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Abstract. The Test Template Framework (TTF) is a method for model-
based testing (MBT) from Z specifications. Although the TTF covers
many features of the Z notation, it does not explain how to deal with
axiomatic descriptions, quantifiers and set comprehensions. In this pa-
per we extend the TTF so it can process specifications including these
features. The techniques presented here may be useful for other MBT
methods for the Z notation or for other notations such as Alloy and B,
since they use similar mathematical theories.

1 Introduction

The Test Template Framework (TTF) is a model-based testing (MBT) method
[1, 2], used mainly for unit testing. MBT is a well-known technique aimed at
testing software systems by analysing a formal model [3, 4]. MBT approaches
start with a formal model or specification of the software, from which test cases
are generated. These techniques have been developed and applied to models
written in different formal notations such as Z [1], finite state machines and
their extensions [5], B [6], algebraic specifications [7], and so on. The funda-
mental hypothesis behind MBT is that, as a program is correct if it satisfies its
specification, then the specification is an excellent source of test cases.

Our group was the first in providing tool support for the TTF by implement-
ing Fastest [8–10], and in extending the TTF beyond test case generation [11,
12]. Furthermore, we have applied Fastest and the TTF to several industrial-
strength case studies [8, 13, 14]. The tool greatly automates tactic application,
testing tree generation, testing tree simplification, and test case generation.

In 2008 we wrote a Z specification [14] of a significant portion of the ECSS-E-
70-41A aerospace standard [15]. This is a medium-sized specification comprising
74 pages and more than 2,000 lines of Z. It is the largest Z specification we
have written so far to test and validate Fastest. As a matter of comparison,
the Tokeneer specification has only 46 lines more, while it is recognized as a
full-fledged, industrial-strength formal specification [16]. The ECSS-E-70-41A
formal specification comprises the minimum capability sets of 6 of the 16 services
described in the standard. The model includes 25 state variables with 16 of



a relational type, of which 6 are higher-order functions and 3 are defined by
referencing schema types. It also contains 28 axiomatic descriptions, some of
which define operators whose domain are higher-order functions and schema
types. To complicate things even more, this specification defines a number of
set comprehensions and lambda expressions that influence critical outputs—for
example, the report of housekeeping data of a satellite sent to ground upon
request. Finally, some operations include quantified formulas.

Axiomatic descriptions, quantified formulas and set comprehensions were not
considered in the original presentation of the TTF nor in Fastest. In this paper,
we propose some techniques within the philosophy of the TTF and preserving
a good deal of automation that extend the TTF so it can process specifications
including these features. Currently, Fastest provides limited tool support for
some classes of axiomatic descriptions—those referred as classes C, S and O in
Sect. 3—and it implements testing tactics for quantified formulas—those referred
as WEQ, SEQ and UQ in Sect. 4. Therefore, so far, we have only been able to
manually apply the techniques presented in this paper to the ECSS-E-70-41A
formal specification—and automatically to some toy examples. Given that these
techniques are aligned with the TTF, their full implementation will preserve the
degree of automation currently featured by Fastest.

The paper is structured as follows. Section 2 describes the motivations for
extending the TTF. The solution we propose for axiomatic descriptions is based
on classifying them according to their intended meaning. Hence, in Sect. 3 we
present a taxonomy of axiomatic descriptions and how each category should be
processed. Section 4 focuses on the problem posed by quantifications, and Sect.
5 on set comprehensions and lambda expressions. Finally, in Sect. 6 we present
our concluding remarks.

2 Some Extensions to the Test Template Framework

The TTF and Fastest have been thoroughly presented in many papers [2, 1, 8, 9].
In this section we focus on some difficulties appearing in the TTF when the Z
specification being analysed includes axiomatic descriptions, quantifications or
set comprehensions. Here we treat the TTF and Fastest as synonyms.

