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Abstract—This article reports on our experiences in
applying formal methods to verify the security mech-
anisms of Android. We have developed a compre-
hensive formal specification of Android’s permission
model, which has been used to state and prove prop-
erties that establish expected behavior of the proce-
dures that enforce the defined access control policy.
We are also interested in providing guarantees con-
cerning actual implementations of the mechanisms.
Therefore we are following a verification approach
that combines the use of idealized models on which
fundamental properties are formally verified with
testing of actual implementations using lightweight
model-based techniques. We describe the formalized
model, present security properties that have been
verified using the Coq proof assistant and discuss a
testing technique that relies on the use of certified
algorithms.

1. Introduction

Android [1] is a platform for mobile devices that cap-
tures more than 85% of the total market-share [2]. Cur-
rently, mobile devices allow people to develop multiple
tasks in different areas. Regrettably, the benefits of using
mobile devices are counteracted by increasing security
risks. The important and critical role of these systems
makes them a prime target for (formal) verification.

Security models play an important role in the design
and evaluation of security mechanisms of systems. Their
importance was already pointed out in 1972 in the
Anderson report [3], where the concept of reference
monitor was first introduced. This concept defines the
design requirements for implementing what is called a
reference validation mechanism, which shall be respon-
sible for enforcing the access control policy of a system.
For ensuring the correct working of this mechanism
three design requirements are specified: i) the reference
validation mechanism must always be invoked (complete

mediation); ii) the reference validation mechanism must
always be tamperproof (tamperproof ); and iii) the refer-
ence validation mechanism must be small enough to be
subject to analysis and tests, the completeness of which
can be assured (verifiable).

The work presented here is concerned with the
verifiability requirement. In particular we put forward
an approach where formal analysis and verification of
properties is performed on an idealized model that
abstracts away the specifics of any particular imple-
mentation, and yet provides a realistic setting in which
to explore the issues that pertain to the realm of se-
curity mechanisms of Android. Although not strictly
implied by that requirement, we are also interested in
determining whether the intended access control policy
is correctly specified relative to some goal. Thus, the
formal specification of the reference monitor shall be
used to establish and prove that the security properties
that constitute the policy are satisfied by the modeled
behavior of the validation mechanisms. On the other side,
deduction based verification of properties established
on a mathematical model do not provide guarantees of
the correctness of the code. However, formally proving
non-trivial properties of code might be an overwhelming
task in terms of the effort required, especially if one
is interested in proving security properties rather than
functional correctness. In addition, many implementation
details are orthogonal to the security properties to
be established, and may complicate reasoning without
improving the understanding of the essential features
for guaranteeing important properties. Yet, we are also
interested in providing guarantees concerning actual
implementations of the validation mechanisms.

Contribution

We propose a verification approach that consists
of: i) using a reasoning framework based on higher-
order logic to specify Android reference monitors and
to prove properties of these specifications; ii) using
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the same framework to automatically extract certified
functional programs from these specifications; iii) using
these functional programs as prototypes on which attacks,
discovered from the formal analysis of the specification,
can be executed; iv) using lightweight verification tech-
niques, such as model-based testing, to gain confidence in
whether actual implementations of the platform conform
with the abstract reference monitor, in particular on
whether the discovered attacks can be actually performed
or not.

In this paper we describe and discuss an extension
of the Android security model formalized in [4]. This ex-
tension includes, in particular, the modelling of run time
requesting/granting of permissions behavior introduced
in Android Marshmallow [5] which was not considered
in the previous work.

The logical framework we are using is the Coq
proof assistant [6], which is a software that provides
a (dependently typed) functional programming language
and a reasoning framework based on higher-order logic
to perform proofs of programs. The Coq environment
supports advanced logical and computational notations,
proof search and automation, and modular development
of theories and code. It also provides program extraction
towards languages like Ocaml and Haskell for execution
of (certified) algorithms [7].

Organization of the paper

The rest of the paper is organized as follows. Section
2 describes the security mechanisms of Android. Section
3 overviews the idealized model of the Android security
framework and Section 4 presents and discusses some
of the verified security properties. Section 5 motivates
our approach for developing certified security testing.
Section 6 considers related work and finally, Section
7 concludes with a summary of our contributions and
directions for future work.

