
Pruning Testing Trees in the Test Template Framework by
Detecting Mathematical Contradictions

Maximiliano Cristiá
Flowgate Consulting and CIFASIS

Rosario – Argentina
mcristia@flowgate.net

Pablo Albertengo
Flowgate Consulting
Rosario – Argentina

palbertengo@flowgate.net

Pablo Rodrı́guez Monetti
Flowgate Consulting and UNR

Rosario – Argentina
prodriguez@flowgate.net

Abstract—Fastest is an automatic implementation of Phil
Stocks and David Carrington’s Test Template Framework
(TTF) [1], a model-based testing (MBT) framework for the
Z formal notation. In this paper we present a new feature
of Fastest that helps TTF users to eliminate inconsistent test
classes automatically. The method is very simple and practical,
and makes use of the peculiarities of the TTF. Perhaps its
most interesting features are extensibility and ease of use, since
it does not assume previous knowledge on theorem proving.
Also we compare the solution with a first attempt using the
Z/EVES proof assistant and with the HOL-Z environment. At
the end, we show the results of an empirical assessment based
on applying Fastest to four real-world, industrial-strength case
studies and to six toy examples.

I. INTRODUCTION

In [2] we presented Fastest1, the first automatic tool that
partially implements the Test Template Framework (TTF).
The TTF is a framework for model-based testing (MBT)
specially well suited for unit testing from Z specifications
proposed by Phil Stocks and David Carrington in [1] [3] [4].
Within the TTF the input space of a Z operation is parti-
tioned into so called test classes2 which form a testing tree
as shown in Fig. 2. Stocks and Carrington suggest that test
cases should be derived only from the leaves of such trees.
However, due to the peculiarities of the TTF, there might be
leaves from which it is impossible to get a test case because
either their predicates are contradictions or they contain
some undefined term. Then, these leaves should be pruned
from the testing tree prior to start the process of deriving
test cases. Hence, the problem of pruning testing trees is
the problem of determining either those test classes that are
satisfiable or those test classes that are unsatisfiable. The first
approach implies to build a SMT-like tool but implementing
the whole Z mathematical toolkit [5]—certainly not a trivial
task given the number of different theories defined in the
toolkit. Precisely, the rich mathematical language used by Z
specifiers makes the problem of pruning testing trees harder
because most of the contradictions are due to mathematics

1Fastest is publicly available at http://www.flowgate.net in the
Tools section.

2Also called test objectives, test specifications, test templates, etc.

and not to logic. In this paper, on the other hand, we present
an implementation of the second approach which is closer to
automatic theorem proving, although it is far more simple.

The problem of pruning inconsistent test classes is as
important as the problem of finding test cases from satis-
fiable test classes. This is so because of two reasons. First,
the TTF tends to yield a large number of unsatisfiable test
classes. Second, since the problem of determining the set of
satisfiable test classes is undecidable, any automatic method
for finding test cases will yield an incomplete answer. If
such a method could not find a test case for a given test
class, is it because the test class is unsatisfiable or is it
because the method is (necessarily) incomplete? Likewise,
any automatic method for pruning inconsistent test classes
will also be incomplete—because of undecidability, too.
Precisely, these are the reasons for which a tool like Fastest
must implement both methods: they will complement each
other, leaving to manual inspection just a small fraction of
all test classes. In [2] we presented a simple but practical
method for finding test cases from test classes—on average,
our method can find a test case for 90% of the satisfiable
test classes. Similarly, we devised the method introduced in
this paper with essentially one goal in mind: to dramatically
reduce the time needed to prune unsatisfiable test classes
from testing trees produced by the TTF.

The paper is structured as follows. The next section
presents a brief introduction to the TTF. Section III is the
core of the paper where we introduce our method. We
analyse how to certify a key aspect our method in Sect. IV.
Section V presents the results of an empirical assessment
of the implementation. Our work is compared with similar
approaches in Sect. VI, particularly against using theorem
provers. Finally, Sect. VII describes our conclusions and
future work.

II. THE TEST TEMPLATE FRAMEWORK

In this section we introduce the TTF by means of an
example, without mention any particular implementation or
tool—for a deeper introduction see [2] or the original work
[1]. We assume the reader is fluent in the Z notation [6].

[SENSOR]
MaxReadings == [smax : SENSOR 7→ Z]

KMROk
∆MaxReadings
s? : SENSOR; r? : Z

s? ∈ dom smax
smax s? < r?
smax′ = smax⊕ {s? 7→ r?}

KMRE2
ΞMaxReadings
s? : SENSOR
r? : Z

s? ∈ dom smax
r? ≤ smax s?

KMRE1 ==
[ΞMaxReadings; s? : SENSOR | s? 6∈ dom smax]

KMR == KMROk ∨ KMRE1 ∨ KMRE2

Figure 1: A Z model for a simple pool of sensors.

A. A Simple Pool of Sensors

The Z model of Fig. 1 describes a simple pool of sensors
which records the highest reading of each sensor. The KMR
operation3 takes as input a sensor ID, s?, and a reading, r?,
of it. If s? is a valid ID and if r? is greater than the current
reading of s?, KMR replaces the current reading with r?. If
some condition does not hold, then the operation fails and
nothing is changed.

