
Adapting Model-Based Testing Techniques to DEVS Models Validation
Diego A. Hollmann1,2, Maximiliano Cristiá1 and Claudia Frydman1,2

1FCEIA - UNR, CIFASIS, Rosario, Argentina. | 2LSIS - AMU, Marseille, France.
{hollmann, cristia, frydman}@cifasis-conicet.gov.ar

Keywords: Model Validation, DEVS, Discrete Event Simu-
lation, Simulation Criteria, Software Engineering

Abstract
One way to validate a model of a system against its require-
ments is to simulate it several times under different conditions
and observe its behavior in order to compare it with what the
system is supposed to do. This paper presents a technique that
is widely used in the software testing community but barely
known in the modeling and simulation community. We for-
malize a family of criteria to conduct DEVS model simula-
tions in an ordered way and to cover the most significant sim-
ulation scenarios to increase the confidence that the model
has been properly validated.

1. INTRODUCTION
During the simulation of a model it would be desirable to

perform all possible simulation scenarios and compare these
behaviors against the requirements. Unfortunately, exhaus-
tive simulation is impractical in almost all projects, since it
involves an infinite number of simulation scenarios. Consid-
ering this, the selection of an appropriate set of simulation
scenarios is a crucial issue to assure that a model has been
simulated enough in order to increase the confidence that it
complies the requirements.

In the software testing field there is an analogous scenario.
According to Utting and Legeard [13] software testing con-
sists of the dynamic verification of the behavior of a program
on a finite set of test cases, suitably selected from the usu-
ally infinite executions domain, against the expected behav-
ior. There are several works in this area trying to formalize
the software testing process. In [6] Hieorns et al review the
state of the art of how formal specifications are used to assist
testing. Being so important in software development, the test-
ing process has been improved up to the point of turning it
almost automatic, in many cases obtaining quite good results.

An important part of this automation is possible because
there are formally defined testing criteria. Some of these crite-
ria are based on the exploration of the specification and others
on the exploration of the source code of the program. Particu-
larly, we work with the formers and we propose to adapt them
to model simulations.

Another relevant work was presented by de Souza et al in
[10] where they propose a family of coverage testing crite-
ria for specifications based on Statecharts. This formalism is

mostly used to specify the behavior of reactive systems and
has some similarities, in this sense, with DEVS [14].

Most of these works belong to a subfield of testing known
as model-based testing (MBT). One relevant MBT method
is the Test Template Framework (TTF), presented in [11] by
Stocks and Carrington and implemented by Cristiá et al in [4]
where a framework is introduced to formally define test data
sets providing structure to the testing process.

We believe that the TTF, and other MBT methods as well,
can be applied in the model simulation process, but they are
almost unknown by the modeling and simulation community.
In general, the simulation of models is performed according
to the experience or intuition of a specialist. Therefore no for-
mal guidelines or criteria are being followed to define an ade-
quate set of simulations, making the simulation process infor-
mal and error prone. On the other hand being the selection of
the simulations a “manual” activity it can not be automatized
in a significant way until it is not formalized.

The idea of this work is to introduce those techniques, but
changing the testing setting by a simulation setting, particu-
larly by applying these techniques to DEVS models which re-
quires to take into account its characteristics. Taking as start-
ing point the TTF for the data structures of a DEVS model
and the work of Souza et al [10] for the reactive aspects of the
model, we describe a set of criteria to conduct simulations of
DEVS models.

2. CONTRIBUTION OF THIS PAPER
The major contribution of this paper is to present an alter-

native method to conduct the simulation process of DEVS
models in order to validate them, introducing a very well
known technique in the testing world into the model and sim-
ulation community.

Currently, as we mentioned in the introduction, the sim-
ulation process is preformed according to the experience or
intuition of a specialist without following any formal guide-
lines. We believe that simulating DEVS models following the
techniques presented in this work will increase the confidence
that the model is correct validating aspects or functions of the
model that could be overlooked by the specialist.

3. RELATED WORK
The family of simulation criteria proposed in this work is

mainly based on the testing framework of Stocks and Car-
rington mentioned in the previous section. We adapted some



of those testing techniques to the model simulation context.
Another work that has inspired ours is that of de Souza et
al, where they present a family of coverage criteria for State-
charts specifications.

Labiche and Wainer in [7] made a review of the Verification
and Validation (V&V) of discrete event system models. They
propose to apply or adapt existing software testing techniques
to the V&V of DEVS models. Just, what we intend to do with
the present work is to adapt some testing techniques in order
to validate DEVS models.