2. Security mechanisms in Android

The architecture of Android takes the form of a
software stack which comprises an operating system, a
run-time environment, middleware, services and libraries,
and applications. Figure 1 provides a visual outline of
this architecture.

An Android application is built up from compo-
nents. A component is a basic unit that provides a
particular functionality and that can be run by any
other application with the right permissions. There
exist four types of components [9]: i) activity, which is
essentially a user interface of the application; ii) service,
a component that executes in the background without
providing an interface to the user. Any component with
the right permissions can start a service or interact with
it; iii) content provider, a component intended to share
information among applications. A component of this
type provides an interface through which applications

Figure 1. Android’s architecture [8].

can manage persisted data; and iv) broadcast receiver,
a component whose objective is to receive messages, sent
either by the system or an application, and trigger the
corresponding actions. Those messages, called broadcasts,
are transmitted all along the system and the broadcast
receivers are the components in charge of dispatching
those messages to the targeted applications. Activities,
services and broadcast receivers are activated by a
special kind of message called intent. An intent makes it
possible for different components, belonging to the same
application or not, to interact at runtime [9]. Typically,
an intent is used as a broadcast or as a message to
interact with activities and services.

2.1. Android’s security model

Android implements a least privilege model by ensur-
ing that each application executes in a sandbox. For an
application to access other components of the system it
must require, and be granted, the corresponding access
permission. The sandbox mechanism is implemented at
kernel level and relies on the correct application of a
Mandatory Access Control policy which is enforced using
a user identifier (UID) [10] assigned to each installed
application.

Every Android application must be digitally signed
and be accompanied by the certificate that authenticates



its origin. The Android platform uses the certificates to
establish that different applications have been developed
by the same author. This information is relevant both to
assign signature permissions (see below) or to authorize
applications to share the same UID to allow sharing
their resources or even be executed within the same
process [11].

2.2. Permissions

Applications usually need to use system resources to
execute properly. Since applications run inside sandboxes,
this entails the existence of a decision procedure (a
reference validation mechanism) that guarantees the
authorized access to those resources. Decisions are made
by following security policies using a simple notion of
permission. Every permission is identified by a name/text,
has a protection level and may belong to a permission
group. There exist two principal classes of permissions:
the ones defined by the application, for the sake of self-
protection; and those predefined by Android, which are
intended to protect access to resources and services of the
system. An application declares the set of permissions it
needs to acquire further capacities than the default ones.
When an action involving permissions is required, the
system determines which permissions every application
has and either allows or denies its execution.

Depending on the protection level of the permission,
the system defines the corresponding decision proce-
dure [12]. There are four classes of permission levels:
i) Normal, assigned to low risk permissions that grant
access to isolated characteristics; ii) Dangerous, per-
missions of this level are those that provide access to
private data or control over the device. From version 6
(Marshmallow) dangerous permissions are not granted at
installation time; iii) Signature, a permission of this level
is granted only if the application that requires it and
the application that defined it are both signed with the
same certificate; and iv) Signature/System, this level is
assigned to permissions that regulate the access to critical
system resources or services. Additionally, an application
can also declare the permissions that are needed to access
it. The granularity of the system makes it possible to
require different permissions to access different compo-
nents of the application. The user of the device can grant
and revoke dangerous permission groups (i.e. permission
groups which contain permissions of level Dangerous) and
dangerous ungrouped permissions (permissions which
do not belong to a group) for any application on the
system at any time. A running application may ask
the user to grant it dangerous permission groups and
ungrouped permissions, who in turn can accept or decline
this request.

If the execution of an action requires for an applica-
tion to have certain permission the system will first make
sure that this holds by means of the following rules: i) the
application must declare the permission as used in its
manifest; ii) if the permission is of level Normal, then the

application does have it; iii) if the permission is of level
Dangerous and belongs to a permission group, such group
must have been granted to the application; iv) if the
permission is of level Dangerous but is ungrouped, then
it must have been individually granted to the application;
v) if the permission is of level Signature, then both the
involved application and the one that declares it must
have been signed with the same certificate; vi) lastly,
if the permission is of level Signature/System, then the
involved application must have been signed with either
the same certificate as the one who declares it (just like if
it was of level Signature) or the certificate of the device
manufacturer. Otherwise, an error is thrown and the
action is not executed.

2.3. Permission delegation

Android provides two mechanisms by which an appli-
cation can delegate its own permissions to another one.
These mechanisms are called pending intents and URI
permissions.

