
7eConférence Francophone de MOdlisation et SIMulation - MOSIM’08 - du 31 mars au 2 avril 2008 - Paris - France
�Modélisation, Optimisation et Simulation des Systèmes : Communication, Coopération et Coordination�

Formalizing the Semantics of Modular DEVS Models with Temporal Logic∗

Maximiliano Cristiá

CIFASIS – UNR
Flowgate Security Consulting

Rosario, Argentina
mcristia@fceia.unr.edu.ar

RÉSUMÉ : Control Theory researchers have been using DEVS models to formalize discrete event systems
for a long time (Zeigler 1976) but, despite such systems are one of the main targets of Software Engineers,
the DEVS formalism has not been used and it is hardly known by the formal methods community of Computer
Science. This paper is a second attempt to close the gap between these communities by setting the rules to
translate modular coupled DEVS models into TLA+ specifications. TLA+ (Lamport 2002) is a widely known
formalism, used by formal methods researchers and practitioners, to specify –hardware or software based–
reactive or concurrent systems. The paper includes the translation into TLA+ of three atomic DEVS models
and a modular coupled model, which all together constitute a typical case study.

MOTS-CLÉS : DEVS, TLA+, temporal logic

1 Introduction

Modeling critical, mission critical or embedded reac-
tive systems is nowadays an accepted practice both in
academia and industry (Craigen, Gerhart & Ralston
1993, Bowen 1993, Hinchey & Bowen 1999, Clarke &
Wing 1996, Ross 2005). It is perhaps the application
domain that most rapidly has accepted that using for-
mal techniques in earlier phases of the development
process worth the (apparently) added costs. DEVS
is a formal modeling technique and notation origi-
nally developed by Bernard P. Zeigler in the early
’70 (Zeigler 1976). It has been routinely and success-
fully used, researched and expanded by researchers
and practitioners belonging to the Control Theory or
Automation communities. However, DEVS and its
success has not been recognized as such by the Formal
Method community of Computer Science; remark-
ably, one of the most complete and referenced on-line
resources of this community (Bowen n.d.) does not
even list DEVS as a formal notation or method. Since
we are interested in the application of (Computer Sci-
ence’s) Formal Methods to software development, we
try to close the gap between DEVS and other formal
notations.

∗This paper was written while the author was spending an
invitation period at LSIS - UMR CNRS 6168 – Université Paul
Cézanne – France.

This paper extends (Cristiá 2007) by including the
encoding of modular coupled DEVS models in Tem-
poral Logic of Actions Plus (TLA+) specifications
(Lamport 2002). TLA+ is a standard, widely known
formal notation for Software Engineers envisioned by
Leslie Lamport as a formal language (and latter a tool
set) to be used by Software Engineers to model and
verify complex, software or hardware based, reactive,
real-time, concurrent systems. It is worth to say that
a similar approach has been followed by people work-
ing in the Control Therory community (Dacharry &
Giambiasi 2005).

We still restrict our present work to model discrete
event systems and we left unattended its application
to continuous systems (Kofman 2001, Giambiasi, Es-
cude & Gosh 2000). Besides, this paper does not
introduce DEVS nor TLA+ beyond the features that
are part of the comparison we are reporting –readers
may consult (Zeigler, Kim & Praehofer 2000) and
(Lamport 2002) in order to get a deeper insight of
both formalisms.

DEVS semantics belongs to the class named opera-
tive semantics because DEVS models are understood
by interpreting them with a simulation algorithm –
others formalisms with a similar scope describe their
semantics in a similar fashion (Harel 1987). In other
words, the meaning of a DEVS model is given by

MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

the rules to simulate it on a computer or manually.
On the other hand, TLA+ semantics is of the class
known as logic semantics since a TLA+ specification
gets its meaning from a temporal logic model. Each
approach has its own advantages and disadvantages
(Cristiá 2007).

