
A Language for Test Case Refinement in the
Test Template Framework

M. Cristiá23, D. Hollmann2, P. Albertengo1,
C. Frydman3, and P. Rodŕıguez Monetti4

1 Flowgate Consulting, Rosario, Argentina
2 CIFASIS-UNR, Rosario Argentina
3 LSIS-UPCAM, Marseille, France
4 FCEIA-UNR, Rosario, Argentina

mcristia@flowgate.net

Abstract. Model-based testing (MBT) generates test cases by analysing
a formal model of the system under test (SUT). In many MBT methods,
these test cases are too abstract to be executed. Therefore, an executable
representation of them is necessary to test the SUT. So far, the MBT
community has focused on methods that automate the generation of test
cases, but less has been done in making them executable. In this paper
we propose a language to specify rules that can be automatically applied
to produce an executable representation of test cases generated by the
Test Template Framework (TTF), a MBT method for the Z notation.

1 The Process of Model-Based Testing

Model-based testing (MBT) is a well-known technique aimed at testing software
by analysing a formal model or specification of the system under test (SUT) [1, 2].
These techniques have been developed and applied to models written in different
formal notations such as Z [3], finite state machines and their extensions [4], B
[5], algebraic specifications [6], and so on. The fundamental hypothesis behind
MBT is that, as a program is correct if it satisfies its specification, then the
specification is an excellent source of test cases.

Figure 1 depicts a possible testing process when a MBT method is applied.
So far, the MBT community has focused on the “Generation” step in which
testers analyse a model of the SUT and generate test cases by applying different
techniques. Test cases produced by the “Generation” step are abstract in the
sense that they are written in the same language of the model, making them, in
most of the MBT methods, not executable. In effect, during the “Refinement”
step these abstract test cases are made executable by a process that can be
called refinement, concretization or reification. Note that this not necessarily
means that the SUT has been refined from the model; it only says that test cases
must be refined. In fact, Hierons and others conclude that the relation between
refinement and MBT is still a challenge that would have a very tangible benefit if
solved [2]. Besides, test case refinement can require an effort equal to the 25% up
to 100% of the time spent on modelling [1], so it is worth to automate this step

2

Model

Program

Abstract
test cases

Concrete
test cases

Concrete
output

Abstract
output

Refinement Abstraction
Programming

Generation Verification

Execution Execution

Fig. 1. A general description of a possible MBT process.

as much as possible. Furthermore, automating this step enables the automation
of the rest of the MBT process. Once test cases have been refined they can
be automatically executed by one of the many test execution environments or
techniques already developed [7, 8]. Hence, the problem we try to solve is the
automation of the “Refinement” step and not the automation of the “Execution”
step, which has been extensively studied.

As we have said, there is a variety of MBT methods for many formal nota-
tions. Our work concentrates in the Z notation [9]. Z is a widely known formal
notation based on first order logic and set theory. There are some MBT meth-
ods available for the Z notation. In [10] the authors apply category–partition;
Hall [11] generates tests by analysing the test domains of Z operations; in [12]
the Z information provided in a µSZ specification is used to provide sequences
of transitions that covers a EFSM derived from the specification; Hierons [13]
also partitions a Z operation and then derives a FSA to control how testing is
performed; Horcher and Peleska [14] apply DNF to a Z operation and describe
a MBT process similar to the one in Figure 1. However, we think that the Test
Template Framework (TTF) [3, 15, 16] is the MBT method that takes the most
of the Z notation, as we will show in Section 2. We have developed the first
automatic implementation of the TTF in a tool called Fastest [17–19].

Hence, in this paper we propose a test case refinement language (TCRL) as
an extension to the TTF. This TCRL does not assume that the SUT has been
refined from the Z specification. In fact, if this is the case there might be better
options [20]. However, our method does assumes that the SUT’s source code is
available. We have implemented an interpreter for this TCRL in Fastest following
an architecture that allows users to automatically refine test cases to different
programming languages after specifying simple refinement rules. Furthermore,
the architecture makes it easy to plug in modules that implement the TCRL for
programming languages not yet supported by the tool. The implementation is
still a research prototype.

This article is a summary of a 65 page long reference manual describing the
TCRL [21]. Therefore, due to space restrictions, here we will introduce only its
most relevant features by means of some running examples. This document along

3

with examples to be executed on Fastest can be found at http://www.flowgate.
net/pdf/ftcrl.tar.gz.

In Section 2 we introduce the TTF and in 3 we precisely state the contribution
of this article. Section 4 describe the most salient features of our method. A case
study is briefly introduced in Section 5. We discuss some similar approaches in
Section 6 and our conclusions in Section 7.