B. Testing Tactics, Test Classes and Testing Trees

The TTF starts by defining, for each Z operation, the input
space (IS) and the valid input space (VIS). The IS is the set
defined by all of the possible values of the input and state
variables of the operation. For instance, the IS of KMR is:

IS == [smax : SENSOR 7→ Z; s? : SENSOR; r? : Z]

In turn, the VIS is the subset of the IS for which the
operation is defined. The VIS of KMR is equal to its IS
since the operation is total. More formally, the VIS of an
operation Op can be defined as follows:

VISOp == [ISOp | pre Op]

Stocks and Carrington suggest to divide the VIS into
equivalence classes, called test classes, by applying one
or more testing tactics4. The test classes obtained in this
way can be further subdivided into more test classes by
applying other testing tactics. This procedure continues until
the engineer is satisfied with the test coverage. Within the
TTF all these test classes are represented as a testing tree,
as shown in Fig. 2. Test cases are taken only from the leaves
of the testing tree.

3KMR stands for KeepMaxReadings.
4Also called testing strategies.

The authors of the TTF defined a number of testing tactics
that together provide a sound method for calculating tests
objectives. Furthermore, they propose that new tactics should
be added for particular projects, systems, requirements, etc.
We will apply two testing tactics to KMR described in [1].
First we apply Disjunctive Normal Form (DNF) to the VIS
and then Standard Partitions is applied to the expression
smax s? < r? of KMROk. The resulting testing tree is shown
in Fig. 2. Some of the nodes of the testing tree are shown in
Fig. 3 as Z schema boxes. We chose to include in the figure
only unsatisfiable classes since this is the main issue of this
article.

The second step of the TTF methodology suggests to
prune the unsatisfiable test classes from the testing tree,
because it is impossible to find test cases from them.
For instance, classes KMR SP 9 and KMR SP 14 must
be pruned, among others—see Fig. 3. The predicate of
KMR SP 9 is unsatisfiable because smax s? is undefined
since s? 6∈ dom smax, while KMR SP 14 is inconsistent
because its predicate is an arithmetic contradiction.

Stocks and Carrington do not give any recipe on how
pruning can be automated within the TTF. Such a method is
the core of this article and, as far as we know, it is the first
proposal specifically tailored to the TTF, although it might
be interesting for other approaches as well.

The TTF follows with finding at least one element for
each of the remaining leaves of the testing tree. This step is
explained in [2] and [3].

III. DETECTING MATHEMATICAL CONTRADICTIONS

Fastest applies DNF by default thus making all the test
class predicates to be conjunctions of atomic predicates.
The other testing tactics implemented in Fastest conjoin
more atomic predicates to those already appearing in the
test classes, as prescribed by the TTF. Hence, the leaves of
any testing tree are conjunctions of atomic predicates. On
the other hand, we have said that it is impossible to find
an abstract test case out of a test class when: (a) the class
predicate is a contradiction, or (b) there is some undefined
term within the predicate (as in class KMR SP 6 shown in
Fig. 3). Our method treats contradictions and undefinition in
the same way, so in the rest of the paper we will simplify
the exposition talking only about contradictions.

Since the predicate of a leaf in a testing tree is a
conjunction of atomic predicates, then the predicate is a
contradiction if and only if: (i) there exist atomic predi-
cates p and ¬ p in it, or (ii) there is some mathematical
contradiction between two or more atomic predicates. The
first kind is easy to deal with, the second kind is the core
of the problem.

Let us analyze the other unsatisfiable test classes shown
in Fig. 3, in order to have an idea of what are typical
contradictions. SCAddCat SP 1 is unsatisfiable because the
proposition {c?} = {} is false; in SCAddCat SP 5 the

Figure 2: Testing tree of KMR.

KMR SP 9
smax : SENSOR 7→ Z
s? : SENSOR; r? : Z

s? 6∈ dom smax
smax s? = 0
r? > 0

KMR SP 14
smax : SENSOR 7→ Z
s? : SENSOR; r? : Z

s? ∈ dom smax
r? ≤ smax s?
smax s? = 0
r? > 0

SCAddCat SP 1
level : Z
categs : P CATEGORY
c? : CATEGORY

c? 6∈ categs ∧ categs = {}
{c?} = {}

SCAddCat SP 5
level : Z
categs : P CATEGORY
c? : CATEGORY

c? 6∈ categs
{c?} 6= {}
categs 6= {} ∧ categs ⊂ {c?}

Del SP 1
procs : PID 7→ PSTATUS
p? : PID

p? ∈ dom(procs−B {waiting})
procs = {}

Deposit SP 18
sa : NSA 7→ BALANCE
n? : NSA
a? : Z

a? ≤ 0
sa = {}
{n? 7→ (sa n? + a?)} 6= {}

Figure 3: Z schema boxes representing unsatisfiable test classes of the KMR example and others.

conjunction categs 6= {} ∧ categs ⊂ {c?} is a contradiction;
in Del SP 1 there is another mathematical contradiction
since p? cannot belong to dom(procs −B {waiting}) when
procs is an empty set; and in Deposit SP 18 the application
sa a? is undefined because sa is empty—note that here the
undefinition comes from a different atomic predicate than in
KMR SP 9, also in Fig. 3.

As the reader can see, some of these contradictions
depend on the particular semantics of the Z mathematical
toolkit, which is different from the semantics of the theories
implemented by some theorem provers—for instance in The
Coq Proof Assistant functions are not sets of ordered pairs.
This situation implies that is not a trivial task to find an
existing tool—either an SMT solver or a theorem prover—
to solve the pruning problem for the Z notation. Indeed, our
first attempt was to use the Z/EVES theorem prover [7], but
it proved to be less effective and efficient than the method
implemented in Fastest as we show in Sect. VI.

