Runtime Enforcement of Noninterference by
Duplicating Processes and their Memories

Maximiliano Cristia* and Pablo Mata

Flowgate Security Consulting
Rosario, Argentina
{mcristia, pmata}@flowgate.net

Abstract. This paper presents a formal model for enforcing noninter-
ference running one process of a program per level in the security lattice.
The I/0O effects of these processes are isolated from one another by re-
stricting each processes to write only to output channels at the same or
higher levels. This approach is intended to be implemented in general
purpose operating systems. It is therefore more compatible with existing
code. A Linux implementation is briefly described.

1 Pointers and Noninterference

In [1] the authors survey the past three decades of information flow secu-
rity, focusing on work that uses language-based techniques for the specifi-
cation and enforcement of security policies for data confidentiality. They
describe an approach based on type systems for information flow. More
precisely, in a security-typed language, the types of program variables
and expressions are augmented with annotations that specify policies on
the use of typed data. Then, these policies are enforced by compile-time
type checking, adding basically no run-time overhead.

When we tried to develop a model based on those techniques for a
general purpose operating system and existing applications, we found a
problem when we faced programs like the one listed in Figure 1. The pro-
gram would be used to read a secret value with the intention of disclosing
it. To understand the program consider the following: sec_malloc() al-
locates memory in a secure way —for instance it writes zeroes on the
memory—; a and b are pointers like in the C programming language [2].
The problem we found in applying traditional techniques to programs us-
ing low level pointers is that either (a) programs are rejected as insecure,
or (b) they are accepted but are of reduced utility. Static techniques need
to know in advance the security level from where read() reads and the

* Mr. Cristid is also partially supported by CIFASIS — French Argentine International
Center for Information Systems and Sciences — Rosario, Argentina

a := sec_malloc(5);

b: = a;

read(x);

for i := 0 to x - 1 do
*(a + i) :=1;

endfor

for j := 1 to 5 do
print (*¥b);
b :=b + 1;

endfor

Figure 1: x stores a secret value between 1 and 5; the program leaks it.

security level where print () prints. Then, if we assume that the latter is
low (L) and the former is high (H), compile-time mechanisms will reject
the program (i.e. they will not compile it) either because there is a flow of
information from x into the cells pointed to by a —which, by the way, are
the same as the ones pointed to by b—, or because they cannot deal with
C-like pointers at all. Under the same assumptions, dynamic techniques
must label a and b, and not the cells pointed to by them, with H, because
otherwise there would be a leakage, making it impossible to output cells
containing low level data using the same pointers. It is worth to mention
that accurate labeling of memory cells arises only at the presence of point-
ers, and not with regular variables. The drawbacks we found in applying
language-based techniques are along the same lines as the ones noted in
[3] when it is necessary to enforce complex dynamic security policies.

The goal of this paper is to present a model (section 3) that warranties
classic noninterference [4] of terminating programs written in a high level
programming language (section 2) including pointers, I/O, interactions
with the underlying operating system (OS) and with a standard seman-
tics, that overcome the problems mentioned in this section. As shown in
section 3, noninterference is enforced by an operating system providing a
pure runtime mechanism which, at the same time, does not suffer of level
creep. Section 4 briefly introduces the implementation of the model in
the Linux kernel as part of the Flowx project. The proof that the whole
method enforces noninterference is included in the Appendix.

2 The Programming Language and the Operating System

The language considered in this paper (Figure 2) has pointers, I/O in-
teractions and system calls, besides the standard elements and structures

Ezxpr ::= N | var | xvar | &var | Expr B Expr

BasicSentence ::=
skip | var := Expr | xvar := Expr | syscall(N,argi,...,argn)
Conditional Sentence ::=

if Expr then Program fi | while Expr do Program done

BasicAndConditional ::= BasicSentence | Conditional Sentence

Program ::= BasicAndConditional | Program ; Program

Figure 2: The grammar of our programming language.

of a C-like programming language. For simplicity we will consider that
variables store just natural numbers and the address of any variable is
also a natural number. If z is a variable, then &z is its address, and *x
is the content of the variable whose address is the contents of x. In this
way any variable can be both a plain variable or a pointer. Expressions
can, thus, be formed by variables, the universal binary operator H and
the & and * operators applied to a variable.