One of the problems in defining the semantics through
a simulation algorithm is that the algorithm is infor-
mal until someone implements it in a particular pro-
gramming language, it is compiled with a particular
compiler and it is executed on a particular computer
–these details become important since DEVS is used
to simulate critical systems. Moreover, once the sim-
ulation algorithm is formalized by implementation,
the implementation is not universal and cannot be
replicated easily. Implementations may differ from
one another making the same DEVS model to be-
have differently. And if the simulation algorithm is
run by hand, its informality implies that two engi-
neers may obtain different results when simulating
the same model –besides the errors that can appear
due to human errors.

In this paper we aim to formalize the semantics of
modular coupled DEVS models by translating them
into TLA+. In theory this formalization gives the
chance to formally verify any implementation of a
DEVS simulator and also it allows for formal veri-
fication of DEVS models.

The paper is structured as follows. Section 2 includes
a few comments on (Cristiá 2007) regarding the rules
to write a TLA+ specification from an atomic DEVS
model. In section 3 the rules are extended to cope
with modular coupled models and in section 4 we in-
troduce a rather complete case study. Section 5 re-
ports our conclusions and future work.

2 Encoding Atomic Models

This section was the main issue of (Cristiá 2007) but
we want to introduce a minor adjustment that we
needed to do in order to adapt the translation to
modular coupled DEVS models. Besides we want to
comment about the representation of outputs.

2.1 Distinguishing Internal and Exter-
nal Transitions

In (Cristiá 2007) we proposed two alternatives to dis-
tinguish internal and external transitions in the re-
sulting TLA+ specifications. However, when we first
tried to extend the translation to modular coupled

module Example
extends RealTime
variables cpt, out, and other variables
NoVal ∆= choose x /∈ {“out1”,“out2”}

Init ∆= . . .
Error ∆= . . . ∧ out ′ =“out1”. . .
Now ∆= . . . ∧ out ′ = NoVal . . .
NextI ∆= Error ∨ other internal transitions

NextE ∆= Now ∨ other external transitions

Next ∆= NextI ∨NextE
Spec ∆= ∧ Init

∧ [�NextI]st
∧ RTnow(st)
∧ RTbound(Error , st , ta[st], ta[st])
∧ RTBound for other internal transitions

Figure 1: An sketch of a TLA+ specification encoding
an atomic DEVS model.

DEVS models we noted that one of those alternatives
is the most convenient.

The best alternative is to separate the Next predi-
cate into two predicates: NextI , containing only the
internal transitions; and NextE , containing only the
external ones. Let us see a small example. Say there
is an internal transition called Error (remember that
in (Cristiá 2007) we said that both internal and ex-
ternal transitions should be mapped onto TLA+ ac-
tions), and an external transition waiting for event
Now ; also assume there are two ouput values, “out1”
and “out2”, where the first is outputted by Error .
Then, an sketch of the resulting TLA+ specifications
is shown in Figure 1.

The separation of predicate Next into NextI , group-
ing all the internal transitions, and NextE , grouping
all the external transitions, will be very useful when
extending the encoding to modular composition (see
section 3).

2.2 Encoding Outputs

In a discrete event setting, an output produced by a
DEVS model can be regarded as an event. For in-
stance, an internal transition can output an element
of a queue which is considered as an event by the en-
vironment. In fact, in modular composition, outputs
from one atomic model became external events for
another atomic model.

Representing outputs as events in a temporal logic
formalism is not as easy as it might seem because
events are codified as predicates and predicates can

MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

be true for an infinite number of steps, what can be
interpreted as an infinite number of events. For this
reason we suggest to change the value of output vari-
ables in every transition (internal and external) even
if it is not necessary to ouput something. Precisely,
for those transitions where no output should be pro-
duced we introduced the NoVal value as in module
Example in Figure 1. This special value means, ac-
tually, no value at all. It has to be interpreted as no
event is produced and the last event is not produced
any more.

To define NoVal we use the choose operator. The
expression choose x : F equals an arbitrarily cho-
sen value x that satisfies formula F (Lamport 2002).
Therefore, if F is x /∈ A and A is the union of all
the possible outputs of the model, then NoVal equals
something different from the outputs of the model1.

