
Fastest: a Model-Based Testing Tool for the Z Notation

Maximiliano Cristiá
Flowgate Consulting and CIFASIS

Rosario – Argentina
mcristia@flowgate.net

Pablo Albertengo
Flowgate Consulting
Rosario – Argentina

palbertengo@flowgate.net

Pablo Rodrı́guez Monetti
Flowgate Consulting and UNR

Rosario – Argentina
prodriguez@flowgate.net

Abstract—Fastest is a model-based testing tool for the Z
notation providing an almost automatic implementation of the
Test Template Framework. The core of this document is an
example showing how to use Fastest to automatically derive
abstract test cases from a Z specification.

I. MODEL-BASED TESTING

Model-based testing (MBT) is a well-known technique
aimed to test software systems from a formal model [1], [2].
MBT approaches start with a formal model or specification
of the software, from which test cases are generated, as
shown in Fig. 1. These techniques have been developed and
applied to models written in different formal notations, such
as Z [3], finite state machines and their extensions [4], B
[5], algebraic specifications [6], and so on.

requirements

model

abstract tests

tests outputs

abstract

outputs

¿error?

generate

refine

execute

abstract

verify

verify

Figure 1: The MBT process.

The fundamental hypothesis behind MBT is that, as a
program is correct if it verifies its specification, then the
specification is an excellent source of test cases. As shown
in Fig. 1, once test cases are derived from the model, they
are refined to the level of the implementation language and
executed. The resulting output is then abstracted to the level
of the specification language, and the model is used again
to verify if the test case has detected an error.

II. THE TEST TEMPLATE FRAMEWORK

The Test Template Framework (TTF) described by [3] is a
particular MBT theory specially well suited for unit testing.
The TTF uses Z specifications [7] as the entry models. Each
operation within the specification is analysed to derive or

generate abstract test cases. This analysis consists of the
following steps:

1) Consider the valid input space (VIS) of each Z oper-
ation.

2) Apply one or more testing tactics in order to partition
the input space.

3) Generate test objectives (specifications).
4) Prune inconsistent test objectives.
5) Find one abstract test case from each remaining test

objective.
One of the main advantages of the TTF is that all of

these concepts are expressed in the same notation of the
specification, i.e. the Z notation. Hence, the engineer has to
know only one notation to perform the analysis down to the
generation of abstract test cases.

III. FASTEST

Fastest implements the TTF allowing users to automati-
cally produce test cases for a given Z specification. In [8]
we show how Fastest semi-automates steps 1, 2 and 4 of the
previous list; on the other hand, SEFM 2010 has accepted
another paper written by us where we show how step 3 has
been semi-automated too1. As far as we know, Fastest is the
first MBT tool for the Z notation; surely it is the first one
in implementing the TTF.

As is noted in [5], the TTF method was “quite widely
known and referenced since” its first international publi-
cation. However, perhaps its lack of tool support made
the MBT community to lose interest in it. Actually, the
TTF’s original authors only implemented Tinman [9] but,
as Legeard in his colleagues say, “it was aimed primarily at
providing organization support with little support for manip-
ulating predicates”. In effect, these authors conclude, after
applying the TTF to a case study, that “TTF generation is a
manual process, requiring extensive expertise at manipulat-
ing and simplifying schemas.” Moreover, they found that the
Z/EVES theorem prover [10] was not useful at performing
those tasks since “in this case study the predicates were
too difficult for the automatic simplification commands of
Z/EVES.” Finally, Legeard, Peureux and Utting conclude,

1The accepted paper is “Pruning Testing Trees in the Test Template
Framework by Detecting Mathematical Contradictions”.



among other things, that “a higher level of automation of
the reasoning support would be useful” for the TTF, and
that “BTT2 is better designed for automation than TTF”.

Our intention is to use this tool demonstration to show
that these conclusions are at least doubtful.

IV. ARCHITECTURE AND TECHNOLOGY

Fastest is a Java application that should run on any
platform running Java 1.6 or higher. It is based on the
Community Z Tools (CZT) project [12], thus it reads Z
specifications compliant with the Z ISO standard [13].

