A multi-target compiler for CML-DEVS

Maximiliano Cristida*, Diego A. Hollmann' and Claudia Frydman?
*Universidad Nacional de Rosario and CIFASIS, Rosario, Argentina
TCIFASIS-CONICET, Rosario, Argentina
fAix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296,13397, France

Abstract—Discrete Event System Specification (DEVS) is a
modular and hierarchical formalism for system modeling and
simulation. DEVS models can be mathematically described;
simulation is performed by tools called concrete simulators.
Concerning atomic DEVS models, each concrete simulator has
its own input language which is, essentially, a general-purpose
programming language (such as Java or C++). Hence, once
engineers have written the mathematical model, they need to
manually translate it into the input language of the concrete
simulator of their choice.

In this paper we present a multi-target compiler for atomic
DEVS models written in CML-DEVS, a mathematics-based
DEVS modeling language. This multi-target compiler is able
to compile a CML-DEVS model to the input languages of
the PowerDEVS and DEVS-Suite concrete simulators. In this
way, the CML-DEVS compiler frees engineers from the manual
translation of their mathematical models. In fact, the same
mathematical model can be simulated on both simulators by
simply re-compiling the model. The CML-DEVS multi-target
compiler can be easily extended to produce code for other
concrete simulators.

Index Terms—DEVS, atomic model, CML-DEVS, compiler

I. INTRODUCTION

Discrete Event System Specification (DEVS) [1] is perhaps
the most general and used modeling and simulation (M&S)
formalism. When using DEVS, a system is modeled by
giving its structure, through a coupled DEVS model, and its
behavior, through one or more atomic DEVS models, which are
composed in intermediate coupled models that at some point
form the final coupled model. Simulation of these models is
performed by tools called concrete simulators (for instance,
DEVS-C++ [2], DEVSim++ [3], CD++ [4], PowerDEVS
[5], JDEVS [6], DEVS-Suite [7], LSIS-DME [8]). Usually a
concrete simulator provides to its users: a) a way to compose
atomic or coupled models into coupled models; and b) a
programming language to program atomic models, which in
general is the same programming language of the concrete
simulator.

Giving the structure of a coupled DEVS model is rather easy
as tools frequently rest on some sophisticated graphical user
interface (GUI) that allows engineers to graphically compose
their atomic and coupled models. Indeed, these tools let
engineers not in the habit of programmig, to compose their
models as they learned in textbooks. They also learned that
DEVS atomic models should be described in the standard
language of mathematics by using equations, functions, sets,

250,
Email:

Corresponding author: Maximiliano Cristitd —
(2000) Rosario, Argentina — Tel: +54 341
cristia@cifasis—-conicet.gov.ar

Pellegrini
6790378 -

etc. However, when they want to simulate these atomic models
they need to program them in the input language of a concrete
simulator, which means to write code in Java or C++ or other
general-purpose programming language. Or else, they need
to ask a programmer to do that. Furthermore, if they want
to experiment with different concrete simulators they need to
re-implement their models for each of them. The process of
translating the mathematical model to the input language of a
concrete simulator, may induce errors that would render the
simulation activity not as accurate as it should be.

For these reasons, we developed CML-DEVS [9], a DEVS
specification language based on standard mathematics and
inspired in formal notations such as Z [10], B [11] and
TLA+ [12], which are used by the Software Engineering
community. CML-DEVS models may be used to abstractly
describe DEVS atomic models, which can later be composed
as done by each concrete simulator. In the context of CML-
DEVS, abstract model and CML-DEVS specification denote
a model described in the language of mathematics and logic.
One of the objectives we had in mind when designing CML-
DEVS was that it should be possible to automatically translate
any CML-DEVS model into the input languages of the main
concrete simulators.

In this paper we present a multi-target compiler for CML-
DEVS models. That is, we present a program that reads a
CML-DEVS specification and generates a program in the input
language of a concrete DEVS simulator. In turn, this program
generated by the CML-DEVS compiler can be compiled as
indicated by the concrete simulator in order to simulate it.
Therefore, the combination of CML-DEVS plus its multi-
target compiler relief engineers from the error-prone, difficult
task of translating their abstract models into concrete models.
CML-DEVS plus its multi-target compiler let engineers to
think in terms of mathematics and to use several different
concrete simulators for simulating the same model.

In this first version the compiler produces PowerDEVS
[5] and DEVS-Suite [13] [7] code, that is, essentially, C++
and Java code, respectively. However, we show how it can
be extended to produce concrete models for other tools. In
effect, by following standard compiler design techniques, our
CML-DEVS compiler provides the functionality for parsing,
type checking, AST construction, etc. of CML-DEVS code in
such a way that producing object code for different concrete
simulators is a rather easy task. The tool presented in this
paper is a proof-of-concept, not a production tool. As such,
it can be improved in many ways although it features the
basic structure and functionality of more advanced tools. With
this tool we aim at showing to the DEVS community an



alternative, complementary technology for modeling atomic
DEVS models. In spite of this, we encourage the DEVS
community to experiment with the current version of the
compiler as it provides a new way of writing DEVS atomic
models.

The CML-DEVS compiler can be freely downloaded,
modified and extended; it can be found here http://www.
cifasis-conicet.gov.ar/hollmann/projects/fCML-DEVS.

The paper is structured as follows. In Section II we intro-
duce, by means of a class-room example, the CML-DEVS
specification language, assuming the reader is familiar with
DEVS (otherwise refer to [1]). The CML-DEVS multi-target
compiler is described in Section III where we comment on key
design decisions that guided us towards its implementation. An
empirical evaluation of the compiler is presented in Section I'V.
This evaluation consists in collecting fourteen atomic DEVS
models, writing them in CML-DEVS and compiling them to
PowerDEVS and DEVS-Suite input languages with the CML-
DEVS compiler. Integration of the CML-DEVS approach with
existing DEVS tools is discussed in Section V. Similar and
related works are described in Section VI. Finally, we give
our conclusions in Section VII. The Appendix contains further
technical information referenced throughout the paper.

II. INTRODUCTION TO CML-DEVS

CML-DEVS has been discussed in detail elsewhere [9].
Here we will show its main features by means of an example.
We want to focus on the fact that writing CML-DEVS code is
equivalent to what software engineers do when writing formal
specifications in formal notations such as B [11]. In other
words, we claim that CML-DEVS captures the mathematics
used to write atomic models as in DEVS textbooks or as in
the classroom in such a manner that tools can be built to
process this language. Another analogy that might apply is that
CML-DEVS is to DEVS what I£TgX is to mathematics. In this
sense, mathematicians do not find writing math formulas with
KTEX particularly annoying although it requires some learning
process.

Therefore, Figure 1 shows an atomic DEVS model written
as in DEVS textbooks or in DEVS courses (e.g. [1], [14], [15],
[16], [13], [17], [18], [19], [20]) while Figure 2 shows a pretty-
printing of the CML-DEVS source code shown in Figure
3 corresponding to the model of Figure 1. What the model
in Figure 1 represents is, at this point, not really important.
Instead, we want to emphasize the fact that Figure 1 is a
mathematical, abstract, simulator-independent description of a
DEVS atomic model. In other words, we claim that people in
the DEVS community would agree in that Figure 1 represents
a typical textbook or classroom description of a DEVS atomic
model.

In turn, note that Figure 2 is, essentially, a mathematical
formula much like the one shown in Figure 1. It rests on equa-
tions, functions and set theory, with no influence whatsoever
from a general-purpose programming language.