On the other hand, there are several works that use verifica-
tion techniques, like model checking to verify the correctness
of a model. For instance, Napoli and Parente [9] present a
model-checking algorithm for Hierarchical Finite State Ma-
chines as an abstract DEVS model. They also focus on the
generation of simulation scenarios for DEVS, but as counter-
examples obtained by the application of their model-checking
algorithm. The main problem of model-checking techniques
is the so-called state explosion[1].

Another recent work that applies verification techniques
over discrete event simulation is [5] where da Silva and de
Melo presents a method to perform simulations orderly and
verify properties about them using transitions systems. They
focused their work on the verification of properties by sim-
ulations but not on the generation of simulations in order to
validate the model.

Li et al in [8] present a framework to test DEVS tools. In
their framework they combine black-box and white-box test-
ing approaches. Actually, this work is not really related to
ours because they do not validate or verify a DEVS model,
whereas they test DEVS implementations. However, it is use-
ful to see how they introduce software testing techniques in
the DEVS world.

4. FAMILY OF SIMULATION CRITERIA
As we mentioned in the introduction, this work intends

to introduce some model-based testing techniques into the
model simulation world, specially for DEVS models. A
DEVS Model is defined by the structure [14]:

M = (X ,Y,S,δint ,δext ,λ, ta)
where:
• X is the set of input event values, i.e., the set of all pos-

sible values that an input event can assume;
• Y is the set of output event values;
• S is the set of state values;
• δint , δext , λ and ta are functions that define the system.

dynamics.

4.1. Domain Partition
Given a DEVS model, usually the set of possible simula-

tions is infinite, no matter if the model has finite sets of in-
puts, states and outputs. Taking the idea of the TTF we adapt

the partition strategy to DEVS models. Given the set of all
possible simulations of a model, we propose to divide it into
equivalence classes by applying one or more criteria. We call
each of these divisions simulation configuration class (SCC).

We present briefly the uniformity hypothesis [2], statement
related to the uniformity of a program’s behavior on ranges
of data. Given a certain subset or range of the input data the
hypothesis assumes the program has the same behavior for
each element in that range. In software testing Hierons et al
assert “if the program is correct for one set of input values in
this range, then it is correct for all such input values” [6].

Therefore, we say that those classes, in which the set of
possible simulations was divided, are equivalence classes be-
cause it is assumed that the model has uniform behavior for
some subsets of simulations. If the uniformity hypothesis
holds and an error in the model is found for some simula-
tion of a given class, then the same error must be found with
any simulation of the class.

As in [11] some strategies or criteria assume that every el-
ement of a class is equivalent to all the others for the simula-
tion of the model. However, as noted by Stocks and Carring-
ton, this assumption is often invalid and they propose to apply
repeatedly the strategies in order to partition the classes into
subclasses until the tester (simulator in this case) considers
that the classes are small enough or each functionality of the
model is covered [4].

Each element of a SCC has all the information necessary to
perform a specific simulation in order to observe a particular
behavior of the model. These elements of the class consist of
an initial state (to initialize the simulation) and an input se-
quence containing the events to simulate and its correspond-
ing time (when to simulate that event).

Following this idea, to describe a SCC we need to define
the set of possible initial states and the set of possible input
sequences for the simulation. An input sequence is a sequence
of pairs (event, time). Therefore a class can be defined by one
of the followings forms:
• a set of states Si ⊆ S and a sequence of pairs (x, t), with

x ∈ X and t ∈ R+
0 , or

• a state s ∈ S and a set of sequences of pairs (xi, ti) with
xi ∈ X and ti ∈ R+

0 , or

• a combination of both, i.e. a set of states Si ⊆ S and a set
of sequences of pairs (xi, ti) with xi ∈ X and ti ∈ R+

0 .

The first form defines a SCC by a set of possible initial
states and by a unique input sequence. In the second one the
initial state is unique and it is given a set of input sequences.
The third form is more generic, combining the previous ones,
i.e. the classes are described by a set of possible initial states
and a set of input sequences. The total class of simulations
for a given DEVS models is defined by S and {es ∈ seq (X×
R+

0 )}, i.e. all possible states and all possible input sequences.



From now on, to denote the set of possible initial states
we will use IniSt and for the set of input sequences InpSeq.
Defining these two sets, is enough to define a SCC.

4.2. Partition Criteria
Below we present the different partition criteria proposed

in this work. The criteria are applied to different aspects of
DEVS models. Some criteria apply to the external transition
function definition, others to the internal transition function
definition and others to the definition of the states or input
and outputs sets.

It is important to mention that at any time of the partition
process it is possible that some criteria could not generate new
partitions. Furthermore, it does not matter the order in which
the criteria are applied, the result is the same.

4.2.1. Transition Functions Defined by Cases
It is very common to define the external and internal tran-

sition functions by cases. The first and more intuitive crite-
rion is to partition the set of possible simulations into several
classes, one for each case in the definition of the function.