Hence, Fastest provides a command named prunett
that analyzes the predicate of each leaf in a testing tree to
determine if the predicate is a contradiction or not. Since
this problem is undecidable, prunett implements a best-
effort algorithm that can be improved by users. The most

important aspect of the algorithm is a library of so called
elimination theorems each of which represents a family of
contradictions. This library can be extended by users by
simply editing a text file. For example, the following two
elimination theorems are included in the library:

ETheorem SingletonIsNotEmpty [x : X]

{x} = {}

ETheorem NotSubsetOfSingleton [A : P X; x : X]

A 6= {}
A ⊂ {x}

Note that the contradiction in SCAddCat SP 1 is an instance
of SingletonIsNotEmpty, while NotSubsetOfSingleton gen-
eralizes the contradiction present in SCAddCat SP 5.

The pseudocode of the pruning algorithm implemented by
Fastest is described in Fig. 4. We illustrate the pseudocode
in Section III-A because first we need to introduce some key
design concepts about the method, as follows.

LATEX: Elimination theorems in the library are written
in LATEX using the CZT package [8], which conforms to the
ISO Standard of the Z notation [9].

Initialization Stage
1) Check the elimination theorems and load them.
2) Combine equivalence rules with the atomic predicates

of every elimination theorem in the library.
3) Convert each elimination theorem into a regular ex-

pression.
When prunett is executed

1) Prune test classes with predicates of the form · · · ∧
p ∧ · · · ∧ ¬ p ∧ · · · .

2) For each leaf predicate P in the testing tree:
a) Convert P into a string.
b) For each elimination theorem T in the library

with formal parameters p1 : T1, . . . , pn : Tn:
i) If P’s atomic predicates pattern-match the

atomic predicates of T , then:
A) If the expressions of P that pattern-

matched the formal parameters of T type-
check against T1, . . . , Tn or their subtypes,
then prune P and start the next iteration
in 2.

End for each.
End for each.

Figure 4: prunett can be run after testing trees have been
generated.

Formal Parameters: Each elimination theorem has a
set of formal parameters enclosed in square brackets. The
parameters must be any legal Z declaration of variables, op-
tionally preceded by the reserved word const. If a parameter
is preceded by const it means that Fastest will replace it
only by constants of the corresponding type. const applies
only to parameters of type Z, N or any enumerated type (i.e.
free types without induction). When an elimination theorem
contains two or more constant parameters, they are replaced
only by different literals. For instance, the library contains
the following elimination theorem:

ETheorem ExcludedMiddle [x, const y, const z : X]
x = y
x = z

which is applied only with y 6= z. For
example, ExcludedMiddleEq(n,1,3), but never
with something like ExcludedMiddleEq(n,
3,3) nor ExcludedMiddleEq(n,count,1).

The Body of Elimination Theorems: The predicate of
an elimination theorem must be a conjunction of atomic
predicates. An atomic predicate in an elimination theorem
must be any legal Z atomic predicate using the standard
symbols of Z supported by Fastest, the names of the formal
parameters or the reserved words somewhere, anything
and eval, which are explained below.

Somewhere: somewhere takes a parameter consisting
of a Z LATEX string. For instance, the library contains the
following elimination theorem:

ETheorem BasicUndefinition [f : X 7→ Y; x : X]
x 6∈ dom f
somewhere(f x)

somewhere(string) is rather similar to the regular ex-
pression ∗string∗—for a full description of the semantics see
[10]. When the algorithm finds such a directive it tries to
match the regular expression in any of the atomic predicates
of a test class’ predicate.

Anything: anything is equivalent to the regular expres-
sion that matches any string (∗). Two or more occurrences
of this directive can match different strings. For example,
the following theorem uses this directive:

ETheorem SetNotASeq [s : seq X; n : N]
n = 0
s 6= {}
dom s =

dom{i : 1 . . anything • i + n− 1 7→ anything}

Evaluations: eval takes a constant Boolean expression
and returns true or false. A constant Boolean expression is
a Boolean expression using parameters preceded by const,
Z literals, Z operators or the literals of enumerated types.
The following elimination theorem uses this directive:

ETheorem RangeNotEmpty [n, const N, const M : N]
eval(N ≤ M)
n + N . . (n + M) = {}

This sentence evaluates the Boolean expression; if it is
true and all of the other conjuncts of the theorem are found
in the test class, then the test class is pruned. If the Boolean
expression evaluates to false, the test class is not pruned.

Equivalence Rules: Fastest applies equivalence rules,
taken from the library, to the elimination theorems whenever
possible. Besides, it applies by default the rules listed in
Table 5a. This implies, for instance, that the engineer does
not need to write the following theorem:

ETheorem NotInEmptyDom Silly [x : X; R : X ↔ Y]
x ∈ dom R
dom R = {}

because the library already contains the following one:

ETheorem NotInEmptyDom [x : X; R : X ↔ Y]
x ∈ dom R
R = {}

and the equivalence rule R = {} ⇔ dom R = {}. Equiva-
lence rules are lists of atomic predicates which should be
equivalent to each other.

Integers n < m m > n
n > m m < n
n ≤ m m ≥ n
n ≥ m m ≤ n

Sets A ∩ B B ∩ A
A ∪ B B ∪ A

All types x = y y = x
x 6= y y 6= x

(a) Equivalence rules.
Type Subtype

X ↔ Y X ↔ Y , X 7→ Y , X → Y , seq Y
X 7→ Y X 7→ Y , X → Y , seq Y

Z Z, N
(b) Subtyping rules

Figure 5: Fastest applies by default these equivalence and
subtyping rules.