3 Rules to Translate Modular
Coupled DEVS Models

There are several ways to compose DEVS models
into one bigger model. In this article we tackle
the composition known as modular coupling (Zeigler
et al. 2000). The models composed by modular com-
position interact each other solely by their input and
output values. The whole idea is to model small parts
of the problem as independent atomic models and
then to assembly all together to get a model of the
entire system. One important property of modular
coupling is that the resulting model is equivalent to
an atomic DEVS model. Only a subset of the in-
puts and outputs received or produced by the atomic
models are externally visible.

As with DEVS models, there are several possibilities
of composing TLA+ specifications (Lamport 2002).
However, all of them imply, in a way or another,
expressing composition as conjunction. A TLA+
specification is, in essence, a logical formula de-
scribing all of the possible histories of the system
(Lamport 2002). Writing a specification as the com-
position of two or more specifications means, then,
to write a logical formula as the conjunction of the
formulas describing each specification.

A modular coupled DEVS model is composed of seven
elements:

N = 〈X ,Y ,D , {M d}, {I d}, {Z i,d},Select〉 (1)

Then, in translating a modular coupled DEVS model
1choose is not a nondeterministic operator. It is also know

as Hilbert’s ε operator (Lamport 2002).

into a TLA+ specification we need to give translation
rules for six of its seven elements, since the set {M d}
with d ∈ D is the collection of atomic DEVS models
of which the modular model is composed (translation
of atomic models is treated in (Cristiá 2007)). The
rules for the remaining six elements are as follows.

X Is the set of input values received by N . Here
applies the same considerations as with the same
element in atomic models (see (Cristiá 2007)).

Y Is the set of output values produced by N . Same
considerations of previous item.

D This is the set of names of the atomic models.
Each name in D is translated into the name of
an instance of the corresponding TLA+ module.
For example say that D = {Belt ,Arm}. Then
the modular coupled model Cell is translated as
follows:

module Cell

extends RealTime

variables all the variables of the atomic models

Belt ∆= instance Belt

Arm ∆= instance Arm

.

The variables of the atomic modules must be de-
clared in the coupled module and some renaming
would be necessary to avoid name clashes.

{Id} Each I d is the set of influences on model d . This
element is used only in order to define the trans-
lation functions. In our encoding the influences
of a given atomic model have no explicit place;
we use them in the same step along with the
translation functions.

{Zi,d} For each d ∈ D ∪ {N } and for each i ∈ I d ,
Z i,d is the input/output translation function. If
i is N then the function translates a global in-
put into an input for an atomic model; if d is N
then the function translates an internal output
into a global output; in the remaining cases the
function translate internal outputs into internal
inputs.

In our encoding of atomic DEVS models, outputs
are stored in state variables, and inputs and ex-
ternal transitions become actions. External ac-
tions are fired once they are enabled; and they
are enabled when their preconditions are true.
Then, for each pair (i , d) we will define an ac-
tion, collectively called Z actions, of one of three
different kinds:

MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

1. Input-Input. It simply ”calls” an exter-
nal action of some atomic model; this
corresponds to Z functions translating in-
puts into inputs. The general form is
AtomicModel !ExternalAction.

2. Input-Output. The precondition is the out-
put value that the corresponding Z function
should translate plus the precondition of
the external action of the influenced model,
and its post-condition will be the post-
condition of the external action of the influ-
enced model. The general form is outAM =
some value∧AtomicModel !ExternalAction,
where outAM is an output variable of an
atomic model.

3. Output-Output. The precondition is the
output value that the corresponding Z func-
tion should translate and the post-condition
is the output value of the modular model.
The general form is outAM = some value∧
out ′ = other value, where outAM is an out-
put variable of an atomic model and out is
an output value of the modular model.

Find an example in Figure 10 of section 4.

Select Is a function defining the priorities of inter-
nal transitions of different atomic models. Select
decides which internal transition must be exe-
cuted if there is more than one enabled at the
same time in different atomic models. In a pure
TLA+ model this is not necessary a problem
since TLA+ semantics rests on the interleaving
model of concurrency (IMC) (Lamport 2002).
According to the IMC, if at a particular step in
some model’s history there is more than one ac-
tion enabled, then any history resulting from ex-
ecuting any of them is a possible history of the
system. Hence, there is no special language con-
struction to define priorities over actions. How-
ever, we can represent Select with a predicate
stating that if two internal actions are enabled
then the history of the system must verify the
execution of one of them. For example, if A and
B are instances of two different TLA+ modules
encoding two atomic DEVS models, f is an in-
ternal action in A and g is an internal action in
B , then the specification of their modular com-
position saying that f has priority over g is:

Spec
∆= ∧ . . .
∧ �Select(A!f ,B !g ,A!f)
∧ . . .

where

Select(A!f ,B !f ,A!f) ∆= Enabled (A!f)
∧Enabled (B !g)
⇒ A!f

Although this seems a good solution we think it
deserves more attention in the future.