Let δext and δint be the transition functions of a DEVS
model defined by cases:

δext(s,e,x) =


expr1

ext(s,e,x) if P1
ext(s,e,x)

...
exprm

ext(s,e,x) if Pm
ext(s,e,x)

δint(s) =


expr1

int(s) if P1
int(s)

...
exprm

int(s) if Pm
int(s)

where expri
ext and expri

int are the result of the function if
the proposition Pi

ext or Pi
int , respectively, holds. This criterion

proposes to generate one partition for each proposition in the
definition of the internal and external transition function.

IniSti = {s ∈ S | Pj, j ∈ [1,m]}
InpSeqi = {es ∈ EvSeq | Pj, j ∈ [1,m]}

with EvSeq = seq (X×R+
0 ).

If the function is well defined, i.e. there is one and only one
proposition that holds for the same input values, these classes
should be disjoint.

4.2.2. Sets Defined by Extension
To describe DEVS models it is very usual to define some

sets by extension (states, input events or output events) , i.e.
listing the elements of the set. Necessarily these sets will be
finite and relatively small, therefore this criterion proposes to
simulate all scenarios where appears at least once each ele-
ment of these sets.

For example, let S be a set defined by extension:
S = {s1,s2, ...,sn}
for each si ∈ S, i ∈ [1,n] one SCC should be defined.

If S represents the set of possible states of the model, the
partitions defined applying this criterion should be:

IniSti = {si},
InpSeqi = {seq ∈ EvSeq}.

4.2.3. Standard Partitions
In almost all models, different mathematical operators ap-

pear in the definitions of the model elements (transition func-
tions, time advance function, state) and they can be simple
(addition, sets union) or more complex (functions defined in
a programming language or pseudo-code). Each operator has
a particular input domain and this criterion proposes to parti-
tion the set of possible simulations according to the partitions
associated to each operator. Therefore, for each operator in
the model a standard partition should be defined. For exam-
ple, for the operator < (a < b), the standard partition could
be [4]:

a < 0,b < 0 a < 0,b = 0 a < 0,b > 0
a = 0,b < 0 a = 0,b = 0 a = 0,b > 0
a > 0,b < 0 a > 0,b = 0 a > 0,b > 0

Let θ(x1, ...,xn) be an operator of arity n with the associated
partitions P1(x1, ...,xn), ...,Pm(x1, ...,xn). When θ appears in
an operation the set of possible simulation must be partitioned
using the standard partitions associated with it is:

IniSti = {s ∈ S | Pi},
InpSeqi = {seq ∈ EvSeq | Pi}.

4.2.4. Domain Propagation
This is a particular criterion, since it does not generate new

partitions by itself. The purpose of it is to obtain standard
partitions of complex operators combining the standard par-
titions of simpler sub-operators.

Each sub-operation has input domain partitions of its own
which are ignored by standard partitions criterion if it is ap-
plied to the complex operator. Using domain propagation the
input domain partition of sub-operations are propagated to the
higher level. [12]

Let � be a complex operator defined as: �(A,B,C) =
(A4B)♦C where4 and ♦ are simple operators.

Let us suppose that 4 and ♦ have the following standard
partitions:

EP4(S,T ) = D41 (S,T )∨ . . .∨D4n (S,T )
EP♦(U,V ) = D♦

1 (U,V )∨ . . .∨D♦
k (U,V )

We apply first EP4 to the sub-expression (A4B), replac-
ing the formal parameters appearing in EP4 by A and B re-
spectively:

EP4(A,B) = D41 (A,B)∨ . . .∨D4m (A,B)

with m≤ n.
Afterwards we do the same with EP♦, obtaining:

EP♦(A4B,C) = D♦
1 (A4B,C),∨ . . .∨D♦

j (A4B,C)



with j ≤ k.
Finally, we combine both propositions obtained and sim-

plify:
EP� = EP4(A,B)∧EP♦(A4B,C)

4.2.5. Time Partitions
This criterion could be included in Standard Partition, but

we mention it as a separate criterion because in timed for-
malisms, like DEVS, this is a crucial issue. It is very com-
mon to use additional variables to model the time. Further-
more, one characteristic of these models is that the elapsed
time appears in the external transition function definition as a
variable.

Therefore, it is necessary to bear in mind not only which
events must be simulated but when to simulate them.

The intention of this criterion is to simulate different sce-
narios where events occur at different moments, to verify the
interaction of those variables used to simulate the time and
the interaction between these ones with the elapsed time (for
external transitions).

