
The Implementation of Lisex, a MLS Linux Prototype

Maximiliano Cristiá Gisela Giusti Felipe Manzano
{mcristia, ggiusti, fmanzano}@fceia.unr.edu.ar

GIDISS∗

Facultad de Ciencias Exactas, Ingenieŕıa y Agrimensura
Universidad Nacional de Rosario

Argentina

Abstract

In this article we describe the design and implementation of a Linux multi-level secure (MLS)
file system containing access control lists (ACL). The resulting prototype is called Lisex. We
implemented Lisex from model formally written and verified in Coq. We used abstract data types
(ADT) to implement some data structures. Hence, we show the methodology that we have applied
to program from formal specifications using ADTs.

Keywords: MLS, Linux, Formal Methods, Confidentiality, Trojan Horses, Abstract Data Types.

1 Introduction

Lisex 0.0 is a Linux prototype planned to asses the usability and compatibility level of a UNIX-like
operating system when a high secure access control mechanism is included. The stronger access
control mechanism is meant to increase the resistance of the system to attacks against confidentiality
performed by means of Trojan horses in installations where information security is, at least, very
important. Resistance to this kind of attacks is gained by including a multi-level secure (MLS) model
inside the operating system [1, 9]. Thus, the most important goal of the project was to include a
MLS model in the Linux kernel and to asses the compatibility and usability of the resulting system.
A second goal was to evaluate and fine tune a development process based on formal methods.

The MLS model included in Lisex 0.0 [5] is an adaptation to the Linux file system of the widely
known Bell and LaPadula security model [3, 4]. We decided to incorporate the MLS model just in
the file system because in UNIX-like operating systems most of the entities are managed through this
subsystem. In this way, by modifying the file system interface we readily get a prototype that imposes
MLS controls in most of the system.

The implementation of Lisex 0.0 started from a system and security formal model described and
verified in Coq [2]. Although specifications contain enough information for programmers, it was
necessary to describe a design before the coding phase because some abstractions do not directly fit
in the Linux design. In this intermediate phase we decided to include abstract data types (ADT) in
order to be able to change the implementation of new data structures with minimum impact on the
rest of the system.

This paper is organized as follows. The first two sections are introductory: section 2 is a brief
introduction to multi-level security, and section 3 describes the architecture of the Linux file system.

∗Grupo de Investigación y Desarrollo en Ingenieŕıa de Software y Seguridad

1



Sections 4 and 5 constitute the core of this article. The former describes the design and implementation
of Lisex, the latter describes how we used the formal model as implementation guide. Finally, section
6 compares this article with similar approaches, and section 7 contains our conclusions.

2 Multi-level Security Concepts

As usual, we define Computer Security as the combination of confidentiality, integrity, and availability.
Confidentiality requires that only authorized users read protected information; integrity requires that
only authorized users modify protected information and only by the authorized means; and finally,
availability requires that users can access information every time they need it [1, 9]. Our present work
deals only with confidentiality.

In a computer system, the most lethal attacks against confidentiality are those conducted using
Trojan horses. A Trojan horse is a program that will most often appear to provide some desired or
usual function to serve as a lure to attract the program into use by an unsuspecting user, and a covert
function to attack the system [1]. Today’s mainstream operating systems, including the most popular
UNIX flavors, lack security mechanisms to avoid these kind of attacks or at least reduce its frequency
or damage [13]. Moreover, it is impossible to reach an acceptable level of resistance to these attacks
without deeply changing the philosophy of protection [9]. That is, if an unsuspecting user executes
a Trojan horse in these operating systems, the program then becomes a process like any other one,
authorized to request the same services as a benign program. In this case, the Trojan horse will use
the set of permissions granted to the user firstly to obtain the target information and secondly, to copy
or deliver it to the attacker (for example, it could either copy the information in /tmp or e-mail it).
This is possible, at least in part, because ordinary operating systems enforce a discretionary access
control (DAC); that is, an access control policy where ordinary users are authorized to change security
attributes.

In the early ’70s, researchers at The Mitre Corporation devised a security model known as BLP
[3, 4] that features a high level of resistance to attacks against confidentiality performed by means of
Trojan horses. Furthermore, this model represents an abstraction, generalization and formalization of
the USA Department of Defense (DoD) security policy for handling sensitive information. From that
time on, security models that in one way or another represent a generalization of the DoD’s security
policy are known as multi-level security (MLS) models.