2 The Test Template Framework

In this section we briefly introduce those steps of the TTF strongly related to test
case refinement—for a thorough introduction see [17, 18, 3]. The presentation is
made by means of an example that we will use throughout this article. It is
assumed that the reader is fluent in the Z notation. In the TTF each operation
within the specification is analysed to generate abstract test cases, as follows:

1. Consider the valid input space (VIS) of a Z operation.
2. Apply one or more testing tactics in order to partition the VIS.
3. Find one abstract test case from each satisfiable test condition.

We will introduce these steps for the operation named NewClient of the Z
specification shown in Figure 2. The specification is about the savings accounts of
a simple banking system. Table 1 summarizes the meaning of each basic element
of the model. We think that this table plus the common knowledge about savings
accounts will suffice to understand the model.

[AN ,UID ,NAME]

BALANCE == N

State schema for the savings accounts.

Bank

clients : UID 7→ NAME

balances : AN 7→ BALANCE

owners : UID ↔ AN

NewClientOk

∆Bank

u? : UID

name? : NAME ; n? : AN

u? 6∈ dom clients

n? 6∈ dom balances

clients ′ = clients ∪ {u? 7→ name?}
balances ′ = balances ∪ {n? 7→ 0}
owners ′ = owners ∪ {u? 7→ n?}

ClientAlreadyExists == [ΞBank ; u? : UID | u? ∈ dom clients]

AccountAlreadyExists == [ΞBank ; n? : AN | n? ∈ dom balances]

NewClient == NewClientOk ∨ ClientAlreadyExists ∨ AccountAlreadyExists

Fig. 2. Part of a Z specification of the savings accounts of a banking system.

4

Term Meaning

AN The set of possible savings accounts numbers

UID The set of identifiers of individuals

NAME The set of names of individuals

clients u The name of person u as is recorded in the bank

balances n The balance of savings account n

owners(u,n) u is an owner of account n

NewClient(u,name,n) Account n is opened by client u whose name is name

Table 1. Meaning of the basic elements of the Z model of Figure 2.

Step 1. Since NewClient is a total operation, its VIS is the Z schema declaring
all the input and before state variables used by it:

NewClientVIS == [clients : UID 7→ NAME ; balances : AN 7→ BALANCE ;
owners : UID ↔ AN ; name? : NAME ; u? : UID ; n? : AN]

Step 2. The TTF partitions the VIS by applying one or more testing tactics.
The result is a set of so-called test specifications. Test specifications obtained
in this way can be further subdivided into more test specifications by applying
other testing tactics. The net effect of this technique is a progressive partition
of the VIS into more restrictive test specifications. This procedure can continue
until the engineer think that the test specifications will uncover enough errors
in the implementation. Each tactic indicates how the current test specification
must be partitioned by giving a set of predicates characterizing each resulting test
specification. Two of the testing tactics proposed within the TTF are Disjunctive
Normal Form (DNF) and Standard Partitions (SP) [3, 17].

In this example, we first apply DNF to the VIS of NewClient , getting the
following test specifications:

NewClientDNF
1 == [NewClientVIS | u? 6∈ dom clients ∧ n? 6∈ dom balances]

NewClientDNF
2 == [NewClientVIS | u? ∈ dom clients]

NewClientDNF
3 == [NewClientVIS | n? ∈ dom balances]

SP is applied to the set union operator (∪) in clients∪{u? 7→ name?} in order
to partition NewClientDNF

1 , yielding the following satisfiable test specifications
(the unsatisfiable ones have been omitted for brevity):

NewClientSP2 == [NewClientDNF
1 | clients = ∅ ∧ {u? 7→ name?} 6= ∅]

NewClientSP4 == [NewClientDNF
1 |

clients 6= ∅ ∧ clients ∩ {u? 7→ name?} = ∅]

Step 3. The TTF prescribes to derive abstract test cases only from those test
specifications that were not partitioned—we have four in the example. This
means to find at least one element satisfying each of them. For example, the

5

following horizontal schemas represent abstract test cases of the corresponding
test specifications5:

NewClientATC
1 == [NewClientSP2 | balances = ∅ ∧ name? = name0 ∧

n? = an0 ∧ u? = uid0 ∧ clients = ∅ ∧ owners = ∅]
NewClientATC

2 == [NewClientSP4 | u? = uid0 ∧ name? = name0 ∧
n? = an0 ∧ balances = {(an1, 20)} ∧
clients = {(uid1,name0)} ∧ owners = {(uid1, an1)}]

NewClientATC
3 == [NewClientDNF

2 | balances = ∅ ∧ name? = name0 ∧
n? = an0 ∧ u? = uid0 ∧ clients = {(uid0,name0)} ∧ owners = ∅]

NewClientATC
4 == [NewClientDNF

3 | n? = an0 ∧ name? = name0 ∧
balances = {(an0, 0)} ∧ u? = uid0 ∧ clients = ∅ ∧ owners = ∅]

As can be seen, within the TTF an abstract test case is a conjunction of
equalities between VIS variables and constant values, rather than a sequence of
operations leading to the desired state, as it is suggested by other approaches
[1, 2]. Some of these equalities specify the initial state for the test, while others
specify the values for the input parameters of the SUT. This is a key issue when
test case refinement is considered.