4.3. Combining Partitions
Once all the criteria has been applied it is recommended

to combine the resulting SCCs, i.e. conjoining two or more
partitions, throwing away those conjuncts whose result is an
empty set (when the intersection is empty). This allow to ob-
tain new SCCs.

Let us see this with a toy example. Let MT =
(X ,Y,S,δint ,δext ,λ, ta), with X = N and S = N×Z, be the
model of some system and suppose that after applying some
criteria the following SCCs are obtained:
• IniSt = {(n,z) : N×Z | n > 10∧ z < 10},

InpSeq = {〈(1, t1),(5; t2)〉 | t1, t2 ∈ R+
0 }

• IniSt = {(n,z) : N×Z | n > 15∧ z <−10},
InpSeq = {〈(1, t1),(5; t2)〉 | t1, t2 ∈ R+

0 }

Therefore, conjoining these two partitions the following
ones are obtained (we only show some partitions for brevity):
• IniSt = {(n,z) : N×Z | 10 < n < 15∧0 < z < 10},

InpSeq = {< (1, t1),(5; t2)>| t1, t2 ∈ R+
0 }

• IniSt = {(n,z) : N×Z | n = 15∧0 < z < 10},
InpSeq = {< (1, t1),(5; t2)>| t1, t2 ∈ R+

0 }
• IniSt = {(n,z) : N×Z | n > 15∧ z <−10},

InpSeq = {< (1, t1),(5; t2)>| t1, t2 ∈ R+
0 }

4.4. Simulation Sequencing
Once the criteria proposed before have been applied is de-

sirable to generate a sequence of simulations. Here we pro-
pose a tactic to do this profiting the results of the obtained
from criteria.

The main progress is led by the following idea: select one
initial state from one of the SCCs and simulate the associated

event. Once the event has been simulated and a new state is
reached there are two alternatives, wait for an internal tran-
sition occurs or simulate another event. For both cases the
selection should not be “random” it must be chosen from one
SCC. The new state reached before must pertain to the set
of possible initial states of the SCC selected. Afterwards, the
process continues repeatedly choosing an event or waiting for
an internal transition until at least one element of each SCC
has been simulated.

5. CASE STUDY
In this section we show the application of the criteria to

an example. First we present the requirements of the system,
then we describe the DEVS model and finally the simulations
that follow the application of the criteria.

This particular system consists in the control of a soda can
vending machine. The machine accepts coins of $ 0.05, $
0.10, $ 0.25, $ 0.50 and $ 1. It gives change, optimizing it
(i.e. giving the less coins as possible).

The machine has cans of two different prices (normal and
diet), and the system that controls the machine must comply
with the following requirements:

• During an operation, if after Tret units of time no coin is
introduced into the machine or no soda is selected, the
machine returns all the money that has been introduced.

• Prices of sodas increase as time passes. Every Tincr units
of time both prices are increased in $ 0.05.

• if the returned money is not collected by the user after
Tchg units of time the machine recovers it.

• The machine has a display that shows the amount of
money introduced or the change after an operation.

• At any time, before selecting a soda, the user can cancel
the operation and the machine returns the money.

Some additional temporal requirements (in particular the
second one) were artificially included in order to have more
time variables interacting in the model allowing to increase
the partitions obtained by applying the criteria of the previous
section.

In the figure 1 we describe the DEVS model for this exam-
ple.

5.1. Simulations
At first we show a possible way to generate the SCCs (par-

titions of the set of all possible simulations) for this exam-
ple using the criteria presented before. As we mention in
the previous section, these classes are equivalence classes,
therefore it is enough to select one element of each class to
simulate the functionality or behavior of the model that the



Msv = (S,X ,Y,δint ,δext ,λ, ta)

S = MachState×Display×OpTime×NormalPrice×DietPrice× IncrTime×MoneyStorage×OperationMoney×MoneyReturned
where:
MachState = {idle,operating,finishingOp,cancelingOp,waitingRetChange}
OpTime = R+

0 ∪{∞}
Display = IncrTime = NormalPrice = DietPrice = R+

0 ,
MoneyStorage = OperationMoney = MoneyReturned = Coins1d×Coins50c×Coins25c×Coins10c×Coins5c

where:
Coins1d = Coins50c = Coins25c = Coins10c = Coins5c = N0

X = {5,10,25,50,100,getNormal,getDiet,cancel,moneyRetreated}

Y = Display×MoneyReturned

δext((m,d,ot,np,d p, it,ms,om,mr),e,x) =

(operating,d + x,0,np,d p, it− e,ms,om⊕ x, 0̄) if x ∈ {100,50,25,10,5}∧m ∈ {idle,operating}
(finishingOp,d−np,0,np,d p, it− e,ms⊕om, 0̄, 0̄) if x = getNormal∧d ≥ np
(finishingOp,d−d p,0,np,d p, it− e,ms⊕om, 0̄, 0̄) if x =′ getDiet ′∧d ≥ d p
(cancelingOp,d,0,np,d p, it− e,ms, 0̄,om) if x = cancel

