatisfiable. O

The following are more examples of RIS that can be written in {log}.
Ezample 6.

— The multiples of N: ris(X in D, 0is X mod N), where is is the Prolog predicate
that forces the evaluation of the arithmetic expression in its right-hand side.

— The sets containing a given set A: ris(S in D, subset(A, S)).

— A function that maps integers to their squares: ris([X,Y]in D,Y is X x X),
where ordered pairs are written using [-,-]. Note that the pattern can be
omitted since it is the same as the control term, that is [X,Y]. O

RIS patterns in {log} can be any term (including set terms). If they are
bijective patterns, then the solver is guaranteed to be a decision procedure;
otherwise this may be not the case. For example, the formula ris(Xin{2,4/M?}, 2x
X) ={2,4,6,8} lies inside the decision procedure.

In {log} the language of the RIS and the language of the parameter theory X
are completely amalgamated. Thus, it is possible for example to use predicates
of the latter in formulas of the former, as well as to share variables of both. The
following example uses this feature to prove a general property about sets.

Ezample 7. In {log} inters(A, B, C') means C' = AN B. Then, if inters(A, B, C) A
D =ris(XinA, X in B)ACneqD is run on {log}, it (correctly) answers no. O

The original version of {log} can deal with general intensional sets, which
include our RIS as a special case. However, formulas involving such general
intensional sets fall outside the scope of {log}’s decision procedure. For example,
the same goal of Example 7 but written using general intensional sets is (wrongly)
found to be satisfiable by {log}.

6.1 Using {log} for program verification

{log} can be used to automatically prove program properties, such as partial cor-
rectness. As an example consider program map_f (Fig. 4), written in an abstract
programming language with an OO-like syntax and semantics. map_f applies
function f to every element of (finite) set S outputting the result in set S¢. S is
iterated by means of an iterator (S;) which is emptied as elements are popped
out of it (while S remains unchanged). At the right of Fig. 4 we see the pre-
and post-condition and the loop invariant given as formulas over a suitable set
theory. S, is the subset of S which has already been processed inside the loop.

Then, to prove the partial correctness of map_f in a Hoare-like framework, it
is necessary to prove that (among other conditions): (a) the invariant is preserved

function Set map_f(Set S) > Pre-condition: true
Set S¢ = new Set
Iterator S; = S.iterator()
while Sj.more() do > Invariant: S = S; US, A Sy ={z: S, e f(z)}
Sr.add(f(Si.next()))
end while
return S¢
end function > Post-condition: Sy = {z: Se f(z)}

Fig. 4. map_f applies f to every element of set S and stores the results in set St

inside the loop while its condition is true; and (b) upon termination of the loop,
the loop invariant implies the post-condition. Formally:

Si={auS}ANS=S;US, NSy ={x:5,e f(z)}

= S=5U{avSp}A{f(a)uSs}={z:{auS,}e f(x)}
Si:V)/\SzSiUSp/\Sf:{x:Spof(x)}

= Sy={z:5e f(x)}

(a)
(b)

The negation of these verification conditions can be written in {log} as:

S; ={A/S,} Aun(S;, S,, S) A Sy =ris(X in Sy, f(X))
A (nun(Sy, {A/Sp}, S) Vv A{f(A)/Sp} # ris(X in {A/S,}, f(X)))

Si =0 Aun(S;, Sy, S) NSy =ris(X in Sy, f(X))
NSy #ris(Xin S, f(X))

where un and nun means, respectively, set union and its negation.
When (a’) and (b’) are run on {log} it answers no (i.e. (a) and (b) hold).
Observe that the set theory-based, human-oriented annotations can be easily
translated into the set language provided by {log} which then is used to discharge
the proof obligations.