An intent may be defined by a developer to perform
a particular action, for instance to start an activity.
A PendingIntent is an object which is associated to
the action, a reference that might be used by another
application to execute that action. The object might be
used by authorized applications even if the application
that created it, which is the only one that can cancel the
reference, is no longer active.

The URI permissions mechanism can be used by
an application that has read/write access to a content
provider to (partially) delegate those permissions to an-
other application. An application may attach to the result
returned by an activity owned by another application an
intent with the URIs of resources of a content provider it
owns together with an operation identifier. This grants
the privileges to perform the operation on the indicated
resources to the receiving application, independently
of the permissions the application has. The Android
specification establishes that only activities may receive
an URI permission by means of intents. These kinds
of permissions may also be explicitly granted using the
grantUriPermission() method and revoked using the
revokeUriPermission() method. In any case, for this
delegation mechanism to work, an explicit declaration
authorizing the access to the resources in question must
be added in the application that owns the content
provider.

2.4. The Android Manifest

Every Android application must include an XML
file in its root directory called AndroidManifest. All
the components included in the application, as well as
some static attributes of theirs are declared in that
file. Additionally, both the permissions requested at
installation time and the ones required to access the
application resources are also defined. The authorization



InstApps ::= {AppId}
PermsGr ::= {AppId× {PermGroup}}
AppPS ::= {AppId× {Perm}}
CompInsRun ::= {CompInstance}
OpTy ::= read | write | rw
DelPPerms ::= {AppId× ContProv × Uri× OpTy}
DelTPerms ::= {iComp× ContProv × Uri× OpTy}
ARVS ::= {AppId× Res× Val}
Intents ::= {iComp× Intent}
Manifests ::= {AppId×Manifest}
Certs ::= {AppId× Cert}
AppDefPS ::= {AppId× {Perm}}
SysImage ::= {App}

AndroidST ::= InstApps× PermsGr × AppPS ×
CompInsRun× DelPPerms ×
DelTPerms × ARVS× Intents ×
Manifests × Certs× AppDefPS ×
SysImage

Figure 2. Android state

to use the mechanism of URI permissions explained above
is also specified in the manifest file of an application.

3. Formalization of the permission model

The Android security model we have developed has
been formalized as an abstract state machine. In this
model, states (AndroidST) are modelled as 12-tuples that
respectively store data about the applications installed in
the device, their permissions and the running instances of
components; the formal definition is depicted in Figure 2,
the full definition is available in [13]. Note that we use
{T} to denote the set of elements of type T .

The first component of a state records the identifiers
(AppId) of the applications installed by the user. The
second and third components of the state keep track,
respectively, of the permission groups (PermGroup) and
ungrouped permissions (Perm) granted to each applica-
tion present in the system, both the ones installed by the
user and the system applications. The fourth component
of the state stores the set of running component instances
(CompInstance), while the components DelPPerms and
DelTPerms store the information concerning permanent
and temporary permissions delegations, respectively1.
The seventh and eight components of the state store
respectively the values (Val) of resources (Res) of appli-
cations and the set of intents (Intent) sent by running
instances of components (iComp) not yet processed. The
four last components of the state record information that
represents the manifests of the applications installed
by the user, the certificates (Cert) with which they

1. A permanent delegated permission represents that an appli-
cation has delegated permission to perform either a read, write
or read/write operation on the resource identified by an URI of
the indicated content provider (ContProv). A temporary delegated
permission, in turn, refers to a permission that has been delegated
to a component instance.

were signed and the set of permissions they define. The
last component of the state stores the set of (native)
applications installed in the Android system image,
information that is relevant when granting permissions
of level Signature/System.

A manifest (Manifest) is modelled as a 6-tuple that
respectively declare application components (set of com-
ponents, of type Comp, included in the application), the
minimum version of the Android SDK required to run
the application, the version of the Android SDK targeted
on development, the set of permissions it may need to
run at its maximum capability, the set of permissions it
declares, and the permission required to interact with
its components, if any. Application components are all
denoted by a component identifier. A content provider
(ContProv), in addition, encompasses a mapping to the
managed resources from the URIs assigned to them
for external access. While the components constitute
the static building blocks of an application, all runtime
operations are initiated by component instances, which
are represented in our model as members of an abstract
type.