On the other hand, the CML-DEVS source code of Figure
3 is aligned with the way specifications in formal notations
such as Z, B and TLA+ are written. We think the code is self-

M= <Xu Sa}/y(sint:(seztv)‘v LLG,>

X ={c¢,k} Oest(s1,€,¢) = 85
S = {s1, $2, 83, 54, S5} Oext (82,6, k) = $9
Y ={g,v,b} Oezt(83,€,C) = 85
5mf,(51) = 823 5mt(52) = 83 5ezt(54, €, C) = S5
Oint(53) = 543 0int(54) = 51 Oeat(55,6,k) = s2
ta(sy) = 20; ta(s2) = 80 As1)=A(s3) =g
ta(ss) = 3;ta(ss) =5 A(s2) = A(sa) =
ta(ss) = +00 A(ss) =b

Fig. 1. A typical textbook or classroom atomic DEVS model

M = (X,S,Y,dint, Ocat, A, ta) where
X ={(in,x) : x € {c,k}}
S = {s1,52,53,54,55}
Y = {(out,y) :y € {g,y,b}}
so if s =51

sz if s = s9

5mt(8) = .
sy If s = s3
51 if s = sy
20 if s =51
80 if s = s
ta(s) =143 if s =s3
5 if s =54
400 if s = s5

sy if s €{s1,83,84}
Avalue = ¢

sp if s € {s9,85}
Avalue = k

5ezt(3a €, (P> Value)) =

(OUt7g) if s € {51783}
A(s) = ¢ (out,y) if s € {s2,54}
(out,b) if s=s5

Fig. 2. Pretty-printing of the CML-DEVS source code shown in Figure 3

explanatory and respects the way engineers write their abstract
models. Besides, consider the following observations:

1) CML-DEVS is based on logic, set theory, equations and
function definitions;

2) There are no side effects as it is a declarative language
enjoying referencial transparency [21];

3) This source code can be generated by, for example, a
formula editor featuring a rich graphical user interface;

4) Pretty-printing (Figure 2) could be done by a simple
translation tool producing IZIEX or XML code; and

5) It is independent of any concrete DEVS simulator,
relieving users from learning several programming lan-
guages.



atomic M is (X, S, Y, dint, dext, lamda, ta) where
Xis
in:{c,k}
end X
Sis
s: {s1, S2, 83, 54, S5}
end S
Y is
out : {g,y,b}
end Y
dint is
defcases
case s = s
case s = s3
case s = s4
case s = s
end defcases
end dint
ta is
defcases
case 20 if s = s
case 80 if s = s2
case 3 if s =s3
case 5 if s =s4
case INF if s =s5
end defcases
end ta
dext is
defcases
case s = s5 if sin{s1,ss,s4} Avalue =c
case s = sz if sin{s2,s5} Avalue=k
end defcases
end dext
lamda is
defcases
case (out,g) if sin{s1,s3}
case (out,y) if sin {s2,s4}
case (out,b) if s =ss
end defcases
end lamda
end atomic

if s
if s
if s
if s

51
82
Ss
84

Fig. 3. CML-DEVS code of the atomic model pretty-printed in Figure 2

III. THE DESIGN OF THE MULTI-TARGET CML-DEVS
COMPILER

In this section we describe the main features and design of
the CML-DEVS multi-target compiler (or compiler for short).
The description is somewhat detailed as we intend it to help
the DEVS community to either implement similar tools or
improve the one described in this paper. Some of the design
decisions we show here were made for quickly providing a
working tool for the DEVS community. In Section III-B we
discuss the pros and cons of the present approach.

The CML-DEVS compiler is a Java program based on a
standard one-pass compiler design and on the ANTLR parser
generator [22]. Figure 4 shows a descriptive block diagram of
the structure of the compiler. It is multi-target as it is conceived
to generate code for different concrete simulators from the
same CML-DEVS model, as we explain in Section III-A. In
this first version, though, it generates only PowerDEVS [5]
and DEVS-Suite [13] [7] code which are essentially C++
and Java code, respectively. As we have said, this tool is
a proof-of-concept whose main goal is to demonstrate the

feasibility of the CML-DEVS approach. Then, we believe
that the “multi-target” feature is demonstrated by generating
code for more than one simulator and by showing that each
new code generator can be easily implemented (see Section
II-A). Today the CML-DEVS compiler is less than 20 KLOC
including comments (15 KLOC of pure Java code).

The CML-DEVS grammar informed in [9] was written in
the grammar language supported by ANTLR. In this way,
ANTLR generated the lexical analyzer (scanner) and the
syntax and semantic analyzer (parser). These two functional
components are implemented by a collection of Java classes
automatically generated by ANTLR.

The main function of the parser is to generate an abstract
syntax tree (AST) of the CML-DEVS model. This AST is a
central data structure as it organizes the model being compiled
as a tree structure. The AST has a node for each terminal
and non-terminal defined in the grammar that is being used
in the model, where its children are the tokens that build
it. For example, in the CML-DEVS code of Figure 3, ta
is represented as a node whose only child is the defcases
structure who, in turn, has four children, one for each case
sentence. Hence, there is a Java class for each token defined
in the grammar. However, these classes provide only syntactic
information. ANTLR organizes these classes according to the
Composite design pattern [23, ch. 4-Composite], which allows
a uniform access to the structure. In particular, an object struc-
ture adhering to a Composite can be analyzed by implementing
the Visitor design pattern [23, ch. 5—Visitor]. This combination
of design patterns facilitates the implementation of several key
functions of the compiler.

Attempting to generate target (object) code from this AST
is quite complex as the AST does not contain semantic
information—for instance, it is not possible to know the type
of each expression. For this reason, as shown in Figure 4, we
decided to augment the AST with semantic information. In
this way code generation (Section III-A) becomes simpler.

Besides, ANTLR automatically generates a template' Visi-
tor interface (CMLDEVSVisitor) specifically tailored to ana-
lyze the AST generated during the parsing phase (see Figure
15 in the Appendix). Currently, the CML-DEVS compiler
implements this interface with a set of classes headed by
CMLDEVSBaseVisitor whose function is to generate another
AST containing semantic information about the model (i.e. the
augmented AST). The heirs of CMLDEVSBaseVisitor create
the nodes of the augmented AST. In this way, it can be said
that the implementation of CMLDEVSBaseVisitor represents
the intermediate code generator.

The AST generated by CMLDEVSBaseVisitor is organized
as a Composite design pattern headed by the CMLDEVSData
interface (see Figure 16 in the Appendix). Each node in
the augmented AST is a heir of CMLDEVSData containing
information such as the semantic role played by each syntax
element and the type of expressions. For example, in the
augmented AST the ta node of the AST mentioned above,
contains information indicating what is the definition part
and the condition part of each case sentence, what is the

IThat is, an interface or a class parametrized by a type.



CML-DEVS model

|

Multi-target compiler

Scanner (CST)

ANTLR l

Parser

|

(AST)

Intermediate
language
(augmented AST)

PowerDEVS

New code
code generator

PowerDEVS model

Fig. 4. Descriptive block diagram of the CML-DEVS multi-target compiler

type of each variable participating in them, etc. This semantic
information is stored in the heirs of CMLDEVSData. In this
way, it can be said that the augmented AST is an intermediate
language.

A. Code generation

Carefully designing the code generation phase (cf. Figure
4) is important in the CML-DEVS compiler as we intend it
to be a multi-target compiler. The main design decision is to
postpone code generation as much as possible. In this way,
code generators do not need to implement other functions
as they are provided by previous phases. Then, new code
generators are small and simple and easy to add.

When calling the CML-DEVS compiler users must pass a
parameter telling to what simulator language the compilation
has to be done. This parameter is used internally to instantiate
the proper code generator. In the CML-DEVS compiler, each
code generator has three main responsibilities:

o Produce object code respecting the syntax and conven-
tions of each concrete simulator;

Distribute the final code in files according to the re-
quirements set by each concrete simulator. For ex-
ample, PowerDEVS requires three files for an atomic
model (ModelName.pds, ModelName.h and Model-
Name.cpp), while DEVS-Suite [13], [7] requires only
one (ModelName.java); and

Substitute reserved words of the target language used in
the CML-DEVS specification. For example, class is a
reserved word in C++, Java, etc. but is not in CML-
DEVS. Then, engineers may use class in their CML-
DEVS specifications as a name for variables, constants,
etc. but when the compiler generates code for a concrete

Simulator model

DEVS-Suite

enerator
9 code generator

DEVS-Suite model

simulator whose input language is based on an object
oriented language, this word must be replaced because
otherwise the generated model will not compile. We
discarded the possibility to reserve more words at the
CML-DEVS level because this would mean to collect the
reserved words of all possible input languages of concrete
simulators.

Each of these responsibilities is assigned to different classes,
which have to be carefully created as they are related to each
other. Creating families of related objects is the purpose of the
Abstract Factory design pattern [23, ch. 3—Abstract Factory].
Hence, the CML-DEVS compiler defines TargetLaguage-
Factory, an interface for instantiating objects that depend on
the target language (see Figure 17 in the Appendix).

Target code generation (i.e. the first responsibility listed
above) is organized according to the Visitor design pattern [23,
ch. 5-Visitor]. This visitor visits the Composite that structures
the augmented AST headed by CMLDEVSData and print
the final code. Hence, the CML-DEVS compiler defines the
Printer interface such that each of its implementations will
print object code corresponding to each sentence of the inter-
mediate language. An excerpt of Printer’s interface is shown
in Figure 5. Note that there are methods to print each terminal
and non-terminal of the intermediate language. In this sense,
the classes implementing this interface are known as pretty-
printers or printers. In fact, these printers use StringTemplate
technology to produce the final code. StringTemplate is a
Java template engine for generating source code developed
by ANTLR’s designer [24].