(idle,0,0,np,d p, it− e,ms, 0̄, 0̄) if x = moneyRetreated

δint((m,d,ot,np,d p, it,ms,om,mr)) =

(operating,d,Tret ,np,d p, it,ms,om, 0̄) if m = operating∧ot < it
(waitingRetChange,d,Tchg,np,d p, it,ms	 (d�ms),om,d�ms) if m = finishingOp∧ot < it
(waitingRetChange,d,Tchg,np,d p, it,ms, 0̄,mr) if m = cancelingOp∧ot < it
(idle,0,∞,np,d p, it,ms, 0̄, 0̄) if m = waitingRetChange∧ot < it
(idle,0,∞,np,d p, it,ms, 0̄, 0̄) if m = idle∧ot < it
(m,d,ot− it,np+0.05,d p+0.05,Tincr,ms,om,mr) if it < ot

λ((m,d,ot,np,d p, it,ms,om,mr)) = (d,ms)

ta((m,d,ot,np,d p, it,ms,om,mr)) = min(ot, it)

(coins1d,coins50c,coins25c,coins10c,coins5c)⊕ x =



(coins1d + x,coins50c,coins25c,coins10c,coins5c) if x = 100
(coins1d,coins50c+ x,coins25c,coins10c,coins5c) if x = 50
(coins1d,coins50c,coins25c+ x,coins10c,coins5c) if x = 25
(coins1d,coins50c,coins25c,coins10c+ x,coins5c) if x = 10
(coins1d,coins50c,coins25c,coins10c,coins5c+ x) if x = 5

(coins1d,coins50c,coins25c,coins10c,coins5c)	 x =



(coins1d− x,coins50c,coins25c,coins10c,coins5c) if x = 100
(coins1d,coins50c− x,coins25c,coins10c,coins5c) if x = 50
(coins1d,coins50c,coins25c− x,coins10c,coins5c) if x = 25
(coins1d,coins50c,coins25c,coins10c− x,coins5c) if x = 10
(coins1d,coins50c,coins25c,coins10c,coins5c− x) if x = 5

d� (coins1d,coins50c,coins25c,coins10c,coins5c) = (coins1d′,coins50c′,coins25c′,coins10c′,coins5c′),
where:
coins1d’ = min(coins1d,d÷1)
coins50c’ = min(coins50c,(d− coins1d′)÷0.50)
coins25c’ = min(coins25c,(d− coins1d′− coins50c′)÷0.25)
coins10c’ = min(coins10c,(d− coins1d′− coins50c′− coins25c′)÷0.10)
coins5c’ = min(coins5c,(d− coins1d′− coins50c′− coins25c′− coins10c′)÷0.05)

0̄ = (0,0,0,0,0)

Figure 1. DEVS Model of a soda can vending machine



SCC suggest. At the end of this section, we present, for some
classes, one possible simulation. Again, because of the lack of
space, when the partitions created by some criterion are too
many we will just enumerate some of them. (Extended ver-
sion of this paper http://dcc.fceia.unr.edu.ar/
˜dhollmann/DEVS_Validation.pdf)

We apply the following criteria as explained in each case:

Transition Function Defined by Cases (External) The
first criterion that we apply to this example uses the definition
of the external transition function, and generates one partition
for each case in that definition. With these partitions we in-
tend to simulate different scenarios to show how the model
transitions, or how the model behaves in some particular cir-
cumstances, i.e. each case of the definition of the external
transition function.

To describe the SCCs for this example, we will
use several times a generic s ∈ S defined as s =
(m,d,ot,np,d p, it,ms,om,mr)).

The partitions generated are:
• IniSt = {s : s ∈ S},

InpSeq = {〈(x, t)〉 | x ∈ {100,50,25,10,5}∧ t ∈ R+0}
• IniSt = {s : s ∈ S | d ≥ np},

InpSeq = {〈(x, t)〉 | x = getNormal∧ t ∈ R+0}
• IniSt = {s : s ∈ S | d ≥ d p},

InpSeq = {〈(x, t)〉 | x = getDiet∧ t ∈ R+0}
• IniSt = {s : s ∈ S},

InpSeq = {〈(x, t)〉 | x = cancel∧ t ∈ R+0}
• IniSt = {s : s ∈ S},

InpSeq = {〈(x, t)〉 | x =moneyRetreated∧ t ∈ R+0}

Standard Partitions We now apply the standard partitions
criterion over the partitions generated before, i.e. the SCCs
obtained from the external transition function definition. The
criterion is applied over the operator ≥ that appears twice
(d ≥ np and d ≥ d p) and the standard partition for this oper-
ator is equal to the standard partition for the < described in
the previous section. We will apply again this criterion later.
The followings new partitions are some of the result of apply-
ing this criterion. The first three correspond to the application
of the criterion over the operation d ≥ np and the other three
over the operation d ≥ d p.
• IniSt = {s : s ∈ S | d < 0∧np < 0},