Subtyping Rules: Fastest also applies some simple
subtyping rules when substitutes the formal parameters of
an elimination theorem or equivalence rule by actual pa-
rameters. A subtyping rule determines whether a type or set
is a subtype of another type or set5. For instance X → Y is
a subtype of X 7→ Y which in turn is a subtype of X ↔ Y .
The subtyping rules applied by Fastest are listed in Table
5b.

A. The Algorithm

In this section we will comment the pseudocode listed
in Fig. 4. The algorithm is implemented in Java and is
based essentially on regular expressions, pattern matching
and string search. Basically, each elimination theorem is
converted from a set of Java objects into a regular expression
and the predicate of each test class is converted into a
string6. Then, we simply try to match the string against
the regular expression. Regular expressions become rather
complex because they include back references to capture
the actual parameters that match in a test class’ predicate
[11], alternatives to capture equivalence rules, etc.

Next, we explain in more detail step 2 of the initialization
stage and step 2(b)iA of prunett. During initialization,
Fastest loads the elimination theorem library, parses it,
builds an AST, and checks some consistency issues of each
elimination theorem, all this is performed with the tools
provided by the CZT project [8].

In step 2 of the initialization stage equivalent rules are
combined with the elimination theorems as alternatives of
regular expressions. As we have said, equivalent rules are

5It should be noted that the notions of type and subtype in Z are not as
strong as in other typed formalisms or tools such as Coq or PVS. For this
reason we do not give a more precise definition of subtyping.

6Actually, both regular expressions and strings are also Java objects but
of very different types.

lists of atomic predicates. If e1, . . . , en is an equivalent rule
and there is an atomic predicate p in an elimination theorem
which happens to be a pattern for some ei, then the algorithm
replaces p by e1 | · · · | en—where | is the “or” operator
for regular expressions—conveniently changing the formal
parameters in all the ei for the formal parameters of p. For
instance, if the equivalence rule is R = {} ⇔ dom R = {}
and the atomic predicate is R ⊕ G = {}, then the atomic
predicate becomes R⊕ G = {} | dom(R⊕ G) = {}.

Once the library was successfully loaded and there is at
least one testing tree, the user can run prunett. If the
string form of a test class’ predicate matches against the
regular expression form of an elimination theorem, then in
step 2(b)iA we type-check the substrings of the former that
matched against the formal parameters of the latter—this
matching is implemented with back references [11]. If this
last check passes then the test class is pruned. The substrings
that matched against the formal parameters are converted
back onto objects of the AST. Then, this objects and the
object-oriented form of the elimination theorem are used to
perform the type-checking by means of the tools provided
by CZT. This type-checking includes the subtyping rules
mentioned above, as follows. If an elimination theorem has
a parameter of type U then, any expression whose type
is a subtype of U is considered to type-check against U.
Hence, if there is a test class containing a term f of, say,
type N 7→ CHAR, then the parameter R of the elimination
theorem NotInEmptyDom shown above will be substituted
by f because X 7→ Y is a subtype of X ↔ Y , N matches X
and CHAR matches Y .

B. Distributed Pruning

Fastest is a distributed system [2]. The user can configure
the tool to distribute some tasks. When Fastest runs on a
single computer we say it runs in application mode and
when it runs on more than one we say it is in distributed
mode. When running in distributed mode, prunett sends
test classes to different testing servers so they can prune
them in parallel.

At the beginning of our research we thought distributed
pruning would be faster than assigning the task just to the
client computer. However, the algorithm proved to be so
fast in application mode (see Sect. V) that we need to further
experiment to see when distribution is actually an aid or not,
because of the time penalization incurred during network
transmission, synchronization, etc.

C. Discussion of the Method

After implementing the basic features of Fastest we ap-
plied it to some of the case studies listed in Table I at
page 8 [2]. We quickly discovered three facts: (a) TTF’s
testing trees tend to have a large number of unsatisfiable test
classes; (b) all of them correspond to a few dozens of trivial
mathematical contradictions; and (c) new projects or new

testing tactics might produce new kinds of contradictions.
Initially, we considered SMT solvers but it was impossible
to find one implementing the Z mathematical toolkit [5]. Our
first approach was, then, to use a general theorem prover as
suggested in [12]. So, we used Z/EVES to prune testing
trees as is described in Sect. VI-A. It worked reasonably
well but it did not prune all the unsatisfiable test classes and
it took too long in some experiments (see Table II at page 9).
Besides, it was not clear how users would extend the method
without learning theorem proving. Then, we thought it would
be interesting to try out something specifically tailored to the
TTF.

From the very beginning we knew that a complete solution
was impossible. Hence, we devised a method that should
work in practice, although it might not be sophisticated
nor elegant. For us, to “work in practice” means that at
least 80% of the unsatisfiable test classes appearing in
real specifications should be pruned with minimum user
intervention; it means an engineering or statistical solution,
not necessarily a completely formal solution—after all, we
are dealing with testing. Furthermore, if the method could be
improved as new projects were executed, then the “work in
practice” criteria might be reached as times goes and more
users work with the tool.