Note that test specifications and abstract test cases are all expressed in Z.
In the TTF test cases do not include test oracles because they are provided

at the end of the MBT process [3]. Since oracles appear at the end of the process
we do not need to deal with them during test case refinement. In the TTF, test
case refinement concerns only with state and input data refinement.

3 A Method for Test Case Refinement

The core of this paper is, then, a general method for refining test cases, like
NewClientATC

4 , written in LATEX markup, into executable programs or scripts
written in some programming language. The result of this refinement is a col-
lection of concrete test cases, or just test cases when it is clear from context.
This refinement requires: (a) identifying the SUT’s state variables and input
parameters that correspond to the specification variables; (b) initializing the
implementation variables as specified in each abstract test case; (c) initializing
implementation variables used by the SUT but not considered in the specifica-
tion; and (d) performing a sound refinement of the values of the abstract test
cases into values for the implementation variables. For instance, if account num-
bers are implemented as integer numbers, then an0 in NewClientATC

4 must be
refined as, say, 9711048.

The method yields programs written in the SUT’s implementation language
because we found it natural to correlate specification and implementation vari-
ables and it is easier to initialize them, assuming the SUT’s source code is avail-
able. The correlation between specification and implementation variables is given

5 Identifiers like name0 are assumed to be declared in axiomatic definitions and are
regarded as constants of their types.

6

by engineers by means of so-called refinement rules, written in a declarative
TCRL which is, in principle, independent of any programming language.

In summary, the method receives a user-defined refinement rule for a given Z
operation, a list of test cases for that operation and the name of a programming
language, and automatically applies the refinement rule to the list of test cases
outputting a list of concrete test cases written in that programming language,
each of which:

1. Sets the initial state of the SUT as specified by the test case.
2. Sets the input parameters expected by the SUT as specified by the test case.
3. Calls the SUT.

As it can be seen, the method we propose can be thought as a lightweight
form of what is traditionally called data refinement [22, chapter 10]. Furthermore,
as we have anticipated in the introduction, this method does not assume that
the SUT was formally developed because no information from a possible formal
refinement is needed.

All the remaining test activities—i.e. compiling test cases, executing them,
capturing their output, etc. (Figure 1)—are beyond the scope of this paper.

4 Fastest Test Case Refinement Language

The method we propose is called Fastest TCRL (FTCRL). FTCRL is an inter-
preted language whose programs are refinement rules. Refinement rules trans-
form a list of abstract test cases generated by Fastest into a list of concrete
test cases in the SUT’s programming language. The interpreter receives the tar-
get programming language as a parameter. In this paper we show part of the
FTCRL semantics when the target programming language is C [23]; in [21] the
full operational semantics for C and Java can be found.

The TTF is intended to be used as an MBT method for unit testing. There-
fore, given a unit of implementation, P, engineers must find the Z schema, S ,
that specifies P—this schema may reference other schemas and it can be the
specification of other units as well. Then, a refinement rule for the pair (P,S)
must be given.

4.1 An Example of a Refinement Rule

Since refinement rules are essentially specifications of how VIS variables must be
refined into implementation variables, we need some information about the unit
under test (UUT). Below we introduce a typical refinement rule that is explained
and analysed in the following sections.

Assume the banking system specified in Section 2 is implemented in the C
programming language6. Let’s say that elements of AN and NAME are imple-
mented as character strings, elements of UID are integer numbers and those

6 We assume the reader is familiar with the C programming language [23].

7

of BALANCE are floats. Say clients is implemented as a simply-linked list, c,
declared as:

struct cdata {int uid; char *name; struct cdata *n;} *c;

balances is implemented as an array, b, declared as:

struct bdata {char* num; float bal;} b[100];

and there is an integer variable, l, pointing to the last used component of b.
owners is implemented as a doubly-linked list, o, declared as:

struct odata {int *puid; char *pn; struct odata *n,*p;} *o;

where puid should point to the uid member of the corresponding node in c;
pn should point to the num member of the corresponding b component; and n

and p are pointers to the next and previous nodes in the list, respectively. Say
that c, b, l and o are global variables. Finally, let’s assume that NewClient is
implemented by a C function with the following signature:

int newClient(int u, char *name, char *n)