3.1 The Semantics of a Coupled Mod-
ular DEVS Model

In the last section we showed how to translate each
element of a coupled modular DEVS model. In this
section we discuss how to give the semantics of the
modular model as a whole. Our point is, as with
atomics models, that a part of the semantics of mod-
ular DEVS models is informal and is not contained
in the tuple of elements describing the model.

According to (Zeigler et al. 2000) the semantics of a
modular coupled DEVS model is that each atomic
model executes or behaves independently of each
other until the moment when one component pro-
duces an output that influences another component.
In this moment the output is translated into an input
event, by applying the adequate Z function, which is
consumed by the influenced model.

In terms of temporal logic, that semantics means that
any history of the modular model should verify that:

1. The initial state verifies the initial state predi-
cates of all the atomic models;

2. Any pair of consecutive states belongs to the
transition relation defined by the disjunction of:

(a) The internal actions of each and any of the
atomic models; or

(b) The Z actions.

3. All the components use the same time line.

4. Only Z actions of the first kind are externally
visible, i.e. they are regarded as external actions.

We formalize this interpretation in Figure 2.

4 A Case Study

In this section we will first state some informal re-
quirements about a typical industrial production cell,

MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

module ModularModel
extends RealTime, Reals
variables cpt, variables atomic models
vars ∆= 〈all the variables〉
AM 1

∆= instance �rst atomic module; rename
.
AM n

∆= instance last atomic module; rename

Init ∆= AM 1 !Init ∧ . . . ∧AM n !Init
Z
j1
i1

∆= . . .
.
Z
j k
im

∆= . . .

NextE ∆= only Z functions of �rst kind

NextI ∆= ∨ AM 1 !NextI ∨ . . . ∨AM n !NextI
∨ Z functions of second and third kind

Next ∆= NextI ∨NextE
Spec ∆= Init ∧ [�Next]vars ∧ RTnow(vars)

Figure 2: TLA+ specification for a modular model.

then we will show an atomic DEVS model for each
component, then a modular DEVS model represent-
ing the production cell is introduced and finally its
corresponding TLA+ specification is presented.

4.1 Requirements

The production cell is composed of a conveyor belt, a
robot arm and a press. The conveyor belt has a sen-
sor which senses the items put on the belt and signals
each of them 3 seconds after they have been detected
(this is a safety time for the items traveling on the
belt). The arm can take an item off the belt, carry it
to the press, release it on the press and return to the
belt. The take action should fire only when there is
an item in a position to be lifted. The item can be re-
leased one second after receiving a free event from the
press. Moving the arm in either direction are internal
transitions that take 5 seconds. The press takes 1 sec-
ond in pressing an item, then it is free. Clearly, there
is some lack of synchronization but it was deliberated
to simplify the case study. This problem is based on
an example of (Evans 1994).

4.2 The Atomic DEVS Models

Figures 3, 4 and 5 describes the atomic DEVS models
for the belt, the press and the robot arm, respectively.
The first two are quite similar since both of them have
two phases, one input, one output, and one state with
an infinite lifetime.

On the other hand, the model for the robot arm is
more complicated although it is a simplification since
we assume that the arm takes (or releases) and starts
to move in either direction, in one step. In this model
the set Phases is {Empty ,Holding ,Ready}×{AtLeft ,
MLeft ,MRight ,AtRight}. The external transition
function waits for two inputs (the order to take an
item located near its initial position or to release it in
its final position), while the internal transition func-
tion has three alternatives depending on the phase:
two of them are symmetric, representing the infinite
wait at the initial and final positions; and the third
represents the arm releasing the item at its final po-
sition and beginning to move backwards.