The tool was envisioned as a client-server application.
The main reason for thinking of a distributed system came
from the realization that calculating abstract test cases from
test objectives in large projects could be a hard computing
problem, but highly parallelizable as well. Then, we thought
of an scalable application using the idle computer power
present in a corporate network. A typical Fastest installation,
thus, has some client processes and some testing servers.

Users interact with the application through the clients. The
user interface of the client software is text-based, similar to
command-line applications like Linux’s bash, from which
users can issue commands. Fastest asks each testing server to
calculate a test case for a particular test class. Then, the time
to find abstract test cases decreases proportionally with the
number of available testing servers. This parallelization is so
efficient because each calculation is completely independent
from each other; synchronization is only needed when
testing servers communicate a result to a client.

V. AN EXAMPLE

In this section we show how to use Fastest to derive
abstract test cases for the Z specification described in Fig.
2. The specification is about the behaviour of the savings
accounts system of simple bank. Table I summarizes the
meaning of each basic type, state variable and operation.
We think that this table plus the common knowledge about
savings accounts will suffice to understand the model—we
assume the reader is familiar with the Z notation.

The goal is, thus, to automatically derive abstract test
cases—i.e. test cases written in Z—from this model by using
Fastest. These abstract test cases can then be refined into
a programming language—but this is out of the scope of
this demonstration. As we have said, Fastest implements
the TTF so we must follow it to derive abstract test cases.
The next sections roughly follows the steps of the TTF as
implemented by Fastest. Please, see the user manual for
more details.

A. Writing the Specification

The specification must be written in the standard Z LATEX
mark-up [13] using any text editor. We suggest, however,

2BTT is a similar method for the B notation [11].

to use Eclipse [14] with the CZT [15] and TeXlipse [16]
plugins.

B. Launching Fastest

Fastest is executed from a command line issuing the
following command from the installation directory:

java -jar fastest.jar

As we have said, the tool features a text-based user
interface which prints a prompt and waits for commands:

Fastest>

C. Loading the Specification and Selecting Operations

Assuming the LATEX file containing the specification is
located in the installation directory, the specification is
loaded with:

loadspec bank.tex

Once the specification has been successfully loaded the
user has to select those schemas that represent the operations
to be tested. Each operation is selected by entering a
command like this:

selop NewClient

We want to test, also, the following operations:

selop NewAccount
selop Deposit
selop Withdraw
selop CheckBalance
selop AddOwner

D. Adding Testing Tactics

Testing tactics are the means proposed by the TTF to
partition the VIS of a given operation. The more testing
tactics added to an operation the more abstract test cases
will be generated. However, it is not only a matter of adding
many testing tactics but, better, the most promising ones for
each operation. Fastest adds to any operation a testing tactic
named DNF [8]. DNF is the first tactic to be applied. The
user can add other tactics with, for instance:

addtactic NewClient SP \cup
clients \cup \{u? \mapsto name?\}

In this example we add the following tactics, although
they might not be the best choice, since we just want to
make a demonstration of Fastest’s capabilities.

addtactic NewAccount SP \notin
n? \notin \dom balances

addtactic Deposit SP \oplus
balances \oplus
\{n? \mapsto balances˜n? + m?\}

addtactic Withdraw NR m?
\langle 10, 1000, 1000000\rangle

addtactic CheckBalance SP \in
u? \mapsto n? \in owners



[ACCNUM,UID,NAME]
MONEY == N
BALANCE == N

Bank
clients : UID 7→ NAME
balances : ACCNUM 7→ BALANCE
owners : UID↔ ACCNUM

NewClientOk
∆Bank
u? : UID; name? : NAME; n? : ACCNUM

u? /∈ dom clients
n? /∈ dom balances
clients′ = clients ∪ {u? 7→ name?}
balances′ = balances ∪ {n? 7→ 0}
owners′ = owners ∪ {u? 7→ n?}

ClientAlreadyExists ==
[ΞBank; u? : UID | u? ∈ dom clients]