Figure 3 shows the refinement rule for NewClient , when it is implemented
by newClient() and the data structures described above. Figure 4 shows the
concrete test case generated by applying that refinement rule to NewClientATC

2 .
Note: (a) the kind of information of the UUT that is needed to write a refinement
rule; (b) FTCRL assumes that the SUT’s source code is available; and (c) Figure
4 is an executable C program. Please, look at these figures while we introduce
FTCRL below.

4.2 The Basic Structure of a Refinement Rule

The first line in a refinement rule declares its name. Refinement rules have four
mandatory sections that must be written in strict order: @PREAMBLE, @LAWS, @UUT
and @EPILOGUE. The interpreter uses the preamble to collect typing information
of the UUT and adds it at the beginning of a test case. The preamble should
contain all the code necessary to compile the UUT—for instance, UUT’s defini-
tion, type declarations, sentences to import external resources, header files, etc.
The epilogue should contain code to perform clean-up once the test has been
run—for instance, deleting a file—and it is blindly copied at the end of each
test case. The @UUT section contains only one line of FTCRL code to call the
UUT. The value returned by the UUT is not considered since it does not affect
refinement, but other steps of the MBT process.

The name of a refinement rule can be used in other refinement rules as
shown in Figure 5, with the obvious meaning. Note that this mechanism allows
users to use the same @LAWS section with different preambles and epilogues, thus
making it possible to refine the same abstract test cases to different programming
languages, since all the code of the refinement rule that depends on the target
programming language is confined to these two sections. The language includes
others forms of reuse [21].

8

@RRULE bank

@PREAMBLE

#include <bank.h>

@LAWS

l1:u? ==> u

l2:name? ==> name

l3:n? ==> n

l4:clients ==> c AS LIST[SLL,n] WITH[clients.@dom ==> c.uid,

clients.@ran ==> c.name]

l5:balances ==> b AS ARRAY WITH[balances.@dom ==> b.num,

balances.@ran ==> b.bal];

balances.@# ==> l

l6:owners ==> o AS LIST[DLL,n,p]

WITH[owners.@dom ==> o.puid AS REF[c.uid],

owners.@ran ==> o.pn AS REF[b.num]]

@UUT newClient(u,name,n)

Fig. 3. Refinement rule for NewClient . bank.h declares all the elements of the UUT.

#include <bank.h>

int main() {

int u = 345;

char *name = "name0", *n = "an0";

struct cdata cdata0 = {87,"name0",NULL};

struct bdata bdata0 = {"an1",20};

struct odata odata0 = {0,0,NULL,NULL};

c = &cdata0;

b[0] = bdata0;

l = 1;

odata0.puid = &cdata0.uid;

odata0.pn = bdata0.num;

o = &odata0;

newClient(u,name,n);

return 1;

}

Fig. 4. Concrete test case for NewClientATC
2 generated by bank of Figure 3.

@RRULE otherBankingRefRule

@PREAMBLE bank.@PREAMBLE

@LAWS

bank.l04

.....

commercialAccounts.@LAWS

.....

@UUT deposit(....)

Fig. 5. Refinement rules can be reused as Z schemas are reused by schema inclusion.

9

4.3 Refinement Laws

The @LAWS section is a list of refinement laws (or laws), of the following form:

ident:list_of_spec_vars ==> refinement

where ident is an identifier to reuse the law in other rules (Figure 5), list_of_
spec_vars is a list of one or more specification variables, and refinement spec-
ifies how the specification variables must be refined. The token ==> can be read
as ‘refines to’.

The most simple law is, for instance, l1 in Figure 3. For each abstract test
case, this law makes the interpreter to declare a local variable named u of type
int and to assign it the value of u? in the abstract test case (Figure 4). The type
of u is deduced as follows: u is the first parameter in the call placed in the @UUT

section, and the first parameter found in the signature of newClient() is of type
int. In general, all the typing information can be deduced by parsing both the
LATEX markup of the Z specification and the source code of the SUT. Constant
values of given types at the specification level, such as uid0, are translated to
the implementation type by applying an arbitrary bijection whenever necessary.

Note that, in this context, the overflow C semantics of the int type is not
a problem when refining Z’s Z, because, if at the Z level a natural number is
greater than the C int limit, then, precisely, this test case will test how the
program deals with the overflow C semantics. It is not the difficulty appearing
in classical refinement calculus: the intention is to test the program, not to refine
the specification.