BLP classifies system entities into objects and subjects. Objects are those system resources or data
repositories that must be protected (such as files, directories, terminals, and printers). Subjects are
the active entities of the system, that is those entities capable of requesting system services (typically
they are processors, process, users, etc.). Since our work deals only with a file system, from now on
we will talk of processes, users, individuals and subjects as synonymous; and of files, directories or
objects in the same sense. Then, BLP associates an access or security class to each object and subject.
Access classes can be modified just through a highly controlled procedure and performed by the most
trusted personnel –i.e. BLP is a mandatory access control (MAC) model. The structure of an access
class is made up of two parts [9]:

Security level consisting of one of a few names such as TOPSECRET , SECRET , CONFIDENTIAL,
UNCLASSIFIED

Category set consisting of zero or more names like NATO , CIA, NUCLEAR, etc.

2



Access classes are represented with ordered pairs; for example (SECRET , {NATO ,NUCLEAR}) has
SECRET level and category set {NATO ,NUCLEAR}. The set of security levels must be linearly
ordered, for instance:

UNCLASSIFIED < CONFIDENTIAL < SECRET < TOPSECRET

On the other hand, categories are independent of each other and they are not ordered. Access classes
classify information and users by their confidentiality or responsibility degree. This is accomplished
by defining a partial order relation over the set of access classes. Access class (n1,C1) dominates,
written �, access class (n2,C2) if and only if n1 ≥ n2 and C1 ⊇ C2.

The idea behind this scheme is to set the confidentiality level of information and the trust level of
users managing it: the “higher” the access class the more confidential is the information, and more
trust is required and given to the individuals working with it.

In terms of DoD’s security policy, an individual can read a document if and only if the access class
of the former dominates that of the last. When this access control rule is formalized in a security
model it is know as simple security [9].

Bell and LaPadula noted that preserving simple security in a computer system is not easy. Pro-
cesses have complete control of their memory spaces and the operating system kernel has no way to
monitor what processes do with their data. Because of this fact, Bell and LaPadula required another
property if multi-level security is to be preserved at all. This extra property today is known as con-
finement property but originally it was named *-property. An informal statement of confinement is as
follows:

• A process may open a file in read mode if and only if the access class of every other resource
opened in write mode dominates the access class of the requested file

• A process may open a file in write mode if and only if the access class of every other resource
opened in read mode is dominated by the access class of the requested file

The intention behind this rule is to avoid that once a Trojan horse has opened a file for reading it
would be able to open a lower file for writing and thus it has the chance to copy the information from
the first into the second. It is obvious that confinement is too restrictive because it forbids many legal
flows.

3 The Architecture of the Linux File System

One of the most important features of Linux is that it can use several file system formats (such as
EXT2, FAT, MINIX, iso9660, reiserfs, etc.). Each of them is separated from the operating system
by a software layer known as Virtual File System (VFS). The VFS provides an abstraction inside the
kernel which allows Linux to manage many different file system implementations. In turn, these file
systems show a common software interface to the VFS. Details of each file system are translated by
the VFS so that the rest of the kernel and the application software can use any file no matter where
it is stored. From now on, if a file system can be managed by the VFS we will refer to it as a physical
file system (PFS).

3



3.1 The Virtual File System (VFS)

The VFS keeps in memory information about each PFS that is being used, and updates these data
when they are changed due to creation, modification, or deletion of files or directories.

The VFS uses a data structure called inode to represent files, directories, devices, and other
entities. This structure stores enough information to read and modify these entities, and data such as
permissions, access dates, etc.

Furthermore, each inode includes functions that allows the VFS to transparently interact with the
particular PFS to which it belongs to. Some of these functions are grouped in a data structure called
inode_operations, which is made up of a number of pointers to functions provided by the module
that implements the corresponding PFS.

The VFS implements system calls, such as stat, open, creat, chmod, chown, etc. Usually, these
system calls receive a file name, and the VFS translates it into an inode, which may or may not be
in memory. If this inode is not in memory, then the VFS, using an inode operation, requests to the
corresponding PFS to map its internal representation into an inode.

3.2 The Second Extended File System (EXT2)

The EXT2 file system is the most widely used PFS in the Linux community. It defines the file system
topology by describing each file with a data structure called, rather confusingly, ext2_inode which is
similar to the one used by the VFS. This likeness allows an efficient interaction between EXT2 and
VFS. EXT2 inodes have a fixed size and contain data such as file owner and group, and pointers to
the information stored in the disk.