Belt = 〈X ,S ,Y , δint , δext , λ, ta〉
X = {ItemIn}
Y = {ItemOut}
S = {ItemOn,Nothing} × <+

0

δint(s, σ) = (Nothing ,∞), s = ItemOn

δext((s, σ), e, ItemIn) ={
(ItemOn, 3), s = Nothing

(s, σ − e), s = ItemOn

λ(s, σ) = ItemOut , s = ItemOn

ta(s, σ) = σ

Figure 3: DEVS model for the belt.

Press = 〈X ,S ,Y , δint , δext , λ, ta〉
X = {Item}
Y = {Free}
S = {Pressing ,Empty} × <+

0

δint(s, σ) = (Empty ,∞), s = Pressing

δext((s, σ), e, Item) ={
(Pressing , 1), s = Empty

(s, σ − e), s = Pressing

λ(s, σ) = Free, s = Pressing

ta(s, σ) = σ

Figure 4: DEVS model for the press.

4.3 A Modular DEVS Model for the
Production Cell

Now we assembly the atomic models in a model rep-
resenting the behavior of the entire production cell in
Figure 6.

As the reader can see, the model is no more than
the modular composition of the atomic models. Note
that the system as a whole has just one input and one
output and that the output is used also as an internal
event to tell the arm that it can release the item.

MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

Arm = 〈X ,S ,Y , δint , δext , λ, ta〉
X = {Take,Release}
Y = {PosLeft ,PosRight}
S = Phases ×<+

0

δint(s, σ) = ((Holding ,AtRight),∞), s = (Holding ,MRight)
((Empty ,AtLeft),∞), s = (Empty ,MLeft)
((Empty ,MLeft), 5), s = (Ready ,AtRight)

δext((s, σ), e,Take) ={
((Holding ,MRight), 5), s = (Empty ,AtLeft)
(s, σ − e), s 6= (Empty ,AtLeft)

δext((s, σ), e,Release) ={
((Ready ,AtRight), 1), s = (Holding ,AtRight)
(s, σ − e), s 6= (Holding ,AtRight)

λ(s, σ) =
{

Releasing , s = (Ready ,AtRight)
PosLeft , s = (Empty ,MLeft)

ta(s, σ) = σ

Figure 5: DEVS model for the arm.

Cell = 〈X ,Y ,D , {M d}, {I d}, {Z i,d},Select〉
X = {ItemIn,Free}
Y = {PressFree}
D = {Press,Belt ,Arm}
IPress = {Arm}
IBelt = {Cell}
IArm = {Belt ,Press}
ICell = {Press}
ZArm,Press(Releasing) = Item

ZCell,Belt(ItemIn) = ItemIn

ZBelt,Arm(ItemOut) = Take

ZPress,Arm(Free) = Release

ZPress,Cell(Free) = PressFree

Figure 6: DEVS model for the cell.

4.4 Translating the Modular Model

The translation of model Cell into a TLA+ specifi-
cation implies the translation of the atomic models
as well as the modular model itself. The transla-
tions of the atomic models follow the rules proposed
in (Cristiá 2007) plus the adjustments introduced in
section 2.

4.4.1 Translating the Atomic Models

The TLA+ specification for model Belt is in Figure
7. The phases has the same names as in the DEVS
model, function ta is defined in the constants and
assume sections, NoVal is defined as a value differ-
ent from the outputs produced by the belt, and the
external transition is represented as an action with
the same name of the event waited for the transition.

For the action representing the internal transition we
selected an appropriate name (ItemOut). Note also
that in every action cpt is updated with the value of
now in this moment. As we suggest in section 2, the
actions representing internal transitions are grouped
in predicated NextI , while the actions correspond-
ing to external transitions are in NextE (even in this
model where we have only one of each type). In sum-
mary, the module complies with the encoding we pro-
posed for atomic models in (Cristiá 2007).