Law l4 specifies that clients is implemented as the c list. The first parameter
of the LIST clause indicates that c is a simply-linked list and the second one is
the name of the variable pointing to the next node in the list—some of these
parameters are ignored when refining to some programming languages, Java is an
instance. It is necessary to include this information in the law because, in some
programming languages, it is impossible to automatically deduce that c is a list,
solely from its declaration. The WITH clause helps to specify how each ordered
pair in clients must be accommodated in the list. In this case, elements in the
domain go to uid and elements in the range to name. Therefore, the interpreter
creates a new variable of type cdata for each pair in clients and initializes them
with the constant values of each pair. The value of the n member of each of these
new variables is set to point to the address of any other of them—since clients
is a function, there is no order between its pairs, and so any order in c should be
correct. In general, FTCRL applies a sort of extensionality to refine Z sets [21].

Note how a specification variable is refined to more than one implementation
variable in l5; balances.@# is the cardinality of balances. Had it been necessary
to make l to point to the first free component in b, then we would have written:
balances.@# + 1—in general, any constant expression is valid.

Regarding l6, DLL stands for doubly-linked list and the other two parameters
are the members pointing to the next and previous nodes, respectively. If an
implementation variable is intended to hold a reference (or a pointer) to some
data in some other data structure, the REF directive must be used. It is possible

10

to generate source code according to this specification because every element
of a dynamic data structure is first saved in a new static variable whose name,
memory address and value can be freely used by the interpreter.

4.4 More Examples and Features

In this section we will show a few small examples to introduce a variety of
FTCRL’s features; sometimes we will use the savings account example.

Two specification variables refined into one implementation variable. Consider
the following excerpt from some specification:

[NAME]
AddPerson == [first?, last? : NAME . . . | . . .]

Assume the implementation stores the first and last name of persons in a
single character string variable, name. Then, the law could be as follows:

person:first?, last? ==> last? ++ ", " ++ first? ==> name

If an abstract test case binds name0 to first? and name1 to last?, then the
interpreter would generate the following code:

char* name = "name1, name0";

Implementation details abstracted away in the specification. Now assume the
implementation of the banking system introduced in Section 2 stores also the
address and age of each client. Specifiers abstracted away these details retaining
only the name of the client. Therefore, cdata would indeed be:

struct cdata {int uid, age; char *name, *addr; struct cdata *n;} c;

In this case the refinement law would be:

l04:clients ==> c AS LIST [SLL,n]

WITH [clients.@dom ==> c.uid,

clients.@ran ==> c.name,

"Road" ==> c.addr,

40 ==> c.age]

or @AUTOFILL ==> c.* can replace "Road" ==> c.addr, 40 ==> c.age [21].
In other words, if an implementation detail was abstracted away in the specifi-
cation, then, in some way, its value is irrelevant with respect to the correctness
of the implementation. Hence, the same value can be used in all of the tests.

11

Refining into external resources. Assume there is an UUT of the banking system
that reads client data from a text file. Test cases for this UUT would need to
initialize this file according to the value clients has in different abstract test
cases. Say the file stores one record per line with the format UID:NAME. Then,
the refinement law would be:

file:clients ==> clients.@DOM ++ ":" ++ clients.@RAN

==> clientData.txt AS FILE[/bank]

If in some test case we have clients = {(uid1,name0), (uid2,name1)} the
interpreter would produce roughly the following C code:

fd = open(/bank/clientData.txt, O_RDWR | O_TRUNC | O_CREAT);

.......

write(fd, "87:name0", strlen("87:name0"));

write(fd, "91:name1", strlen("91:name1"));

.......

close(fd);

where 87 and 91 result from applying an arbitrary bijection between UID and
int as we have said before.

Refining complex Z types. Suppose it is necessary to refine f : X 7→ Y 7→ H ×W
where X , Y and W are given types and H is the schema [a : A; b : B]. The
recursive nature of FTCRL, Z and all programming languages make it possible to
refine such complex types in equally complex implementation data structures.
For instance, the dot notation in FTCRL can be recursively applied to cross
products, schema types and other constructions [21].

Data structures currently supported. The implementation data structures that
are supported by FTCRL depends on the programming language. For C and
Java we have [21]:

– C: int (plus all the modifiers short, long, unsigned and signed), char,
float, double, enum, arrays, struct and pointers to any of them. This
implies that all kinds of lists are supported.

– Java: int, short, long, byte, Integer, Short, Long, Byte, char, Character,
float, double, Float, Double, enum, arrays, class, List<type>,
ArrayList<type>, LinkedList<type>, Attributes, HasMap, Hashtable,
IdentityHashMap, TreeMap, WeakHashMap and String.