A notion of valid state, that captures several well-
formedness conditions, is formally defined as a predicate
validState on the elements of type AndroidST that re-
quires for several properties to be satisfied. For instance,
one of the property states that all the running instances
belong to a unique component, which in turn must
be part of an installed application. Other properties
establish, for instance, the uniqueness of application,
component, and resource identifiers. There are also
properties that involve permissions on a system state,
namely, that all the parts involved in active permission
delegations must be installed in the system. The full
(formal) definition of the predicate is available in [13].

3.1. Specification of the reference monitor

Our model considers a representative set of actions
to install and uninstall applications, grant and revoke
permissions and permission groups, ask whether a compo-
nent has certain permission, start and stop the execution
of component instances, to read and write resources from
content providers, to delegate temporary/permanent
permissions, and revoke them and to perform system
application calls; see Table 1. The system access control
policy is enforced through the execution of these actions,
which provide coverage to the different functionalities of
the Android security model2.

Given a state in our formalism, the execution of an
operation in the Android system (e.g., the installation of
a new application) is represented as a transition to a new
state, along with a response (of type Response) indicating
whether the execution was successful or not. The behavior
of an action a (of type Action) is formally described by

2. We consider here twice the number of operations (associated
with the security model) contemplated in [13].



install a m c lRes Install application with id a, whose manifest is m, is signed with certificate c
and its resources list is lRes.

uninstall a Uninstall the application with id a.
grant p a Grant the permission p to the application a.
revoke p a Remove the permission p from the application a.
grantPermGroup g a Grant the permission group g to the application a.
revokePermGroup g a Remove the permission group g from the application a.
hasPermission p a Check if the application a has the permission p.
read ic cp u The running component ic reads the resource corresponding to URI u from

content provider cp.
write ic cp u val The running component ic writes value val on the resource corresponding to

URI u from content provider cp.
startActivity i ic The running component ic asks to start an activity specified by the intent i.
startActivityResult i n ic The running component ic asks to start an activity specified by the intent i, and

expects as return a token n.
startService i ic The running component ic asks to start a service specified by the intent i.
sendBroadcast i ic p The running component ic sends the intent i as broadcast, specifying that only

those components who have the permission p can receive it.
sendOrderedBroadcast i ic p The running component ic sends the intent i as an ordered broadcast, specifying

that only those components who have the permission p can receive it.
sendStickyBroadcast i ic The running component ic sends the intent i as a sticky broadcast.
resolveIntent i a Application a makes the intent i explicit.
receiveIntent i ic a Application a receives the intent i, sent by the running component ic.
stop ic The running component ic finishes its execution.
grantP ic cp a u pt The running component ic delegates permanent permissions to application a.

This delegation enables a to perform operation pt on the resource assigned to
URI u from content provider cp.

revokeDel ic cp u pt The running component ic revokes delegated permissions on URI u from content
provider cp to perform operation pt.

call ic sac The running component ic makes the API call sac.
TABLE 1. Actions

giving a precondition (Pre) and a postcondition (Post),
which represent the requirements enforced on a system
state to enable the execution of a and the effect produced
after this execution takes place. Additionally, we define a
relation ErrorMsg such that given a state s, an action a
and an error code ec, ErrorMsg(s, a, ec) holds iff error ec
is an acceptable response when the execution of a is
requested on state s.

3.2. One-step execution

We represent the execution of an action with the
relation ↪→ (one-step execution), defined by the following
two rules:

Execok
validState(s) Pre(s, a) Post(s, a, s′)

s
a/ok
↪→ s′

Execerr
validState(s) ErrorMsg(s, a, ec)

s
a/error ec

↪→ s
One-step execution preserves valid states, i.e. the

state resulting from the execution of an action on a valid
state is also valid.
Lemma 1. For any a : Action, s s′ : AndroidST and

r : Response, if s
a/r
↪→ s′ holds, then validState(s′)

also holds.
The property is proved by case analysis on a, for each
condition in validState, using several auxiliary lemmas
[13].

System state invariants, such as state validity, are
useful to analyze other relevant properties of the model.
In particular, the results presented in [4] and validated
in this work to hold for Android Marshmallow were
obtained from valid states of the system.

The full formalization of the idealized permission
model of Android, which extends the formal specification
presented in [4], may be obtained from [13] and verified
using the Coq proof assistant.