Therefore, implementing the code generator for Pow-
erDEVS (respect. DEVS-Suite) implies to provide, among
others, a heir of TargetLaguageFactory, called PowerDE-



public interface Printer {

String print (State s);

String print(Deltalnt dint);

String print(TimeAdvance ta);

String print (Assignment assig);

String print(Cases cases);

String print(ListExpression listExpression, CMLDEVSType type);

String print (NumberSetExpression numberSetExpression, CMLDEVSType type);

String print(TextValue textValue, CMLDEVSType type);

String print (NatValue natValue, CMLDEVSType type);

String print (ComparisonDiff comparisonDiff);

String print (ComparisonEq comparisonEq);

String print (OperationPlus operationPlus , CMLDEVSType type);
print (OperationMult operationMult, CMLDEVSType type);

String

Fig. 5. Part of Printer’s interface

VSFactory (respect. DEVSSuiteFactory), and an imple-
mentation of Printer, called PrinterPowerDEVS (respect.
PrinterDEVSSuite). We will focus on PrinterPowerDEVS
as PrinterDEVSSuite is very similar, and printers are the
most interesting components of code generation. Implement-
ing PrinterPowerDEVS entails to define a StringTemplate
template and implement some of its methods by -calling
StringTemplate. Figure 6 shows code snippets of the im-
plementation of three methods of PrinterPowerDEVS, and
Figure 7 shows an excerpt of the template. As can be seen,
the template consists in the basic structure of the code to be
generated with place holders that are replaced each time the
template is used. The replacement can be done with a library
provided by StringTemplate. The place holders are replaced
with the actual data taken from the augmented AST. For ex-
ample, in the second sentence of print(), in Figure 6, stHeader
is the instantiation of the template shown in Figure 7. Then,
this sentence replaces parameter S of headerFile with the
result of print(atomic.getState()), whose implementation can
also be seen in Figure 6.

Hence, implementing a new code generator entails repeating
the implementation schema followed for the implementation
of the PowerDEVS and DEVS-Suite code generators. That is,
defining a heir of TargetLaguageFactory and an implemen-
tation of Printer and implementing it using StringTemplate.
That is, it would be convenient (although not mandatory)
to define a new template considering the peculiarities of the
input language of the concrete simulator. As a matter of fact,
the implementation of the methods shown in Figure 5 for
the DEVS-Suite simulator are almost identical to those of
PowerDEVS. This means that the effort of implementing a new
code generator is alleviated not only by the general design of
the compiler but also by the fact that existing code generators
can be used as the base to implement new ones.

Given that creating object code by printing can be bad
in terms of performance, this technique can be changed or
improved in the future by tool developers. This technique
was chosen because it is one of the simplest forms of code
generation, thus allowing a rapid prototyping of the compiler.

The code corresponding to the PowerDEVS and DEVS-
Suite code generators is about 1 KLOC, each. This shows that

the effort of implementing new code generators (cf. Figure
4) is marginal with respect to the total effort (recall that
currently the CML-DEVS compiler is about 20 KLOC), as
it is otherwise expected if proved compiler techniques are
followed. In turn, this suggests that the idea of defining a
specification language for atomic DEVS models and designing
a multi-target compiler for it, was right.

B. Discussion

In this section we discuss the advantages and disadvantages
of using the CML-DEVS approach (i.e. the CML-DEVS
language plus its multi-target compiler). CML-DEVS provides
a mathematics-oriented specification language for describing
atomic DEVS models. This is aligned with the way DEVS
models are presented in courses and textbooks. Instead, using
a general-purpose programming language demands engineers
not only to be experts in the problem domain but also
programmers. The CML-DEVS compiler complements the
specification language by generating code for (potentially)
many concrete simulators. This allows engineers to write an
abstract model once while being able to simulate it on many
different simulators. CML-DEVS is expressive enough as to
specify all of DEVS atomic models [9].

However, the approach is not exempt of limitations and
disadvantages. Engineers need to learn a new language (i.e.
CML-DEVS). This can be reduced to a minimum if a formula
editor is implemented. Nevertheless, either engineers learn
CML-DEVS or they learn to program in the input language of
a concrete simulator—in turn this is some times not the case
because engineers already know how to program. Learning
CML-DEVS has the advantage that they can use different
concrete simulators for free. The code generated by the CML-
DEVS compiler may be inefficient compared to the code
programmed by an expert on a particular concrete simulator.
Another issue with our approach is that changes in the design
of a concrete simulator (e.g. its input language) might imply
changes in the CML-DEVS compiler. However, the design
of the compiler would limit these modifications to specific
modules (in general to the code generation modules).




public Void print() {
stHeader.add(”modelName”, atomic.getName ())
stHeader.add(”S”, print(atomic.getState ()))
stSource.add(”lambda”, print(atomic.getLambda()));

)
i

}
public String print(State s) {
String sString = "7
sString += decls2string(s.getStateVars());

return sString;

public String print(LambdaCases cases) {
List<String> casesSt = new ArraylList <>();
for (LambdaCase c: cases.getCases())
casesSt.add(” (”
+ c.getCondition (). accept(this)

+ "){\n” + c.getPair ().accept(this) + "\n}”);

String otherwise;
if (cases.hasOtherwise())

otherwise =
else

otherwise = "\nelse{\n.return_Event();\n}";
return ”if.” + StringUtils.join (casesSt,

"\nelse{\n” + cases.getOtherwise (). getPair ().accept(this) + "\n}”";

"\nelse.if”) + otherwise;

Fig. 6. Snippets of PrinterPowerDEVS’s implementation

headerFile (modelName, path ,params,S,X,Y, dint,
dext, functions , funLib) ::1= <<

éiéss <modelName>: public Simulator {
public:
<if(X)> <X <endif>

<modelName>(const char xn): Simulator(n) {};
void init(double, ...);
double ta(double t);
void dint(double);
void dext(Event , double );
Event lambda(double);
void exit();
s
<<

Fig. 7. Excerpt of the StringTemplate template used to generate PowerDEVS
code

IV. EMPIRICAL EVALUATION

In this section we present the results of an empirical
evaluation of the CML-DEVS compiler. The empirical eval-
vation aims at showing that: a) mathematically described
atomic DEVS models can be written in CML-DEVS by just
adhering to its syntax conventions; b) the compiler can produce
concrete models for PowerDEVS and DEVS-Suite from the
same CML-DEVS model; c¢) the resulting concrete models
are syntactically more complex than the CML-DEVS models;
and d) compilation times are reasonable.

The results of this empirical evaluation are summarized
in Table I; Table II in the Appendix gives a brief informal
description of each atomic model.

In Table I column T indicates whether the CML-DEVS
specification was written from a mathematical description (D)
or from the source code of an atomic PowerDEVS (C) or
DEVS-Suite (J) model. Hence, as can be seen from the table,
we collected a sample of 10 mathematically described atomic

DEVS models plus 4 concrete models (ConstGen, Hint, Bina-
ryCounter and Generator). All the 14 models were taken from
third-party resources such as books, web sites and courses and
covering a wide range of applications, origins and authors, thus
representing a reasonable sample—that is, these models were
not proposed by us which would have biased the evaluation. In
effect, we have collected models from six different sources and
authorships. The sources include Cellier and Kofman’s book
on continuous system simulation; the PowerDEVS library of
atomic models; Professor Vangheluwe’s class notes of his
course ‘“Modelling of Software-Intensive Systems” given at
McGill University; Professor Wainer’s repository on CD++
models which includes models written by students who took
his courses “Simulation of Discrete Event Systems” given
at Buenos Aires University and “Methodological aspects of
modeling and simulation” taught at Carleton University; the
technical report from Zeigler and Sarjoughian on M&S de-
scribing DEVS-Suite; and a model described by Professor
Wainer himself in one of his class presentations. That is, there
are models written by experts and students as well. Next, we
have translated the models from the mathematical descriptions
used by their authors into CML-DEVS specifications; and in
the case of the 4 concrete models we wrote their CML-DEVS
specifications from informal descriptions. In doing so we tried
to follow the mathematical structure suggested by each author.
We believe this supports claim a) mentioned above. That is,
atomic DEVS models can be easily written in CML-DEVS.