Completeness—Refining to possibly unsupported data structures. Say some C
program defines a list where each node points to the next node but also to the
node five positions ahead. Data structures like this can be arbitrary complex,
but, as far as we know, they are seldom used. FTCRL was designed to directly
support the most common data structures, but it provides a (low level) language
feature that allows to refine to any data structure. This feature involves using

12

the @PLCODE optional section. This section can contain only source code (of the
SUT’s programming language) and is blindly copied between the code generated
after parsing @LAWS and the call to the UUT. We expect that users will use this
section only when they find no other way of writing their refinement rules, be-
cause it increases the dependency of refinement rules on the SUT’s programming
language. Readers can find more about @PLCODE in [21, Section 2.4].

Even considering only the most common data structures, it is very difficult to
prove that FTCRL can be used to refine any Z variable into any implementation
data structure because it would require to prove that for every programming lan-
guage. However, since FTCRL supports all the C data structures, we have strong
reasons to believe that data structures defined by higher-level programming lan-
guages can be supported too. The @PLCODE mechanism provides completeness
where the proper FTCRL code fails to do so.

Implementation independence. We want to emphasize that refinement rules and
all the test cases generated by them are resilient to a number of changes in the
implementation. For instance, considering the savings accounts example, if there
is some error in updating or walking c, or some error in keeping the references
of o’s nodes, or l is not correctly synchronized with the last used component of
b, and these errors are fixed, the bank refinement rule remains the same since c,
o, b and l all maintain their attributes and roles in the implementation.

Fastest’s architecture for test case refinement. Fastest is a Java application, so
it is FTCRL’s interpreter. Currently, the interpreter is a proof of concept im-
plemented with the ANTLR parser generator [24]—and using a simpler version
of FTCRL than the one shown here. The architecture of the interpreter was
envisioned to allow for easily plug-in modules implementing FTCRL for new
programming languages, as shown in Figure 6. Some of the pluggable modules
hide a few technological issues such as connections to databases, operating sys-
tem interactions, etc.

Fastest

FTCRL modules
plug-in modules

internal data
structures

parser code generator OS DBMS

abstract
test cases

refinement
rules concrete test cases

Fig. 6. Simple module diagram of the Fastest’s architecture for test case refinement.

13

5 A Case Study

This approach has been used in a contract with Nemo Group (Argentina) to
test its core product. Confidentiality issues and space restrictions impede us to
include all the information; key data is available at http://www.flowgate.net/
pdf/cacheflight.tar.gz. Nemo’s core business is software development for
the travel industry. The SUT is a large Java application whose purpose is to
provide booking functionality for flights provided by several major international
companies. This program heavily uses a database.

We have written Z specifications for the most critical methods of the key
classes of the SUT. The choice of methods and classes as well as the specifica-
tion for each of them had to be reverse-engineered along with some key Nemo’s
engineers. This process was carried out in such a way that we did not read the
code. First, we asked Nemo’s engineers what a particular method should do,
then we wrote the specification according to their comments—how they learned
the function of a method was transparent for us. Once the specifications were
ready we applied Fastest to generate abstract test cases and, at the same time, we
wrote the refinement rules—during this activity we seldom needed the assistance
of Nemo’s personnel since we have already learned the application. Currently, we
have refined more than one thousand test cases with a few refinement rules. Re-
finement rules include database connections, nested classes, lists, etc. However,
we cannot give figures about how many errors were found because the experi-
ment concluded when we were able to execute the test cases—checking whether
test cases find errors or not is the last step of the process (Figure 1) which is not
fully available in Fastest, yet.

6 Related Work

Refinement calculus or specification refinement has a long and well-established
tradition in the formal methods community [25, 26]. The Z formal notation is
not an exception [22]. However, these theories are aimed at a much harder and
general problem than ours: to formally transform an abstract specification into
executable code. Usually, these methods list a set of sound refinement rules
guaranteeing that every time they are applied, the description so obtained veri-
fies the original specification. Classical refinement has four important differences
with our method: (a) we do not try to refine the whole specification but just
some constant values of some variables; (b) the implementation is already avail-
able, it must not be derived from the specification; (c) we do not attempt to
prove that refinement rules are right, precisely, we try to surface problems in the
implementation; and (d) we propose that users write refinement rules instead of
choosing them from a fixed menu, because implementations can be arbitrarily
complex. However, our approach was inspired by the idea of tiered specifications
proposed for Larch [27] which can be seen as a form of refinement.