The syscall instruction is meant to call OS services of any kind. Its
integer argument represents each of these services. The other arguments
vary from service to service. When a program executes a syscall instruction
the OS process takes control of the computer hardware and the program
waits to be resumed. Only one process is active at any given time. In this
paper we deal only with two OS general services: syscall(0, dev, var), called
read(dev, var), which reads val from input device dev; and syscall(1, dev,
expr), called write(dev, expr), which writes expr to output device dev.

2.1 Language Semantics

The semantics of our language (Figure 3) is defined by stating how the
program state changes for every sentence of the language. Formally, the
language semantics, LS, is a function defined as follows:

LS : Memory — Program — Memory

where Memory is a function from VAR —the set of all variables— to N
representing the state of the process’ memory.

Since our language includes pointers we assume that there exists a bi-
jective function, named addr, which returns the variable stored in a given
address. Besides, we assume that this function is fixed for all executions

LS(M,skip) = M (LS-skip)
LS(M,z =€) =M & {x — eval(M,e)} (LS-:=)
LS(M,xx :==e) =M & {z, M — eval(M,e)} (LS-x)
LS(M,if e then P fi) = if eval(M,e) then LS(M, P) else M (Ls-if)
LS(M,while e do P done) = .

. (LS-while)

if eval(M,e) then LS(M, P ; while e do P done) else M

LS(M, Py ; Py) = LS(LS(M, P1), Ps) (LS- ;)

Figure 3: Language semantics. M € Memory, x € VAR, e € Expr.

eval(M,n) = (eval-N)
eval(M,z) = (x) (eval- VAR)
eval(M, xx) = M(x M) (eval-x)
eval(M, &z) = addr™" (z) (eval-&)
eval(M,e1 B e2) = eval(M, e1) B eval (M, e2) (eval-8)

Figure 4: Expression evaluation. M € Memory, n € N, x € VAR, e1,es € Expr.

(ﬂle same program. If x is a program variable and M € Memory let
x, M be equal to (addr o M)(z).

Expressions are evaluated according to the definition of a function
called eval which takes an element of Memory and an expression and
returns a natural number, as shown in Figure 4.

2.2 Terminating Programs

We can prove that our security model verifies classical noninterference
only if it is assumed that all loops within any program will end in a finite
number of iterations. Hence, we first define what we call well-founded
while, and then we assume that all loops within any program are well-
founded while’s.

Definition 1 (well-founded while). Let while e do P done be a loop
i a program where e € Expr and P € Program. Let Mg, My, €
Memory be such that LS(My, P) = Myy1 for k € N. The loop is said
to be a well-founded while if and only if there exists a partial function
wf : Memory - N such that wf(My) € N, wf(Myy1) < wf(My) and
eval(My,e) <= wf(My) >0 for all k € N.

Assumption 1 (Well Defined Programs). Any loop within any pro-
gram submitted for execution is a well-founded while.

3 Dynamic Enforcement of Noninterference

Information flow will be controlled by a state machine called security ma-
chine or SM. We assume that SM stands between processes and hard-
ware having the ability to decide whether to let processes interact with
the environment or not at each particular sentence. For all practical pur-
poses SM can be thought as part of the operating system, more on this
in section 4. Formally, SM is a function defined as follows:

SM :SState x Env x Memory x Program
— SState x Env x Memory

where SState and Env are defined by:

DEV 2l |ih|ol|oh FEnv= DEV — seqN LEVEL2L|H
SState = [m : Memory,dl : DEV — LEV EL]

DEYV is the set of I/O device names. For simplicity, we assume that there
are only two input devices (il and ih) and two output devices (ol and oh).
The intention is that through il (ih) users will input low (high) level data,
and through ol (oh) they will see low (high) level data. State variable
dl represents the security level at which each I/O device is currently
working. In turn, Env represents the 1/O devices connected to the OS.
The sequence of natural numbers in the input devices have not yet been
processed and the sequences in the output devices have already been sent
to the environment.