Our empirical results confirm that the method presented
in this paper meets, and perhaps exceeds, our “work in
practice” criteria—see Sect. V. From the method description
it is easy to see that the more elimination theorems in the
library, the more test classes will be pruned by prunett
without user intervention. However, what if it worked just
for the models with which we experimented? Is it sufficiently
general? Since the method is based on maintaining a library
of elimination theorems, how general are them? How many
contradictions can they represent? We think the answer is
in the fact that the language to write elimination theorems
is essentially the same than the language in which the
contradictions that have to be detected are written: i.e. the
Z notation. Then, if elimination theorems and contradictions
are both expressed in the same language, there is no reason
to believe that some contradiction cannot be detected. In
the worst case, users can add elimination theorems that are
exactly the same as the contradictions they are seeing in
test classes. For instance, if the contradiction in a test class
is x = 73 ∧ x = 12, then the corresponding elimination
theorem might be:

ETheorem 73neq12 [x : Z]
x = 73
x = 12

However, writing the same number of elimination the-
orems than the contradictions appearing in every project,
is as impractical as inspecting test classes by hand. As
Table I at page 8 shows, the method pruned more than
2,000 unsatisfiable test classes with only 52 elimination

theorems. This was possible because the language allows
users to write highly parametrized elimination theorems,
making them general patterns of mathematical contradic-
tions. This generality is achieved through: the name and
type of parameters, subtyping and equivalence rules and
the somewhere, anything and eval directives. In this way
73neq12 became ExcludedMiddle shown at page 8.

Furthermore, due to the peculiarities of the TTF many
elimination theorems can be predicted and, thus, can be in-
cluded in the library before starting a new project. In effect,
since testers known in advance the list of available testing
tactics they can foresee some contradictions as the result of
applying them. For instance, if the Standard Partition defined
in [1] for the set union operator, ∪, is going to be applied,
then it is easy to predict that there will be test classes of the
form x ∈ A ∧ A = ∅, where the first atomic predicate is part
of the specification of a given operation and the second is
added as the result of applying the tactic. Therefore, testers
might add elimination theorems before using Fastest so they
have a certain warranty that many test classes will be pruned
without their intervention, even in the first project.

Finally, we want to make it clear that the method does
not make any kind of deduction as theorem proves do. This
means that if there is an elimination theorem T of which C
is a matching contradiction and C′ is another contradiction
deducible from C, then if C′ is not an instance of T a
new elimination theorem must be added in order to prune
C′. Of course, that reasoning must take into consideration
equivalence and subtyping rules and the other generalization
mechanisms.

IV. CERTIFIED ELIMINATION THEOREMS

The user has the responsibility of maintaining the elimi-
nation theorem library. However, this possibility involves a
risk: the user might add an elimination theorem which does
not actually represent a contradiction. Adding an invalid
elimination theorem might result in pruning satisfiable test
classes, which in turns means less test cases.

To avoid this risk, users should (formally) prove that
what they think is a contradiction, really is. This process
is sometimes called certification because it involves a proof
assistant. We have used Z/EVES to certify 50 of the 52
elimination theorems of Fastest’s library. Those elimination
theorems that were not certified make use of the reserved
word somewhere which is not easy to represent in Z. We
will further investigate how to certify them too.

Since the Z syntax expected by Z/EVES is different from
the Z standard (the one used by Fastest), the presence of eval
and other directives, and the fact that elimination theorems
are the opposite of a theorem, we had to make some minor
adjustments to the library in order to export it to Z/EVES.
The changes were the following:
• Change the way in which formal parameters are written.
• Negate the predicate of the elimination theorem.

• Add the conditions of the eval sentences.
• Appropriately remove the anything directives.
• When const is used for two or more parameters, add

a predicate stating that all these parameters are distinct
from each other.

For instance, RangeNotEmpty (see page 4) must be trans-
lated into:

Theorem RangeNotEmpty
∀ n, N, M : N •

¬ (N 6= M ∧ N ≤ M
∧ n + N . . (n + M) = {})

After exporting the library we loaded the theorems in
Z/EVES and made the 50 proofs7. 33 (66%) of the proofs
required only the prove command (i.e. we can say those
proofs were automatic), we had to introduce five lemmas to
prove only 5 (10%) of the theorems because their proofs are
rather complex, and 12 (24%) required more than one proof
command but we made no use of the lemmas.

This way of certifying elimination theorems is not in-
tended to be performed by end users. We included it in
this paper for two reasons: (a) it shows another area where
theorem provers and MBT can be combined; and (b) it shows
that most elimination theorems are so simple that can be
proved automatically. We think that any software engineer
who is used to the Z formal notation could write other
elimination theorems as they are needed. A full production
version of Fastest could provide certification in two different
ways: (a) as a service provided by the builder; and (b) as a
seamless integration with a theorem prover.

V. EMPIRICAL ASSESSMENT

We devised this method with essentially one goal in mind:
to reduce the time needed to prune unsatisfiable test classes
from testing trees produced by the TTF. To reduce this
time, automation, and consequently performance, were the
keys. Since the problem is undecidable, full automation
was impossible. Then, we thought in a method whose
level of automation would grow from project to project
as users improve it with more information. Ease of use or
simplicity became, then, key success factors. This empirical
assessment was made to measure whether the method meets
our expectations or not. Hence, we run ten experiments to
measure: (a) how much computing time prunett needs
to prune testing trees; (b) how many elimination theorems
need to be added from project to project in relation with
the new mathematical theories used in new projects; and (c)
how complex elimination theorems may be.