module Belt
extends RealTime, Reals
constants ta, S, <+

0

assume
∧ S = {“ItemOn”,“Nothing”}
∧ ta ∈ [S → <+

0]
∧ ∀ s ∈ S :

ta[s] = case s =“ItemOn” → 3
s =“Nothing” → ∞

variables cpt, belt, out
vars ∆= 〈cpt , belt , out〉
NoVal ∆= choose x 6=“ItemOut”
TypeInv ∆= ∧ belt ∈ S

∧ out ∈ {“ItemOut”,NoVal}
∧ cpt ∈ <+

0

Init ∆= ∧ cpt = now

∧ belt =“Nothing”
∧ out = NoVal

ItemIn ∆= ∧ belt =“Nothing”
∧ now − cpt ≤ ta[pos]
∧ belt ′ =“ItemOn”
∧ out ′ = NoVal

∧ cpt ′ = now

ItemOut ∆= ∧ belt =“ItemOn”
∧ belt ′ =“Nothing”
∧ out ′ =“ItemOut”
∧ cpt ′ = now

NextE ∆= ItemIn

NextI ∆= ItemOut

Next ∆= NextI ∨NextE
Spec ∆= ∧ Init ∧ [�Next]vars

∧ RTnow(vars)
∧ RTBound(ItemOut ,

vars, ta[belt], ta[belt])

Figure 7: TLA+ specification for the belt.

The TLA+ module for the DEVS model Press is
in Figure 8. Since the corresponding atomic DEVS
model for the press is quite similar to that for the belt,
the resulting TLA+ module is similar to the module
for the belt. Then, similar comments apply in this
case.

MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

module Press
extends RealTime, Reals
constants ta, S, <+

0

assume
∧ S = {“Pressing”,“Empty”}
∧ ta ∈ [S → <+

0]
∧ ∀ s ∈ S :

ta[s] = case s =“Pressing” → 1
s =“Empty” → ∞

variables cpt, press, out
vars ∆= 〈cpt , press, out〉
NoVal ∆= choose x 6=“Free”
TypeInv ∆= ∧ press ∈ S

∧ out ∈ {“Free”,NoVal}
∧ cpt ∈ <+

0

Init ∆= ∧ cpt = now

∧ press =“Empty”
∧ out = NoVal

Item ∆= ∧ press =“Empty”
∧ now − cpt ≤ ta[pos]
∧ press ′ =“Pressing”
∧ out ′ = NoVal

∧ cpt ′ = now

Rise ∆= ∧ press =“Pressing”
∧ press ′ =“Empty”
∧ out ′ =“Free”
∧ cpt ′ = now

NextE ∆= Item

NextI ∆= Rise

Next ∆= NextE ∨NextI
Spec ∆= ∧ Init ∧ [�Next]vars

∧ RTnow(vars)
∧ RTBound(Rise, vars, ta[belt], ta[belt])

Figure 8: TLA+ specification for the press.

Finally, the TLA+ module of the arm is in Figure 9.
This module is larger and more complex than those
for the belt and the press since the corresponding
atomic DEVS model is also larger and more complex.
However, the structure of the module is similar to the
other two since the rules for translating all of them
are the same. Note that here predicates NextI and
NextE are proper predicates since there are several
transitions. Also, note that since there are three ac-
tions representing internal transitions, there are three
predicates named RTBound .

As you can see through these examples, the rules de-
fined in (Cristiá 2007) for translating atomic DEVS
models cope with interesting and non trivial models.

4.4.2 Translating the Modular Model

Now that we have all the modules for the atomic
models we can translate the coupled modular DEVS
model Cell into a TLA+ specification (find it in Fig-
ure 10). Note that module Cell has the structure we
have suggested in section 3. In particular, all the vari-
ables (some with a convenient renaming) have been
declared; however, all the time-related variables, cpt
and now , were not renamed meaning that the time
line for all the atomic models is the same. The mod-
ules corresponding to atomic models are incorporated
into the module through the clause instance , where
some variables are renamed accordingly to the names
used in the variables section. The Z functions were
defined according to the Z functions of the DEVS
model; note that ZCell

Belt is of the first kind, ZPress
Cell

is of the third kind, while the rest of the Z actions
are of the second kind. As proposed, all the internal
actions plus the Z actions of the second and third
kinds are grouped in one predicate (NextI), while Z

actions of the first kind are grouped in another pred-
icate (NextE).