4 Lisex’s Design and Implementation

In this section we will show how we mapped some of the features of the security model [5] onto the
Linux file system, and the design decisions that we took in order to implement the model. As we have
said in section 2 our security model is an adaptation of BLP. This means that we have to implement
access classes for files, directories and users, as well as simple security and confinement properties.

Every time we identified a possible modification we tried to isolate the entities likely to be changed
behind abstract interfaces. It is worth noting that this technique is seldom used in the Linux ker-
nel implementation. This approach allow us to select simple, less error prone, although inefficient
implementations that can later be optimized without a sensible impact on the rest of the system.

Since the C programming language does not provide sophisticated mechanisms to prevent pro-
grammers from accessing modules’ secrets, we had to instruct them to be disciplinated in using just
the modules’ documented interfaces.

This section is organized as follows: first we show the changes at the VFS level by describing some
of the new data structures and some modifications to existing system calls as well as the new ones; at
the end of the section we give a brief account of the changes introduced at the EXT2 level.

4.1 Changes at the VFS Level

The VFS is the software module in charge of mediating the access to information requested by pro-
cesses. Thus, it is imperative to modify its implementation in order to make it enforce the new security
model. The most important design decision was to consider the content of files and directories as the
set of objects to be protected. Clearly, this decision lefts unprotected many other entities (such as

4



access dates and DAC attributes) managed by the file system that can be used as high bandwidth
covert channels. However, we persisted in our decision because Lisex 0.0 is no more than an experi-
mental prototype. To protect files and directories implies to modify the inode data structure in order
to add new access control attributes.

We choose to enforce security with a rather traditional approach, that is, we codified new access
rules in system calls. Hence, part of the development involved the modification of several system calls.
The existence of new security attributes, and the fact that applications need to consult and modify
some of these attributes, made it necessary to include new system calls with these responsibilities.

4.1.1 Modifications to the inode Data Structure

We added two fields to the inode data structure in order to manage its ACL and security class (SC):

struct inode {
...
struct vfs_acl vfs_acl;
sc *sc;

}

[a]

The data type of each field is implemented as an ADT. Next, we describe with some detail the
design and implementation of sc (see more in [10]).

The sc ADT. The data structure used to implement sc is shown below:

struct sc {
unsigned int level;
int categories[MAX_CAT_LEN];
int size;

}

[b]

where

level: Access level.

categories: An array implementing the category set.

size: The amount of valid entries in categories.

MAX_CAT_LEN is a static definition used to limit the amount of elements in a category set. We
have defined the ADT interface so that a change to this or other secrets has no impact on sc’s clients
–for instance, it would be possible to use a linked list instead of an array. Table 1 summarizes sc’s
interface.

Functions sc_cat_first, sc_cat_next and sc_getcat use the sc_cat_iterator type. Since
eventually it could be necessary to implement the category set with a more efficient data structure,
and that always will be necessary to iterate over it, we defined an iterator or selector independent
of the particular implementation of this set. The value of it passed to sc_cat_next and sc_getcat

must be obtained by calling sc_cat_first or sc_cat_next. For example, if the set is implemented
with a linked list, sc_cat_first could return a pointer to the first node, sc_get_cat could get the
value of that node, and sc_cat_next could return a pointer to the next node. One more advantage

5



sc ADT interface
Function Comment

sc_init() Returns an initialized security class (SC)
sc_destroy(sc) Releases the resources used by the SC sc
sc_setlevel(sc, l) Sets sc level to l l
sc_getlevel(sc) Returns the level of sc
sc_getsize(sc) Returns the amount of entries used in sc
sc_cat_first(sc) Returns an iterator or selector pointing to the first valid category

stored in sc
sc_cat_next(sc, it) Returns the selector that points to the next valid category with

respect to it stored in sc
sc_getcat(sc, it) Returns the category pointed by it
sc_clearcat(sc) Deletes all the categories of sc
sc_addcat(sc, cat) Adds a category to the category set of sc

Table 1: Parameter sc is always a variable of type sc. This interface is defined in sc.h.

of using this iterator is that buffer overflows are confined to the iterator functions, making it easier to
verify that they do not occur.