4. Analysis of security policies

We have stated and proved several security proper-
ties that formally establish that the specified reference
monitor provides protection against unauthorized access
to sensitive resources of a device running the system
Android. One of the most important properties claimed
about the Android security model is that it meets
the so-called principle of least privilege, i.e. that “each
application, by default, has access only to the components
that it requires to do its work and no more” [9]. Using our
specification we have proved several lemmas, as Lemma 2
below, which were aimed at showing the compliance
with this principle when a running instance of an appli-
cation component creates another component instance,
reads/writes a content provider or delegates/revokes a
permission.

The predicates used to define the lemmas discussed
in this section are presented and described in Table 2.



The full formal definition of the lemmas can be found in
[13], along with their proofs.
Lemma 2. For any s : AndroidST, ap : AppId,

c c′ : Comp, ic : iComp, i : Intent, if validState(s)
and inApp(c, ap, s) and running(ic, c, s)
and isActivity(c′) and inApp(c′, ap, s) and
refersTo(i, c′, s), then Pre(s, startActivity i ic)
holds.

If component c and activity c′ belongs to the
same application, then c can start c′ through intent i
directed to this activity.

However, an implementation of the Android system
that respects the access control policy is nevertheless
vulnerable to a kind of attack that exploits the mech-
anisms of Intents (see [14], [15] for further details).
In particular, it has been shown that the system is
vulnerable to unauthorized monitoring of information
(eavesdropping), unintended inter-application communi-
cation (intent spoofing) and privilege escalation (per-
mision collusion) through the (deceived) installation of
collaborating malware by the device user. The common
idea behind these attacks is the abuse of the intent
mechanism to obtain unauthorized access to private
information.

The fact is that those attacks can be prevented if
certain additional controls are considered, and enforced.
Using our model, and as a complementary contribution,
we precisely state the conditions that would help prevent-
ing the exploitation on the identified vulnerabilities and
prove that under those hypotheses the attacks cannot
be carried on. We illustrate below our approach for two
attacks, one implementing eavesdropping (section 4.1)
and the another one intent spoofing (section 4.2).

4.1. Eavesdropping

If there is a malicious application running on an
Android device, each time sensitive information is sent
using a public broadcast intent, the device becomes
vulnerable to the eavesdropping attack. However, if
all broadcast intents were protected with a Signature
or Signature/System permission, it can be ensured
that only applications signed with the transmitter ap-
plication’s certificate will be candidates for the intent
reception [15]. In such conditions the eavesdropping
attack can be prevented.

We establish, see Lemma 3, and prove, that in a
scenario where an intent protected with a Signature
or Signature/System permission is sent using the
sendBroadcast or sendOrderedBroadcast operation,
no application with a certificate different than the one
from the transmitter application will be able to receive it.
As a consequence, under these conditions we can ensure
the absence of the eavesdropping attack.

Lemma 3. For any s : AndroidST, ic : iComp, i : Intent,
c : Comp, ap ap′ : AppId, cert : Cert, if validState(s)
and running(ic, c, s) and ¬isCProvider(c) and
inApp(c, ap, s) and intentReg(i, ic, s) and
isIntBReceiver(i) and (protected(i, signature, s)
or protected(i, signature/system, s)) and
installed(ap′, s) and ¬isNative(ap′, s) and
appCert(ap, cert, s) and ¬appCert(ap′, cert, s),
then ¬Pre(s, receiveIntent(i, ic, ap′)) holds.

If a component c that belongs to an application ap
sends a broadcast intent protected with a Signature or
Signature/System permission, then if a non native
application ap′ does not have the same certificate as
ap it will not be able to receive it.

4.2. Intent spoofing

In Android, whether an application can be started by
third parties depends on the exported attribute and the
existence of <intent-filter> elements in its manifest.
Application misconfiguration generally happens when the
exported attribute is not present, pretending that no
external invocations are allowed, but if <intent-filter>
elements are used, the default value of the exported
attribute is true. In case an application was not intended
to be initiated by other applications but was misconfig-
ured, it could be victim of the intent spoofing attack
explained in [14].