Then, we used the CML-DEVS compiler to compile to
PowerDEVS and DEVS-Suite each of the 14 DEVS atomic
models. The concrete models produced by the CML-DEVS
compiler can be simulated by the corresponding concrete
simulator. In particular, models ConstGen, Hint, BinaryCounter
and Generator allow us to compare the code generated by
the CML-DEVS compiler with respect to the code written
by PowerDEVS and DEVS-Suite expert users. In order to




TABLE I
ATOMIC DEVS MODELS USED FOR THE EVALUATION OF THE CML-DEVS COMPILER

SIZE (IN BYTES)

MODEL SOURCE T - OWER -SUITE  TIME

1 ACCtrlUnit Wainer’s sample of DEVS models [14] D 2,422 4,245 4,946 2s
2 ACTempProp Wainer’s sample of DEVS models [14] D 1,311 2,903 3,669 2s
3 CoolUnit Wainer’s sample of DEVS models [14] D 746 2,178 2,692 2s
4  ATMVerif Wainer’s sample of DEVS models [16] D 961 2,584 2,991 2s
5 BilliardBall Zeigler and Sarjoughian [13] D 735 2,389 2,945 1s
6 BinaryCounter  Zeigler and Sarjoughian [13] J 631 2,104 2,557 2s
7 Constant PowerDEVS model library C 335 1,415 1,800 1s
8 ElevatorDoor Wainer’s sample of DEVS models [17] D 1,440 3,262 3,964 2s
9 ElevatorEngine  Wainer’'s sample of DEVS models [17] D 1,755 3,464 4,323 2s
10  Generator Zeigler and Sarjoughian [13] J 384 1,491 1,861 1s
11 Hint Cellier and Kofman [18] C 1,196 2,771 3,312 1s
12  TrafficLights Vangheluwe’s class notes [15] D 1,051 2,713 3,388 1s
13  Server Wainer’s course material [19] D 799 2,372 3,046 2s
14 Switch Zeigler and Sarjoughian [13] D 1,045 2,810 3,453 2s

keep the presentation concise, we include here the analysis
of model Hint but similar conclusions can be drawn from
the other three models. Model Hint is an hysteretic quantized
integrator which is used in continuous system simulation,
as defined by Cellier and Kofman [18]. Figure 8 lists the
PowerDEVS code of Hint as proposed by Cellier and Kofman
[18, p. 545]. In turn, the CML-DEVS code is in Figure 10
and the result of compiling it is in Figure 9. As can be
seen, both PowerDEVS programs are similar in size, structure
and functionality. Furthermore, in Figure 11 we can see the
results of using both implementations (i.e. Figures 8 and 9)
as part of a PowerDEVS simulation. It is obvious that both
programs yield the same results, which is an indication that
the compilation of the CML-DEVS specification behaves the
same with respect to the original model.

Given that all the 14 CML-DEVS models and the CML-
DEVS compiler are publicly available?, we believe the above
results supports claim b) mentioned at the beginning of this
section.

In Table I columns CML-DEVS, POWERDEVS and
DEVS-SUITE show, respectively, the size in bytes of the
CML-DEVS specification and the PowerDEVS and DEVS-
Suite source code resulting from compiling the specification
with the CML-DEVS compiler; finally, column TIME is the
approximated compilation time (of both PowerDEVS and
DEVS-Suite since differences are negligible). The compilation
times shown in the table are approximate and rounded; they
are measured from the command-line shell by simply taking
the system time before and after compilation. The platform
used for these tests is the following: AMD Athlon(tm) 7850
Dual-Core Processor CPU at 1.40GHz with 4 Gb of main
memory, running Linux Kubuntu 14.04 (Trusty Tahr) of 64-
bit with kernel 3.16.0-67-generic; the CML-DEVS compiler
uses Java 1.7, ANTLR 4.5 and StringTemplate 4.0.8.

As the table shows, compilation times are acceptable given
that by using the compiler engineers will get the concrete
models from the mathematical description in a a few seconds.
Note that programming these models would take much longer.

Zhttp://www.cifasis-conicet.gov.ar/hollmann/projects/CML-DEVS

It is also clear that the sizes of the compiled models are higher
than the CML-DEVS specifications. This is an indication
of how CML-DVES abstracts away syntactic details that
otherwise need to be considered if the input languages of
concrete simulators are used. The CML-DEVS compiler fills
in these details for the engineer.

As another example of the code generated by the CML-
DEVS compiler, Figure 13 lists the result of compiling the
TrafficLights model shown in Figure 12 to the PowerDEVS
input language (in the Appendix, Figure 14 lists the result
of compiling the same model to DEVS-Suite). As Figure
13 shows, the code is clean, well-indented and structured,
and strictly follows the conventions set forth by PowerDEVS
(e.g., there is a function called dint for the internal transition
function, another function dext for the external transition
function and so on). Note the use of function findInSet
which is a function implemented as part of the CML-DEVS
framework. Functions such as this are included in library
auxFunc which in turn is made available to the PowerDEVS
model. PowerDEVS’ users would have to write their own set
manipulation functions if they would have implemented the
model without the CML-DEVS compiler. Instead, by using
the compiler, they can simply write s in {RG, RY,GR} and
let the compiler to implement it. Last, but not least, compare
the simplicity, familiarity and cleanness of the CML-DEVS
source code of Figure 12 with respect to the C++ code of
Figure 13. For example, in the former there are no things
such as casts and pointers (i.e. programming, not modeling,
concepts), which are necessary in the latter. We argue that the
model of Figure 12 can be written by an engineer completely
unaware of C++, which is not the case for the program of
Figure 13.

In our opinion, compilation times, the sizes of the CML-
DEVS models and the corresponding PowerDEVS and DEVS-
Suites concrete models and Figures 12 and 13, clearly support
claims ¢) and d) mentioned above.

We believe that this evaluation shows that the whole ap-
proach (i.e. the CML-DEVS specification language and its
multi-target compiler) is feasible and has several advantages
over existing technology.



#include "Hint.h”
double Hint::ta() {
return sigma;

}
void Hint::dint(double t) {
X = X + sigma * dX;
if (dX > 0) {
sigma = dq / dX;
g =9 + dq;
}
else
if (dX < 0) {
sigma = —dq / dX;
q =9 — dqg;

else
sigma = inf;

}

void Hint::dext(Event x, double t) {
float xv;
xv = x(float«)(x.value);
X=X+ dX % e;

if (xv> 0)
sigma = (g + dg — X) / xv;
else
if (xv < 0)
sigma = (g — epsilon — X) / xv;
else
sigma = inf ;
dX = xv;
}
Event Hint::lambda(double t) {
if (dX == 0)
y = q;
else

y = q + dg x dX / fabs(dX);
return Event(&y,0);

}

#include "Hint.h”
double HInt::ta(double t) {
return sigma;

}

void HInt::dint(double t) {
Hint p = xthis;
xS = p.xS + sigma x p.dX;
if (p.dX> 0) {

if (p.dX< 0) {
sigma = —p.dq / p.dX;
g =p.q— p.dq;

else
sigma = INFINITY;
}
void HInt::dext(Event x, double t) {
Hint p = xthis;
double value = x(doublex)(x.value);
xS = p.xS + p.dX x e;
if (value > 0)
sigma = (p.q + p.dg — p.xS)/value;
else
if ((value < 0))
sigma=(p.g—p.epsilon—p.xS)/value;
else
sigma =
dX = value;

INFINITY ;

}
Event Hint::lambda(double t) {

y = q + (dg = dX) / fabs(dX);
return Event(&y, Y_y);

Fig. 8. PowerDEVS (C++) implementation of HInt as given by Cellier and
Kofman

V. INTEGRATING CML-DEVS WITHIN EXISTING
SIMULATORS

Mainstream DEVS simulators usually feature powerful
GUIs that allow users to easily compose large models from
existing ones. However, as we pointed out, atomic models
have to be written in general-purpose programming languages.
For this task, DEVS simulators either provide a programming
editor or users can use the editor of their choice. Once the
new atomic model is written it can be used as a component
of larger models by a simple gesture of the GUIL

The CML-DEVS compiler can be integrated into the Pow-
erDEVS and DEVS-Suite environments. If the appropriate
code generators are developed (Section III-A), the compiler
could in principle be integrated into DEVS-based systems such
as DEVS-C++ [2], DEVSim++ [3], CD++ [4], JDEVS [6] and
LSIS-DME [8]. Some of these systems are complex, powerful
M&S environments. For example, PowerDEVS features a
rich GUI interface and a large models library allowing users
to easily compose models. As another example, JDEVS [6]
integrates five modules: a simulation kernel, a GUI interface
for coupled models, a models library, a connection to a GIS
and a cellular simulation panel. The integration of M&S
components into existing systems has a long tradition in the

Fig. 9. PowerDEVS (C++) implementation of HInt resulting from compiling
the CML-DEVS model of Figure 10

DEVS community.

Therefore, we propose to integrate the CML-DEVS com-
piler into existing DEVS simulators. In the first place, the
corresponding code generator has to be implemented. Once
the code generator is available the compiler can be integrated
into the DEVS simulator system as follows:

1) Use the editor provided by your DEVS simulator to
write CML-DEVS code for the new atomic models.
Ideally, a CML-DEVS editor, such as a formula editor,
can also be easily integrated.