6.2 Comparison with ProB

In order to gain further confidence in that {log} may be useful in practice, we
compare it to ProB [16], a mainstream solver for sets supporting a very general
notion of intensional sets. Thus, we defined a small benchmark consisting of
64 formulas involving RIS, and run them on {log} and ProB. The benchmark
covers the four operators supported by the decision procedure (i.e. =, #, €,
¢). A summary of the results is presented in Table 1; details are provided in
[4], while the complete benchmark can be found at https://www.dropbox.com/s/
vjsh91nym3g5tk2/experiments.tar.gz?d1=0. As can be seen, {log} is able to solve
RIS formulas that ProB does not solve, and in less time. This is an indication
that SAT rzs would also be of practical interest.

TOOL (VERSION) SAT UNSAT TIMEOUT/WARNING TOTAL AUTO TIME
{log} (4.9.4) 30 34 0 64 100% 16s
ProB (1.6.0-SR1) 25 11 28 64 56% 103s

SAT+UNSAT)

Table 1. Summary of the empirical evaluation (timeout 10s; AUTO = 1005208

7 Related Work

Having intensional sets as first-class entities in programming and modeling lan-
guages is widely recognized as a valuable feature that makes programs and
models potentially more readable and compact than those based on other data
structures. Some form of intensional sets are offered for instance by modeling
frameworks, such as Mini-Zinc [17], ProB [16] and Alloy [15]; general-purpose
programming languages, such as SETL [21] and Python; and by (Constraint)
Logic Programming languages, such as Godel [14] and {log} [8]. However, as far
as we know, none of these proposals implements a decision procedure for inten-
sional sets. For example, Alloy (even when using the Kodkod library) needs to
set in advance the size of sets (or types). Such proposals lack, in general, the
ability to perform high-level reasoning on general formulas involving intensional
sets (e.g. the kind of reasoning shown in Example 7 and Sect. 6.1).

A very general proposal is CLP({D}) [10], a CLP language offering arbitrar-
ily nested extensional and intensional sets of elements over a generic constraint
domain D. However, no working implementation of this proposal has been de-
veloped. As observed in [10], the presence of undecidable constraints such as
{z :p(x)} = {x : g(x)} (where p and ¢ can have an infinite number of solutions)
“prevents us from developing a parametric and complete solver”. Conversely,
the same problem written using RIS, {z : D1 | p(z)} = {z : D2 | ¢(z)}, D1, D2
variables, always admits at least one solution, namely D1 = Dy = (). Generally
speaking, finding a fragment of intensional sets that is both decidable and ex-
pressive is a key issue for the development of an effective tool for reasoning with
intensional sets. RIS, as presented here, may be a first step toward this goal.

Several logics (e.g. [12,22,23]) provide some forms of intensional sets. How-
ever, in some cases, for the formula to be decidable, the intensional sets must
have a ground domain; in others, set operators do not include set equality; and
in others, they present a semi-decision procedure. Handling intensional sets can
be related also to handling universal quantifiers in a logical setting, since inten-
sional sets “hide” a universal quantifier. Tools such as SMT solvers deal with this
kind of problems (see, e.g., [7] and [1]), although in general they are complete
only in quite restricted cases [13].

Our decision procedure finds models for formulas with finite but unbounded
domains, i.e. their cardinalities are not constrained by a fixed value. The field of
finite model finding faces a similar problem but usually with bounded domains.
There are two basic styles of model finding: the MACE-style in which the formula
is transformed into a SAT problem [3]; and the SEM-style which uses constraint

solving techniques [25]. Our approach is closer to the SEM-style as it is based on
constraint programming. However, since both styles do not deal with quantified
domains as sets, then they cannot reduce the domain every time an element is
identified, as we do with RIS—for instance, in rule (=¢). Instead, they set a size
for the domain and try to find a model at most as large as that.

Ideas from finite model finding were taken as inspiration by Reynolds et al.
[18] for handling universal quantifiers in SMT. These authors propose to find
finite models for infinite universally quantified formulas by considering finite
domains. In particular, Reynolds et al. make use of the cardinality operator for
the sorts of quantified variables and propose a solver for a theory based on this
operator. Then, they make a guess of the cardinality for a quantified sort and
use the solver to try to find a model there. In the default strategy, the initial
guess is 1 and it is incremented in 1. Note that our approach does not need a
cardinality operator because it operates directly over a theory of sets.