A simple way of checking if an application is not
vulnerable to an intent spoofing attack is statically
verifying its manifest. Thus, if the exported attribute is
false or if it’s absent and no <intent-filter> element
is declared, as stated in Lemma 4, the application cannot
be started by external applications. Therefore the intent
spoofing attack can be avoided.
Lemma 4. For any s : AndroidST, ap ap′ : AppId, c c′ :

Comp, ic : iComp, i : Intent, if validState(s) and
inApp(c, ap, s) and inApp(c′, ap′, s) and ap 6= ap′

and ¬canBeStarted(c) and running(ic, c′, s) and
¬isCProvider(c′) and refersTo(i, c, s), then
¬Pre(s, receiveIntent(i, ic, ap′)) holds.

If a component c cannot be started by other
applications, then the application that contains it
cannot receive an intent directed to c.

In Lemmas 3 and 4 we have also shown that in
the presence of vulnerabilities we can use the model
to formally state and prove the conditions that must be
satisfied to mitigate, or even prevent, the exploitation of
those vulnerabilities.

5. Certified security testing
Using the programming language of Coq we have

developed an executable (functional) specification of the



installed(ap, s) is satisfied if application ap is installed in state s.
isNative(ap, s) holds if application ap belongs to the set SysImage of state s.
inApp(c, ap, s) holds only when the component c belongs to the installed application ap in state s.
appCert(ap, c, s) is satisfied if application ap has a certificate c in state s.
isActivity(c) holds if component c is an activity.
isCProvider(c) is satisfied if component c is a content provider.
canBeStarted(c) holds if component c can be accessed (if c is a content provider) or started by third parties.
running(ic, c, s) is satisfied if ic is an instance of component c running in state s.
isIntBReceiver(i) holds only when intent i is destined to a broadcast receiver.
refersT o(i, c, s) is satisfied if intent i is directed to component c in state s.
intentReg(i, ic, s) holds if i is an intent, registered in component Intent of state s, sent by running instance ic.
protected(i, p, s) is satisfied if intent i is protected with permission p in state s.

TABLE 2. Helper predicates

reference validation mechanism. This ultimately amounts
to the definition of the functions that implement the
execution of the actions specified in the reference monitor.
We have proved that those functions conform to the
axiomatic specification of action execution as specified
in the model. Additionally, and using the program
extraction mechanism provided by Coq, we have derived
a certified Haskell prototype of the reference validation
mechanism that we call CertAndroidSec3.

Thus, in this setting the control access policy specified
by the permission model of Android is enforced by the
combined execution of the actions. The behavior of the
security mechanisms during the execution of a session
of the device is represented by the sequence of system
states (the trace of execution) obtained from executing
the sequence of actions starting in an (initial) system
state.

We plan to use CertAndroidSec for performing veri-
fication activities such as monitoring of actual implemen-
tations of the platform and also as a testing oracle. We
briefly comment and motivate these techniques in what
follows.

5.1. Model-Based Security Testing

One important goal of our work is to help increase
the level of reliability on the security of the Android
platform by providing certified guarantees that the
specified security mechanisms effectively allow to enforce
the expected security policies. The use of idealized models
and certified prototypes is a good step forward but
no doubt the definitive step is to be able to provide
similar guarantees concerning actual implementations of
the platform. In what follows we discuss the techniques
we have begun experimenting with in order to test the
security mechanisms of Android by generating test cases
from the Coq axiomatic specification.

Model-based testing (MBT) is a lively research area
whose main goal is to use models of implementations
as test case and oracle sources [16]. One of the possible
high-level MBT processes is depicted in Figure 3. That is,
MBT methods generate abstract test cases by performing

3. The prototype and its proof of correction are available in [13].

different static analyzes of a (formal) model (of a given
program). This abstract test cases are later refined to the
level of the program; the program is run on these refined
test cases; the outputs are collected and abstracted away
to the level of the model; and, finally, the model, the
abstract test cases and the abstracted outputs are used to
decide whether the program has errors or not. In our case,
though, in the last step (i.e. verification w.r.t. to model)
we use CertAndroidSec instead of the Coq axiomatic
specification. In effect, as CertAndroidSec is a certified
prototype of the Coq specification it behaves as prescribed
by the specification. Furthermore, as CertAndroidSec
is a program it can be easily run on the abstract test
cases, thus greatly simplifying this step.