2) Compile each CML-DEVS model into the input lan-
guage of your simulator. Here the editor can call the
CML-DEVS compiler.

3) Save the compiled model as any other atomic model
of the simulator. CML-DEVS compiled models are in-
distinguishable from atomic models developed by other
means.

4) Now users can couple compiled CML-DEVS models
with other models as is normally done in your simulator
(e.g. by using exactly the same GUI gesture).

In this way, simulators’ users will build their DEVS models
as usual up until the moment they need to write a new atomic
model. At this point the simulator environment can call the



atomic HIntis (X, S, Y, dint, dext, lamda, ta) where
Sis x5,dX,q,sigma: Rend S
XiszX : Rend X
Yisy: RendY
dint is
xS = xS + sigma x dX
defcases
case sigma =dq/dX Nq=q+dq if dX >0
otherwise defcases
case sigma = —dq/dX
ANg=q—dqifdX <0
otherwise sigma = INF
end defcases
end defcases
end dint
dext is
xS =xS+dX *xe
defcases
case sigma = (q + dq — zS) /value if value > 0
otherwise defcases
case sigma = (q — epsilon — xS) /value
if value <0
otherwise sigma = INF
end defcases
end defcases
dX = value
end dext
lamda is
defcases
case (y,q) if dX =0
otherwise (y, ¢ + dg * dX/abs(dX))
end defcases
end lamda
tais sigma end ta
end atomic

Fig. 10. CML-DEVS source code for Cellier and Kofman’s Hint

CML-DEVS editor allowing users to write more abstract,
mathematics-oriented models that will be transparently cou-
pled in larger models. Furthermore, if users want to try out
these atomic models on different simulators they can simply
take the CML-DEVS sources to the environment of the new
simulator (optionally the can compile the CML-DEVS models
and export the object code). From this point, coupling these
models proceeds as usual in the new simulator.

VI. RELATED WORK

As far as we know there is no approach such as the
CML-DEVS multi-target compiler regarding the automatic
generation of atomic DEVS models. However, there are some
works that in a way or another are related to this approach.
We will briefly comment on them in this section.

CML-DEVS has some relation with the standardization
effort carried on by the DEVS community [25]. One of
the standardization areas identified by this group is model
representation [26], [27], [28]. Notations such as CML-DEVS
could be used for model representation as they are independent
of simulators. DEVSpecL developed by Hong and Kim [29],
which somewhat inspired CML-DEVS, could also be used as
an abstract model representation. The relation between CML-
DEVS and DEVSpecL was commented by Hollmann et al.
elsewhere [9]. Mittal and Douglass [30] present a domain

specific language, based on Finite Deterministic DEVS, which,
with some limitations, can also be used to write abstract DEVS
models. These last two proposals would allow automatic
code generation in order to get executable DEVS code in
different DEVS implementations, but apparently they do not
face this problem. Several works propose XML as a language
to describe DEVS models [31], [32], [28], [33]. One of the
reasons is that XML is platform independent and thus is some
times regarded as abstract. We believe that XML bears no
relation with the notion of abstract model as it is seen in the
CML-DEVS context (i.e. the conceptual distance with respect
to the language of mathematics and formal logic). XML could,
indeed, be useful to communicate and share models among
computers, systems and tools.

CML-DEVS is inspired by formal notations used in soft-
ware engineering such as Z [10], B [11] and TLA+ [12].
For example, the semantics of DEVS can be formalized in
TLA+ [34]. Engineering and scientific software tend to have
many errors that turn decision-making based on them risky
[35], [36], [37]. Researchers and engineers use software that
has not been formally or even extensively verified by experts
[38]. Some errors are introduced due to development processes
based on informal descriptions. In this sense, the CML-DEVS
approach is an attempt to formalize the process of developing
a concrete simulation model.

Model-Driven Engineering (MDE) and Model-Driven De-
velopment (MDD) attempt to translate abstract models into
more concrete models by means of model transformations.
Once the initial model and all the model transformations
are given, the final model can be automatically generated
[39]. CML-DEVS and its compiler can be seen in terms of
MDD: CML-DEVS would be the modeling language used
to describe an abstract model and the CML-DEVS compiler
would be a model transformation. On the other hand, the
DEVS community has attempted to adopt concepts and tech-
niques from MDE and MDD, in particular there are efforts
in defining model transformations [40], [41], [42], [43], [44],
[45], [46]. In these approaches, different modeling or meta-
modeling languages are proposed to describe DEVS models
in such a way that they can be automatically transformed by
the corresponding model transformations. None of these mod-
eling languages describes atomic DEVS models using only
mathematical or logical concepts. The modeling and metal-
modeling languages proposed within the DEVS community,
instead, are based on general object-oriented technologies and
notations, notably UML, XML, OCL, etc. Although some of
the model transformations proposed in the works cited above
are automatic, some of them still require to write code in
some general-purpose programming language. In this way, we
think that our work provides a concrete implementation of a
modeling language and a model transformation, although not
inspired in MDE or MDD concepts.

VII. CONCLUDING REMARKS

We have presented the main features and properties of a
multi-target compiler for CML-DEVS specifications. We have
shown that CML-DEVS specifications are quite close to the



T T
Hintegrator from PowerDEVS

7 T T T
\ Hintegrator from CML-DEVS
5 [\ i
- .‘l‘) —
S0
4 \ 7
A\ ;
L N
Lo \ B i
~—_
1+ T ——— -
o i i i i
[¢] 2 4 6 8 10

Fig. 11. Plot of the curves obtained by simulating the model given in Figure 8 (left) and Figure 9 (right)

atomic TrafficLightsis (X,S,Y,dint, dext, lamda, ta) where

Xis in : {M, A} end X
Sis s: {RG,RY,GR, YR, BB} end S
Yis out : {GREEN, YELLOW, BLINK} end Y

dint is
defcases
case s= RY if s=RG
case s=GR if s=RY
case s= YR if s=GR
case s= RG if s=YR
end defcases
end dint

dext is
defcases
case s = BB if sin{RG, RY,GR, YR}
Avalue = M
case s = RY if s=BBAvalue=A
end defcases
end dext

lamda is
defcases
case (out, GREEN) if sin {RG, RY,GR}
case (out, YELLOW) if s= YR
case (out, BLINK) if s= BB
end defcases
end lamda

ta is
defcases
case 60 if s = RG
case 10 if sin {RY, YR}
case 50 if s=GR
case INF if s= BB
end defcases
end ta
end atomic

Fig. 12. CML-DEVS source code for the traffic lights atomic model

#include " TrafficLights.h”
using namespace auxFunc;
void TrafficLights ::dint(double t) {

TrafficLights prev(””);
prev = xthis;

if (prev.s == "RG”) s = "RY”;
else if (prev.s == "RY”) s = "GR”;
else if (prev.s == "GR”) s = "YR”;
else if (prev.s == "YR”) s = "RG”;

}

void TrafficLights ::dext(Event x, double t) {
TrafficLights prev(””);
prev = xthis;
std ::string value = x(std::stringx)(x.value);
if (findInSet(prev.s, {"RY”, "RG”, "YR”, "GR”})

&& value == "M")
s = "BB”;
else if (prev.s == "BB” && value == "A”)
s = "RY”;

}

Event TrafficLights ::lambda(double t) {
if (findInSet(s, {"RY”, "RG”, "GR"})) {
out = "GREEN”;
return Event(&out, Y_out);

}
else if (s == "YR") {
out = "YELLOW”;
return Event(&out, Y_out);

}
else if (s == "BB”) {
out = "BLINK”;
return Event(&out, Y_out);

else return Event();

}

double TrafficLights ::ta(double t) {
if (s == "RG”) return 60.0;
else if (s == "RY”) return 10.0;
else if (s == "GR”) return 50.0;
else if (s == "YR”) return 10.0;
else if ((s == "BB”)) return INFINITY;

}

Fig. 13. Result of compiling to PowerDEVS input language (C++) the traffic
lights model of Figure 12




way engineers would use mathematics to write their atomic
DEVS models. Then we have shown that these specifications
can be compiled into the input language of PowerDEVS and
DEVS-Suite, which are mainstream DEVS simulators. We
have also provided evidence that the code generation phase
of the CML-DEVS compiler can be easily reimplemented
as to generate code for other DEVS concrete simulators.
Indeed, currently, code generators for PowerDEVS and DEVS-
Suite are about 10% of the total compiler code, what makes
evident that code generation is relatively easy. But it is even
more important that plugging-in a new code generator is
favored by the design of the compiler as it is based on well-
known compiler designs. In fact, plugging-in a new code
generator would require no code modification but only new
code. A multi-target compiler would enable the possibility
of easily simulating the same atomic model on an array of
concrete simulators by simply recompiling the CML-DEVS
specification.