The creators of the TTF applied it to Object-Z to test classes of object-
oriented programs [28]. They use the ClassBench testing framework which re-
quires testers to write testgraphs to test the class under test. Once testgraphs

14

are written ClassBench automatically tests the class. The authors propose to
generate a finite state machine (FSM) from a test specification and then to
transform the FSM to a testgraph. However, it is not clear how easy it might be
to semi-automatically derive testgraphs from abstract test cases. Actually, the
authors discuss several issues that arise when transforming a FSM to a testgraph
because they are models at different levels of abstraction.

Derrick and Boiten [20] analyse the relationship between testing and refine-
ment in the context of Z specifications. However, they apply a different approach
because they assume that the implementation has been refined from the specifi-
cation. Therefore, they first derive abstract test cases from the Z specification—
in doing so they apply a different method, not the TTF—and then they use
information available in the refinement in order to refine the abstract test cases.
Although their method is more formal than FTCRL, it is less applicable than
ours since formal refinement is seldom available.

BTT is a MBT method based on the B notation that generates sequences of
operation invocations at an abstract level that constitute the abstract test cases
[5]. This sequences are made executable by translating them into scripts [29].
These scripts are built by providing a test script pattern and a mapping table.
The test script pattern is a source code file in the target language with some tags
indicating where to insert sequences of operation invocations. The information
present in a mapping table is similar to that of a refinement rule. However, the
mapping tables do not seem to be as expressive as FTCRL. Furthermore, in
this method testers must provide the test script pattern instead of getting it
automatically from the reification information.

AspecT is an aspect-oriented language for the instantiation of abstract test
cases [30]. It starts from test cases generated from UML statecharts. This ap-
proach uses a combination of languages, Ecore, OCL, Phyton, Groovy and As-
pectT, to refine test cases. It does not seem to clearly define the mapping be-
tween specification and implementation variables but to decompose the refine-
ment phase into several steps in which aspects, pointcuts and advices are written.

If some naming conventions are applied and the implementation is conve-
niently annotated, it might be possible to automatically define many refinement
rules. Meyer and et al. manage to automatically test programs by annotating
them with contracts written in the implementation language, Eiffel in this case
[31]. They, for instance, use the same names for variables in the implementation
and in the contracts. We need to further investigate whether this can be applied
to Z specifications since they are more abstract than contracts.

7 Conclusions

We have proposed FTCRL, a declarative refinement language that automates
test case concretization within the Test Template Framework (TTF), a Z-based
MBT method. By defining simple refinement rules, that are independent of test
cases and, to a great extent, of the implementation itself, testers can use an
interpreter to refine all the abstract test cases generated by Fastest—TTF’s

15

implementation. A prototype of this interpreter has been implemented in Fastest
by following an architecture that allows developers to plug-in modules supporting
different implementation languages.

Refinement rules become, also, a key formal document linking the specifica-
tion and the implementation. It must be noted, however, that the mere possibility
of writing a refinement rule does not necessarily imply that the implementation
verifies the specification. Once the implementation has passed all the tests, it
can be assumed correct (modulo testing) and, then, refinement rules might be
used to perform some lightweight formal analyses.

We plan to improve the interpreter and to add more features to FTCRL. So
far, the method is non-intrusive, i.e. it does not modify the SUT to test it—even
if it is implemented in Java where reflection is used to access private members
from the outside. This property is important since modifying the SUT to get it
tested can be a source of artificial errors. However, we have a problem with local
static variables declared inside a subroutine since they cannot be initialized from
the outside of the unit under test. We need to further investigate this issue.

References

1. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA (2006)

2. Hierons, R.M., et al.: Using formal specifications to support testing. ACM Comput.
Surv. 41(2) (2009) 1–76

3. Stocks, P., Carrington, D.: A Framework for Specification-Based Testing. IEEE
Transactions on Software Engineering 22(11) (November 1996) 777–793

4. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state
machines from abstract state machines. In: ISSTA ’02: Proceedings of the 2002
ACM SIGSOFT international symposium on Software testing and analysis, New
York, NY, USA, ACM (2002) 112–122

5. Legeard, B., Peureux, F., Utting, M.: A Comparison of the BTT and TTF Test-
Generation Methods. In: ZB ’02: Proceedings of the 2nd International Conference
of B and Z Users on Formal Specification and Development in Z and B, London,
UK, Springer-Verlag (2002) 309–329

6. Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on formal specifica-
tions: a theory and a tool. Softw. Eng. J. 6(6) (1991) 387–405

7. Posey, B.: Just Enough Software Test Automation. Prentice Hall PTR, Upper
Saddle River, NJ, USA (2002)

8. Fewster, M., Graham, D.: Software test automation: effective use of test execution
tools. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1999)