AccountAlreadyExists ==
[ΞBank; n? : ACCNUM | n? ∈ dom balances]

NewClient ==
NewClientOk ∨
ClientAlreadyExists ∨ AccountAlreadyExists

NewAccountOk
∆Bank
u? : UID; n? : ACCNUM

u? ∈ dom clients
n? /∈ dom balances
balances′ = balances ∪ {n? 7→ 0}
owners′ = owners ∪ {u? 7→ n?}
clients′ = clients

ClientNotExists == [ΞBank; u? : UID | u? /∈ dom clients]

NewAccount ==
NewAccountOk ∨
ClientNotExists ∨ AccountAlreadyExists

DepositOk
∆Bank
n? : ACCNUM; m? : MONEY

n? ∈ dom balances
m? > 0
balances′ = balances⊕ {n? 7→ balances n? + m?}
clients′ = clients
owners′ = owners

AccountNotExists ==
[ΞBank; n? : ACCNUM | n? /∈ dom balances]

IncorrectAmount == [ΞBank; m? : MONEY | m? ≤ 0]

Deposit ==
DepositOk ∨ AccountNotExists ∨ IncorrectAmount

WithdrawOk
∆Bank
u? : UID; n? : ACCNUM; m? : MONEY

u? 7→ n? ∈ owners
n? ∈ dom balances
m? > 0
m? ≤ balances n?
balances′ = balances⊕ {n? 7→ balances n?− m?}
clients′ = clients
owners′ = owners

NotAnOwner ==
[ΞBank; u? : UID; n? : ACCNUM |

u? 7→ n? /∈ owners]

InsufficientFunds ==
[ΞBank; u? : UID; n? : ACCNUM; m? : MONEY |

m? > balances n?]

Withdraw ==
WithdrawOk
∨ AccountNotExists
∨ IncorrectAmount
∨ NotAnOwner ∨ InsufficientFunds

CheckBalanceOk
ΞBank
u? : UID; n? : ACCNUM
balance! : MONEY

u? 7→ n? ∈ owners
n? ∈ dom balances
balance! = balances n?

CheckBalance ==
CheckBalanceOk
∨ AccountNotExists ∨ IncorrectAmount

AddOwnerOk
∆Bank
u?, t? : UID; n? : ACCNUM

u? 7→ n? ∈ owners
t? 7→ n? /∈ owners
owners′ = owners ∪ {t? 7→ n?}
clients′ = clients
balances′ = balances

OwnerAlreadyExists ==
[ΞBank; t? : UID; n? : ACCNUM |

t? 7→ n? ∈ owners]

AddOwner ==
AddOwnerOk ∨
NotAnOwner ∨ OwnerAlreadyExists

Figure 2: A Z specification of the savings accounts of a banking system.



Term Meaning
ACCNUM The set of possible savings accounts numbers
UID The set of identifiers of individuals (social security numbers, for instance)
NAME The set of names of individuals
clients u The name of person u as is recorded in the bank
balances n The balance of savings account n
owners(u, n) u is an owner of account n
NewClient(u, name, n) Account n is opened by client u whose name is name
NewAccount(u, n) Client u opens a new account with number n
Deposit(n,m) The amount m is deposited in account n
Withdraw(u, n,m) Client u withdraws amount m from account n
CheckBalance(u, n, b) b is the balance of account n when client u checks it
AddOwner(u, t, n) Client u adds t as an owner of account n

Table I: Meaning of the basic elements of the Z model of Fig. 2.

addtactic AddOwner SP \in
u? \mapsto n? \in owners

addtactic AddOwner SP \notin
t? \mapsto n? \notin owners

E. Generating Test Objectives

Test objectives—or specifications, classes or design—are
automatically generated by running the following command:

genalltt

In doing so, Fastest performs a number of predicate
manipulations as Legeard and his colleagues required in [5].
These objectives are structured as testing trees. Abstract test
cases should be generated only from the leaves of these trees.
In other words, each leaf stipulates some conditions under
which the implementation must be tested.