Having an abstract, mathematics-oriented specification lan-
guage for DEVS models and a compiler that automatically
produces concrete models, would make the task of M&S much
easier, productive and less error-prone. In effect, from the
conception of the idea of a DEVS model to its implementation
in the input language of major concrete simulators, either the
engineer has to learn a programming language or to ask a
programmer to implement his or her models. In either case, the
initial model is read and interpreted by different persons along
a lengthy time period. This multiple readings might introduce
errors in the final model with respect to the initial, abstract
model. Furthermore, if engineers want to see how the model
behaves (in terms of performance, for instance) on different
simulators, they need to implement it over and over again, in
which case more errors can be introduced. Letting errors apart,
the productivity would be increased if the same CML-DEVS
specification can be automatically implemented for different
simulators. Moreover, engineers would not need to learn to
program nor to rest on a programmer to try out their models.
Put it in another way, how much time and effort would need,
say, an electric engineer to learn C++ in such a way as to
be able to produce the code of Figure 13? And conversely,
how much time and effort would (s)he need to learn CML-
DEVS, provided (s)he already knows DEVS, in such a way
as to be able to produce the code of Figure 12?7 What is the
core business of an electric engineer: to program or to write
mathematical models?

Having a multi-target compiler opens the door to, at least,
two important aspects: a) the compiler can be optimized by
experts in such a way as to produce the best possible code;
and b) once the compiler is proved correct, model translation
stops being a source of errors and problems.

ACKNOWLEDGMENTS

This research was partially funded by CONICET under a
postdoctoral grant and by ANPCyT under PICT 2014-2200.

REFERENCES

[1] Zeigler BP, Kim TG, Prachofer H. Theory of Modeling and Simulation.
Orlando, FL, USA: Academic Press, Inc.; 2000.

[2]
[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Cho HJ, Cho YK. DEVS-C++ Reference Guide; 1997.

Kim TG. DEVSim++ User’s Manual. C++ Based Simulation with
Hierarchical Modular DEVS Models.; 1994.

Wainer GA. CD++: a toolkit to develop DEVS models. Softw, Pract
Exper. 2002;32(13):1261-1306. Available from: http://dx.doi.org/10.
1002/spe.482.

Bergero F, Kofman E. PowerDEVS: a tool for hybrid system modeling
and real-time simulation. Simulation. 2011;87(1-2):113-132. Available
from: http://dx.doi.org/10.1177/0037549710368029.

Filippi J, Bisgambiglia P. JDEVS: an implementation of a DEVS
based formal framework for environmental modelling. Environmental
Modelling and Software. 2004;19(3):261-274. Available from: https:
//doi.org/10.1016/j.envsoft.2003.08.016.

Kim S, Sarjoughian HS, Elamvazhuthi V. DEVS-suite: a simulator
supporting visual experimentation design and behavior monitoring. In:
Wainer GA, Shaffer CA, McGraw RM, Chinni MJ, editors. Proceedings
of the 2009 Spring Simulation Multiconference, SpringSim 2009, San
Diego, California, USA, March 22-27, 2009. SCS/ACM; 2009. Available
from: http://dl.acm.org/citation.cfm?id=1639809.1655390.

Hamri MEA, Zacharewicz G. LSIS-DME: An Environment for Model-
ing and Simulation of DEVS Specifications. In: AIS-CMS International
modeling and simulation multiconference. Buenos Aires, Argentina;
2007. p. 55-60.

Hollmann DA, Cristid M, Frydman C. CML-DEVS: A specification lan-
guage for DEVS conceptual models. Simulation Modelling Practice and
Theory. 2015;57:100 — 117. Available from: http://www.sciencedirect.
com/science/article/pii/S1569190X15001021.

Spivey JM. The Z notation: a reference manual. Hertfordshire, UK,
UK: Prentice Hall International (UK) Ltd.; 1992.

Abrial JR. The B-book: Assigning Programs to Meanings. New York,
NY, USA: Cambridge University Press; 1996.

Lamport L. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc.; 2002.

Zeigler BP, Sarjoughian HS. Introduction to DEVS modeling and
simulation with Java: Developing component-based simulation models;
2003.

Fal L, Vasconcelos G. Simulation of Discrete Event Systems — Course
Assignment 1;.  Available from: http://www.sce.carleton.ca/faculty/
wainer/wbgraf/samples/airconditionPARALLEL.zip.

Vangheluwe H. The Discrete EVent System specification (DEVS) for-
malism;.  Available from: http://msdl.cs.mcgill.ca/people/hv/teaching/
MoSIS/notes. DEVS.pdf.

Saadawi H. SYSC-5807 — Methodological aspects of modeling and
simulation — Course Assignment 1;. Available from: http://www.sce.
carleton.ca/faculty/wainer/wbgraf/samples/atm.zip.

Herrero G. Simulation of Discrete Event Systems — Course Assignment
1;.  Available from: http://www.sce.carleton.ca/faculty/wainer/wbgraf/
samples/Elevator.zip.

Cellier FE, Kofman E. Continuous System Simulation. Secaucus, NJ,
USA: Springer-Verlag New York, Inc.; 2006.

Wainer G. SYSC-5104 — Methodologies for Discrete-Event Modelling
and Simulation;. Available from: http://www.sce.carleton.ca/courses/
sysc-5104/materials/private/Lecture5.ppt.

Gu F. CSC 754 System Simulation Topics;. Available from: http://www.
cs.csi.cuny.edu/~gu/teaching/courses/csc754/csc754.html.

Strachey C. Fundamental Concepts in Programming Languages. Higher-
Order and Symbolic Computation. 2000;13(1/2):11-49. Available from:
http://dx.doi.org/10.1023/A:1010000313106.

Parr T. The Definitive ANTLR 4 Reference. Oreilly and Associate
Series. Pragmatic Programmers, LLC; 2013. Available from: http:
//books.google.com.ar/books?id=SBXuLwWEACAAJ.

Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements
of Reusable Object-oriented Software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.; 1995.

Parr TJ. Enforcing strict model-view separation in template engines. In:
Feldman SI, Uretsky M, Najork M, Wills CE, editors. Proceedings of the
13th international conference on World Wide Web, WWW 2004, New
York, NY, USA, May 17-20, 2004. ACM; 2004. p. 224-233. Available
from: http://doi.acm.org/10.1145/988672.988703.

DEVS Standardization Group; Accessed: 2016-01-18. http://cell-devs.
sce.carleton.ca/devsgroup/.

Wainer GA, Al-Zoubi K, Hill DRC, Mittal S, Martin JLR, Sarjoughian
H, et al. Discrete-Event Modeling and Simulation: Theory and Appli-
cations. Taylor & Francis; 2010. p. 393-425.



[27]

[28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[39]

[40]

[41]

[42]

[43]

[44]

Wainer GA, Al-Zoubi K, Hill DRC, Mittal S, Martin JLR, Sarjoughian
H, et al. Discrete-Event Modeling and Simulation: Theory and Ap-
plications. Taylor & Francis; 2010. p. 427-458. Available from:
http://books.google.com.ar/books7id=WQvzk7ZnwHKC.

Touraille L, Traoré MK, Hill DRC. A mark-up language for the storage,
retrieval, sharing and interoperability of DEVS models. In: Wainer
GA, Shaffer CA, McGraw RM, Chinni MJ, editors. Proceedings of the
2009 Spring Simulation Multiconference, SpringSim 2009, San Diego,
California, USA, March 22-27, 2009. SCS/ACM; 2009. Available from:
http://dl.acm.org/citation.cfm?id=1639809.1655392.

Hong KJ, Kim TG. DEVSpecL: DEVS specification language for
modeling, simulation and analysis of discrete event systems. Infor-
mation & Software Technology. 2006;48(4):221-234. Available from:
http://dx.doi.org/10.1016/j.infsof.2005.04.008.

Mittal S, Douglass SA. DEVSML 2.0: the language and the stack.
In: Wainer GA, Mosterman PJ, editors. 2012 Spring Simulation Mul-
ticonference, SpringSim ’12, Orlando, FL, USA, March 26-29, 2012,
Proceedings of the 2012 Symposium on Theory of Modeling and
Simulation - DEVS Integrative M&S Symposium. SCS/ACM; 2012.
p. 17. Available from: http://dl.acm.org/citation.cfm?id=2346633.
Fishwick PA. XML-based modeling and simulation: using XML for
simulation modeling. In: Snowdon JL, Charnes JM, editors. Proceedings
of the 34th Winter Simulation Conference: Exploring New Frontiers, San
Diego, California, USA, December 8-11, 2002. WSC; 2002. p. 616-622.
Available from: http://dx.doi.org/10.1109/WSC.2002.1172938.