module Cell
extends RealTime, Reals
variables cpt, arm, pos, belt, press, oA, oB, oP,
out
vars ∆= 〈cpt , arm, pos, belt , press, oA, oB , oP , out〉
B ∆= instance Belt with out ← oB

A ∆= instance Arm with out ← oA

P ∆= instance Press with out ← oP

NoVal ∆= choose x 6=“PressFree”

Init ∆= B !Init ∧A!Init ∧ P !Init ∧ out = NoVal

ZCell
Belt

∆= ∧ B !ItemIn
∧ unchanged vars \ {cpt , belt}

ZArm
Press

∆= ∧ oA =“Releasing”∧ P !Item
∧ unchanged vars \ {cpt , press}

ZBelt
Arm

∆= ∧ oB =“ItemOut”∧A!Take
∧ unchanged vars \ {cpt , arm, pos}

ZPress
Arm

∆= ∧ oP =“Free”∧A!Release
∧ unchanged vars \ {cpt , arm, pos}

ZPress
Cell

∆= ∧ oP =“Free”∧ out ′ =“PressFree”
∧ unchanged vars \ {cpt , out}

NextE ∆= ZCell
Belt

NextI ∆= ∨ B !NextI ∨A!NextI ∨ P !NextI
∨ ZArm

Press ∨ ZBelt
Arm ∨ ZPress

Arm ∨ ZPress
Cell

Next ∆= NextI ∨NextE
Spec ∆= ∧ Init ∧ [�Next]vars

∧ RTnow(vars)

Figure 10: TLA+ module for the cell.

MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

module Arm
extends RealTime, Reals
constants ta, S, <+

0

assume
∧ S = {“Empty”,“Holding”} × {“AtLeft”,“MLeft”,“MRight”,“AtRight”}
∧ ta ∈ [S → <+

0]
∧ ∀ s ∈ S :

ta[s] = case s ∈ {(“Holding”,“AtRight”), (“Empty”,“AtLeft”)} → ∞
s ∈ {(“Holding”,“MRight”), (“Empty”,“MLeft”)} → 5
s = (“Ready”,“AtRight”) → 1

variables cpt, pos, arm, out
vars ∆= 〈cpt , pos, arm, out〉
NoVal ∆= choose x /∈ {“PosLeft”,“PosRight”}
TypeInv ∆= ∧ pos ∈ {“AtLeft”,“MLeft”,“MRight”,“AtRight”} ∧ arm ∈ {“Empty”,“Holding”}

∧ out ∈ {“PosLeft”,“PosRight”,NoVal} ∧ cpt ∈ <+
0

Init ∆= cpt = now ∧ pos =“AtLeft”∧ arm =“Empty”∧ out = NoVal

Take ∆= ∧ pos =“AtLeft”∧ arm =“Empty”∧ now − cpt ≤ ta[pos]
∧ pos ′ =“MRight”∧ arm ′ =“Holding”∧ out ′ = NoVal ∧ cpt ′ = now

Release ∆= ∧ pos =“AtRight”∧ arm =“Holding”∧ now − cpt ≤ ta[pos]
∧ pos ′ =“AtRight”∧ arm ′ =“Ready”∧ out ′ = NoVal ∧ cpt ′ = now

ReleaseInt ∆= ∧ pos =“AtRight”∧ arm =“Ready”
∧ pos ′ =“MLeft”∧ arm ′ =“Empty”∧ out ′ =“Releasing”∧ cpt ′ = now

StopR ∆= ∧ pos =“MRight”∧ arm =“Holding”
∧ pos ′ =“AtRight”∧ out ′ =“PosRight”∧ cpt ′ = now ∧ arm ′ = arm

StopL ∆= ∧ pos =“MLeft”∧ arm =“Empty”
∧ pos ′ =“AtLeft”∧ out ′ =“PosLeft”∧ cpt ′ = now ∧ arm ′ = arm

NextI ∆= ReleaseInt ∨ StopR ∨ StopL
NextE ∆= Take ∨ Release
Next ∆= NextI ∨NextE
Spec ∆= ∧ Init ∧ [�Next]vars ∧ RTnow(vars)

∧ RTBound(StopR, vars, ta[(pos, arm)], ta[(pos, arm)])
∧ RTBound(StopL, vars, ta[(pos, arm)], ta[(pos, arm)])
∧ RTBound(ReleaseInt , vars, ta[(pos, arm)], ta[(pos, arm)])

Figure 9: The TLA+ specification of DEVS model Arm.

MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

5 Conclusions

The main conclusion of this work is that modular
coupled DEVS models describing discrete event sys-
tems can be easily translated into TLA+ specifica-
tions. This translation is not only possible but ben-
eficial for DEVS since it lays the basis for a formal
semantics of this powerful modeling language. Hav-
ing a TLA+ specification of a DEVS model enables
for formal verification of the model or to model-check
it with the tools already available for TLA+ specifi-
cations. In fact, our encoding has made explicit some
important rules to simulate a modular coupled DEVS
model. However, we need to further investigate the
best way to translate function Select present in mod-
ular coupled models.

In the future we will try to formalize the rules given
so far as the first step towards the construction of
a translation tool. Also, we need to prove whether
this formalization preserves the notion that a modu-
lar coupled DEVS model is equivalent to an atomic
model, or not –and in the last case we should ad-
just the rules. Then, we need to investigate whether
other forms of composition (by including ports, for
instance) can be translated or not, and in this case
under what conditions the encoding works. Then,
continuous systems might be considered but we do
not foresee to much future in this direction.

Acknowledgments

References

Bowen, J. (1993). Formal methods in safety-critical
standards, Proc. Software Engineering Stan-
dards Symposium (SESS’93), IEEE Computer
Society Press, Brighton, UK” pp. 168–177.

Bowen, J. (n.d.). Formal methods,
http://vl.fmnet.info/.

Clarke, E. & Wing, J. (1996). Formal methods: state
of the art and future directions, ACM Computing
Surveys 18(4): 626–643.

Craigen, D., Gerhart, S. & Ralston, T. (1993). An
international survey of industrial applications of
formal methods, Technical Report NIST GCR
93/626-V1 & NIST GCR 93-626-V2, National
Institute of Standards and Technology.

Cristiá, M. (2007). A TLA+ encoding of DEVS mod-
els, International Modeling and Simulation Mul-
ticonference, Buenos Aires (Argentina), pp. 17–
22.

Dacharry, H. P. & Giambiasi, N. (2005). From Timed
Automata to DEVS models: Formal verification,
SMC 2005 Spring Simulation Multiconference.

Evans, A. S. (1994). Specifying and verifying concur-
rent systems using Z, in M. Naftalin, T. Denvir
& M. Bertran (eds), FME ’94: Industrial Benefit
of Formal Methods, pp. 366–380.

Giambiasi, N., Escude, B. & Gosh, S. (2000).
GDEVS: A generalized discrete event specifica-
tion for accurate modeling of dynamic systems,
Transactions of SCS 17(3): 120–134.

Harel, D. (1987). Statecharts: A visual formalism for
complex systems, Science of Computer Program-
ming 8: 231–274.

Hinchey, M. & Bowen, J. (1999). Industrial-Strength
Formal Methods in Practice, Formal Approaches
to Computing and Information Technology,
Springer-Verlag.

Jackson, M. (1995). Software Requirements and Spec-
ifications, ACM Press.

Kofman, E. (2001). Quantized-state control. a
method for discret event control of continuous
systems, Latin American Applied Research.

Lamport, L. (2002). Specifying Systems: The TLA+
Language and Tools for Hardware and Software
Engineers, Addison-Wesley Professional.

Ross, P. E. (2005). The exterminators, IEEE Spec-
trum 42(9): 30–35.

Zave, P. & Jackson, M. (1997). Four dark corners of
requirements engineering, ACM Transactions on
Software Engineering and Methodology 6(1).

Zeigler, B. P. (1976). Theory of Modelling and Simu-
lation, Robert F. Krieger Publishing.

Zeigler, B. P., Kim, T. G. & Praehofer, H. (2000).
Theory of Modeling and Simulation, Academic
Press, Inc., Orlando, FL, USA.