F. Pruning Testing Trees

Although Fastest automatically generates test objectives,
some of them may represent impossible situations. Accord-
ing to the TTF, each test objective is a set. Then, a test ob-
jective represents an impossible situation when its predicate
is unsatisfiable. Unsatisfiable leafs should be pruned from
testing trees. The automatic pruning strategy implemented
in Fastest is executed with the following command:

prunett

This command, as genalltt, performs a series of pred-
icate manipulations but of a different sort. The conception,
design and implementation of this command is the subject
of the paper published at this conference.

G. Deriving Abstract Test Cases

Deriving an abstract test case from a test objective means
to find a vector of constant values satisfying the predicate
of the objective. This task is performed with command:

genalltca

This is a much slower process compared to automatic
pruning. When this command finishes some leaves have a
child hanging from them representing the abstract test case.

Each abstract test case is a Z schema box. The difference
between a test objective and an abstract test case is that in
the latter each input and state variable is bound to a constant
value as exemplified in the following schema:

Deposit SP 4 TCASE
Deposit SP 4

m? = 1
balances = {(accnum0, 1)}
clients = ∅
n? = accnum0
owners = ∅

In this example, Fastest finds automatically all the abstract
test cases but eleven. When this happens the user has to
check whether the problematic objectives are satisfiable or
not. In our case all but four are satisfiable. For those that are
satisfiable, the user needs to help Fastest to find the required
constants with a command like this one:

setfinitemodel CheckBalance_SP_5 -fm
"owners==\{\{uid0 \mapsto accnum0\}\}"

For those that are not, the user has to add an elimination
theorem; for instance:

ETheorem ArithmIneq4 [const N,M : Z; n : Z]
eval(N ≤ M)
n ≤ N
M < n

Elimination theorems are at the core of prunett; see
the paper published by us at SEFM 2010.

H. Summary of Results

Table II summarizes the result of this experiment. As can
be seen, Fastest generates 39 abstract test cases automati-
cally from 46 possible test objectives. This high percentage
is the consequence of two factors: (a) the high number
of inconsistent test objectives removed by the automatic
strategy, and (b) the heuristics implemented by genalltca
to find constants values satisfying a given predicate. These



Operation Leaves Pruned Auto Pruned Man Remaining ATC Auto ATC Man
NewClient 24 15 0 9 9 0
NewAccount 6 1 0 5 5 0
Deposit 24 20 0 5 5 0
Withdraw 20 2 2 16 11 5
CheckBalance 6 0 0 6 4 2
AddOwner 12 8 0 5 5 0
Total 92 46 2 46 39 7

Total pruning time 3.2s Total ATC derivation time 38m40s

Table II: Summary of the results. Auto stands for automatically, Man for manually, and ATC for abstract test cases.

results are aligned with our previous experiments, see [8]
and the paper to be published at SEFM 2010.

VI. DISCUSSION

Fastest provides Z users with an almost automatic imple-
mentation of a sound MBT method originally thought for
the Z notation. In this regard, Fastest overcomes all of the
issues found by Legeard, Peureux and Utting in [5] making
their last conclusion doubtful.

Fastest is freely available from [17], including a complete
user manual in English. We have added entries to Wikipedia
describing Fastest [18] and the TTF [19].

Perhaps there are many Z users out there thinking that
MBT is an ideal technique for their daily software engineer-
ing work. Meanwhile, they watch other people using good
MBT tools for their “younger” notations, but they found
no implementation available for their beloved one. We hope
Fastest could fill this gap.

REFERENCES

[1] M. Utting and B. Legeard, Practical Model-Based Testing:
A Tools Approach. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2006.

[2] R. M. Hierons and et al., “Using formal specifications to
support testing,” ACM Comput. Surv., vol. 41, no. 2, pp. 1–76,
2009.

[3] P. Stocks and D. Carrington, “A Framework for Specification-
Based Testing,” IEEE Transactions on Software Engineering,
vol. 22, no. 11, pp. 777–793, Nov. 1996.

[4] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes,
“Generating finite state machines from abstract state ma-
chines,” in ISSTA ’02: Proceedings of the 2002 ACM SIG-
SOFT international symposium on Software testing and anal-
ysis. New York, NY, USA: ACM, 2002, pp. 112–122.