In our case we are working in adapting and applying
a MBT method known as the Test Template Framework
(TTF) [17], which is based on a systematic analysis of
a formal specification. The TTF was originally thought
as a MBT method for Z specifications [18] but it can
be easily adapted to our Coq axiomatic specification.
In effect, our model is a state machine featuring com-
plex state and input variables and state transitions
given by their pre- and post-conditions, much as Z
specifications. Furthermore, pre- and post-conditions of
our Coq axiomatic specification make use of non-trivial
library operations on lists, similarly as Z specifications
rest on library operations on sets. Abstract test cases
generated by applying the TTF, take the form of closed
propositional sentences binding state and input variables
to concrete values. More precisely, an abstract test case is
a conjunction of equalities between variables and constant
terms (at the Coq level). Essentially, such a test case
sets the initial state and input values from which the
state transition to be tested must be executed. In this
way, abstract test cases are expressible in Coq as the
specification from where they were generated.

Abstract test cases can be refined into the actual An-
droid platform using the OVAL technology [19], which is
an information security community effort to standardize
how to assess and report upon the machine state of
computer systems. OVAL is an XML-based language
that allows to express specific machine states such as
vulnerabilities, configuration settings, patch states. Real
analysis is performed by OVAL interpreters such as



get output abstract output verify w.r.t. model

set initial valuesrun program

generate abstract test cases from model refine test cases

Figure 3. Proposed MBT process

Ovaldi [20], XOvaldi [21] and Xovaldi4Android [22]. Note
the link and similarities between abstract test cases and
OVAL conditions: our test cases define values for state
variables whereas the OVAL language lets users to set
platform states. Hence, all that needs to be done is to
map Coq states into OVAL states. OVAL can also be
used to lift the results of executing a test case on the
platform to the Coq level, as it provides also a language
for reporting the results from the evaluated systems.

So, given a test case t, let Oa denote the result of
abstracting the output produced by running the OVAL
counterpart of t on the platform. Moreover, let Op denote
the output produced by executing CertAndroidSec on
t. At this point we would be in condition of performing
validation/verification procedures based in the similar-
ities and/or differences between Oa and Op. Note that
these procedures could also be extracted as certified
algorithms.

The following example shows how test cases can be
generated from the Coq axiomatic specification. Due to
space restrictions we cannot show test case refinement
nor output abstraction via the OVAL technology.

5.2. Example

Consider the install operation of the Coq axiomatic
specification (see Table 1). The first step in generating
test cases from the specification consists in defining the
input space of the operation, noted IS . The input space
of the operation is the set of input values from which
the operation can be executed. It includes the values
of all before state and input variables declared in the
operation. Then, in this case we have:

IS = {s : AndroidST, ap : AppId}

The second step in test case generation is to re-
cursively partition the input space of the operation.
Each partition is generated by applying a testing tactic.
Then, a first testing tactic, say T 1, is applied to IS
thus generating a (finite) family of subsets, T 1

1 , . . . , T 1
n1
,

called test conditions. Each test condition is defined by a
characteristic predicate depending on the variables of IS .
This process can continue until the developer considers
that a good partition has been generated.

One typical testing tactic is Disjunctive Normal
Form (DNF). This tactic writes the specification of
the operation into DNF and then generates a partition

with as many test conditions as terms in the DNF. In
this case, each test condition is characterized by the
precondition of each term of the DNF. In order to simplify
the presentation we will consider that the DNF of the
operation is the disjunction between Execok and Execerr
(Section 3) applied to install. Then, we have:

DNF1 = {IS | validState(s) ∧ Pre(s, install)}
DNF2 = {IS | validState(s) ∧ ErrorMsg(s, install, ec)}

As a second tactic we will apply Enumerated Types.
This tactic applies to IS variables of some enumerated
type. Hence, if v is a variable whose type is E =
{c1, . . . , ck}, the EC tactic generates test conditions char-
acterized by the following predicates: v = c1, . . . , v = ck.
In DNF2 we have that ec is of type ErrorCode (listing
all the 28 possible errors of the system [13]). Therefore,
we can apply EC to DNF2 resulting in:

EC 1 = {DNF2 | ec = app_already_installed}
. . . . . . . . .

EC 28 = {DNF2 | ec = CProvider_not_grantable}

Observe how the successive test conditions are linked
together by conjunction thus producing increasingly
demanding test conditions. In this way, for instance EC 1,
will test the application from a valid state where the ap-
plication that is going to be installed is already installed.
Also note that many of the EC i will be unsatisfiable
for install as many of these errors will not be raised
by this operation. Unsatisfiable test conditions must be
ignored and not further considered for partitioning.

