
A TLA+ Encoding of DEVS Models
Maximiliano Cristiá*

U. N. de Rosario - U. N. de Córdoba
Flowgate Security Consulting

Email: mcristia@fceia.unr.edu.ar

Abstract— Control Theory researchers have been using DEVS
models to formalize discrete event systems for a long time [1] but,
despite such systems are one of the main targets of Software
Engineers, the DEVS formalism has not been used and it is
hardly known by the formal methods community of Computer
Science. This paper is an attempt to close the gap between these
communities by setting some of the basic rules to translate DEVS
models into TLA+ specifications. TLA+ [2] is a widely known
formalism, used by formal methods researchers and practitioners,
to specify –hardware or software based– reactive or concurrent
systems. The paper includes some theoretical insights, some
modeling design decisions and an example of the encoding we
propose.

Index Terms— DEVS, TLA+

I. INTRODUCTION

Modeling critical, mission critical or embedded reactive
systems is nowadays an accepted practice both in academia
and industry [3], [4], [5], [6], [7]. It is perhaps the application
domain that most rapidly has accepted that using formal
techniques in earlier phases of the development process worth
the (apparently) added costs. DEVS is a formal modeling tech-
nique and notation originally developed by Bernard P. Zeigler
in the early ’70 [1]. It has been routinely and successfully
used, researched and expanded by researchers and practitioners
belonging to the Control Theory or Automation communities.
However, DEVS and its success has not been recognized as
such by the Formal Method community of Computer Science;
remarkably, one of the most complete and referenced on-line
resources of this community [8] does not even list DEVS as
a formal notation or method.

As an enthusiastic of the application of (Computer Sci-
ence’s) Formal Methods to software development, the author
of this paper finds this fact quite interesting and deserving
of some attention. One way to start investigating why DEVS
is not part of the standard modeling toolkit of Software
Engineers, and how to make it so is by researching on the
relationships between DEVS and some formal methods listed
in [8] –it is worth to say that this approach has been followed
by people working from the other community [9]. In this paper
we start to show how DEVS can be encoded in a standard,
widely known formal method for Software Engineers called
Temporal Logic of Actions Plus (TLA+) [2]. In fact, TLA+
was envisioned by its designer as a formal language (and latter

*This paper was written while the author was spending an invitation period
at LSIS - UMR CNRS 6168 - University Paul Cézanne - France.

a tool set) to be used by Software Engineers to model and
verify complex, software or hardware based, reactive, real-
time, concurrent systems. Since real-time, reactive systems are
event driven systems with time requisites, and, on the other
hand, being DEVS a formalism for the specification of discrete
event systems, then it looks like both TLA+ and DEVS target
the same class of problems, thus making them good candidates
to compare each other.

Due to space restrictions and because this paper represents
an ongoing research, it includes only shallow but broad issues
regarding the relationship between DEVS and TLA+, with
particular emphasis in encoding DEVS atomic models in
TLA+ specifications. Particularly we restrict our present work
to the use of DEVS to model discrete event systems and
we left unattended its application to continuous systems [10],
[11]. Besides, this paper does not introduce DEVS nor TLA+
beyond the features that are part of the comparison we report –
readers may consult [1] and [2] in order to get a deeper insight
of both formalisms.

The paper is structured as follows. In section II we discuss
the scope of both languages, how their semantics are given
and how them can help each other in the task of modeling
and verifying event driven systems. Section III includes some
of the rules to write a TLA+ specification from a DEVS model
and the next section presents the application of these rules to a
simple case study. Sections V and VI reports our future work
and conclusions about this subject matter.

II. SEMANTICS AND THEORETICAL ISSUES

In this section we want to attack four issues –scope,
semantics, liveness properties and initial states– regarding the
theoretical differences and similarities between DEVS and
TLA+, making some emphasis on their respective semantics
models.