Given a Z specification, users have to select those operation schemas for which
they want to generate test cases. As with other MBT methods, the TTF first
generates test cases at the specification level, that are later refined to test the
implementation corresponding to that specification [12]. In this paper we work
only at the specification level. For each selected schema users indicate a set of
testing tactics to be applied to it. The first testing tactic partitions the input
space of the operation into a set of test specifications—i.e. test conditions or
test objectives [3]. The second testing tactic partitions one or more of these test
specifications, into more test specifications. The other testing tactics continue
with this process. The net effect is a progressive partition of the input space of
the operation into test specifications that are more restrictive than the previous
ones. A test case is a witnesses satisfying the predicate of a leaf test specification.



Test specifications are Z schemas like the following one:

VerifyCmdSP
4 == [VerifyCmdDNF

1 |
cmd? ∈ checksum ∧ proc1 6= ∅ ∧ proc2 6= ∅ ∧ proc1 ∩ proc2 = ∅]

where VerifyCmd is the name of an operation selected by the user; VerifyCmdDNF
1

is the test specification that was partitioned by applying the Standard Partitions
(SP) testing tactic; cmd?, proc1 and proc2 are input and state variables declared
in VerifyCmd ; and checksum is the following axiomatic description:

checksum : PFRAME

where FRAME is a given type.
Fastest generates all the test specifications automatically once users have

indicated what testing tactics they want to apply to operations. Since testing
tactic application means, essentially, conjoining predicates, it is not unusual to
find unsatisfiable test specifications. These test specifications must be eliminated
[9]. For the remaining ones, at least one test case must be generated. A test case
for a given test specification is a Z schema restricting all the free variables to
take one and only one value. In any MBT method, this process is intended to
be as automatic as possible as hundreds of test specifications may be generated
for a single specification. Fastest implements a sort of satisfiability algorithm
for a significant portion of the Z Mathematical Toolkit (ZMT), that, according
to our experiments, in average finds test cases for 80% of the satisfiable test
specifications [8].

2.1 Axiomatic Descriptions

At this point some questions arise. Given that the satisfiability of VerifyCmdSP
4

depends on the value of checksum, when should the algorithm to eliminate un-
satisfiable test specifications be run? Is it reasonable for Fastest to automatically
bind any value to checksum? What if users want an implementation for a par-
ticular value for it? Would Fastest generate test cases for that implementation
or for any of its family [17, pages 36–38 and 143]? Currently, test cases are
generated independently for each test specification—i.e. Fastest asks for an in-
stantiation for each and every test specification. Can it be still done in this way
in the presence of axiomatic descriptions like checksum? Clearly, two test cases
cannot bind different values to checksum because they would belong to different
members of the family of specifications. What if the specification includes an
axiomatic description like the following one?

root : USER

Is root intended to be a constant or a variable? And, what if the specification
includes the next one?

sum : seqZ→ Z

sum〈〉 = 0

∀ s : seqZ; n : Z | s 6= 〈〉 • sum(s a 〈n〉) = n + sum s



Should a value be generated for sum? Or should it be treated entirely different
from checksum and root? Should it be treated as an operation and, thus, test
cases have to be generated?

As it can be seen, the inclusion of axiomatic descriptions poses a number of
issues to be discussed in order to faithfully extend the TTF.

2.2 Quantified Formulas

Let us turn our attention to quantifications. Z provides a number of operators
in the ZMT to avoid explicitly writing quantified formulas. For instance, it is
convenient to replace (∀ x : dom f • f x 6= 0) by 0 /∈ ran f , and (∀ x : dom f | x ∈
A • f x 6= 0) by 0 /∈ f (| A |). Both implicit and explicit quantifications usually
lead to loops in the implementation. So it is worth to generate test cases to test
these loops by analysing these formulas. In the TTF, mathematical operators
are analysed by the Standard Partition (SP) testing tactic. That is, a standard
partition can be bound to, say, the (| |) operator such that it will generate
test specifications asking for different values of both arguments. For instance, a
possible standard partition for f (| A |) can be: f = ∅ ∧ A = ∅; f 6= ∅ ∧ A = ∅;
f = ∅ ∧ A 6= ∅; f 6= ∅ ∧ A 6= ∅ ∧ dom f ∩ A = ∅; and so forth. In other
words, each of these partitions will exercise the potential loop implementing the
operator in different ways. We would like to follow a similar approach for explicit
quantified formulas. That is, we would like to have one or more testing tactics
associated to quantifications that would yield test specifications that, in turn,
would exercise the corresponding potential loop in different ways. For example, a
quantification appearing in the ECSS-E-70-41A formalization is the following3:

∀ i : dom sa? •
sa? i + len? i ≤ sizes m? ∧ cs? i = check(dt? i) ∧ len? i ≤ #(dt? i)

where sa? is of type seqN, and check is an axiomatic description. Therefore, it
would be desirable to generate test specifications that would test the implemen-
tation with sa?’s of different lengths.