SM’s transitions are listed in figures 5 and 6. In general, the rules
say that a program is run twice or within two contexts: one, represented
by S.m, is meant to store low level values, and the other, represented
by M, is meant to hold high level values. Note that the evaluation of
conditions and expressions is performed in both contexts. The only piece
of information shared between both contexts is the low level informa-
tion, as shown in rule SM-read(il). Rules SM-if and SM-while are quite
complicated because it is possible that the program might make different
decisions when expressions are evaluated over S.m or M. The key rule
of the model is SM-write(ol) because it says that output sent to a low
output device comes solely from the low memory, S.m. Further, if a pro-
gram has a sentence of the form if a = 0 then write(ol, 1) fi, then it will

be evaluated and executed twice: over M and over S.m. The important
point here is that the output seen at the low level output device will be
the same regardless of the value of a. If a equals 0 or not with respect
to M, then the inner sentence will be executed anyway, as shown by the
first two cases of the SM-if rule. If the value of a came from a high level
input device, then this behavior is consistent with noninterference. Last
but not least, if the value of a came from a low level input device, then
S.m(a) = M(a) —by rule SM-read(il)— making the output seen at the low
level output device consistent with the view of a low level user.

3.1 The Security Condition

Theorem 2 in the Appendix states the noninterference property verified
by SM and LS. The property is interesting if there are input and output
devices working at both L and H; then we define 10 to be the function
{il — L,ol — L,ih — H,oh— H}.

3.2 Analysing the Program of Figure 1

The program listed in Figure 1 is secure and fully usable if run on a
system implementing SM, although it would be rejected by language-
based techniques because they would consider that there is a potential
leak on x. Let’s assume that read () reads from a H device and prints()
on a L device. When x is read, its value is copied only in M; S.m stores
garbage in the same memory cell. Since the output device is at L, only
values stored in S.m influence the output (by rule SM-write(ol)): then
noninterference is warranted because the low level output depends only
on low level inputs. Now say both devices work at L. Then x is not a
secret and consequently it can be disclosed. If both devices work at H,
then output is influenced only by M and so the high level user reads the
real secret value of x. Finally, if the input device works at L and the
output device at H, both memories shares the value in x implying that
the high user can read it.

4 Implementing the Model in the Linux Kernel

The goal of this section is to show that there exist practical implemen-
tations of SM. We wanted to implement SM over Linux preserving a
reasonable level of usability and performance, and full compatibility with
existing software. We briefly and broadly describe the current implemen-
tation of Flowx which uses the Linux Security Modules (LSM) technology

SM : SState X Env x Memory X Program — SState X Env x Memory

SM(S, E, M,skip) = (S, E, M) (SM-skip)

SM(S,E, M,z := expr) =
([m «— LS(S.m,x := expr),dl — S.dl], E,LS(M,z := expr))

SM(S, E, M, xx := expr) =
([m «— LS(S.m,xx := expr),dl — S.dl], E,LS(M, xx := expr))

SM(S, E, M,read(il,z)) =

(SM- :=)

([m — S.-m @ {z — head o E(il)},dl — S.dl], (SM-read(il))

E & {il — tail o E(il)}, M & {x — head o E(il)})

SM(S, E, M,read(ih,z)) =
(S, E @ {ih — tail o E(ih)}, M & {x — head o E(ih)})

SM(S, E, M,write(ol,e)) =
(S, E @ {ol — (eval(S.m,e)) 1 E(ol)}, M)

SM(S, E, M,write(oh, e)) =
(S, E & {oh — (eval(M,e))t E(oh)}, M)

SM(S, E, M, if e then P fi) =
SM(S, E, M, P) if eval(S.m,e) A eval(M,e)
(SM(S, E, M, P).1,

SM(S, E, M, P).2, M)
(S,E',SM(S,E, M, P).3) if —eval

if eval(S.m,e) A —eval(M,e)

—

S.m,e) A eval(M,e)

(S,E, M) if —eval(S.m,e) A —eval(M, e)
where E' = E @ {ih — SM(S, E, M, P).2(ih),
oh+— SM(S,E, M, P).2(oh)}

SM(S,E,M,P, ; P,) = SM(SM(S,E, M, P1), P»)

(SM-read(ih))

(SM-write(ol))

(SM-write(oh))

Figure 5: Security Machine semantics (part 1). Symbol § means sequence concatena-

tion.

Let PW hile be P ; while e do P done
SM(S, E, M,while e do P done) =
SM (S, E, M, PW hile) if eval(S.m,e) A eval(M,e)
(SM(S, E, M, PW hile).1,
SM(S, E, M, PWhile).2, M)
(S,E',SM(S, E, M,PWhile).3) if —eval(S.m,e) A eval(M,e)
(S,E, M) if —eval(S.m,e) A —eval(M,e)
where E' = E®{ih — SM(S, E, M, PW hile).2(ih),
oh — SM (S, E, M, PW hile).2(oh)}

if eval(S.m,e) A —eval(M, e)
(SM-while)

Figure 6: Security Machine semantics (part 2).

and some minor modifications to the kernel itself in order to implement
the model described earlier.