4.1.2 Changes to Existent System Calls

Changes to system calls were introduced due to the new access control model which, by incorporating
ACLs and SCs to files, directories, and user accounts, requires to modify their semantic. Some system
calls that have been modified are listed below1:

long sys_chmod(const char * filename, mode_t mode)

long sys_open(const char * filename, int flags, int mode)

long sys_creat(const char * pathname, int mode)

long sys_stat(char * filename, struct __old_kernel_stat * statbuf)

It is worth noting that the signature of each system call is exactly the same as the original. Then, it
would be possible to run any Linux application on Lisex.

Next, we will show with some detail how we have incorporated the new access controls to the open
system call. We choose this system call given its relevance in security models rooted in BLP. Any
process must invoke open before it could be able to access a file. Hence, this call implements one of
the most important functions of the reference monitor concept [9].

In Linux, open calls an auxiliary function named permission, with the responsibility to make
DAC checks. In fact, within this function the kernel decides to call an inode operation to perform
a file system-dependent DAC check; or to call a VFS auxiliary function, called vfs_permission, to
perform a (possible) different, system-wide verification.

In our implementation, open invokes a new auxiliary function named may_open. This function calls
permission and mac_permission in that order. Lisex’s implementation of permission removes the
alternative of calling a file system-dependent function. In this way, our implementation mandates the
kernel to use a system-wide ACL-based access control, which is implemented with a modified version
of vfs_permission.

1For a complete list, see [10].

6



mac_permission implements the necessary preconditions so that open preserves simple security
and confinement (section 2). The first precondition is implemented rather straightforwardly with a
sc’s interface function, called sc_compare. This function tells whether the access class of the calling
user (current->fsuid) dominates the access class of the file to be opened (inode->sc).

int mac_permission (struct inode *inode, int mode)
{

if(sc_compare(inode->sc, subjectscget(current->fsuid)))
return -EACCES;

...

[c]

The implementation of the precondition to enforce confinement was in itself the most complex task
we performed. Hence, we opted to write code that is easy to verify but rather inefficient, with the
intention of reducing the causes of errors (see section 5). Confinement requires to implement different
controls depending on the mode in which the requested file is to be opened; but it is always necessary
to compare the access class of this file against the access class of files already opened by the calling
process. This fact led us, quite naturally, to write two clearly different code fragments, one for each
mode. However, given that Linux holds two different lists of files that can be accessed by a given
process, we divided these two fragments in two sections each. In consequence, the implementation of
this precondition is made of four code fragments two of which, [d] and [e], are shown below.

Let us consider a process requesting a file to be opened in READ mode. Thus, in order to preserve
confinement, it is necessary to iterate over all the files opened in WRITE mode (file->f_mode), verifying
in each case that the access class of each of them dominates the access class of the file to be opened
(i.e. o_inode->sc). As we have mentioned above, this verification must be done over two different
lists. The first list holds the open files (current->files->fd):

...
if(mode & FMODE_READ)
{

files = current->files;
max_fds=files->max_fds;
for(fd=0; fd<max_fds; fd++)

if((file=files->fd[fd]))
if (file->f_mode & FMODE_WRITE)
{

o_inode = file->f_dentry->d_inode;
if(sc_compare(inode->sc, o_inode->sc))

return -EACCES;
}

...

[d]

While the second list records the memory mapped files (represented by the nodes of the list current->
mm->mmap that point to files in disk, i.e. mmap->vm_file not zero):

7



...
if(current->mm)

for(mmap = current->mm->mmap;mmap;mmap = mmap->vm_next)
if((file=mmap->vm_file))

if (file->f_mode & FMODE_WRITE)
{

o_inode = file->f_dentry->d_inode;
if(sc_compare(inode->sc, o_inode->sc))

return -EACCES;
}

...

[e]

4.1.3 New System Calls

We added new system calls to change or consult ACLs and SCs of files and users. Table 2 contains a
brief description of each of them.

System Call Comment
aclstat(filename, acl_statbuf, len) Returns the ACL of file filename in

acl_statbuf
acladd(filename, id, mode, type) Adds permissions stored in mode to the

user or group id in the ACL of filename
acldel(filename, id, mode, type) Removes mode from the set of permis-

sions of user or group id from the ACL
of filename

oscstat(filename, level, cats, len) Returns the level and the category set (in
level and cats, respectively) of the ac-
cess class of filename

chobjsc(filename, level, cats, size) Changes the access class of filename for
the access class represented by level and
cats

ownerclose(pid, filename) If process pid has opened filename then
removes it from its list of open files

Table 2: New system calls.