Quantified formulas over potentially infinite sets pose a problem for any
satisfiability algorithm. Hence, the approach we followed is to generate at least
some test specifications where the potentially infinite set is replaced by one or
more finite ones. In doing so the quantified formula is equivalent to either an
unquantified conjunction or disjunction. But this brings in another issue. The
first testing tactic applied by Fastest is Disjunctive Normal Form (DNF) [8]. All
the other testing tactics in Fastest conjoin more atomic predicates to a given test
specification. Hence, at the end, all test specifications are conjunctions of atomic
predicates. Some key algorithms of Fastest rely on all test specifications having
that property. Therefore, if we define testing tactics to deal with quantified
formulas, they should also write the resulting predicates in DNF.

3 Some of the names used in the formalization of the ECSS-E-70-41A standard have
been changed with respect to the original specification due to space restrictions.



2.3 Set Comprehensions and Lambda Expressions

In the ECSS-E-70-41A formalization we heavily used complex set comprehen-
sions and lambda expressions. For instance, we have the following schema:

PeriodicSampOnce
ΞHousekeeping ; ΞTime
sOP : SID 7→ PGMODE 7→ PNAME 7→ PVAL
rS : PSID
pSO : SID 7→ PNAME 7→ PVAL

rS = {s : hES | (hRD s).m = p ∧ t = hCCI s + (hRD s).ci ∗ dMI }
pSO = (λ s : rS • (λ p : dom(hRD s).ns | (hRD s).ns p = 1 • hSV s p t))
sOP = (λ s : rS • (λm : {pm} • pSO s))

which is the simplest one in an operation defined by five others schemas like
PeriodicSampOnce. Note that rS and pSO are referenced in the definition of
sOP . sOP is later assembled with other similar variables declared in the other
schemas to produce a single output for the operation. Therefore, the definition
of the operation in which this schema participates is, essentially, an extremely
complex lambda expression that is bound to an output variable. In summary, the
operation has a trivial logical structure, while all its complexity lies inside the
lambda expressions and set comprehensions. None of the testing tactics defined
in the TTF would produce the desired results since none of them is prepared to
work with bound variables. Furthermore, the implementation of these complex
expressions will likely be very complex too, thus making it imperative to test it
thoroughly.

Therefore, we need one or more testing tactics that generate significant test
specifications for this kind of expressions. The approach we followed is to propa-
gate the complexity inside the expressions to the outside, and then apply existing
testing tactics. For example, if we have {x : X | P(x ) ∨ Q(x ) • expr(x )}, it can
be rewritten as {x : X | P(x ) • expr(x )} ∪ {x : X | Q(x ) • expr(x )}, making it
possible to apply SP to ∪.

3 A Taxonomy of Axiomatic Descriptions

In Z, axiomatic descriptions can serve many purposes [17, page 143]. For ex-
ample, an axiomatic description can be used just to give a name to an integer
constant, or it can be used to define a function summing all the components of
a sequence of integers. As we have said in Sect. 2.1, in our opinion not all the
axiomatic descriptions can be treated in the same way with respect to the TTF.
Therefore, we consider that a key step towards their inclusion in the TTF is to
define a taxonomy for axiomatic descriptions based on their syntax—aiming at
capturing their intended use and semantics. In a second step we define how each
category will be processed in the TTF. The ultimate goal is making test case
generation as automatic as possible in the presence of axiomatic descriptions.