InpSeq = {〈(x, t)〉 | x = getNormal∧ t ∈ R+0}
• IniSt = {s : s ∈ S | d = 0∧np < 0},

InpSeq = {〈(x, t)〉 | x = getNormal∧ t ∈ R+0}
• IniSt = {s : s ∈ S | d > 0∧np < 0},

InpSeq = {〈(x, t)〉 | x = getNormal∧ t ∈ R+0}
• IniSt = {s : s ∈ S | d < 0∧d p < 0},

InpSeq = {〈(x, t)〉 | x = getDiet∧ t ∈ R+0}
• IniSt = {s : s ∈ S | d = 0∧d p < 0},

InpSeq = {〈(x, t)〉 | x = getDiet∧ t ∈ R+0}

• IniSt = {s : s ∈ S | d > 0∧d p < 0},
InpSeq = {〈(x, t)〉 | x = getDiet∧ t ∈ R+0}

Sets defined by extension: In this example we have two
sets defined by extension, X and MachState. Since these two
sets have a relative small number of elements, we should de-
fine one SCC for each element of them, as this criterion pro-
poses (some classes)
• IniSt = {s : s ∈ S | m = idle},

InpSeq = {〈(x, t)〉 | x ∈ X ∧ t ∈ R+
0 }

• IniSt = {s : s ∈ S | m = operating},
InpSeq = {〈(x, t)〉 | x ∈ X ∧ t ∈ R+

0 }
• IniSt = {s : s ∈ S},

InpSeq = {〈(x, t)〉 | x = 5∧ t ∈ R+
0 }

• IniSt = {s : s ∈ S},
InpSeq = {〈(x, t)〉 | x = 100∧ t ∈ R+

0 }
• IniSt = {s : s ∈ S},

InpSeq = {〈(x, t)〉 | x = getNormal∧ t ∈ R+
0 }

Time Partitions: Now we apply this particular criterion,
bearing in mind the relation between the elapsed time, e, and
the variables used for the time advance: operation time, ot,
and the price increment time, it. The partitions are defined
comparing each of those variable and altering its values and
relation between them, i.e. ot < it, it < ot, etc.
• IniSt = {s : s ∈ S | ot = it = 0},

InpSeq = {〈(x,0)〉 : x ∈ X}
• IniSt = {s : s ∈ S | ot = it ∧ it > 0},

InpSeq = {〈(x,0)〉 : x ∈ X}
• IniSt = {s : s ∈ S | ot > it ∧ it = 0},

InpSeq = {〈(x,0)〉 : x ∈ X}
• IniSt = {s : s ∈ S | it > ot ∧ot = 0},

InpSeq = {〈(x,0)〉 : x ∈ X}

Standard Partitions (over the remaining operators):
There are five operators, +, − and ⊕ in the external transi-
tion function and 	 and � in the internal transition function
that still we did not analyze.

• ⊕, by definition, is based on + and with the same type
involved, N0, therefore they could have the same stan-
dard partition. However, since they involve only ele-
ments in N0 no further significant partitions can be pro-
posed. Except if we want to simulate those cases where
the implementation of those operations in the modeling
language could rise some errors, e.g. overflow errors. In
this case, the errors are not properly in the model but
in its implementation. This is more related to a testing
problem rather than validating through simulations.

• Where the operator “−” interacts with those variables
used for representation of the time, the partitions for
those cases are already described before (Time Parti-
tions).

http://dcc.fceia.unr.edu.ar/~dhollmann/DEVS_Validation.pdf
http://dcc.fceia.unr.edu.ar/~dhollmann/DEVS_Validation.pdf


• Some of the partitions for the others occurrences of the
operator “−” are:

– IniSt = {s : s ∈ S | d = np = 0},
InpSeq = {〈(x, t)〉 : x ∈ X , t ∈ R+

0 }

– IniSt = {s : s ∈ S | d = np∧np > 0},
InpSeq = {〈(x, t)〉 : x ∈ X , t ∈ R+

0 }

– IniSt = {s : s ∈ S | 0 < d < np},
InpSeq = {〈(x, t)〉 : x ∈ X , t ∈ R+

0 }

• With the operator � the Domain Propagation criterion
could be applied since� is formed by two simpler oper-
ators, − and ÷. However, both operators have the same
standard partition, therefore no new partition is gener-
ated combining the partitions generated of each sub-
operator.