Next we describe the implementation of chobjsc. This system call is used to change security
classes of files and directories. chobjsc is secure if the following two preconditions are met:

1. The user who issues the call must be a MAC administrator.

asmlinkage long
sys_chobjsc (char *filename, int level, int *categories, int size)
{

...
if(!is_secadm())

return -EACCES;
...

[f]

is_secadm() checks whether category SCADMIN belongs to the category set of the calling user.

8



2. The file whose access class is about to be changed must not be open.

...
error = -EBUSY;
if (is_open (nd.dentry->d_inode))

return error;
...

[g]

is_open(i) checks whether the file pointed to by inode i is being used by some process.

Once all preconditions are met, the level and category set received as input are set as the new
access class of the object using the interface of the sc ADT:

...
sc_clearcat (inode->sc);
sc_setlevel (inode->sc, level);
error = sc_usergetncat (inode->sc, categories, size);
...

}

[h]

where sc_usergetncat copies the category set categories of size size, from user space into the
access class inode->sc, in kernel space.

4.2 Changes at the EXT2 Level

With the present design the VFS mandates PFSs to make new security attributes persistent. Thus, a
PFS had to be modified if a MLS model will be implemented. We choose to modify EXT2 because it is
the most widely used PFS in the Linux community. Hence, it was necessary to modify the structure of
the EXT2 inode, and the inode operations responsible of reading from and writing to disk. By taking
advantage of some advanced EXT2 features, it was possible to include this modifications without any
trouble.

More precisely, we changed the ext2_inode data structure as follows:

struct ext2_inode {
...
struct ext2_acl_entry ext2_acl[EXT2_ACL_LEN];
__u32 sc_level;
__u32 categories[EXT2_CAT_LEN];
__u32 cat_len;

}

[i]

where

ext2 acl: The ACL of the file. ext2_acl_entry is defined as follows:

struct ext2_acl_entry
{

__u32 id;
__u8 mode;

}

[j]

9



sc level: Level of the access class of the file.

categories: Category set of the access class of the file.

cat len: The amount of valid entries in categories.

The reader may note that in the ext2_inode representation we do not use the sc ADT, because
ext2_inode must define the physical structure of the inode, hence there is no chance to abstract it.

The inode operations responsible for translating an inode from the EXT2 level to the VFS level
(and vice-versa) are ext2_read_inode and ext2_update_inode. ext2_read_inode is responsible for
building, from the new fields of ext2_inode, the ACL and the access class (sc) of the VFS inode.
Next we show the translation of sc:

void ext2_read_inode (struct inode * inode)
{

struct ext2_inode * raw_inode;
...
cat_len = le32_to_cpu(raw_inode->cat_len);
sc_setlevel(inode->sc, le32_to_cpu(raw_inode->sc_level));
for(i=0; i<cat_len; i++)

sc_addcat(inode->sc, le32_to_cpu(raw_inode->categories[i]));
...

}

[k]

Some fields of inode are set by the VFS before calling ext2_read_inode. These fields are used to
find the corresponding EXT2 inode (raw_inode). With this information and using the appropriate
interface, the ACL and the SC are stored in inode.

5 Programming from Formal Specifications

One of the project’s goals is to apply formal methods during the software life cycle. We have applied
formal methods to describe and verify the system and security formal models [5], then we used the
system model as test case source [7], and finally we used it as an implementation guide. In the first
two activities The Coq Proof Assistant was used2. In this paper we will concentrate on how we used
the system model as an implementation guide.

The system formal model is an abstract state machine representing the VFS interface. The state
of this machine is an abstraction of the file system state, and state transitions are system calls. Thus,
we want to show how the model guided us in order to implement a state variable and a state transition
operation (i.e. a system call). One of the most important state variables is the function that maps
objects onto access classes, called objectSC . Next we will show the process we followed to implement
objectSC , and the operation Open.

5.1 Implementing a State Variable

From now on, we will describe some portions of the formal model using first order logic instead of the
original language; otherwise it would be necessary to explain Coq’s syntax and semantics and that

2Coq is a proof assistant based on the Calculus of Inductive Constructions, which in turn is a form of Type Theory.

10



is out of the scope of this article. In the formal model objectSC , the function that maps files and
directories onto access classes, has the following type:

objectSC : OBJECT 7→ SecClass

where

• OBJECT is the set or type denoting all the possible system’s objects (i.e. files and directories)

• 7→ denotes a finite partial function

• SecClass is the set or type of access classes, defined as follows:

SecClass =̂ Record{level : SECLEV ; categs : P CATEGORY }

where SECLEV is a finite ordered set denoting all the possible security levels, and CATEGORY
is a finite set that designates all the categories.