3.1 Given type constants (C)

If T is a given or basic type and we have:

x : T

then x is said to be a constant of type T . An example is root (Sect. 2.1).
Axiomatic descriptions of this kind are regarded as constants of their corre-

sponding types. Therefore, they will be used as values for variables appearing
in test specifications. Two members of C of the same type will be considered
as different constants. For example, if admin is an axiomatic description of
type USER, then admin 6= root holds. However, at the same time, if an op-
eration declares usr? : USER, testers can generate test specifications asking for
usr? = root , usr? = admin and usr? /∈ {root , admin}. For C no user action is
required.

3.2 Synonyms (S)

A synonym is any axiomatic description matching any of the following:

x : T

x = expr

x : T

∀ y : U • x (y) = expr(y)

where T and U are any types and expr is any expression. x may depend on
some y only if T is a structured type, in which case U is part of T ’s definition.
expr may depend on y and, possibly, on other axiomatic descriptions. We call
expr the definition of x . An example of this kind is the following one taken from
the ECSS-E-70-41A formalization:

lastRepVal : (TIME 7→ PVAL)→ PVAL→ N→ seqPVAL

∀ h : TIME 7→ PVAL; v : PVAL; r : N •
lastRepVal h v r = ((#h − r + 2 . .#h) � squash h)a 〈v〉

Axiomatic descriptions in this category can be treated in two ways:

1. Simply replace the axiomatic descriptions by their definitions when they
appear in test specifications. If x is of the quantified form, replace it by its
definition substituting its formal parameter by the real one. No user action
is needed for S, in this case.

2. Users may want to generate test cases for expr as if it were an operation.
However, this is not always applicable. For example, it makes sense to do it
with lastRepVal but it makes no sense with the following one:

administrators : PUSER

administrators = {root , admin}
In general, this decision must be left to users; Fastest should do as in 1
by default. If the user decides to generate test cases for x , then he/she
can use any of the available testing tactics. However, when these axiomatic
descriptions appear in a test specification they have to be processed as in 1.



3.3 Equivalences (E)

An equivalence is any axiomatic description matching the following:

x : T

∀ y : U • P(x , y)⇔ Q(y)

where T and U are any types and P and Q are predicates. Q may depend also
on other axiomatic descriptions. We say Q is the definition of x . falied is an
instance of this category borrowed from the ECSS-E-70-41A formalization:

failed : P((TIME 7→ PVAL)× PVAL× CheckDef )

∀ h : TIME 7→ PVAL; v : PVAL; d : CheckDef •
(h, v , d) ∈ failed ⇔ avrDelta(lastRepVal h v d .rep) < d .low

This class is treated as S, only considering that Q is the definition of x .
Note that if we would have defined failed as a set comprehension, then it

would have fallen in S thus replacing failed for its definition in test specifications.
Hence, later, the testing tactics defined in Sect. 5 can be applied. In either way,
the expression can be properly treated.

3.4 Inductive definitions (ID)

We say that an axiomatic description is an inductive definition if it has the
following form:

x : T

∀ y1 : U1 • x (E1(y1)) = expr1
. . . . . . . . .
∀ yn : Un • x (En(yn)) = exprn

where T , U1, . . . ,Un are types for which an induction principle is defined—i.e.
free types, N, seqX [17, pages 83, 114 and 123], and finite sets [18, page 59]—,
E1, . . . ,En are n structurally different expressions of the same inductive type
W , and expr1, . . . , exprn are expressions. Any of the quantifiers might be absent
in which case the corresponding E expression will be constant. It is assumed
that there are no mutually recursive definitions and no definition is infinitely
recursive. An element in ID is sum in Sect. 2.1.

As with S, elements in this category can be processed in the same two ways.
The difference being that a symbolic evaluation of these axiomatic descriptions
is performed when test cases are generated.

3.5 All other axiomatic descriptions (O)

Any axiomatic description not falling within any of the previous categories,
belongs to this category. For instance, checksum in Sect. 2. An element in this
category can be processed in two ways:



1. Users can provide a constant value for it. This value will be used to gener-
ate test cases for all the test specification where the axiomatic description
appears. The value must help satisfy the predicate part of all axiomatic
descriptions in which it appears.