8 Concluding Remarks

We have shown a decision procedure for an expressive class of intensional sets,
called Restricted Intensional Sets (RIS). Key features of this procedure are: it
returns a finite representation of all possible solutions of the input formula; it
allows set elements to be variables; it is parametric with respect to any first-
order theory endowed with a decision procedure; and it is implemented as part
of the {log} tool. On the other hand, we have shown through a number of simple
examples that, although RIS are a subclass of general intensional sets, they are
still sufficiently expressive as to encode and solve many interesting problems.

Nevertheless, it can be interesting trying to extend the language of RIS, for
example, with rewrite rules for other set operators (e.g. union) because this
would contribute to enlarge the class of problems that the decision procedure
can deal with. Yet another line of investigation is to study the relation between
RIS and the extension to binary relations recently added to {log} [5].

Acknowledgements

Part of the work of M. Cristid is supported by ANPCyT’s grant PICT-2014-2200.

References

1. Bjgrner, N., McMillan, K.L., Rybalchenko, A.: On solving universally quantified
Horn clauses. In: Logozzo, F., Fahndrich, M. (eds.) Static Analysis - 20th Inter-
national Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceed-
ings. Lecture Notes in Computer Science, vol. 7935, pp. 105-125. Springer (2013),
http://dx.doi.org/10.1007/978-3-642-38856-9_8

2. Cantone, D., Longo, C.: A decidable two-sorted quantified fragment of set theory
with ordered pairs and some undecidable extensions. Theor. Comput. Sci. 560,
307-325 (2014), http://dx.doi.org/10.1016/j.tcs.2014.03.021

10.

11.

12.

13.

14.
15.

16.

17.

Claessen, K., Sérensson, N.: New techniques that improve MACE-style finite model
building. In: CADE-19 Workshop: Model Computation Principles, Algorithms,
Applications. pp. 11-27 (2003)

Cristia, M., Rossi, G.: Restricted insentional sets, http://people.dmi.unipr.it/
gianfranco.rossi/SETLOG/risCADEonline.pdf

Cristid, M., Rossi, G.: A decision procedure for sets, binary relations and par-
tial functions. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification -
28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 9779, pp. 179-198.
Springer (2016), http://dx.doi.org/10.1007/978-3-319-41528-4_10

Dal Pali, A., Dovier, A., Pontelli, E., Rossi, G.: Integrating finite domain con-
straints and CLP with sets. In: Proceedings of the 5th ACM SIGPLAN Inter-
national Conference on Principles and Practice of Declaritive Programming. pp.
219-229. PPDP ’03, ACM, New York, NY, USA (2003), http://doi.acm.org/10.
1145/888251.888272

Deharbe, D., Fontaine, P., Paleo, B.W.: Quantifier inference rules for SMT proofs.
In: Workshop on Proof eXchange for Theorem Proving (2011)

. Dovier, A., Omodeo, E.G., Pontelli, E., Rossi, G.: A language for programming in

logic with finite sets. J. Log. Program. 28(1), 1-44 (1996), http://dx.doi.org/
10.1016/0743-1066(95)00147-6

Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic program-
ming. ACM Trans. Program. Lang. Syst. 22(5), 861-931 (2000)

Dovier, A., Pontelli, E., Rossi, G.: Intensional sets in CLP. In: Palamidessi, C. (ed.)
Logic Programming, 19th International Conference, ICLP 2003, Mumbai, India,
December 9-13, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2916,
pp. 284-299. Springer (2003), http://dx.doi.org/10.1007/978-3-540-24599-5_
20