A. Scope

The first issue concerns the scope of both formalisms. The
initial problem that Zeigler tried to solve was the formal
modeling of real world systems and their simulation on
a computer. On the other hand, Lamport wanted to give
Software Engineers a tool to specify the functional properties
of concurrent computer systems. Initially we are tempted to
see a difference in scope of both formalisms but a deeper look
should make us see that, in fact, this difference is somewhat
apparent. This difference is not so relevant because, first, in



practice DEVS shortens its scope by prescribing a framework
on which to model discrete event systems with complex timing
requirements (for instance you cannot model the dynamics
of the Solar system); and, second, because TLA+ is built
over sufficiently general and abstract mathematical and logical
theories that enable it to describe that class of systems. TLA+
has built-in modules describing axiomatic theories for the
natural, integer and real numbers, it is based on a well-formed
set theory (that sets the fundamentals for defining functions
and operators) and its logical meaning comes from temporal
logic. For example, there is no built-in concept of time in
TLA+: if an engineer needs to specify a timing requirement,
then she or he must include one or more variables representing
time within the definition of the state of the system being
modeled; but if there is no need for time, then the model will
be simpler. At least in practice, and with scope in event driven
systems, there is no limit on what can be specified with these
tools –we hope that the encoding of a typical DEVS model in
TLA+ in section IV will help to convince the reader. In fact,
we use TLA+ to specify complex systems [12] following the
methodology set by Jackson, Zave and others in [13], [14],
[15]. This methodology, called WRSPM, prescribes to model
part of the domain knowledge what implies to model so called
natural properties of part of the real world, i.e. properties
that are valid independently of the existence of any computer
system.

B. Semantics

The semantics models of these formalisms is the second
point that we want to talk about. DEVS semantics belongs to
the class named operative semantics because DEVS models are
understood by interpreting them with a simulation algorithm –
others formalisms with a similar scope describe their semantics
in a similar fashion [16]. In other words, the meaning of a
DEVS model is given by the rules to simulate it on a computer
or manually. On the other hand, TLA+ semantics is of the class
known as logic semantics since a TLA+ specification gets its
meaning from a temporal logic model. Each approach has its
own advantages and disadvantages. The operative approach
has a better learning curve, it is more intuitive, suggests an
implementation and enables for mechanization or, as with
DEVS, automatic simulation; but operative descriptions tend
to be less formal impeding formal verification of models
and opening the door to ambiguities and inconsistencies. A
logic description of the semantics of a language sometimes is
harder to learn because it is less intuitive, sometimes does not
show a clear implementation, and full mechanization is mostly
beyond scope. However, at the same time, a logic description
is completely formal enabling formal verification and proof
and model checking. Hence, if there is a chance to give a
logic semantics of DEVS models, then it would be possible
to get the best of both approaches. One way to do such a
job is by translating DEVS models into TLA+ specifications.
It is crucial that such a translation be semantics preserving
in the sense that the set of valid properties given by the
standard DEVS semantics is the same to the set derivable

from the TLA+ semantics. But this is possible only if both
semantics are completely formal which is not the present
case. However, by looking at the problem from a slightly
different perspective, an encoding of DEVS models in TLA+
specifications is a way to formalize the DEVS semantics.
Then, by finding this encoding we are doing two things
at the same time: first, DEVS semantics is formalized, and
second, formal verification, model checking and other nice
possibilities are enabled for DEVS models. Furthermore, an
added value we obtain by encoding in TLA+ is that we place
DEVS directly into the Alpern-Schneider framework for safety
and liveness properties which is the dominant framework for
specification in Computer Science [17].

C. Liveness Properties

Despite liveness properties are often considered less im-
portant than safety properties [2], according to Alpern and
Schneider these properties complements the specification of
any concurrent system. In fact, the functional description of
any system is the result of intersecting a safety property with
a liveness property [17]. Since DEVS models are a kind of
generalized state machines, safety properties are described in
the usual way –i.e. by giving the allowed transitions only.
It is, thus, interesting to show how DEVS describes liveness
properties and to compare this approach to the one prescribed
in TLA+.