The broad idea of the implementation is to simulate the existence
of as many computer as security levels are used in the system. Each of
these “virtual” computers executes process up to a given security level.
However, all of them share the inputs up to a given security level. For
instance, if computer A is executing at level L4 and computer B is exe-
cuting at level L, with L4 > Lpg, then A and B will share all the input
data classified at level Lg or less. All “virtual” computers are connected
to the same set of I/O devices, but the OS decides which inputs are sent
to which computers. On the other hand, each “virtual” computer is al-
lowed to write information on any output device classified at its level or
higher; for instance A (B) will be allowed to write information on any
device with a security level greater than or equal to L4 (Lp).

Flowx simulates these “virtual” computers by executing processes as
follows. Initially, each process is classified at L and it is spawned into two
processes once it wants to access information at H. This means that if
a process access information only at L then it will behave as a regular
process. When the process is divided its memory is duplicated for the two
new processes, so each of them will have its own, disjoint memory space
(S.m and M). The spawned process must start execution from the exact
same point where its creator violated the security policy. Flowx, thus,
moves the program counter of the new process so it starts at that point.
Once the new process is created, both will run independently although
they will agree on low values since they will be connected with the same
I/O devices. Flowx implements this feature by buffering all the input

received on an input device and then delivering it to the copies of the
processes using this device that are working at a security level greater
than or equal to the security level of the input device; the buffer is emptied
once all copies have requested the input. If an initial single process will
read input from an input device working at, say, H, when it actually
requests data from that device, the OS spawns it and the (real) input
is delivered only to the copy classified at H while the copy classified at
L receives a sequence of constant values. Obviously, this will make both
processes to follow a different path along the program’s code but this is
precisely the whole point: if the program is a Trojan horse being used
by an attacker then he will see the same output at his low level terminal
regardless of the values entered by high level users; but if the program is
legitimate and the user is a high level official working from his high level
terminal, then he will receive the expected output —from the high level
copy of the process. There is yet another situation that deserves to be
analyzed. A high level user working from his high level terminal wants to
process and see low level data. In this case Flowx will not duplicate the
process, since it does not access high level data, and thus the low level
process will be allowed to write on the high level terminal.

It is very important to remark that Flowx achieves this behavior with-
out changing a single system call signature. In this way, Flowx preserves
compatibility with existing application software and it is independent of
the number of security levels that processes will use during its lifetime.
However, it also shows an important performance penalty both in exe-
cution speed and in memory consumption. We think that this problem
can be almost eliminated in practice by adding more processors or cores
and memory or by restricting the number of security levels with which a
process can simultaneously work during its lifetime. Say a server running
Linux executes over processor P and has AN bytes of memory. Now say
that the user wants to divide its information into M securiy levels. Then,
to run Flowx with a similar efficiency, the user needs a server with M
processors like P and M x N bytes of memory because, in the worst
case, Flowx needs to run M processes for each process that would be run
on the Linux box. We think that the tension between hardware cost and
better security will be resolved in favor of the last for many organizations
and user communities.

The key remaining question, though, is whether such a system will be
acceptable usable for an end user or not in terms of how difficult is to use
it, but this is the topic of future work with Flowx.

5 Discussion and Related Work

We developed the ideas presented in this paper when we tried to im-
plement a language-based model in a UNIX-like operating system. Be-
sides the problem with pointers that we highlighted in section 1, moving
from the language-based perspective to a runtime mechanism, gave us
some tips about the first approach. Static methods require programmers
to understand the very difficult problem of noninterference because se-
cure compilers will prompt an error every time there is an illegal flow
within a program. Hence, programmers will need to understand these er-
rors and this imply that they will need to understand the whole problem
of MLS —besides the type system, its deductive rules and so on. Program-
mers programming general purpose applications would find very hard
to understand all these issues. Our approach free them to understand
noninterference because it will never rise an error saying something like
“illegal information flow”. Another insight we gained was that language-
based methods tend to reject programs due to illegal information flows,
although these flows depend on where the information comes from and
where it is going to, which is not always addressed by these methods. The
method presented in this papers do avoids those problems because the en-
forcement mechanism is inside the OS and not inside the programming
language.