These parameters were measured by applying Fastest to
the ten case studies shown in Table I. Six of them are toy
examples borrowed from the literature or proposed by us,

7The theorems and proof scripts ready to be loaded into Z/EVES are
available at http://www.flowgate.net in the Tools section.

while the remaining four are real-world, industrial-strength
problems. These case studies belong to eight different ap-
plication domains. More detailed descriptions of the first
eight are available in [2, page 179], the ninth is explained
in Sec. VI-B and the last is similar to Plavis. In these
case studies testing trees were built by applying two or
more testing tactics—DNF and some other tactics since
the former is applied by default. Table I gives both an
idea of the complexity of the Z models and the results of
each experiment. Columns are as follows8: LOZC stands
for number of lines of Z code (in LATEX format), State
indicates the number of state variables; Op gives the number
of Z operations involved in the experiment; Classes is the
total number of leaves right after generating the testing
trees; Atomic is the average number of atomic predicates
present in the test classes (this average was calculated
for all the operations of column Op); U is the number
of unsatisfiable test classes (manual analysis); Th is the
cumulative number of elimination theorems necessary to
prune all the unsatisfiable test classes; PC is the number of
possible contradictions found in average in each unsatisfiable
test class; Time is the time needed to prune; Theories are
the new mathematical theories used by each case study with
respect to the previous ones.

Two columns deserve some comments. In PC we tried
to detect how many contradictions are in each test class.
Unfortunately, the algorithm is not prepared to provide
accurately such information, because once it finds an elim-
ination theorem that can prune a test class it stops search-
ing. However, Fastest provides another command, called
searchtheorems, which returns a list of the elimination
theorems that might prune a given test class. Then, in
column PC we report the average of results returned by that
command. Therefore, column PC shows that, in average,
there might be more than one contradiction in each test
class. The Steam Boiler case study is particular in this regard
because Fastest found only logical contradictions, i.e. no
mathematical contradiction was found. As can be seen from
the table, the number of possible contradictions tends to
increase with the number of atomic predicates, as would
be expected since test classes are built automatically from
general testing tactics.

To better explain the meaning of the column labeled
with Th, consider the following. Initially, we set up an
elimination theorem library containing only the next three
elimination theorems, which are related to logic and typing
rather than to mathematics:

ETheorem NatDef [n : N]
¬ 0 ≤ n

ETheorem Reflexivity [x, const y : X]

8Some are self explanatory.

Case Study R/T LOZC State Op Classes Atomic U Th PC Time Theories
Pool of Sensors Toy 46 1 1 15 8.3 8 7 2.2 0.5s Integer inequalities
Symbol Table Toy 78 1 3 26 7.2 16 16 2.3 0.6s Basic set theory
Lift Toy 152 6 3 17 12.6 1 17 4 0.5s
Security Class Toy 172 4 7 36 9.2 16 17 2.6 0.8s
Savings Accounts Toy 171 1 5 97 8.4 75 20 3.7 3s Relational domain
Scheduler Toy 240 3 10 213 10.3 164 33 3.2 7s Cardinality, singletons, relational range
Plavis Real 608 13 13 232 13.1 50 38 3.7 15s Sequences
SWPDC Real 1,238 18 17 201 27.0 56 52 5 31s Integer ranges
Steam Boiler Real 591 12 1 400 7.5 336 52 lc 3s
ECSS-E-70-41A Real 774 13 5 1,226 18.8 856 52 5.8 2m18s

Table I: Summary of the experiments. All the experiments were conducted over the same hardware and software platform:
an Intel Centrino Duo of 1.66 GHz with 1 Gb of main memory, running Linux Ubuntu 8.04 with kernel 2.6.24-24-generic
and Java SE Runtime Environment (build 1.6.0 14-b08). Fastest was run in application mode with the following command
java -Xss8M -Xms512m -Xmx512m -jar fastest.jar.

x 6= y
x = y

ETheorem ExcludedMiddle [x, const y, const z : X]

x = y
x = z

Then, the simplest model (Pool of Sensors) was loaded
in Fastest, testing tactics were applied, testing trees were
generated, and finally prunett was executed—we call this
the script. If prunett could not prune all the unsatisfiable
test classes, then we extended the library with the minimum
amount of elimination theorems to do that, and the script
was run again. In other words, the three initial elimination
theorems could not prune all of the unsatisfiable test classes
of the first case study, so we added four new elimination
theorems making a total of 7. At this point we measured
the computing time needed to prune. This procedure was
repeated for all the case studies in increasing order of
complexity (LOZC), except for the last two which were
executed at the end because they have considerable more
leaves and add no new mathematical theories. For instance,
in order to prune all the test classes of the second case
study we needed to add 9 elimination theorems, yielding
a total of 16 for the second experiment. Again, at this point
we measured the pruning time for the experiment. Tables II
and III, studied in Sect. VI, will give more insight on the
performance and effectiveness of prunett.

In order to determine the ease of use or simplicity of the
method we measured the complexity of elimination theo-
rems. In the library used for conducting the experiments the
largest elimination theorems have three atomic predicates,
but most have two. This is no more complex than the
theorems present in theorem provers’ libraries. Furthermore,
the atomic predicates appearing in the elimination theorems
are simple generalizations of the contradictions found in test
classes, i.e. the user does not need to do any kind of logical
inference or deduction to be able to write them.

Although this empirical assessment might need a bigger
sample set, we think it shows a good tendency that confirms
our expectations. The computing times obtained so far are
excellent compared to the time that manual inspection would
take and with respect to similar approaches—see Sect.
VI. The second measure—that the user intervention will
decrease as new projects are executed—confirms that the
method “works in practice”. Precisely, Table I shows that
every time a model not adding new mathematical theories
is loaded into Fastest, almost no new elimination theorems
are needed—see the rows were column Theories is empty
and compare the values of column Th in those rows with
the same values of their predecessors.

VI. COMPARISON WITH SIMILAR APPROACHES

In this section we compare our work with a first attempt
using the Z/EVES proof assistant, with the results reported
in [12], and with other similar approaches. The key issues
to compare are: the amount of inconsistent test classes that
can be pruned automatically; the computing time required
to prune; and the amount and simplicity of theorems needed
to prune.