A liveness property prescribes that some states of interest
must be reached eventually. DEVS uses the internal transition
function to specify liveness properties. If it is necessary or
natural that the system performs some action not initiated
by its environment, then a DEVS model includes an internal
transition that will be activated and executed at an specified
point in time. Clearly, this schema is very general but this
generality can be troublesome since, as Abadi and Lamport
have shown [18], arbitrary liveness properties may lead to a
system description that restricts some transitions that the safety
property does not. TLA+ specifications avoid this situation
intersecting a safety property with a fairness property. Fairness
properties are a subclass of liveness properties that do not
restrict transitions. In summary, DEVS generality for writing
the liveness part of the system model, might lead to a wrong
model.

Another minor issue regarding liveness properties in DEVS
is that such properties are always tied to a timing constraint.
In other words, if you want to specify a liveness property you
must talk about time; you need to specify a particular future
moment at which the transitions must be executed. TLA+
specifications allows you to say that a transition must happen
in the future without saying exactly when it must happen. It
would be nice to be able to write an initial system’s abstract
model without timing constraints.

D. Initial States

Despite that it would be erroneous to define an initial state
for some abstract DEVS models, there are others for which



to define their initial states is not only possible but essential –
for instance, so called ”experimental descriptions”. One benefit
from the encoding proposed below is that TLA+ specifications
have a standard way to define the initial states of a system if
it is necessary.

III. HOW TO ENCODE DEVS MODELS INTO TLA+
SPECIFICATIONS

In this section we introduce some basic rules and design
decisions to translate a DEVS atomic model into a TLA+
specification; these are not meant to be a complete set. Since
TLA+ specifications have no explicit treatment of time and
DEVS models do, we need to explain how time might be
included in a TLA+ specification. On the other hand, to encode
DEVS in TLA+ it is necessary to show how each element of
a DEVS model has to be written in TLA+.

A. Real-time in TLA+

In [2] Lamport suggests a way to write real-time require-
ments in TLA+ specifications. In TLA+ timing requirements
are set for transitions and not for states, and there is a state
variable, named now , that records the time of the universe,
i.e. the real time. Then, to specify a real-time requirement for
transition T of a system with a state described by variable v ,
following predicate is used:

RTnow(v) ∧ RTBound(T , v , δ, ε) (1)

which asserts, informally, that1:
• If now advances, then v remains unchanged (in RTnow ).
• Transition T changes the value of v (in RTBound ).
• Transition T cannot occur until T has been continuously

enabled for at least δ time units since the last occurrence
of event T , or since the initial state (in RTBound ).

• Transition T can be continuously enabled for at most ε
time units before a T step occurs (in RTBound ).

In other words, the predicate says that when time advances
nothing else changes and that T must happen at some time
t in [δ, ε] where both limits are taken since the last execution
of T –or since the initial state. Hence, if for instance a
requirement asks for the alarm to be activated 2 time units after
it has been enabled, and OnAlarm is the predicate describing
the activation of the alarm (regardless of time), and a is
the state variable describing the state of the alarm, then the
formalization of the real-time requirement is:

OnAlarm ∧ RTnow(a) ∧ RTBound(OnAlarm, a, 2, 2)

Note that functional requirements (OnAlarm) and real-time
requisites are described in separate formulas. This is good
since there is a clear separation of concerns.

All of these definitions are assembled together in a TLA+
module named RealTime . Since DEVS models always contain
real-time restrictions, then module RealTime must always be
included in the resulting TLA+ specification.

1This predicate is fully described and formalized in [2].

B. Mapping the Components of a DEVS Model into TLA+
Expressions

A DEVS model M is composed of seven elements:

M = 〈X ,S ,Y , δint , δext , λ, ta〉 (2)

We assume the reader is familiar with DEVS models so
we will not explain them but we will map each of them into
TLA+ expressions. Since DEVS semantics is not fully formal,
part of this mapping entitles some degree of interpretation
and subjectivity. However, at the same time, this interpretation
gives a particular formalization of DEVS semantics; others
should be possible and should be investigated. This first
attempt is as follows.