Since non-termination may leak more than just one bit [5], we have to
face the problem of proving that the model is noninterfering when non-
terminating programs are also considered. However,t we clearly see that
the implementation is secure in this respect because processes at one level
cannot see the processes at higher levels at all —except when the physical
computer cannot run more processes.

5.1 Comparison with Similar Approaches

Most papers about noninterference approach the problem from the lan-
guage based perspective as was surveyed in [1]. However, some work can
be found proposing runtime enforcement. In [6,7] the authors propose
a monitoring system controlling the flow of information within a pro-
cess and nullifying dangerous flows. In [8] Cavadini propose a method
that slices a possible dangerous program into secure programs; he com-
bines the static and the runtime monitoring approaches, although he still
analyzes the program text. Also Shroff and others [9] propose another
runtime monitoring system. However, as far as we searched there is no

method dealing with programs including C-like pointers, what makes it
possible to run just one version of the program.

Although the static, language-based approach is quite different from
ours, the analysis of some works along these lines was important for us
because they show that similar results can be drawn. Hunt and Sands
in [10] develop a family of flow-sensitive type systems. A type system
is flow-sensitive if it allows program variables to change their initial ac-
cess class. They propose a program transformation by adding a set of
variables per each sensitivity level, and then adding an equal number of
instructions. In a sense, this transformation is the static counterpart of
our proposal. Hedin and Sands in [11] treat non-opaque pointers by defin-
ing another flow-sensitive type system which suggests a similar program
transformation. Note that this transformation leads to similar perfor-
mance penalties than our technique but it reject programs and cannot
deal with a dynamic number of security levels. In [12] the authors, like
us, do not assign types —or security labels— to program variables since
they observe that, for instance, a program with no high inputs is secure
no matter what information flows occur. Their language includes I/O
like in this article. Banerjee and Naumann in [13] proves classical non-
interference for a Java-like language including pointers and many other
features of object oriented programming languages. [14] extends the pre-
vious work by studying the problem of noninterference in the presence
of stack inspection. Two things of that paper are worth noticing with
respect to our work: (a) authors recognize that specifying static analyzes
for confidentiality have not seen much use, and (b) that they parametrize
classes over security levels, which is a way to avoid some limitations of
the typed-based techniques. In [15] a proof for a noninterference property
of a A-calculus including references is given. Zdancewic and Myers [16]
work with a low level language and consider to analyze the output of a
compiler rather than source code.

There are also approaches combining static and dynamic techniques.
In [17] the authors deals with security policies that depend on which
principals interact with the system. Also [18] presents a dependent type
system to control information flow within programs where security classes
of data can vary dynamically.

6 Conclusions and Future Work

We believe that this paper proves that it is possible to impose a notion
of noninterference in a general purpose computing system by using a

runtime mechanism. The idea born from the realization that if the user
can interact with as many computers as security classes he is allowed
to work with, and if each of these computers processes information at
just one level, then we have noninterference. The problem was, then, to
transparently simulate this system in one computer.

The main theoretical problem we need to face is to prove that our
model is still secure at the presence of non-terminating programs. We
believe that this more of a formal problem since in our implementation
non-terminating high level processes cannot be seen by low level users or
programs. We will work on using coinductive techniques like simulations
and bisimulations. Also we need to augment the language with a goto
statement to analyze unstructured programs. This would take us to an
assembly-like language whose programs can change their image at run-
time. Besides, it is necessary to prove a conditional noninterference prop-
erty when system calls that allow some users to change the security level
of resources are also considered. Regarding the implementation we still
need to solve some issues like the adequate use of cryptography, adapting
the system to a graphical environment, providing a better interface for
security administrators, etc.

Acknowledgments

Gilles Barthe supported this work from its beginning and suggested the
idea for the introduction. Without Gilles perhaps we couldn’t get so far.
Thanks the reviewers for their detailed analysis and comments.

References

1. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1) (2003) 5-19

2. Kernighan, B.W., Ritchie, D.M.: The C Programming Language Second Edition.
Prentice-Hall, Inc. (1988)

3. Zdancewic, S.: Challenges for information-flow security. In: In Proc. Programming
Language Interference and Dependence (PLID. (2004)

4. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 Berke-
ley Conference on Computer Security. (1982) 11-22 IEEE Computer Society Press.

5. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninter-
ference leaks more than just a bit. In: ESORICS ’08: Proceedings of the 13th Euro-
pean Symposium on Research in Computer Security, Berlin, Heidelberg, Springer-
Verlag (2008) 333-348

6. Le Guernic, G., Jensen, T.: Monitoring information flow. In: Workshop on Foun-
dations of Computer Security (FCS’05). (2005) 19-30

10.

11.

12.

13.

14.

15.

16.

17.

18.

Le Guernic, G.: Automaton-based confidentiality monitoring of concurrent pro-
grams. In: CSF ’07: Proceedings of the 20th IEEE Computer Security Foundations
Symposium, Washington, DC, USA, IEEE Computer Society (2007) 218-232
Cavadini, S.: Secure slices of insecure programs. In: ASTACCS ’08: Proceedings of
the 2008 ACM symposium on Information, computer and communications security,
New York, NY, USA, ACM (2008) 112-122

Shroff, P., Smith, S., Thober, M.: Dynamic dependency monitoring to secure
information flow. In: CSF ’07: Proceedings of the 20th IEEE Computer Security
Foundations Symposium, Washington, DC, USA, IEEE Computer Society (2007)
203-217

Hunt, S.; Sands, D.: On flow-sensitive security types. In: Proc. Principles of
Programming Languages, 33rd Annual ACM SIGPLAN - SIGACT Symposium
(POPL’06), Charleston, South Carolina, USA, ACM Press (2006) 79-90

Hedin, D., Sands, D.: Noninterference in the presence of non-opaque pointers.
In: CSFW ’06: Proceedings of the 19th IEEE Workshop on Computer Security
Foundations, Washington, DC, USA, IEEE Computer Society (2006) 217-229
O’Neill, K.R., Clarkson, M.R., Chong, S.: Information-flow security for interactive
programs. In: 19th IEEE Workshop on Computer Security Foundations, Washing-
ton, DC, USA, IEEE Computer Society (2006) 190-201

Banerjee, A., Naumann, D.A.: Secure information flow and pointer confinement in
a java-like language. In: CSFW ’02: Proceedings of the 15th IEEE Computer Secu-
rity Foundations Workshop (CSFW’02), Washington, DC, USA, IEEE Computer
Society (2002) 253

Sun, Q., Naumann, D.A., Banerjee, A.: Modular and constraint-based informa-
tion flow inference for an object-oriented language. In: 11th International Static
Analysis Symposium. (2004)

Pottier, F., Simonet, V.: Information flow inference for ml. ACM Trans. Program.
Lang. Syst. 25(1) (2003) 117-158

Zdancewic, S., Myers, A.C.: Secure information flow via linear continuations.
Higher Order Symbol. Comput. 15(2-3) (2002) 209-234

Tse, S., Zdancewic, S.: Run-time principals in information-flow type systems. ACM
Trans. Program. Lang. Syst. 30(1) (2007) 6

Zheng, L., Myers, A.: Dynamic security labels and noninterference. In: FAST’04:
Workshop on Formal Aspects in Security and Trust, Boston, MA, USA, Springer
(2004) 27-40

Appendix: Proofs

Theorem 1 (Invariants).

VS € SState; E1, E2 € Env; M1, My € Memory; P € Programe
P verifies Assumption 1

S.dl =10

Eq(il) = E2(dl)

SM(S, Ey, My, P) = (S, E1, M)

SM(S, Es, M2, P) = (S5, E5, M3)

= E1(il) = E5(il) A S1.m = Sy.m

=

jun
~

—~ o~~~
a s
ot w
NOENSENG NN

Proof. The proof is by induction on the program structure. Assume x € VAR and
e € Expr. The base cases skip, read(ih, x), write(ol, e) and write(oh, e) follow directly
from H4-H6 and the corresponding SM rule.

x = e| Ej(il) = E4(il) from SM- := and H3. LS- := and SM- := imply Si.m =
LS(S.m,x := e) and Sy.m = LS(S.m,x := €), then S{.m = Sy.m.

*T 1= e] This case is proved as the previous one.

read(il,)] Follows immediately from SM-read(il) and H3.

For the inductive cases, we assume that P, Py € Program are programs verifying
the theorem; we call these HI and HI1, respectively .
if] We proceed by cases according to SM-if .

eval(S.m,e) A eval(Mi,e) A eval(Mz, e). Then from SM-if

SM(S, FE1, M,,if e then P fl) = SM(S, El,M1,P)

;5’1\4(57 FEs, Mz, if e then P fl) = ;5’1\4(57 Fs, Mz, P)

Hence this case is proved by HI.