A. Pruning Testing Trees with Z/EVES

Before implementing the method described in this paper
we used Z/EVES to prune testing trees. We wrote a bash
script which takes the model and the test classes generated
by Fastest and returns the list of inconsistent test classes
found by Z/EVES. Firstly, the script translates the files into
the LATEX format used by Z/EVES9; secondly, it automati-
cally generates a theorem of the form:

Theorem UNSAT TestClass
¬ TestClass

for each test class and adds the most powerful proof com-
mand, prove by reduce. Then, all this information is

9The translation works only for the case studies; Z/EVES does not accept
the ISO standard for Z.

Case Study Z/EVES Fastest
Pruned Time Pruned Time

Pool of Sensors 3 1s 8 0.5s
Symbol Table 11 2s 16 0.7s
Lift 1 11s 1 0.5s
Security Class 14 4s 16 0.8s
Savings Accounts 45 15s 75 3s
Scheduler 123 26s 160 7s
Plavis 19 6m50s 50 16s
SWPDC 21 16m31s 56 31s
Steam Boiler 159 23m9s 336 3s
ECSS-E-70-41A 728 1h20m51s 856 2m18s

Table II: Pruning with Z/EVES. Fastest was run with a
library containing 52 elimination theorems, and both pro-
grams were run on the platform described in Table I.

Experiments HOL-Z Fastest
DNF F Time DNF F Time

SB 48 14 1m41s 50 14 0.7s
SBW 8 3 5s 8 8 0.5s
SBW DNFs unfolded 42 6 1m36s Impossible
SBW direct 384 ? 22h 400 64 3s

Table III: Comparison with HOL-Z. Helke and his col-
leagues run their experiments on a Sun Ultra-Sparc while
we run them on the platform described in Table I.

loaded into Z/EVES. Finally, the script search the theorems
that were proved.

Table II shows the results of running the script against the
same case studies analyzed in Sect. V. It must be noted that
the mathematical toolkit of Z/EVES contains 565 theorems
and, so far, Fastest’s has 52. As the reader can see, Fastest
outperforms Z/EVES in all the key issues proposed for the
comparison: it prunes more test classes and takes invariably
less time than Z/EVES, with notably less theorems.

B. Test Class Simplification with Isabelle

In [12] the authors apply the Isabelle theorem prover to,
among other things, eliminate unsatisfiable test classes. They
use an encoding of Z in Isabelle, called HOL-Z [13], to
MBT the STEAM BOILER WAITING (SBW) operation of
the steam boiler control software specified in Z [14]. They
recognize the need to eliminate test classes after applying
DNF and show their results in terms of the number of sim-
plified test classes and the computing time needed to do that
for four experiments with SBW. In Table III we reproduce
their results and ours after applying Fastest to the same
experiments. The meaning of the columns is as follows:
DNF is the number of test classes after applying DNF, F
is the same number but after pruning (or simplifying) the
DNF, and Time is the time needed to prune.

Due to space restrictions we cannot include the Z schema
of SBW. We think that the reader should only know that
SBW includes the state schema SteamBoiler (SB) which has
a rather complex state invariant and it, in turn, includes some

other state schema as well. In the first experiment the authors
of [12] apply DNF to the state schema SB without unfolding
the schema references appearing in it. In this way the main
state invariant is written in DNF. In the second experiment
they apply DNF to SBW without unfolding SB and the other
schema references. In the third one, they “unfold the DNF
of SB into the DNF of SBW yielding the test classes for
this schema”. This is impossible to do in Fastest because
simplification is applied after the DNF of the outermost
schema has been calculated. Experiment four “illustrates the
use of exploiting the structure of the specification: unfolding
SB in SBW and trying to compute the test classes in a single
step”.

As the reader can see from Table III, the computing
times shown by Fastest are systematically much better that
those obtained by Helke and his colleagues. Honestly, they
performed the experiments on a Sun Ultra-Sparc while we
did it on a much modern platform. However it is unlikely
that the differences come solely from this, particularly in the
fourth experiment.

On the other hand, our method yields the same number
of test classes after pruning in the first experiment, although
the numbers of test classes after DNF are different. The
number of simplified test classes reported by Helke in the
second experiment is strange because we were unable to
reproduce it neither with Fastest nor with Z/EVES nor by
hand. We believe that these differences might come from
different versions of the steam boiler specification used by
them and us—we obtained it from one of the authors of [14].
In the fourth experiment Helke does not inform the number
of test classes after simplification. In this case the difference
in the number of test classes after DNF comes from the
difference in the same number of the first experiment, i.e.
384 = 48× 8 and 400 = 50× 8.

Considering just these experiments, we can conclude that
Fastest is more efficient and at least as much effective
than the HOL-Z environment in simplifying testing trees.
Furthermore, it is not clear that HOL-Z can easily implement
the TTF beyond calculating the DNF of Z operations. Maybe
the better performance of Fastest steams from the fact that it
was born as a specialized TTF-MBT tool for the Z notation,
while HOL-Z is a Z proof environment mounted, in turn, on
a general theorem prover.