M The model itself should be represented in a module
structure as:

module M
extends RealTime
. . .

As we have said, it is always necessary to include
RealTime in order to be able to specify real-time
requirements.

X These are the input values. In DEVS input values
are (a) actual values and (b) external events. For
instance, an input value might be the ASCII code
of a character received by the system or the event
GoTo to move a robot arm to some position.
For (a) TLA+ offers two alternatives: (i) a variable
defined in the VARIABLES section should be used
(this variable should take values in the appropriate
set); or (ii) some external transition depending on this
value should have a parameter. The choice between
these alternatives depends to a great extent on the
way the engineer wants to build the model. External
events in (b) must be encoded as TLA+ transitions or
actions. In all cases all these definitions are included
inside the module. The aforementioned examples are
as follows:

module Example1
extends RealTime
VARIABLES code
TypeInv ∆= code ∈ 0..255

GoTo(pos) ∆= pos > 0 . . .

S These are the state values. Usually a DEVS definition
of S is given by means of a Cartesian product
between all the sets describing the attributes of the
phases plus their lifetimes. In our TLA+ encoding
one or more state variables, ranging over appropriate
sets, must be defined for each of the attributes of
the phase. The lifetime will be encoded in now , the
definition of external and internal transitions, and a
new state variable as we will show. For example,



the state of the conveyor belt can be defined by
state variable belt , and the name of a job being
executed by some operating system can be another
state variable named job. More pictorially:

module Example2
CONSTANTS JOBID
VARIABLES belt, job
TypeInv ∆= ∧ belt ∈ {“running”, “quiet”}

∧ job ∈ JOBID

Note that the set JOBID (of job names) was defined
in the CONSTANTS section.

Y Output values should be encoded as values of out-
put variables. The rest of the output definition is
described in λ.

δint This is the internal transition function. Internal transi-
tions are executed by the system when the lifetime of
the current state is reached. Since internal transitions
are a subclass of transitions, we use TLA+ actions
to codify them. To say that an internal action must
be executed when the lifetime of the current state is
reached, we will use a real-time formula as described
in section III-A.
Let us see a small example. Say there is just one
internal transition defined from any state as follows:
when the lifetime of the state is reached the system
must transition to a particular state with an infinite
lifetime. Then, first we need a name for this transi-
tion, let us call it Error . Second, we need to identify
the erroneous state; say this state is reached when the
state variable st equals “err”. Then, a first TLA+
encoding is as follows.

module Example3
extends RealTime
VARIABLES st

Init ∆= . . .
Error ∆= st 6= “err” ∧ st ′ = “err”
Next ∆= Error ∨ . . .
Spec ∆= ∧ Init ∧ [�Next ]st ∧ RTnow(st)

∧ RTbound(Error , st , ta[st ], ta[st ])

where Init formalizes the initial state, Next may
contain another external transitions, and ta is defined
below.
However, the execution of an internal transition
might enable, in particular, some external transitions.
Due to some reasons that we will explain below, we
need to include a new state variable, called cpt , to
hold the value of now right after the execution of
any transition. Hence, the final encoding of Error is
as follows2:

2We include just Error ’s definition, the rest remains the same as in module
Example3.

Error ∆= ∧ status 6= “err”
∧ status ′ = “err”
∧ cpt ′ = now

Note how the functional aspect of Error is separated
from its timing requirements. Also, since internal
transitions do not depend on inputs, then the cor-
responding TLA+ action’s specification should not
contain predicates depending on input variables.