Hence, objectSC is a finite partial function from objects onto access classes. It is partial because in
a given state of the system not every object is present in the file system. objectSC is implemented by
including a variable of type sc in the VFS inode data structure, which is the internal representation
of a file. Since the kernel preserves a functional relation between inodes and files, we can guarantee
that the implementation verifies the properties of 7→.

Let us inspect SecClass in more detail. Its definition suggests that the implementation should have
two variables. The first one should vary over a type denoting a finite ordered set, thus it is natural to
select unsigned int for it. The second variable should implement a finite set. However, given that
sets are not a basic C type, we needed to program functions preserving the essential mathematical
properties of finite sets. In this way, we decided to implement categs as an array of type int, plus the
functions listed in Table 1. For example, sc_addcat adds a category to the array avoiding duplicates,
and sc_compare compares two access classes by taking account of the elements present in the arrays
but not their positions. In consequence, SecClass formalization guided us toward an implementation
based on an ADT.

5.2 Implementing a State Transition Operation

We will show the relation between the operation Open and its implementation as a system call. Again,
we choose this operation due to the importance it has in BLP based models. In Lisex 0.0, Open
implements both DAC and MLS models, but here we will focus just in the latter. The operations
of the system formal model are described by their pre and postconditions. Preconditions are used
to guarantee that operations execute only when their execution do not put the system at risk, and
postconditions establish the state change that must be performed. Thus, the formal specification of
Open is as follows3:

Open(s, u?, o?,m?, t) =̂ OpenRead(s, u?, o?,m?, t) ∨ OpenWrite(s, u?, o?,m?, t)

where s and t are the start and next state respectively, user u? tries to open object o? in mode m?,
and

3Here we will show a simplified version of the operation, but it captures its essence anyway.

11



OpenRead(s, u?, o?,m?, t) =̂
m? = READ
∧ preSimpleSecurity(s, u?, o?)
∧ preStarPropertyRead(s, u?, o?)
∧ postOpenRead(s, u?, o?, t)

OpenWrite(s, u?, o?,m?, t) =̂
m? = WRITE
∧ preSimpleSsecurity(s, u?, o?)
∧ preStarPpropertyWrite(s, u?, o?)
∧ postOpenWrite(s, u?, o?, t)

Clearly, the formal specification suggests to implement two code fragments, one for each term of
the disjunction. Although this strategy (possibly) generates inefficient code, it is less error prone or, at
least, the program is easier to verify given its similarity with the specification. We focus on OpenRead ,
thus we expand preSimpleSecurity :

preSimpleSecurity(s, u?, o?) =̂
s.objectSC (o?).level ≤ s.subjectSC (u?).level
∧ s.objectSC (o?).categs ⊆ s.subjectSC (u?).categs

Now, the specification asserts that the access class of the calling user must be compared with the access
class of the object to be opened in the current state of the system. This comparison is performed with
sc_compare (see Table 1). Program fragment [c] implements this part of the specification.

Next we expand preStarPropertyRead :

preStarPropertyRead(s, u?, o?) =̂
∀ b ∈ dom s.openFiles •

u? ∈ s.openFiles(o?).ActWriters
⇒ s.objectSC (o?).level ≤ s.objectSC (b).level

∧ objectSC (o?).categs ⊆ objectSC (b).categs

To see the relation between preStarPropertyRead and the implementation pay attention to code frag-
ments [d] and [e]. The universal quantification in preStarPropertyRead states that any implemen-
tation must iterate over all the open files (of the requesting process). However, the antecedent of the
implication says that the iteration must be done just over the files opened in WRITE mode. This is
implemented with a decision inside the loop in [d] and [e] where its condition determines whether
u? has opened the file b in that mode (also in [d] and [e]). Finally, the inner sentences of the if

structure implement the comparison between the access classes of o? and b. When this comparison is
not right, mac_permission returns with a convenient error.

We did not make any modification to the current postcondition because is it the same as the one
we specified.

We believe that the specification structure is so similar to the code structure that it is possible to
put more confidence in the correctness of the implementation. However, since our implementation is
mixed with code written without precise specifications, the correctness of Lisex 0.0 depends on the
correctness of Linux.