Dovier, A., Pontelli, E., Rossi, G.: Set unification. Theory Pract. Log. Program.
6(6), 645-701 (Nov 2006), http://dx.doi.org/10.1017/51471068406002730
Dragoi, C., Henzinger, T.A., Veith, H., Widder, J., Zufferey, D.: A logic-based
framework for verifying consensus algorithms. In: McMillan, K.L., Rival, X. (eds.)
Verification, Model Checking, and Abstract Interpretation - 15th International
Conference, VMCAI 2014, San Diego, CA, USA, January 19-21, 2014, Proceedings.
Lecture Notes in Computer Science, vol. 8318, pp. 161-181. Springer (2014), http:
//dx.doi.org/10.1007/978-3-642-54013-4_10

Ge, Y., de Moura, L.M.: Complete instantiation for quantified formulas in sat-
isfiabiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26
- July 2, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5643, pp.
306-320. Springer (2009), http://dx.doi.org/10.1007/978-3-642-02658-4_25
Hill, P.M., Lloyd, J.W.: The Godel programming language. MIT Press (1994)
Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press
(2006)

Leuschel, M., Butler, M.: ProB: A model checker for B. In: Keijiro, A., Gnesi,
S., Mandrioli, D. (eds.) FME. Lecture Notes in Computer Science, vol. 2805, pp.
855-874. Springer-Verlag (2003)

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc:
Towards a standard CP modelling language. In: Bessiere, C. (ed.) Principles and
Practice of Constraint Programming - CP 2007, 13th International Conference, CP
2007, Providence, RI, USA, September 23-27, 2007, Proceedings. Lecture Notes in

18.

19.

20.

21.

22.

23.

24.

25.

Computer Science, vol. 4741, pp. 529-543. Springer (2007), http://dx.doi.org/
10.1007/978-3-540-74970-7_38

Reynolds, A., Tinelli, C., Goel, A., Krstic, S.: Finite model finding in SMT. In:
Sharygina, N., Veith, H. (eds.) Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 8044, pp. 640—-655. Springer (2013), http:
//dx.doi.org/10.1007/978-3-642-39799-8_42

Rossi, G.: {log} (2008), http://people.dmi.unipr.it/gianfranco.rossi/
setlog.Home.html

Schneider, S.: The B-method: An Introduction. Cornerstones of computing, Pal-
grave (2001), http://books.google.com.ar/books?id=KrsO0QAACAAT

Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., Schonberg, E.: Programming with
Sets - An Introduction to SETL. Texts and Monographs in Computer Science,
Springer (1986), http://dx.doi.org/10.1007/978-1-4613-9575-1

Veanes, M., Saabas, A.: On bounded reachability of programs with set compre-
hensions. In: Cervesato, 1., Veith, H., Voronkov, A. (eds.) Logic for Programming,
Artificial Intelligence, and Reasoning, 15th International Conference, LPAR 2008,
Doha, Qatar, November 22-27, 2008. Proceedings. Lecture Notes in Computer
Science, vol. 5330, pp. 305-317. Springer (2008), http://dx.doi.org/10.1007/
978-3-540-89439-1_22

Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations.
In: Ghilardi, S., Sebastiani, R. (eds.) Frontiers of Combining Systems, 7th Inter-
national Symposium, FroCoS 2009, Trento, Italy, September 16-18, 2009. Proceed-
ings. Lecture Notes in Computer Science, vol. 5749, pp. 366-382. Springer (2009),
http://dx.doi.org/10.1007/978-3-642-04222-5_23

Woodcock, J., Davies, J.: Using Z: specification, refinement, and proof. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA (1996)

Zhang, J., Zhang, H.: System description: Generating models by SEM. In: McRob-
bie, M.A., Slaney, J.K. (eds.) Automated Deduction - CADE-13, 13th International
Conference on Automated Deduction, New Brunswick, NJ, USA, July 30 - August
3, 1996, Proceedings. Lecture Notes in Computer Science, vol. 1104, pp. 308-312.
Springer (1996), http://dx.doi.org/10.1007/3-540-61511-3_96