Cases eval(S.m, e) A eval(Mi, e) A —~eval(Ma, e) and eval(S.m,e) A —~eval(My,e) A
—eval(Ma, e) in a similar way.

—eval(S.m,e) A eval(Mi, e) A eval(Maz, e). Then from SM-if
SM(S, Ey, My, if e then P fi) = (Sy, Ey, SM (S, E1, My, P).3)
SM (S, Ea, My, if e then P fi) = (S, E2, SM (S, Ea, Ms, P).2)
where E;(il) = E1(il) and Fs(il) = Fa(il) from SM-if

Hence this case is proved by H3.

Case —eval(S.m, e) A eval(My,e) A —eval(Ma, e) is proved in a similar way. While
—eval(S.m, e) A —eval(Mi, e) A ~eval(Ma, e) is trivial from SM-if .

Whi|e] This is similar to the previous one but it is necessary to apply the induction
principle over the number of iterations of the loop, in each case. This is possible due
to H1.

composition] From SM- ; we have

SM(S,E1, My, P ; P1)

=SM(SM(S, E1,M,,P),LS(M,, P), P\) = SM (S}, E1, M, P;)
SM(S, Ea, M2, P ; Py)

= SM(SM(S, Ea2, M2, P), LS(M>, P), P\) = SM(Sy, E3, M3, P1)

Since S1.m = S5.m and Ei(il) = F3(il) from HI, then we can apply HIl to
SM(S1, E1, M1, P1) and SM (S5, E5, M3, P1), and from here the theorem.

Theorem 2 (Noninterference).

VS € SState; Fr, E2 € Env; My, My € Memory; P € Programe

P verifies Assumption 1 (H1)
S.dl =10 (H2)
Eq(il) = E2(il) (H3)
Ei(ol) = E2(ol) (H4)
SM(S, E1, My, P) = (S, E1, M7) (H5)
SM(S, B2, M2, P) = (S3, E%, M3) (H6)

= FE1(ol) = E5(ol)

Proof. The proof is by induction on the program structure. Assume x € VAR and
e € Expr. The base cases skip, = := e, xx := e, read(il, z), read(ih, x), write(ol, e) and
write(oh, e) follow directly from H4-H6 and the corresponding SM rule.

For the inductive cases, we assume that P, P; € Program are programs verifying
the theorem; we call these HI and HI1, respectively .
if] We proceed by cases according to SM-if .

eval(S.m,e) A eval(Mi, e) A eval(Mz, e). Then from SM-if
SM(S, Ey, My,if e then P fi) = SM(S, Ey, M1, P)

SM(S, E2, My, if e then P fi) = SM (S, E2, M3, P)

Hence this case is proved by HI.

Cases eval(S.m, e) A eval(Mi,e) A —~eval(Ma, e) and eval(S.m,e) A —~eval (M, e) A
—eval(Ma2, e) are proved in a similar way.

—eval(S.m, e) A eval(Mi,e) A eval(Ma,e). Then from SM-if
SM (S, E1, My, if e then P fi) = (S, E1,SM(S, E1, M1, P).3)
SM(S, B2, My,if e then P fi) = (S, E2, SM(S, E2, M2, P).2)
where E;(ol) = E1(ol) and Ez(ol) = Ea(ol) from SM-if
Hence this case is proved by H4.

Case —eval(S.m,e) A eval(Mi,e) A meval(Ma, e) is proved in a similar way. While
—eval(S.m, e) A meval(Mi, e) A —eval(Ma, e) is trivial from SM-if .

while] This is similar to the previous one but it is necessary to apply the induction
principle over the number of iterations of the loop, for each case. This is possible due
to HI1.

composition] From SM- ; we have

SM(S, E1, M1, P ; Pr)
=SM(SM(S, E1, M1, P),LS(M,P),P) = SM(S{,E{, M{,Pl)
SM(S, EQ,MQ,P 3 P1)
= SM(SM(S, Ea, M2, P), LS(M>, P), P\) = SM(S4, E4, M3, Py)
Since S1.m = S5.m and E{(il) = F3(il) from Theorem 1 and E{(ol) = E3(ol) from

HI, then we can apply HI1 to SM(S1, E1, M1, Pr) and
SM(S3, E5, M3, P1), and from here the theorem.