12



6 Related Work

The enhancement of UNIX-like operating system with MLS controls dates back to 1975 when the
UCLA Data Secure UNIX project was carried on. At least the articles we were able to check [16,
18], differ from the present work in (a) the UCLA project addressed the construction of a complete
security kernel, when, to date, we only deal with the file system; (b) they report the specification and
verification of models but they do not focus on the implementation source code; (c) they do not directly
implement a BLP-like security model (despite their model could be adapted to verify Bell-LaPadula).
Further, their formal, abstract models are described and verified with laguages and tools quite different
from The Coq Proof Assistant. In [18] it is shown how the UCLA team constructed part of a proof of
correctness of the implementation source code with respect to a low-level specification. Our approach
(shown in section 5) is less rigorious than the one applied by Walker and others, but many times less
expensive. On the other hand, they addressed, like us, the broarder problem of producing a secure
system with formal methods.

In 1984 Kramer [12] proposes to enhance the UNIX operating system with MLS controls and some
other security features. In that paper the author accounts for a number of desired security features to
incorporate into the UNIX kernel but he never describes a low level design, internal data structures
or a formal model. Moreover, the work described in that article addresses a complete system, thus
audit, personnel, and authentication issues are considered. Linus IV and Lisex are both based on the
Bell-LaPadula security model, and both systems implement ACLs. Also, both systems attempts to
separate the responsabilties held by root in different user accounts (not shown in our present paper,
see [6]). Kramer’s work tries to preserve the UNIX semantics and compatibility as much as possible,
goals that we too tried to achieve.

Two years after the publication of Kramer’s paper Gligor and others presented the design and
implementation of Secure Xenix Workstations [11]. Despite that Gligor’s paper shows a more detailed
design than Kramer’s, it does not show source code, kernel internal data structures or any other
details at implementation level. Furthermore, they do not mention a formal model on which the
implementation is based -although they mention the Bell and LaPadula security model. Once more,
this paper refers to a complete system where many fetarures not present in Lisex were taken into
account.

There are other similar projects that had been conducted by some UNIX vendors but we were
unable to find detailed information about the design or implementation of their systems.

None of the aforementioned projects seems to be related with open source software, nor with a
BLP-like system model of UNIX (or at least with a model of a UNIX-like file system) formally verified
with a proof asistant.

More recently, the NSA4 has started a project called Security-Enhanced Linux (SELinux) [14, 15,
see also http://www.nsa.gov/selinux] which has many things in common with Lisex but also some
differences. Obviously both try to enhance Linux with mandatory security controls, but NSA’s work
differs from ours in that (a) they enhance security controls by adding a Linux kernel module and not
by a direct kernel re-implementation, and (b) they incorporate a general security server rather than
a direct implementation of some MLS model. This server can be replaced by others that implement
different security models. The example security server delivered with the current version of SELinux
does not work with a MLS model, instead it implements a form of the Clark-Wilson integrity model,
Type Enforcement, and IBAC. On the other hand, despite the security arquitecture of SELinux is

4National Security Agency, U.S.A.

13



rooted in a formal model developed for the DTOS operating system [17] we found no evidence that
this model is being used in the current development.

7 Conclusions

For the past couple of years it seems that the security community has a renewed interest in operating
systems capable of preserving the confidentiality of information but without loosing compatibility nor
usability. For this reason, we decided to implement a MLS model in the kernel of an open source
operating system. Eventually we opted for Linux because it is widely used. We are strongly convinced
that by choosing to modify an existing operating system rather than to build a new one from scratch,
we saved a lot of time and effort, and we gained a lot of experience. Moreover, this strategy allowed
us to count in a few months with a prototype on which to prove our ideas, validate our methodology,
and analyze the level of usability and compatibility of the system.

Our first conclusion is that the usability level of a direct implementation of a BLP-like security
model is too low for most users of modern computing environments. Moreover, our experiments
suggest that by moving to an information flow model [8] we can increase the level of usability without
loosing security. We hope to count in a few months with Lisex’s successor, called GIDISS Trusted
Linux, which will implement such a model.

If Linux did not exist, our work would be impossible. However, the lack of design documentation
and the absence of clearly defined abstract interfaces, slowed down our progress and sometimes forced
us to focus on issues not directly related with security. Because of this, we planned to use ADTs
and to document every development phase. We noted that the use of ADTs notably improves the
readability of code, is less error prone, and reduces the impact on futures changes. At the same time,
we are convinced that by choosing right implementations, abstract interfaces need not to incur in
performance penalties. Furthermore, the inclusion of ADTs allowed us to attack the complexity of
the problem in two stages: first, by adding part of the required functionality as modules’ interfaces;
and second, by choosing very simple implementations for each of them so that a prototype was readily
available.