δext External transitions can be fired only if the lifetime
of the current state has not been reached yet; and
also they will not happen necessarily. Then, on
one hand, we have a sort of timing requirement;
and on the other hand, we cannot add a liveness
condition to an external transition. Moreover, by the
way TLA+ describes real-time requirements, there
is no way to know the elapsed time since the last
transition. Hence, to encode DEVS’ external tran-
sitions in TLA+ we need to introduce a new state
variable to count the time elapsed since the last
transition; we call this variable check-point time or
cpt . cpt has to be ”updated” by every (external and
internal) transition with cpt ′ = now . Then, every
external action must include a precondition of the
form now − cpt ≤ ta[vars] where vars is the tuple
of all state variables. It is worth to note that this last
condition formalizes a rule of the DEVS semantics.
DEVS external transitions depend on input values.
Our TLA+ encoding codify this dependency explic-
itly. For instance, assume that a robot’s arm must
be moved upwardly p space units when the external
event MoveUp is received but it can be moved only if
it does not go beyond its maximum position. Hence,
the TLA+ specification is as follows:

module Example4
extends Naturals, RealTime
CONSTANTS MAXUP
ASSUME MAXUP ∈ Nat ∧MAXUP > 0
VARIABLES cpt, pos

MoveUp(p) ∆= ∧ pos + p ≤ MAXUP
∧ now − cpt ≤ ta[vars]
∧ pos ′ = pos + p ∧ cpt ′ = now

See more on the encoding of external transitions in
section III-D below.

λ This is a function from the set of states of the system
onto the set of system outputs. DEVS semantics says
that if an internal transition is executed from state s
then the system outputs λ(s). External transitions do
not produce output. There is no special gesture or
convention in TLA+ for modeling output. Usually
some variables are defined within the module repre-
senting output devices, channels or whatever. In other
words, module variables are no only for capturing the



state of the system but also to represent the state of
its environment.
Then, our encoding prescribes to model the output
function λ explicitly in each internal transition defi-
nition. For example, if Error in module Example3
should also output the error number through channel
out , then we change that module as follows:

module Example5
extends RealTime
VARIABLES st, out
vars ∆= 〈st , out〉

Error ∆= ∧ status 6= “err” ∧ status ′ = “err”
∧ cpt ′ = now ∧ out ′ = 2

ta This function represents the lifetime of each state.
Since it is a constant value, in the sense that its
definition cannot be changed by internal nor external
transitions, we will represent ta as one of the mod-
ule’s constants and in the ASSUME section we will
give its definition. For example

module Example6
CONSTANT ta
ASSUME
∧ ta ∈ [T 1×, . . . ,×Tn → <+

0 ]
∧ ∀ x 1 ∈ T 1, . . . , xn ∈ Tn :

ta[x 1, . . . , xn ] =
case x 3 = . . . → ∞

x 2 ∈ . . . ∧ x 5 ≤ . . . → 0

where T i is the ”type” of phase variable s i ;
here only variables representing phase attributes
are considered. Then the value of ta in a par-
ticular state is just ta[〈s1, . . . , sn〉] –since the tag
VARIABLES imposes no order over the variables be-
ing defined we must take care to apply ta consis-
tently with respect to its definition.

This finishes the mapping of a DEVS model onto TLA+
expressions. Despite, the mapping presented so far is not
completely formal, we think that the rules given so far are
sufficiently clear to allow an engineer to translate his or her
DEVS models.

C. A Note on Distinguishing Internal and External Transitions

By reading the TLA+ encoding of a DEVS model it is
no always easy to know which are internal and external
transitions. Internal transitions are controlled or initiated by
the system; external transitions are controlled or initiated by
the environment. We propose, by following [15], [13], to
complement the TLA+ formal description with a so called
control table in which each action is classified as internal
(machine controlled) or external (environment controlled).

D. A Note on the Interpretation of External Transitions

In a DEVS model the reception of an external event is
always enabled since the model cannot control when the

environment will produce the event. Our encoding transforms
the reception of an external event in the execution of a
corresponding (external) action. For instance, the reception
of event MoveUp in a DEVS model, is encoded as the
execution of action MoveUp in the TLA+ specification (cf.
module Example4 above). Due to the semantics of a TLA+
specification an action such as MoveUp is enabled only if its
preconditions are met. Hence, it may appear that it is possible
for the DEVS model to receive event MoveUp in more states
that it is possible to execute action MoveUp. However, despite
the event can be received in any state, the DEVS model only
prescribe a meaningful behavior when the event is sensed
in a subset of those states; in the other cases, the model
transitions to a new state that differs only in its lifetime –
i.e. δext(s, σ, e, x ) = (s, σ − e). Our encoding describes only
those meaningful behaviors.