2. Alternatively, Fastest can choose any value for it. Although this way of treat-
ing these axiomatic descriptions may increase the degree of automation, it
can severely complicate the generation of test cases because some test spec-
ifications may become unsatisfiable, when they may not for other values.
Furthermore, without any further information Fastest may choose an odd
value with respect to the implementation that is going to be tested.

4 Testing Tactics for Quantifications

As we have said in Sect. 2.2, we have decided to approach the generation of
test cases when quantifications are used in operations, by defining some testing
tactics specially tailored to deal with such predicates. So far, the TTF had
treated quantifications as atomic predicates making it very difficult, or even
impossible, to generate test cases to exercise the corresponding implementation
sentences—usually loops. Hence, in the following sections we introduce these new
testing tactics for quantified formulas. These testing tactics can be applied only
when: (i) the quantified formula includes predicates depending only on input or
before-state variables, and (ii) the sets over which the bound variables ranges,
depend on the same kind of variables. These restrictions are reasonable since
the whole goal of the TTF is to produce a partition of the input space of the
operation, which is defined by all the input and before-state variables.

4.1 Weak Existential Quantifier (WEQ)

Conceptually, this testing tactic transforms a quantification over a potentially
infinite set into a quantification over a finite set. Since an existential quantifica-
tion over a finite set is equivalent to a disjunction, then WEQ first transforms
the existential quantification into a disjunction. Then it writes the disjunction
into DNF and finally it generates as many test specifications as terms the DNF
has plus one more characterized by the negation of the other predicates. In order
to apply WEQ the user has to indicate the quantified formula and the maximum
number of elements to be considered for each bound variable.

The example depicted in Fig. 1 helps to understand how WEQ works. Assume
M : PN, H : seqZ and w , v : Z are four input or before-state variables. WEQ1

and WEQ2 say that a test case must be generated when x = x1 and y = y1;
WEQ3 and WEQ4 say the same but with x = x2; and WEQ5 says there may
be other test cases to derive from the formula. x1, x2 and y1 are new identifiers
that must instantiated when test cases are generated. Note that, in general, no
satisfiability algorithm will be able to automatically generate an abstract test
case for all test specifications like WEQ5, due to the presence of the quantification
over potentially infinite sets.



Original predicate ∃ x : M ; y : H • x > w ∧ (y 6= 〈〉 ⇒ head y > v)

Maximums x ← 2, y ← 1

First transformation
{x1, x2} ⊆ M ∧ {y1} ⊆ H
((x1 > w ∧ (y1 6= 〈〉 ⇒ head y1 > v))
∨ (x2 > w ∧ (y1 6= 〈〉 ⇒ head y1 > v)))

Write in DNF

{x1, x2} ⊆ M ∧ {y1} ⊆ H
(x1 > w ∧ ¬ y1 6= 〈〉
∨ x1 > w ∧ head y1 > v
∨ x2 > w ∧ ¬ y1 6= 〈〉
∨ x2 > w ∧ head y1 > v)

New test specifications

WEQ1 → x1 > w ∧ y1 = 〈〉 ∧ {x1} ⊆ M ∧ {y1} ⊆ H

WEQ2 → x1 > w ∧ head y1 > v ∧ {x1} ⊆ M ∧ {y1} ⊆ H

WEQ3 → x2 > w ∧ y1 = 〈〉 ∧ {x2} ⊆ M ∧ {y1} ⊆ H

WEQ4 → x2 > w ∧ head y1 > v ∧ {x2} ⊆ M ∧ {y1} ⊆ H

WEQ5 → (∃ x : M ; y : H | x /∈ {x1, x2} ∧ y /∈ {y1} •
x > w ∧ (y 6= 〈〉 ⇒ head y > v))

Fig. 1. Generating test specifications by applying WEQ.

Likely, an existential quantification will be implemented as an iteration state-
ment that will be abandoned when the first value satisfying its condition is found.
Therefore, it is important to test this statement by making it execute zero, one
or more iterations. Furthermore, it is important to test the inner clause with dif-
ferent values. WEQ allows all of this by letting users restrict the quantification
over a suitable finite set and by transforming the quantified formula into a set of
quantified-free formulas. Therefore, once WEQ has been applied, other testing
tactics can be applied to the new test specifications. For instance, we can apply
Standard Partition [8] over x > w in order to test for positive, zero or negative
values of both x and w .