Availability of the system formal model proved to be crucial for the success of the project. It was
useful as design and implementation guide, and as test oracle during the testing phase. Programmers
were able to program faster avoiding many errors, as it is shown by the testing performed until now.
Moreover, the model allowed us to perform a disciplined, rigorous, and structured code review, which
increased our confidence in the correctness of the implementation. Future versions will be developed
from formal models because we are convinced that the time and effort spent on that phase is fully
returned during implementation and testing. It is important to mention that all except one of the
people involved in the project, were undergraduate students. This, obviously, was not an impediment
for success.

We invite the reader to check our web site (http://www.fceia.unr.edu.ar/gidis) for news about
GIDISS Trusted Linux (Lisex’s successor).

References

[1] Marshall D. Abrams, Sushil Jajodia, and Harold J. Podell. Information Security: an integrated
collections of essays. IEEE Computer Society press, 1995.

[2] Bruno Barras and et. al. The Coq Proof Assistant Reference Manual. INRIA, 1999.

14



[3] D. Elliot Bell and Leonard LaPadula. Secure computer systems: Mathematical foundations. MTR
2547, The MITRE Corporation, May 1973.

[4] D. Elliot Bell and Leonard LaPadula. Secure computer systems: Mathematical model. ESD-TR
73-278, The MITRE Corporation, November 1973.

[5] Maximiliano Cristiá. Formal verification of an extension of a secure, compatible UNIX file system.
MSc thesis, Departamento de Computación, Universidad de la República, Uruguay, 2002.

[6] Maximiliano Cristiá. Manual del usuario y del adminstrador de Lisex 0.0. Grupo de Investigación
y Desarrollo en Ingenieŕıa de Software y Seguridad, http://www.fceia.unr.edu.ar/gidis, 2002.

[7] Maximiliano Cristiá, Mart́ın Degrati, and Pablo Garralda. Testing: casos de prueba a nivel del
modelo para Lisex 0.0. Grupo de Investigación y Desarrollo en Ingenieŕıa de Software y Seguridad,
http://www.fceia.unr.edu.ar/gidis, 2002.

[8] Dorothy E. Denning. A lattice model of secure information flow. Communications of the ACM,
19(5):236–243, May 1976.

[9] Morrie Gasser. Building a Secure Computer System. Van Nostrand Reinhold, 1988.

[10] Gisela Giusti, Felipe Manzano, and Maximiliano Cristiá. Manual de referencia para el progra-
mador de Lisex 0.0. Grupo de Investigación y Desarrollo en Ingenieŕıa de Software y Seguridad,
http://www.fceia.unr.edu.ar/gidis, 2002.

[11] Virgil D. Gligor, E. L. Burch, C. S. Chandersekaran, R. S. Chapman, L. J. Dotterer, M. S. Hecht,
W. D. Jiang, G. L. Luckenbaugh, and N. Vasudevan. On the design and the implementation of
Secure Xenix Workstations. In 1986 IEEE Symposium on Security and Privacy, pages 102–117,
1986.

[12] Steven Kramer. Linus IV-an experiment in computer security. In 1984 IEEE Symposium on
Security and Privacy, pages 24–32, 1984.

[13] P. A. Loscocco and et. al. The inevitability of failure: The flawed assumption of security in
modern computing environments. In 21st National Information Systems Security Conference,
pages 303–314, October 1998.

[14] Peter Loscocco and Stephen Smalley. Integrating flexible support for security policies into the
Linux operating system. In Proceedings of the FREENIX Track of the 2001 USENIX Annual
Technical Conference, 2001.

[15] Peter Loscocco and Stephen Smalley. Meeting critical security objectives with Security-Enhanced
Linux. In Proceedings of the 2001 Ottawa Linux Symposium, 2001.

[16] G. J. Popek and D. A. Fabre. A model for verification of data security in operating systems.
Communications of the ACM, 21(9):737–749, September 1978.

[17] Secure Computing Corporation. DTOS generalized security policy specification. Technical report,
Secure Computing Corporation, 1997.

[18] B. J. Walker, R. A. Kemmerer, and G. J. Popek. Specification and verification of the UCLA Unix
security kernel. Communications of the ACM, 23(2):118–131, February 1980.

15