IV. A CASE STUDY

In this section we will show an application of the encoding
presented so far. First, we will show a very simple DEVS
model, and then we will apply the rules to encode it as a
TLA+ specification.

A. The DEVS Model

The following DEVS model represents a robot’s arm that
has to be moved from a conveyor belt to a press. If the external
event ToPress is received and the arm is at the belt, then it
starts to go to the press. When 5 time units have elapsed since
the arm started to go from the belt to the press, it must be
stopped and the signal Stopped must be outputted –we assume
that the arm remains at the press for ever. In this way, we have
one external transition, one internal transition, one output, and
one real-time requirement which is quite representative of the
kind of systems modeled with DEVS.

Arm = 〈X ,S ,Y , δint , δext , λ, ta〉
X = {ToPress}
Y = {Stopped}
S = {AtBelt ,Moving ,AtPress} × <+

0

δint(s, σ) = (AtPress,∞), s = Moving
δext((s, σ), e,ToPress) ={

(Moving , 5), s = AtBelt
(s, σ − e), s ∈ {Moving ,AtPress}

λ(s, σ) = Stopped , s = Moving
ta(s, σ) = σ

B. The TLA+ Specification

The TLA+ specification that encodes DEVS model Arm by
following the rules introduced in section III-B is as follows.

module Arm
extends RealTime, Reals
CONSTANTS ta, S, <+

0

ASSUME
∧ S = {“AtBelt”, “Moving”, “AtPress”}
∧ ta ∈ [S → <+

0 ]



∧ ∀ s ∈ S :
ta[s] = case s ∈ {“AtBelt”, “AtPress”} → ∞

s = “Moving” → 5

VARIABLES cpt, pos, out
vars ∆= 〈cpt , pos, out〉
NoVal ∆= CHOOSE x 6= “Stopped”
TypeInv ∆= ∧ pos ∈ S ∧ out ∈ {“Stopped”,NoVal}

∧ cpt ∈ <+
0

Init ∆= cpt = now ∧ pos = “AtBelt” ∧ out = NoVal
ToPress ∆= ∧ pos = “AtBelt” ∧ now − cpt ≤ ta[pos]

∧ pos ′ = “Moving” ∧ cpt ′ = now
∧ out ′ = out

Stop ∆= ∧ pos = “Moving” ∧ pos ′ = “AtPress”
∧ out ′ = “Stopped” ∧ cpt ′ = now

Next ∆= ToPress ∨ Stop
Spec ∆= ∧ Init ∧ [�Next ]vars ∧ RTnow(vars)

∧ RTBound(Stop, vars, ta[pos], ta[pos])

As we propose ta is defined as a constant function depend-
ing only on the phase. State variable cpt is introduced to count
the time elapsed since the last transition, initially equals now
and it is updated in the post-condition of every transition. The
system outputs on state variable out following the encoding
for λ; besides, internal transitions such as Stop are the only
ones which can modify the value of this variable. The initial
state –actually we should say the initial phase– is defined in
predicate Init as is customary in TLA+ specifications.

As we propose, the external transition due to the reception
of input ToPress is codified as an action with the same name.
The alternative guarded by s ∈ {Moving ,AtPress} is not
explicitly codified although it can be done as:

ToPressOk ∆= as ToPress in module Arm
ToPressE ∆= pos 6= “AtBelt” ∧ UNCHANGED vars
ToPress ∆= ToPressOk ∨ ToPressE

Finally, the ”functional” aspects (i.e. what) of the internal
transition are described in its definition, while the timing con-
ditions for its execution (i.e. when) are codified in predicates
RTnow and RTbound as we suggest.