It should be noted that this tactic might not produce a partition of the test
specifications—if this is unacceptable, then see the next section.

4.2 Strong Existential Quantifier (SEQ)

This tactic is a stronger form of WEQ since it always generates a partition of
the test specifications where it is applied. SEQ conjoins the following predicate
to the i th test specification produced by WEQ, except to the last one:

¬ (∃ x1 : T1, . . . , xn : Tn | x1 6= v1
i ∧ · · · ∧ xn 6= vn

i • P(x1, . . . , xn , x ))

where x1 : T1, . . . , xn : Tn are the quantified variables and their types, v1
i , . . . , v

n
i

are the new variables introduced by WEQ making up the i th combination, and
P is the quantified predicate. For instance, in the example shown in Fig. 1, SEQ



would generate the following test specifications:

SEQ1 → x1 > w ∧ y1 = 〈〉 ∧ {x1} ⊆ M ∧ {y1} ⊆ H

∧ ¬ (∃ x : M ; y : H | x 6= x1 ∧ y 6= y1 • x > w ∧ y 6= 〈〉 ⇒ head y > v)

SEQ2 → x1 > w ∧ head y1 > v ∧ {x1} ⊆ M ∧ {y1} ⊆ H

∧ ¬ (∃ x : M ; y : H | x 6= x1 ∧ y 6= y1 • x > w ∧ y 6= 〈〉 ⇒ head y > x )

SEQ3 → x2 > w ∧ y1 = 〈〉 ∧ {x2} ⊆ M ∧ {y1} ⊆ H

∧ ¬ (∃ x : M ; y : H | x 6= x2 ∧ y 6= y1 • x > w ∧ y 6= 〈〉 ⇒ head y > x )

SEQ4 → x2 > w ∧ head y1 > v ∧ {x2} ⊆ M ∧ {y1} ⊆ H

∧ ¬ (∃ x : M ; y : H | x 6= x2 ∧ y 6= y1 • x > w ∧ y 6= 〈〉 ⇒ head y > x )

SEQ5 → (∃ x : M ; y : H |
x /∈ {x1, x2} ∧ y /∈ {y1} • x > w ∧ y 6= 〈〉 ⇒ head y > x )

However, in general, no satisfiability method will be able to automatically
generate abstract test cases for any of these test specifications due to the presence
of the quantification over an infinite set. Therefore, in spite that WEQ do not
produce always a partition, and thus it potentially generates the same test case
more than once, it will allow a satisfiability algorithm to find at least some
test cases some times. However, SEQ is still valuable since users may provide,
manually, test cases satisfying these test specifications, if WEQ is too weak for
their needs.

4.3 Universal Quantifications

In order to produce a partition of a universal quantification, we propose a testing
tactic, called UQ, that considers different cardinalities for the bound variables.
Consider a universal quantification such as:

∀ x1 : S1, . . . , xn : Sn • P(x1, . . . , xn , x ) (1)

where S1, . . . ,Sx are sets that depend only on input variables and x repre-
sents other input variables. Then, users may apply UQ by indicating a limit
to the number of elements that will be considered for each xi . If these limits are
M1, . . . ,Mn , then we first generate the following sets for each i ∈ 1 . . n:

S 0
i = ∅

S 1
i = {v1

i }
S 2
i = {v1

i , v
2
i }

. . .