C. Other Approaches

We could not find many other references dealing with the
pruning problem in the context of model-based testing. In
their seminal works, Stocks and Carrignton warn that false
branches must be removed from testing trees [1]. Dick and
Faivre [15] observe that contradictory sub-domains must be
eliminated by applying an extensible set of rules. Most of
the other references report some technique to simplify tests
in some way but in quite different contexts. For example,
perhaps the most recent and complete survey on formal

methods and testing [16] hardly cites the issue of pruning
test classes. In [17] the authors use heuristics to reduce
the search space of test sequences in abstract finite state
machines. C. Meudec in his PhD thesis [18] discusses
simplification for the VDM language. Doong and Frankl
in [19][20] also simplify test sequences in the context of
LOBAS algebraic specifications.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an alternative method to theorem prov-
ing for pruning unsatisfiable test classes from testing trees,
based on codifying contradictions rather than tautologies.
We believe this method follows the seminal ideas of Dick
and Faivre [15], in that they proposed to have an extensible
set of elimination rules. The implementation presents some
interesting features such as performance, extensibility and
ease of use, confirmed by an initial empirical assessment. In
fact, this method has been more useful to us than a theorem
prover in some real-world case studies.

To date, the main feature missed in the method is a
seamless integration with an existing theorem prover. It
would help users to prove that elimination theorems are
valid, to prove properties of specifications prior to load
them on Fastest, and to keep a minimal elimination theorem
library.

Besides, we want to analyze whether and when running
the pruning algorithm in distributed mode is faster than in
application mode.

REFERENCES

[1] P. Stocks and D. Carrington, “A Framework for Specification-
Based Testing,” IEEE Transactions on Software Engineering,
vol. 22, no. 11, pp. 777–793, Nov. 1996.

[2] M. Cristiá and P. Rodrı́guez Monetti, “Implementing and
applying the Stocks-Carrington framework for model-based
testing,” in ICFEM, ser. Lecture Notes in Computer Science,
K. Breitman and A. Cavalcanti, Eds., vol. 5885. Springer,
2009, pp. 167–185.

[3] P. Stocks, “Applying formal methods to software testing,”
Ph.D. dissertation, Department of Computer Science, Univer-
sity of Queensland, 1993.

[4] I. Maccoll and D. Carrington, “Extending the Test Template
Framework,” in Proceedings of the Third Northern Formal
Methods Workshop, 1998.

[5] M. Saaltink, “The Z/EVES mathematical toolkit version 2.2
for Z/EVES version 1.5,” ORA Canada, Tech. Rep., 1997.

[6] J. M. Spivey, The Z Notation: A Reference Manual. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1989.

[7] M. Saaltink, “The Z/EVES System,” in ZUM ’97: The Z
Formal Specification Notation, J. Bowen, M. Hinchey, and
D. Till, Eds., 1997, pp. 72–85.

[8] P. Malik and M. Utting, “CZT: A Framework for Z Tools,”
in ZB. Lecture. Springer, 2005, pp. 65–84.

[9] ISO, “Information Technology – Z Formal Spec-
ification Notation – Syntax, Type System and
Semantics,” International Organization for Standardization,
Tech. Rep. ISO/IEC 13568, 2002. [Online]. Avail-
able: http://standards.iso.org/ittf/PubliclyAvailableStandards/
c021573 ISO IEC 13568 2002(E).zip

[10] M. Cristiá, P. Rodrı́guez Monetti, and P. Albertengo, “The
Fastest 1.3.5 User’s Guide,” Flowgate Consulting, Tech.
Rep., 2010. [Online]. Available: http://www.flowgate.net

[11] Sun Corp., “Class Pattern,” http://java.sun.com/javase/6/docs/
api/java/util/regex/Pattern.html.

[12] S. Helke, T. Neustupny, and T. Santen, “Automating Test Case
Generation from Z Specifications with Isabelle,” in Lecture
Notes in Computer Science. Springer-Verlag, 1997, pp. 52–
71.

[13] Kolyang, T. Santen, and B. Wolff, “A structure preserving
encoding of Z in Isabelle/HOL,” in TPHOLs ’96: Proceedings
of the 9th International Conference on Theorem Proving in
Higher Order Logics. London, UK: Springer-Verlag, 1996,
pp. 283–298.

[14] R. Büssow and M. Weber, “A steam-boiler control specifica-
tion with Statecharts and Z,” in Formal Methods for Industrial
Applications, Specifying and Programming the Steam Boiler
Control. London, UK: Springer-Verlag, 1996, pp. 109–128.

[15] J. Dick and A. Faivre, “Automating the Generation and Se-
quencing of Test Cases from Model-Based Specifications,” in
FME ’93: Proceedings of the First International Symposium
of Formal Methods Europe on Industrial-Strength Formal
Methods. London, UK: Springer-Verlag, 1993, pp. 268–284.

[16] R. M. Hierons and et.al., “Using formal specifications to
support testing,” ACM Comput. Surv., vol. 41, no. 2, pp. 1–76,
2009.

[17] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes,
“Generating finite state machines from abstract state ma-
chines,” in ISSTA ’02: Proceedings of the 2002 ACM SIG-
SOFT international symposium on Software testing and anal-
ysis. New York, NY, USA: ACM, 2002, pp. 112–122.

[18] C. Meudec, “Automatic generation of software tests from
formal specifications,” Ph.D. dissertation, Queen’s University
of Belfast, Northern Ireland, UK, 1997.

[19] R.-K. Doong and P. G. Frankl, “Case studies on testing object-
oriented programs,” in TAV4: Proceedings of the symposium
on Testing, analysis, and verification. New York, NY, USA:
ACM, 1991, pp. 165–177.

[20] ——, “The ASTOOT approach to testing object-oriented
programs,” ACM Trans. Softw. Eng. Methodol., vol. 3, no. 2,
pp. 101–130, 1994.

