
Applying the Test Template Framework to
Aerospace Software

Maximiliano Cristiá∗†‡, Pablo Albertengo ∗, Claudia Frydman‡, Brian Plüss§ and Pablo Rodrı́guez Monetti∗¶
∗Flowgate Consulting, Rosario, Argentina
†CIFASIS-UNR, Rosario Argentina
‡LSIS-CIFASIS, Marseille, France

§The Open University, Milton Keynes, UK
§FCEIA-UNR, Rosario, Argentina

Abstract—We have applied Fastest, an implementation of the
Test Template Framework, to five real case studies of aerospace
software. This involved the formalization in the Z notation
of nontrivial parts of each system. One of these models, for
instance, formalizes a significant portion of the ECSS-E-70-41A
aerospace standard. The models were then fed into Fastest, which
automatically generated detailed functional abstract test cases.
Since these test cases are independent of any implementation,
they can be used to test any of them. Furthermore, we were able
to semi-automatically translate them into English so they can be
used by domain experts performing independent validation and
verification activities.

I. MODEL-BASED TESTING OF AEROSPACE SOFTWARE

This paper reports on the application of a particular model-
based testing (MBT) method, and a tool implementing it,
to five real case studies from the aerospace domain. MBT
is a well-known approach aimed at testing software systems
starting with a formal model [1], [2], from which test cases
are generated. The MBT method we applied, known as the
Test Template Framework (TTF) [3]–[5], works with Z spec-
ifications and is specially well-suited for unit testing. Fastest
[6]–[8] is the first tool implementing the TTF.

Applying Fastest to the case studies involved writing formal
models of parts of these problems and then using the tool to
generate test specifications and abstract test cases. Although,
the MBT process does not end in producing abstract test cases,
so far the MBT community has been focused on methods and
techniques to generate test cases at the level of the model
[2]. The intention of this report is, then, to contribute to
the MBT community with five industrial-strength case studies
regarding the generation of abstract test cases in a mission-
critical application domain. Therefore, test case refinement,
test case execution and the remaining steps of the MBT
process are beyond the scope of this article. We want to
emphasize that this paper is a summary of several technical
documents which amounts to a total of 440 pages, making it
impossible to show here more than the most important aspects
of them. Our intention is that readers take this paper as a
summary pointing to the technical documentation available at
http://www.flowgate.net/pdf/reports.tar.gz.

We want to remark that the TTF and Fastest generate unit
tests, which is not the most common approach in the MBT
community [2]. Therefore, the results shown in this paper

should be of interest for those readers looking for formal
approaches to unit testing.

Fastest is a command-line application that reads Z specifi-
cations written in Standard Z LATEX (SZL) and returns abstract
test cases in SZL generated according to the TTF. From the
command-line users can issue commands to follow the steps
of the TTF. Z specifications can be written with any text editor,
however we suggest to use Eclipse [9] with the Community
Z Tools (CZT) and TeXlipse plugins [10], [11], because they
allow for easy checking of the LATEX syntax and Z syntax
and semantics, as well. Nevertheless, Fastest checks the syntax
and semantics while specifications are loaded, and prompt the
errors they might have. Once the specification is successfully
loaded, users can issue a number of commands to produce
abstract test cases. The user’s guide delivered with the tool
[12] includes a detailed description of each command. Fastest
is open-source software available at [13].

Section II introduces the TTF by means of an example
from the aerospace domain. Section III introduces a case
study regarding an on-board flight control system; Section IV
show two case studies about satellite on-board communication
protocols; and Section V contains the results of applying our
approach to a relevant portion of the ECSS-E-70-41A standard
in two different settings. Our conclusions are in Section VI.

II. THE TEST TEMPLATE FRAMEWORK AND FASTEST

In this section we briefly introduce the TTF and Fastest
by means of an example from the aerospace domain—for
further details see [3]–[8]. We assume the reader has a
basic knowledge of the Z formal notation—otherwise, consult
[14], [15]—, and of the ECSS-E-70-41A Standard [16]. In
particular, we will use the terminology defined in [16] without
further introduction.

Consider the “Enable Storage in Packet Stores (15,1)”
service subtype [16, pages 156-157]. If an on-board satellite
software is to implement this functionality, then it must be able
to receive a telecommand with two application data fields:

– N: is ‘the number of packet stores to be controlled’
(unsigned integer) [16].