SMi−1
i = {v1

i , v
2
i , . . . , v

Mi−1
i }

SMi
i = {v1

i , v
2
i , . . . , v

Mi
i }

SMi
i ⊂ SMi+1

i

where v j
i are all new identifiers that must be instantiated when test cases are

generated. Then, UQ generates the following (M1 + 2) × · · · × (Mn + 2) test



specifications:

∀ x1 : S j1
1 , . . . , xn : S jn

n • P(x1, . . . , xn , . . . ) (2)

S j1
1 ⊆ S1 ∧ · · · ∧ S jn

n ⊆ Sn

where j k ∈ 0 . . Mk + 1 for all k ∈ 1 . . n. Given that all the S jk
i , for j k ∈

0 . . Mk and for all i , k ∈ 1 . . n, are finite, each quantification is equivalent
to a finite conjunction. For uniformity with the other testing tactics, Fastest
will also write each formula like (2) in DNF—so all the test specifications are
conjunctions of atomic predicates. Although writing (2) in DNF may generate
more test specifications we say that UQ generates (M1 + 2)×· · ·× (Mn + 2) test
specifications.

As an example of the application of UQ consider the following formula:

∀ x : M ; y : H • x > w ∧ (y 6= 〈〉 ⇒ head y > v)

and assume the user provides the following limits: x ← 2 and y ← 1. First,
define S 1

1 = {x1}, S 2
1 = {x1, x2}, S 3

1 = A, S 1
2 = {y1} and S 2

2 = B . Second, for
brevity, define P(x , y , v ,w) = x > w ∧ (y 6= 〈〉 ⇒ head y > v). Therefore, UQ
generates the following test specifications:

UQ1 → ∀ x : ∅; y : ∅ • P(x , y , v ,w)

UQ2 → (∀ x : {x1}; y : ∅ • P(x , y , v ,w)) ∧ {x1} ⊆ M

UQ3 → (∀ x : {x1, x2}; y : ∅ • P(x , y , v ,w)) ∧ {x1, x2} ⊆ M

UQ4 → ∀ x : A; y : ∅ • P(x , y , v ,w)) ∧ {x1, x2} ⊂ A ∧ A ⊆ M

UQ5 → (∀ x : ∅; y : {y1} • P(x , y , v ,w)) ∧ {y1} ⊆ H

UQ6 → (∀ x : {x1}; y : {y1} • P(x , y , v ,w)) ∧ {x1} ⊆ M ∧ {y1} ⊆ H

UQ7 → (∀ x : {x1, x2}; y : {y1} • P(x , y , v ,w)) ∧ {x1, x2} ⊆ M ∧ {y1} ⊆ H

UQ8 → (∀ x : A; y : {y1} • P(x , y , v ,w))

∧ {x1, x2} ⊂ A ∧ A ⊆ M ∧ {y1} ⊆ H

UQ9 → (∀ x : ∅; y : B • P(x , y , v ,w)) ∧ {y1} ⊂ B ∧ B ⊆ H

UQ10 → (∀ x : {x1}; y : B • P(x , y , v ,w))

∧ {x1} ⊆ M ∧ {y1} ⊂ B ∧ B ⊆ H

UQ11 → (∀ x : {x1, x2}; y : B • P(x , y , v ,w))

∧ {x1, x2} ⊆ M ∧ {y1} ⊂ B ∧ B ⊆ H

UQ12 → (∀ x : A; y : B • P(x , y , v ,w))

∧ {x1, x2} ⊂ A ∧ A ⊆ M ∧ {y1} ⊂ B ∧ B ⊆ H

However, Fastest eliminates the quantified formulas by transforming them
into conjunctions. For instance, the quantified formula of UQ7 becomes:

∀ x : {x1, x2}; y : {y1} • P(x , y)
≡ ∀ x : {x1, x2} • ∀ y : {y1} • P(x , y)
≡ ∀ x : {x1, x2} • x > w ∧ (y1 6= 〈〉 ⇒ head y1 > v)
≡ (x1 > w ∧ (y1 6= 〈〉 ⇒ head y1 > v)) ∧ (x2 > w ∧ (y1 6= 〈〉 ⇒ head y1 > v))



In this way, UQ will produce test specifications which ultimately will execute
the statement corresponding to the quantified formula, likely an iteration, a
different number of times and for different values of the bound variables. As
with WEQ and SEQ, UQ can be combined with existing testing tactics in order
to produce new test specifications based on the structure of the inner predicated
of the quantified formula.