Some partitions generated:

– IniSt = {s : s ∈ S | d = 0},
InpSeq = {〈(x, t)〉 : x ∈ X , t ∈ R+

0 }

– IniSt = {s : s ∈ S | 0 < d < conis10d∧coins50c′ <
coins50c ∧ coins25c′ < coins25c ∧ coins10c′ <
coins10c∧ coins5c′ < coins5c},
InpSeq = {〈(x, t)〉 : x ∈ X , t ∈ R+

0 }

– IniSt = {s : s ∈ S | d > 0∧ conins1d = 0},
InpSeq = {〈(x, t)〉 : x ∈ X , t ∈ R+

0 }

Transition Function Defined by Cases (Internal): Fi-
nally, we apply once more the criterion Transition Function
Defined by Cases, but this time we apply it to the inter-
nal transition function. This is a particular case since these
transitions does not depend directly on the incoming events.
In the previous criteria, the SCCs indicate how the system
(model) must be (initial state) before running the simulation
with the provided event sequence. Here, instead, it is nec-
essary to drive the system to a particular state and wait for
the internal transition occurs. Therefore, the resulting SCCs
aim to this idea. These define also an initial state (or a set
of possible initial states) and an events sequence (or a set of
events sequences). However, the expected results of the sim-
ulation are not obtained immediately after the last input event
is performed but after some time, when the desired internal
transition occurs.

Some partitions:
• IniSt = {s : s ∈ S | m = operating∧ot < it},

InpSeq = {〈(x, t)〉 : x ∈ X , t ∈ R+
0 }

• IniSt = {s : s ∈ S | m = operating∧ot = it},
InpSeq = {〈(x, t)〉 : x ∈ X , t ∈ R+

0 }
• IniSt = {s : s ∈ S | m = idle∧ot > it},

InpSeq = {〈(x, t)〉 : x ∈ X , t ∈ R+
0 }

Combining Partitions: Once that we have applied all the
partition criteria, we make the different conjunctions and we
keep those where the result is non empty. Again, because of
the lack of space, we do not show the partitions here, however
these can be observed in the extended version of this paper.

Finally, we must choose one (or more) element(s) from
each partition generated before, to simulate. Sini represents
the initial state of the model and is the input sequence to sim-
ulate.

Some possible simulations:
• Sini = (idle,0,0,0.75,0.80,1000, 0̄, 0̄, 0̄)

is = 〈(cancel,1)〉
• Sini = (idle,0,0,0.75,0.80,1000, 0̄, 0̄, 0̄)

is = 〈(getNormal,1)〉
• Sini = (idle,0,0,0.75,0.80,1000, 0̄, 0̄, 0̄)

is = 〈(moneyRetreated,1)〉
• Sini =(operating,0,0,0.75,0.80,1000, 0̄,(1,0,0,0,0), 0̄)

sch = 〈(getNormal,1)〉

6. DISCUSSIONS
In this section we briefly discuss the proposed criteria.
The Transition functions Defined by Cases generates parti-

tions to cover the different cases in which the transition func-
tions are defined. The intention is to validate the correctness
and completeness of these functions.

The Sets defined by extension intends to generate partitions
where each element of the sets (defined by extension) is sim-
ulated at least once, validating each possible input event or
state value. It is interesting to combine the partitions obtained
from this criterion with the ones obtained with the previous
criterion, simulating then all input events in each case of the
external transition function.

The Standard Partitions aims to validate the mathematical
aspects of the model, i.e. the correct use of comparison, alge-
braical and other operators.

The Domain Propagation extends the previous criterion. It
is useful when it is not simple to apply the standard partition
criterion over a complex operator.

Finally, the Time Partitions is the most meaningful crite-
rion when using timed formalisms, like DEVS. It aims to
simulate different scenarios where events occur at different
instants validating the time advance function and other tem-
poral aspects such as the use of the elapsed time and the aux-
iliary variables representing time.

7. CONCLUSIONS AND FUTURE WORK
The main advantage of performing the simulations of a

model with the technique presented in this work is that one
does not need the experience of a specialist or group of spe-
cialists to validate the model. The validation depends on fol-
lowing a set of rules. This decreases the possibility to over-



look some critical simulation avoiding the discover of some
error in the model.

Another advantage of this work is the possibility to au-
tomatize (ideally the whole process) the validation of DEVS
models by simulations implementing these techniques. An
important issue to achieve this automation, besides the def-
inition of the criteria, is to use a standard to describe DEVS
models. There is a lot of work intending to do this, but this
is still an open area. A standard language for DEVS would
contribute to automatize our proposal because it would allow
an automatic parsing of the model.