V. FUTURE WORK

This paper is the result of an ongoing research, then there is
a lot of work to do in the future. First, we need to formalize the
encoding given so far as the first step towards the construction
of a translation tool. Then, we need to investigate whether all
DEVS model can be transtaled or not, and in this case under
what conditions the encoding works. Particularly, we would
like to study how DEVS coupled models can be encoded in
TLA+. Then, continuous systems might be considered but we
do not foresee to much future in this direction.

VI. CONCLUSIONS

The main conclusion of this work is that DEVS models
describing discrete event systems can be easily translated into
TLA+ specifications. This translation is not only possible

but beneficial for DEVS since it lays the basis for a formal
semantics of this powerful modeling language. Having a TLA+
specification of a DEVS model enables for formal verification
of the model or to model-check it with the tools already
available for TLA+ specifications. In fact, our encoding has
made explicit some important rules to simulate a DEVS model.
However, the resulting TLA+ specification shows some in-
conveniences that should be either tolerated or improved with
future research –for example, the TLA+ specification looses
the clear distinction between internal and external transitions
enforced in the DEVS model.

ACKNOWLEDGMENTS

Norbert (Giambiasi) thanks a lot for encouraging me to
write this article. Claudia (Frydman), hope sometime I can
give you something in return for inviting me several times to
LSIS. Hernán (Dacharry) thanks for helping me to understand
DEVS. Thanks to the referees for their comments.

REFERENCES

[1] B. P. Zeigler, Theory of Modelling and Simulation. Robert F. Krieger
Publishing, 1976.

[2] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley Professional, 2002.

[3] D. Craigen, S. Gerhart, and T. Ralston, “An international survey of in-
dustrial applications of formal methods,” National Institute of Standards
and Technology, Tech. Rep. NIST GCR 93/626-V1 & NIST GCR 93-
626-V2, 1993.

[4] J. Bowen, “Formal methods in safety-critical standards,” in Proc. Soft-
ware Engineering Standards Symposium (SESS’93). Brighton, UK,:
IEEE Computer Society Press, Sept. 1993, pp. 168–177.

[5] M. Hinchey and J. Bowen, Industrial-Strength Formal Methods in Prac-
tice, ser. Formal Approaches to Computing and Information Technology.
Springer-Verlag, 1999.

[6] E. Clarke and J. Wing, “Formal methods: state of the art and future
directions,” ACM Computing Surveys, vol. 18, no. 4, pp. 626–643, Dec.
1996.

[7] P. E. Ross, “The exterminators,” IEEE Spectrum, vol. 42, no. 9, pp.
30–35, Sept. 2005.

[8] J. Bowen, “Formal methods,” http://vl.fmnet.info/.
[9] H. P. Dacharry and N. Giambiasi, “From Timed Automata to DEVS

models: Formal verification,” in SMC 2005 Spring Simulation Multi-
conference, 2005.

[10] E. Kofman, “Quantized-state control. a method for discret event control
of continuous systems,” in Latin American Applied Research, 2001.

[11] N. Giambiasi, B. Escude, and S. Gosh, “GDEVS: A generalized dis-
crete event specification for accurate modeling of dynamic systems,”
Transactions of SCS, vol. 17, no. 3, pp. 120–134, 2000.

[12] M. Cristiá, “Material de la asignatura Análisis de Sistemas, LCC,
FCEIA, UNR,” http://www.fceia.unr.edu.ar/asist.

[13] P. Zave and M. Jackson, “Four dark corners of requirements engineer-
ing,” ACM Transactions on Software Engineering and Methodology,
vol. 6, no. 1, Jan. 1997.

[14] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave, “A reference model
for requirements and specifications,” IEEE Software, vol. 17, no. 3, pp.
37–43, May 2000.

[15] M. Jackson, Software Requirements and Specifications. ACM Press,
1995.

[16] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, pp. 231–274, 1987.

[17] B. Alpern and F. B. Schneider, “Defining livennes,” Information Pro-
cessing Letters, vol. 21, no. 7, pp. 181–185, Oct. 1985.

[18] M. Abadi and L. Lamport, “The existence of refinement mappings,”
Theoretical Computer Science, vol. 82, no. 2, pp. 253–284, 1991.