Rohl M, Uhrmacher AM. Flexible integration of XML into modeling
and simulation systems. In: Proceedings of the 37th Winter Simulation
Conference, Orlando, FL, USA, December 4-7, 2005. WSC; 2005.
p. 1813-1820. Available from: http://dx.doi.org/10.1109/WSC.2005.
1574456.

Sarjoughian HS, Chen Y. Standardizing DEVS models: an endogenous
standpoint. In: Wainer GA, Traoré MK, Heckel R, Himmelspach
J, editors. 2011 Spring Simulation Multi-conference, SpringSim ’11,
Boston, MA, USA, April 03-07, 2011. Volume 4: Proceedings of the
2011 Symposium on Theory of Modeling & Simulation: DEVS Inte-
grative M&S Symposium (TMS-DEVS). SCS/ACM; 2011. p. 266-273.
Available from: http://dl.acm.org/citation.cfm?id=2048511.

Cristid M. Formalizing the Semantics of Modular DEVS Models with
Temporal Logic. In: 7éme Conférence on Modélisation, Optimisation et
Simulation des Systemes MOSIM 08; 2008. .

Hatton L, Roberts A. How Accurate Is Scientific Software? IEEE Trans
Software Eng. 1994;20(10):785-797. Available from: http://dx.doi.org/
10.1109/32.328993.

Hatton L. The Chimera of Software Quality. IEEE Computer.
2007;40(8):104, 102-103. Available from: http://dx.doi.org/10.1109/
MC.2007.292.

Post DE, Votta LG. Computational Science Demands a New Paradigm.
Physics Today. 2005;58(1):35-41.

Joppa LN, Mclnerny G, Harper R, Salido L, Takeda K, O’Hara
K, et al. Troubling Trends in Scientific Software Use. Science.
2013;340(6134):814-815.  Available from: http://science.sciencemag.
org/content/340/6134/814.

Brambilla M, Cabot J, Wimmer M. Model-Driven Software Engineering
in Practice. Synthesis Lectures on Software Engineering. Morgan &
Claypool Publishers; 2012. Available from: http://dx.doi.org/10.2200/
S00441ED1V01Y201208SWEOQOL.

Vangheluwe H. Foundations of Modelling and Simulation of Complex
Systems. ECEASST. 2008;10. Available from: http://eceasst.cs.tu-berlin.
de/index.php/eceasst/article/view/162.

Kiihne T, Mezei G, Syriani E, Vangheluwe H, Wimmer M. Systematic
Transformation Development. ECEASST. 2009;21. Available from:
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/290.
Cetinkaya D, Verbraeck A, Seck MD. Model Continuity in Discrete
Event Simulation: A Framework for Model-Driven Development of
Simulation Models. ACM Trans Model Comput Simul. 2015;25(3):17.
Available from: http://doi.acm.org/10.1145/2699714.

Cetinkaya D, Verbraeck A, Seck MD. Applying a model driven approach
to component based modeling and simulation. In: Proceedings of the
2010 Winter Simulation Conference, WSC 2010, Baltimore, Maryland,
USA, 5-8 December 2010. WSC; 2010. p. 546-553. Available from:
http://dx.doi.org/10.1109/WSC.2010.5679131.

Cetinkaya D, Verbraeck A, Seck MD. A metamodel and a DEVS
implementation for component based hierarchical simulation modeling.
In: McGraw RM, Imsand ES, Chinni MJ, editors. Proceedings of the
2010 Spring Simulation Multiconference, SpringSim 2010, Orlando,
Florida, USA, April 11-15, 2010. SCS/ACM; 2010. p. 170. Available
from: http://dl.acm.org/citation.cfm?id=1878537.1878714.

[45] Cetinkaya D, Verbraeck A. Metamodeling and model transformations in
modeling and simulation. In: Jain S, Jr RRC, Himmelspach J, White KP,
Fu MC, editors. Winter Simulation Conference 2011, WSC’11, Phoenix,
AZ, USA, December 11-14, 2011. WSC; 2011. p. 3048-3058. Available
from: http://dx.doi.org/10.1109/WSC.2011.6148005.

Touraille L. Application of Model-Driven Engineering and Metapro-
gramming to DEVS Modeling & Simulation []. Doctoral dissertation,
Université d’Auvergne; 2012.

Wainer GA, Shaffer CA, McGraw RM, Chinni MJ, editors. Proceedings
of the 2009 Spring Simulation Multiconference, SpringSim 2009, San
Diego, California, USA, March 22-27, 2009. SCS/ACM; 2009.

[46]

[47]

Maximiliano Cristida is professor of Software Engineering at Universidad
Nacional de Rosario (Argentina). He is also head of the Software Engineering
research group at CIFASIS (Argentina) and associated researcher at LIS
(Marseilles, France). He received a M.Sc. degree in mathematics in 1993
from Universidad Nacional de Rosario; a M.Sc. degree in computer science in
2002 from Universidad de la Republica (Uruguay); and a Ph.D. degree from
Aix-Marseille Université (France) in 2012. His research interestes include:
modeling and simulation, formal methods, formal verification and software
design.

Diego Hollmann received M.Sc. and Ph.D. degrees in computer science in
2009 and 2015, respectively, both from Universidad Nacional de Rosario
(Argentina). He currently works as external contractor for iRobot Corp., a
world-class, Massachusetts based robotics company.

Claudia Frydman is a researcher at Laboratoire d’Informatique et Systemes
(LIS UMR 7020) and professor of computer science at Aix-Marseille Univer-
sité¢ (France). She holds a M.Sc. degree in computing from Universidad de
Buenos Aires (Argentina), a Ph.D. from Université de Montpellier and in 1998
she got the Habilitation 4 diriger des Recherches. Dr. Frydman has supervised
many PhD students and has led a number of projects with high-level industrial
partners.

APPENDIX

Figure 14 lists the Java code resulting from compiling the
traffic light model of Figure 12 with the CML-DEVS compiler
after choosing Java as the target language. This Java program
is an atomic DEVS model of the DEVS-Suite simulator. The
code has been edited to make it fit into a single page. Compare
the length and complexity of the Java code of Figure 14 w.r.t
the CML-DEVS code of Figure 12.

Table II gives a brief informal description of the models
used in the empirical evaluation. These descriptions are taken
directly from the authors.

Figures 15-17 depict UML class diagrams of some of the
design patterns used to implement the CML-DEVS compiler.
Due to space reasons, some elements in these class diagrams
are omitted.



package TrafficLights;

import GenCol. entity ;

import model. modeling.content;
import model. modeling.message;
import view.modeling. ViewableAtomic;
import java. util .x;

public class TrafficLights extends ViewableAtomic implements Cloneable {
String s = new String ();
String In = new String ();

public class outEnt extends entity {
String value;
outEnt(String value) {this.value = value;}
public String getValue() {return value;}
public String getName() {return value.toString();}

}

public TrafficLights () {
super(” TrafficLights”);
addlnport(”In”);
addOutport(”out”);

}

public void deltint () {
TrafficLights prev = null;
try prev = (TrafficLights)this.clone();
catch (CloneNotSupportedException ex) System.out.printin(”Clone.not_supported”);

if ((prev.s == "RG”)) s = "RY”;

else if ((prev.s == "RY")) s = "GR”;
else if ((prev.s == "GR”)) s = "YR”;
else if ((prev.s == "YR”)) s = "RG”;

public void deltext(double e, message x) {
TrafficLights prev = null;
try prev = (TrafficLights)this.clone();
catch (CloneNotSupportedException ex) System.out.printin(”Clone.not_supported”);
String port = x.getPortNames ().toArray ()[0].toString ();
String value = (String)(x.read(0)).getValue ();
if (((new TreeSet<String >(Arrays.asList("GR”, "RG”, "RY”, "YR”))).contains(prev.s)
&& (value == "M”"))) s = "BB”;
else if (((prev.s == "BB”) && (value == "A”))) s = "RY”;

public message out() {
message mess = new message ();
content cont;
if ((new TreeSet<String >(Arrays.asList(”’GR”, "RG”, "RY”))).contains(s))

cont = makeContent(”out”, new outEnt("GREY”));
else if ((s == "YR”)) cont = makeContent(”out”, new outEnt(”YELLOW”));
else if ((s == "BB”)) cont = makeContent(”out”, new outEnt(”BLINK”));
else cont = makeContent(””, new entity ());

mess.add(cont);
return mess;

}
public double ta() {

if ((s =="RG”)) return 60.0;

else if ((s == "RY”)) return 10.0;
else if ((s == "GR”)) return 50.0;
else if ((s == "YR”)) return 10.0;
else if ((s == "BB”)) return INFINITY;

else return INFINITY;