9. ISO: Information Technology – Z Formal Specification Notation – Syntax, Type
System and Semantics. Technical Report ISO/IEC 13568, International Organiza-
tion for Standardization (2002)

10. Ammann, P., Offutt, J.: Using formal methods to derive test frames in category-
partition testing. In: Compass’94: 9th Annual Conference on Computer Assurance,
Gaithersburg, MD, National Institute of Standards and Technology (1994) 69–80

11. Hall, P.A.V.: Towards testing with respect to formal specification. In: Proc. Sec-
ond IEE/BCS Conference on Software Engineering. Number 290 in Conference
Publication, IEE/BCS (July 1988) 159–163

16

12. Hierons, R.M., Sadeghipour, S., Singh, H.: Testing a system specified using State-
charts and Z. Information and Software Technology 43(2) (February 2001) 137–149

13. Hierons, R.M.: Testing from a Z specification. Software Testing, Verification &
Reliability 7 (1997) 19–33

14. Hörcher, H.M., Peleska, J.: Using Formal Specifications to Support Software Test-
ing. Software Quality Journal 4 (1995) 309–327

15. Stocks, P.: Applying Formal Methods to Software Testing. PhD thesis, Department
of Computer Science, University of Queensland (1993)

16. Maccoll, I., Carrington, D.: Extending the Test Template Framework. In: Pro-
ceedings of the Third Northern Formal Methods Workshop. (1998)

17. Cristiá, M., Rodŕıguez Monetti, P.: Implementing and applying the Stocks-
Carrington framework for model-based testing. In Breitman, K., Cavalcanti, A.,
eds.: ICFEM. Volume 5885 of Lecture Notes in Computer Science., Springer (2009)
167–185

18. Cristiá, M., Albertengo, P., Rodŕıguez Monetti, P.: Pruning testing trees in the
Test Template Framework by detecting mathematical contradictions. In Fiadeiro,
J.L., Gnesi, S., eds.: SEFM, IEEE Computer Society (2010) 268–277

19. Cristiá, M., Albertengo, P., Rodŕıguez Monetti, P.: Fastest: a model-based testing
tool for the Z notation. In Mazzanti, F., Trentani, G., eds.: PTD-SEFM, Consiglio
Nazionale della Ricerche, Pisa, Italy (2010) 3–8

20. Derrick, J., Boiten, E.: Testing refinements of state-based formal specifications.
Software Testing, Verification and Reliability (9) (July 1999) 27–50

21. Cristiá, M., Rodŕıguez Monetti, P., Albertengo, P.: The FTCRL reference guide.
Technical report, Flowgate Consulting (2010)

22. Potter, B., Till, D., Sinclair, J.: An introduction to formal specification and Z.
Prentice Hall PTR Upper Saddle River, NJ, USA (1996)

23. Kernighan, B.W., Ritchie, D.M.: The C Programming Language Second Edition.
Prentice-Hall, Inc. (1988)

24. Parr, T.: Language Implementation Patterns: Create Your Own Domain-Specific
and General Programming Languages. 1st edn. Pragmatic Bookshelf (2009)

25. Morgan, C.: Programming from specifications (2nd ed.). Prentice Hall Interna-
tional (UK) Ltd., Hertfordshire, UK, UK (1994)

26. Back, R.J., Wright, J.V.: Refinement Calculus: A Systematic Introduction. 1st
edn. Springer-Verlag New York, Inc., Secaucus, NJ, USA (1998)

27. Guttag, J.V., Horning, J.J.: Larch: languages and tools for formal specification.
Springer-Verlag New York, Inc., New York, NY, USA (1993)

28. Carrington, D.A., MacColl, I., McDonald, J., Murray, L., Strooper, P.A.: From
object-z specifications to classbench test suites. Softw. Test., Verif. Reliab. 10(2)
(2000) 111–137

29. Bouquet, F., Legeard, B.: Reification of executable test scripts in formal
specicifation-based test generation: The Java card transaction mechanism case
study. In Araki, K., Gnesi, S., Mandrioli, D., eds.: FME. Volume 2805 of Lec-
ture Notes in Computer Science., Springer (2003) 778–795

30. Benz, S.: Aspectt: aspect-oriented test case instantiation. In: Proceedings of the
7th international conference on Aspect-oriented software development. AOSD ’08,
ACM (2008) 1–12

31. Meyer, B., Fiva, A., Ciupa, I., Leitner, A., Wei, Y., Stapf, E.: Programs that test
themselves. Computer 42 (September 2009) 46–55