5 Testing Tactics for Set Comprehensions

Any lambda expression can be written as a set comprehension [17, page 58]:

(λ x : X | P(x ) • f (x )) ≡ {x : X | P(x ) • x 7→ f (x )}

where f is an expression depending on x and possibly on other free variables.
Therefore, the ideas presented in this section can also be applied to lambda
expressions. In turn, the most general form of a set comprehension in Z is:

{x : X | P(x ) • expr(x )}

where P is a predicate and expr is an expression, both depending on the bound
variable and possibly on some free variables. The type of the set comprehension
is given by the type of expr [17, page 57].

Clearly, the complexity of a set comprehension lies on the complexity of both
P and expr . As we have said in Sect. 2.3, the idea is to move the complexity of
P to the outside of the set comprehension. More precisely:

1. Write P in DNF: P1 ∨ · · · ∨ Pn , where each Pi is a conjunction of literals.

2. Rewrite the set comprehension as a set union:

{x : X | P(x ) • expr(x )} ≡
{x : X | P1(x ) • expr(x )} ∪ · · · ∪ {x : X | Pn(x ) • expr(x )}

3. Rewrite each term of the set union as a set intersection.

4. Apply SP to one or more ∪ or ∩.

Alternatively, apply SP inside the set comprehension rewriting it as:

{x : X | P(x ) ∧ (Q1(x ) ∨ · · · ∨ Qn(x )) • expr(x )}

where each Qi is the i th predicate stipulated by the corresponding standard
partition. Then write P(x ) ∧ (Q1(x ) ∨ · · · ∨ Qn(x )) in DNF and do as above.
Yet another alternative is to apply SP to operators appearing in expr instead
of or apart from P . All these can be combined as is customary in the TTF to
further partition previous test specifications. The net effect is a coverage similar
to the one delivered by the TTF for other constructions.



6 Concluding Remarks

There are some MBT methods, besides the TTF, for the Z notation [19–24]
but none of them approaches axiomatic descriptions, quantified formulas and
set comprehensions. Extending any MBT method for the Z notation to deal
with these concepts is important because large specifications will include them.
Then, all these MBT methods may benefit from our results. Furthermore, MBT
methods for other notations such as Alloy, B and VDM may also take advantage
of these results since these languages use similar mathematical theories.

Although the paper deals with three somewhat unrelated issues, there is a
common, underlying theme: automation. That is, the rules proposed here to pro-
cess axiomatic descriptions, quantifications and set comprehensions were devised
to preserve the degree of automation currently featured by Fastest. Variants of
these rules may be proposed but likely they will render the tool less automatic.

Regarding axiomatic descriptions, we conclude that they should be classified
according to their intended use before processing them to produce test cases.
Although the same language construct is used to define all of them, there are
key differences, for example, between declarations such as root (Sect. 2.1) and
failed (Sect. 3.3), making it dangerous to treat them in the same way. The
taxonomy presented here may be extended, refined or modified but axiomatic
descriptions cannot be treated all in the same way.

It may be argued that recent advances in decision procedures and SMT solv-
ing should be used to approach quantified formulas. We have two counterargu-
ments to this point: (a) besides finding a witness satisfying a quantified formula,
a partition based on its analysis must be generated in order to get a good cov-
erage of its implementation, and this cannot be done with SMT solvers; and (b)
our first results on applying SMT solvers to the TTF show that these tools are
not immediately or trivially useful for it [25].

Quantifiers are treated in [26] but for the VDM notation which is based on
three value logic and where all sets must be finite—key differences with respect
to Z. The rules proposed by Meudec: (i) take into consideration the fact that
predicates or expressions can be undefined according to the VDM semantics; (ii)
they lead to very long partitions even for basic quantified expressions; and (iii)
apparently, these partitions cannot be controlled by the user as ours can. For all
these reasons we decided to develop our own tactics to deal with quantifiers.

With regard to future work, we are working on the implementation of the
results for set comprehensions and we are further investigating if SMT solvers
can be used as a back-end to automate some of the results presented here.

Acknowledgements. This paper is a humble tribute to the memory of David
Carrington, one of the creators of the Test Template Framework, who passed
away in Australia on 7 January 2011 after a long battle with cancer.
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