Fig. 14. Result of compiling to DEVS-Suite input language the traffic lights model




<interface>>
CMLDEYVSVisitor

T visitCmldevs(CMLDEV SParser.CmldevsContext)

T visitAtomic(CMLDEV SParser. AtomicContext)

T visitComp(CMLDEV SParser.CompContext)

T visitS(CMLDEV SParser.SContext)

T visitDeclaration(CMLDEV SParser.DeclarationContext)
T visitSynonym(CMLDEV SParser.SynonymContext)

T visitTypeNatural(CMLDEV SParser.TypeNaturalContext)
T visitTypeUnion(CMLDEV SParser. TypeUnionContext)

T visitTypeParFun(CMLDEVSParser. TypeParFunContext)
T visitTypeBinRel(CMLDEV SParser. TypeBinRelContext)
T visitTypeTime(CMLDEV SParser. TypeTimeContext)

T visitTypeText(CMLDEV SParser. TypeTextContext)

T visitTypeSynon(CMLDEV SParser. TypeSynonContext)
T visitTypeReal(CMLDEV SParser. TypeRealContext)

T visitTypeGroup(CMLDEV SParser. TypeGroupContext)
T visitTypelnteger(CMLDEV SParser. TypelntegerContext)
T visitTypeBoolean(CMLDEV SParser. TypeBooleanContext)
T visitTypeSet(CMLDEV SParser. TypeSetContext)

T visitTypeEnum(CMLDEVSParser. TypeEnumContext)

T visitTypeList(CMLDEV SParser. TypeListContext)

T visitEnumeration(CMLDEV SParser. EnumerationContext)
T visitSymbol(CMLDEV SParser.SymbolContext)

T visitX(CMLDEVSParser. XContext)

T visitY(CMLDEVSParser.Y Context)

T visitDint(CMLDEV SParser.DintContext)

...and 125 more methods. ..

> CMLDEVSBaseVisitor [«

ParametersEvaluator

LambdaEvaluator

AtomicEvaluator

StateEvaluator

TAEvaluator

XEvaluator

DefinitionEvaluator

FunctionEvaluator

|
|
|
|
!
!
|
|
|
|
|
|
|
|
|
!
!
|
|
|
1

...and 29 more

TransitionFunctionEvaluator

DefCasesEvaluator

RExprEvaluator

heirs. . .

VariableEvaluator

LambdaSentenceEvaluator

ConditionEvaluator

CMLDEVSEvaluator

WhereBlockEvaluator

Fig. 15. CMLDEVSVisitor is the head class of an instance of the Visitor design pattern. These classes visit objects in Figure 16.




StandAloneExpression -

ForEach

UserDefFunction

WhereBlock Y

UserDefFunction(String,
String,
CMLDEVSType,
List<String>,
Map<String, CMLDEVSType>,
LocalScope, Cases TransitionFunction | —
List<Sentence>)
String getName() ‘
String getReturnName() !
CMLDEVSType getReturnType() |
List<String> getArgumentNames() l
Map<String, CMLDEVSType> getArguments() !
Map<String, CMLDEVSType> getVariables() |
Map<String, CMLDEVSType> getSynonyms() |
|
|
|
|
|
!
!
!
1

Assignment X

TimeAdvance

... 12 heirs. ..

State

T

List<Sentence> getSentences() Expression Lambda

Vv
<interface>>
Sentence

Kinterface>>

Vv

l CMLDEVSData

I <Linterface>>
ModelComponent

SimulateFrom

SimulateFrom(String, List<Assignment>)
String getModelName()
List<Assignment> getAssignmentList()

Parameters

Parameters(Map< Variable, Value>)
Map< Variable, Value> getParameters()
Boolean containsParam(String)

Atomic(String, GlobalScope)
GlobalScope getScope()
String getName()
void changeName(String)
State getState()
Map< Variable, Value> getParameters()
void setParameters(GlobalScope) ko—
void setState(GlobalScope)
X getX()
void setX(Scope) L ________
Y getY()
void setY(Scope)
Deltalnt getDeltalnt()
void setDeltalnt(Deltalnt)
DeltaExt getDeltaExt() FunctionsLibrary(String)

void setDeltaExt(DeltaExt) FunctionsLibrary(String, Map<String, UserDefFunction>)
TimeAdvance getTa() UserDefFunction getFunction(String)

void setTa(TimeAdvance)
Lambda getLambda()
void setLambda(Lambda)

n
n
[
n
n
{
I
I
|
|
|
|
I
I
Atomic !
I
I
I
I
|
|
I
I
I
I
I
I
I
I
I
|
I
|
|
|
|

FunctionsLibrary

Fig. 16. CMLDEVSData is the head class of an instance of the Composite design pattern. These classes are visited by classes in Figure 15.



TABLE I

BRIEF DESCRIPTION OF THE ATOMIC DEVS MODELS USED FOR THE EVALUATION OF THE CML-DEVS COMPILER

MODEL DESCRIPTION
ACCtrlUnit These are three atomic models of an air conditioning system with cooling and heating units. The user can
ACTempProp set the desired temperature while the system works as to maintain this temperature in the room [14].
CoolUnit
ATMVerif This is one atomic model part of a simple ATM machine. The ATM is only capable of dispensing money to
a customer. ATMVerif verifies that the required amount is covered in balance [16].
BilliardBall This models the movement of a billiard ball in a two dimensional pool table. The ball is struck by a cue

BinaryCounter

Constant

ElevatorDoor
ElevatorEngine

Generator

Hint

TrafficLights

Server

Switch

(external event), it heads off in a direction at constant speed determined by the impulsive force imparted to
it by the strike. Hitting the side of the table is considered as another input that sets the ball off going in a
well-defined direction [13].

In this model, the system outputs a “one” for every two “one”s that it receives. To do this it maintains a
count of the “one”s it has received so far. When it receives a “one” that makes its count even, it goes into a
transitory phase, “active”, to generate the output [13].

This is the simplest of our models since it just outputs once a given constant and then remains idle forever
[PowerDEVS model library].

These two models are part of a coupled model describing an elevator in a one-elevator building.
ElevatorDoor describes the behavior of the elevator’s door; and ElevatorEngines describes the behavior
of its engine [17].

Describes a simple proactive system. It has no inputs but when started in phase “active”, it generates
outputs with a specific period [13].

Models an hysteretic quantized integrator which is used in continuous system simulation [18].

This atomic model describes the behavior of two traffic lights in an intersection. These traffic lights have
two modes of operation: autonomous, in which the lights behave as expected; and manual, in which the
lights blink yellow. There is some external mechanism that switches between modes by sending two events
[15].

This model describes a simple processing server. The server receives jobs to be executed during a user-
defined period of time. The server keeps a queue of pending jobs [19].

A switch is modeled as a system with pairs of input and output ports. When the switch is in the standard
position, jobs arriving on port “in” are sent out on port “out”, and similarly for ports “in1” and “out1”. When

the switch is in its other setting, the input-to-output links are reversed [13].




PrinterDEVSSuite

S o

PrinterPowerDEVS
A

Kinterface>>
TargetLaguageFactory

Printer CreatePrinter()
FileManager CreateFileManager(Printer)
RWSubs CreateRW Subs(Printer)

/V A
DEVSSuiteFactory PowerDEVSFactory
T k4 T
[ . e ‘ 1
: . s :
1 1
' * RWSPowerDEVS '
! Ny 7 !
' RWSDEVSSuite | / '
' / '
1 \ ! 1
1 \ / 1
1 ‘\ /l 1
" 4 v "
: <interface>> .
; RWSubs ;
1 1
! Substitute !
v 0 v
FMDEVSSuite FMPowerDEVS
N Q 5 7z
<interface>>
FileManager

CreateFiles()

<interface>>
Printer

print(State)

print(X)

print(Y)

print(Deltalnt)

print(DeltaExt, State, X)

print(Lambda)

print(TimeAdvance)

... sentences ...

print(Assignment, Boolean)

print(Cases, Boolean)

...and more ...

...expressions ...

print(ListExpression, CMLDEVSType, Boolean)
print(NumberSetExpression, CMLDEVSType, Boolean)
...and more ...

...values ...

print(TrueValue, CMLDEVSType, Boolean)
print(TextValue, CMLDEVSType, Boolean)
...and more ...

...conditions ...

print(ComparisonDiff, Boolean)
print(ComparisonEqEmpty, Boolean)

...and more ...

...operations ...

print(OperationPlus, CMLDEVSType, Boolean)
print(OperationMult, CMLDEVSType, Boolean)
...and more ...

Fig. 17. The AbstractFactory design pattern is used to create target-language-dependent components