Once the developer is done with partitioning and all
unsatisfiable test conditions has been eliminated, (s)he
must produce an element from each of the surviving test
conditions. These elements are the abstract test cases.
For instance, the following is a test case for EC 1:

TC 1 = {EC 1 | s.apps = [Chrome] ∧ ap = Chrome}

6. Related work

Several analyses have recently been carried out con-
cerning the security of the Android system. Some of
them [23], [24] point out the rigidity of the permission
system regarding the installation of new applications
in the device. Other studies [25], [26], [27] have shown
that many aspects of Android security, like avoiding
privilege escalation, depend on the correct construction of



applications by their developers. Additionally, it has been
pointed out [26], [28] that the mechanism of permission
delegation offered by the system has characteristics that
require further analysis in order to ensure that no new
vulnerabilities are added when a permission is delegated.
Few works, however, pay attention to the formal aspects
of the permission enforcing framework. In particular, Shin
et al. [29], [30] build a formal framework that represents
the Android permission system, which is based on the
Calculus of Inductive Constructions and it is developed
in Coq, as we do. However, that formalization does not
consider, for instance, several aspects of the platform
covered in our model, namely, the different types of
components, the interaction between a running instance
and the system, the reading/writing operation on a
content provider and the semantics of the permission
delegation mechanism. They also do not consider novel
aspects of the Android security model, such as managing
runtime permissions.

The results presented in this paper update and extend
the ones reported in [4]. We have already extended
the (formal) model presented in [4] so as to consider,
in particular, the run time requesting/granting of per-
missions behavior introduced in Android Marshmallow.
Also, we consider here executions that contemplate error
management and a certified monitor of the security model.
Finally, this paper shows that it is posssible use the model
to formally state and prove the conditions that must be
satisfied to mitigate, or even prevent, the exploitation of
vulnerabilities (attacks).

MBT is about guiding the testing process from a
model of the system under test (SUT). In particular,
test case generation in MBT is performed by analyzing
a model of the SUT. Despite the fact that test case
generation in the context of MBT is a very active research
area, not so much activity has been seen with Coq speci-
fications. Many MBT proposals for Coq specifications are
based on random test case generation. Maybe the most
used tool combining MBT with Coq is QuickChick [31].
This tool is a randomized property-based testing plugin
for Coq. If an engineer writes some testing code to test the
SUT (s)he can verify that this code is testing the intended
property by using QuickChick. For instance, Dubois et al.
[32] have applied QuickChick to a problem of enumerative
combinatorics. Very recently Becker et al. [33] reported
the application of a MBT method based on random
testing to a Coq model of the NOVA micro hypervisor.
Tuerk [34], like us, uses the Coq code extraction feature
to apply MBT in a security context, but we could not
find a detailed description of the results presented in
that work.

7. Conclusions and future work

In this paper we have described the challenges we
are facing when attempting to apply formal methods
to perform analysis and verification of the security

mechanisms defined by Android to enforce permission-
based access control policies. The idealized model we
have developed allows us to perform machine-assisted
reasoning to provide, on the one side, certified guarantees
that the claimed access control policy is effectively
enforced by those mechanisms. On the other side, we
have also shown that in the presence of vulnerabilities
we can use the model to formally state and prove the
conditions that must be satisfied to mitigate, or even
prevent, the exploitation of those vulnerabilities. We have
also motivated the use of certified extracted algorithms
to implement lightweight model-based testing.

We are currently working on refining the certified
testing strategy we have briefly motivated in the paper.
Although we find random testing quite appealing, we
are inclined towards a more formal test case gener-
ation strategy in line with the work performed over
Isabelle/HOL [35]. Furthermore, we think that for testing
the security of the Android platform, most of the testing
code can be automatically generated, thus making the
verification of the testing code not really necessary. In
effect, as we have exemplified in Section 5, we envision
a Coq-based testing framework in which test conditions
are automatically generated from the specification and
the abstract test cases are automatically generated by
suitable decision procedures. Similar features have al-
ready been implemented for Z specifications [36] where
a decision procedure for quantifier-free set and relational
formulas is applied [37]. We believe it should be feasible
to implement a similar framework using Coq technology.
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