An overview of this automatized process is: parse the
model specification (described in some standard language),
apply the partition criteria to generate the simulations, trans-
late the simulation configurations into some simulation lan-
guage and simulate them. Observe the results and compare
them with the specification.

Notice that we do not run the simulations, this is also part
of the automation process. To do this, it is necessary to refine
the proposed simulations. These are in an abstract language,
therefore they must be rewritten in the simulation tool lan-
guage, to run them. A possible way to do it, is adapting the
work in model-based testing [3].

The final remark is the possibility of re-using these tech-
niques to test software derived from a DEVS models. A
DEVS model could be used as the specification of a system to
be implemented in some programming language. The simula-
tion sequences generated from the application of the partition
criteria could be used as test cases to test the implementation.

We will focus our work on adding new criteria, improving
the ones presented here and on the automation of the validat-
ing process by simulation.

REFERENCES
[1] C. Baier and J.-P. Katoen. Principles of model checking.

MIT Press, 2008.

[2] L. Bougé, N. Choquet, L. Fribourg, and M. C. Gaudel.
Test sets generation from algebraic specifications using
logic programming. Journal of Systems and Software,
6:343–360, November 1986.

[3] M. Cristiá, D. A. Hollmann, P. Albertengo, C. S. Fryd-
man, and P. R. Monetti. A Language for Test Case Re-
finement in the Test Template Framework. In ICFEM,
pages 601–616, 2011.

[4] M. Cristiá and P. Monetti. Implementing and Apply-
ing the Stocks-Carrington Framework for Model-Based
Testing. In K. Breitman and A. Cavalcanti, editors, For-
mal Methods and Software Engineering, volume 5885
of Lecture Notes in Computer Science, pages 167–185.
Springer Berlin Heidelberg, 2009.

[5] P. S. da Silva and A. C. V. de Melo. On-the-fly verifi-
cation of discrete event simulations by means of simu-
lation purposes. In Proceedings of the 2011 Symposium
on Theory of Modeling & Simulation: DEVS Integrative
M&S Symposium, TMS-DEVS ’11, pages 238–247, San
Diego, CA, USA, 2011. Society for Computer Simula-
tion International.

[6] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleave-
land, J. Derrick, J. Dick, M. Gheorghe, M. Harman,
K. Kapoor, P. Krause, G. Lüttgen, A. J. H. Simons,
S. Vilkomir, M. R. Woodward, and H. Zedan. Using
formal specifications to support testing. ACM Comput-
ing Surveys, 41(2):1–76, 2009.

[7] Y. Labiche and G. Wainer. Towards the verification and
validation of DEVS models. In in Proceedings of 1st
Open International Conference on Modeling & Simula-
tion, 2005, pages 295–305, 2005.

[8] X. Li, H. Vangheluwe, Y. Lei, H. Song, and W. Wang.
A testing framework for DEVS formalism implemen-
tations. In Proceedings of the 2011 Symposium on
Theory of Modeling & Simulation: DEVS Integrative
M&S Symposium, TMS-DEVS ’11, pages 183–188, San
Diego, CA, USA, 2011. Society for Computer Simula-
tion International.

[9] M. Napoli and M. Parente. In Proceedings of the 2011
Symposium on Theory of Modeling & Simulation: DEVS
Integrative M&S Symposium, TMS-DEVS ’11, pages
59–66, San Diego, CA, USA, 2011. Society for Com-
puter Simulation International.

[10] S. R. S. Souza, J. C. Maldonado, S. C. P. Fabbri, and
P. C. Masiero. Statecharts Specifications: A Family of
Coverage Testing Criteria. In XXVI Conferência Lati-
noamericana de Informática – CLEI’2000, Tecnologico
de Monterrey – México, September 2000.

[11] P. Stocks and D. Carrington. A Framework for
Specification-Based Testing. IEEE Trans. Softw. Eng.,
22:777–793, November 1996.

[12] P. A. Stocks. Applying Formal Methods to Software
Testing, 1993.

[13] M. Utting and B. Legeard. Practical Model-Based Test-
ing: A Tools Approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2006.

[14] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of
Modeling and Simulation, Second Edition. Academic
Press, London, 2000.


	Introduction
	Contribution of this paper
	Related Work
	Family of simulation criteria
	Domain Partition
	Partition Criteria
	Transition Functions Defined by Cases
	Sets Defined by Extension
	Standard Partitions
	Domain Propagation
	Time Partitions

	Combining Partitions
	Simulation Sequencing

	Case Study
	Simulations

	Discussions
	Conclusions and future work