[5] B. Legeard, F. Peureux, and M. Utting, “A Comparison of
the BTT and TTF Test-Generation Methods,” in ZB ’02:
Proceedings of the 2nd International Conference of B and
Z Users on Formal Specification and Development in Z and
B. London, UK: Springer-Verlag, 2002, pp. 309–329.

[6] G. Bernot, M. C. Gaudel, and B. Marre, “Software testing
based on formal specifications: a theory and a tool,” Softw.
Eng. J., vol. 6, no. 6, pp. 387–405, 1991.

[7] J. M. Spivey, The Z Notation: A Reference Manual. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1989.

[8] M. Cristiá and P. Rodrı́guez Monetti, “Implementing and
applying the Stocks-Carrington framework for model-based
testing,” in ICFEM, ser. Lecture Notes in Computer Science,
K. Breitman and A. Cavalcanti, Eds., vol. 5885. Springer,
2009, pp. 167–185.

[9] L. Murray, D. Carrington, I. Maccoll, and P. Strooper,
“TinMan - A Test Derivation and Management Tool for
Specification-Based Class Testing,” in In Technology of Ob-
jectOriented Languages and Systems (TOOLS), 1999, pp.
222–233.

[10] M. Saaltink, “The Z/EVES System,” in ZUM ’97: The Z
Formal Specification Notation, J. Bowen, M. Hinchey, and
D. Till, Eds., 1997, pp. 72–85.

[11] L. B. P. F. Bouquet F., “Constraint logic programming with
sets for animation of B formal specifications,” in CL’00
Workshop on (Constraint) Logic Programming and Software
Engineering (LPSE’00), London, UK, 2000.

[12] CZT. Community Z Tools (CZT) project. [Online]. Available:
http://czt.sourceforge.net

[13] ISO, “Information Technology – Z Formal Spec-
ification Notation – Syntax, Type System and
Semantics,” International Organization for Standardization,
Tech. Rep. ISO/IEC 13568, 2002. [Online]. Avail-
able: http://standards.iso.org/ittf/PubliclyAvailableStandards/
c021573 ISO IEC 13568 2002(E).zip

[14] The Eclipse Foundation. Eclipse. [Online]. Available:
http://www.eclipse.org/

[15] CZT. CZT Eclipse Plugin. [Online]. Available: http:
//www.cs.waikato.ac.nz/∼marku/czt/eclipse.html

[16] T. Hupponen, K. Karlsson, J. Laitinen, O. Ojala, A. Pirinen,
E. Seuranen, and L. Takkinen. TeXlipse. [Online]. Available:
http://texlipse.sourceforge.net/

[17] Flowgate Consulting. Fastest. [Online]. Available: http:
//www.flowgate.net/?lang=en&seccion=herramientas

[18] ——. Fastest in wikipedia. [Online]. Available: http:
//en.wikipedia.org/wiki/Fastest

[19] ——. Test template framework in wikipedia. [Online]. Avail-
able: http://en.wikipedia.org/wiki/Test Template Framework

http://czt.sourceforge.net
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://www.eclipse.org/
http://www.cs.waikato.ac.nz/~marku/czt/eclipse.html
http://www.cs.waikato.ac.nz/~marku/czt/eclipse.html
http://texlipse.sourceforge.net/
http://www.flowgate.net/?lang=en&seccion=herramientas
http://www.flowgate.net/?lang=en&seccion=herramientas
http://en.wikipedia.org/wiki/Fastest
http://en.wikipedia.org/wiki/Fastest
http://en.wikipedia.org/wiki/Test_Template_Framework

	Model-Based Testing
	The Test Template Framework
	Fastest
	Architecture and Technology
	An Example
	Writing the Specification
	Launching Fastest
	Loading the Specification and Selecting Operations
	Adding Testing Tactics
	Generating Test Objectives
	Pruning Testing Trees
	Deriving Abstract Test Cases
	Summary of Results

	Discussion
	References