– Store ID: is a fixed char string repeated N times indicat-
ing ‘for example, an access path to a physical on-board
recording device or file’ [16].



2

[StID, StAttr]
FAILCODE ::= OK | TPE

Stores
eSt : P StID
stDef : StID 7→ StAttr

EnableStE
ΞStores
ps? : P StID
code! : FAILCODE

¬ (ps? ⊆ dom stDef
∧ eSt ∩ ps? = ∅)

code! = TPE

EnableStOk
∆Stores
ps? : P StID; code! : FAILCODE

ps? ⊆ dom stDef
eSt ∩ ps? = ∅
eSt′ = eSt ∪ ps?
code! = OK

EnableSt == EnableStOk ∨ EnableStE

Fig. 1. A Z specification for the “Enable Storage in Packet Stores” sub-
service [16].

When this telecommand is received the software ‘shall
start sending the relevant packets to the application processes
managing the specified packet stores’ [16].

Figure 1 shows a simplified version of a Z specification of
these requirements. In this model, schema Stores represents
the state space. State variable eSt is the set of stores ID’s that
have been enabled so far; and stDef returns the store attributes
for a given store ID—enabled or not. A more expressive
definition of StAttr is omitted for brevity. Schema EnableSt
is the specification of the requirements stated above. The
operation is divided into two schemas: EnableStOk, which
adds the store IDs received in ps? to the set of enabled stores,
which in turn enables other operations to use these packet
stores; and EnableStE, which specifies that an error message
must be returned if the preconditions are not met. As it can be
seen, both application data fields are combined into one input
variable, ps?, whose type is P StID since it receives the store
ID’s and #ps? equals N. Furthermore, the requirement asking
Store ID to be char strings is abstracted as a given Z type,
StID, whose structure is unknown—as in fact suggested by
the standard: ‘the meaning and internal structure of the Store
ID are beyond the scope of this Standard’.

The idea behind the TTF, as well as of other MBT methods,

S = ∅,T = ∅ S 6= ∅,T 6= ∅, S ⊂ T
S = ∅,T 6= ∅ S 6= ∅,T 6= ∅,T ⊂ S
S 6= ∅,T = ∅ S 6= ∅,T 6= ∅,T = S
S 6= ∅,T 6= ∅, S 6= ∅,T 6= ∅, S ∩ T 6= ∅,

S ∩ T = ∅ ¬ (S ⊆ T),¬ (T ⊆ S), S 6= T

Fig. 2. Standard partition for expression of the form S ∪ T .

is to analyze a Z specification deriving abstract test cases—
i.e., test cases written in Z—that are later used to test the
corresponding implementation. Within the TTF, the valid input
space (VIS) of a Z operation is partitioned into so-called test
classes1 by means of testing tactics to form a testing tree; from
the leaves of such a tree, abstract test cases must be derived.
The VIS of an operation is the Z schema constituted by all its
input and state variables. In the example we have:

EnableStVIS ==
[eSt : P StID; stDef : StID 7→ StAttr; ps? : P StID]

A testing tactic is applied to partition the VIS, giving rise
to a set of test classes. A second testing tactic can be applied
to one or more of these test classes, giving rise to a second
set. This process can continue until the tester is satisfied.
All these test classes are organized in a testing tree. There
are a number of tactics proposed by the TTF and available
in Fastest. Since Disjunctive Normal Form (DNF) warrants
a minimum coverage, Fastest applies it as the first tactic
regardless of the user’s choice. In the example, after applying
DNF we have the following three test classes:

EnableStDNF
1 ==

[EnableStVIS | ps? ⊆ dom stDef ∧ eSt ∩ ps? = ∅]
EnableStDNF

2 == [EnableStVIS | ¬ ps? ⊆ dom stDef ]
EnableStDNF

3 == [EnableStVIS | ¬ eSt ∩ ps? = ∅]

As it can be seen, each test class is a Z schema specifying
a test condition. We then partition EnableStDNF

1 by applying
the tactic Standard Partitions (SP) to the ∪ operator used in
eSt∪ps?. SP defines a standard partition for each mathematical
operator by giving a set of conditions on its operands. The
standard partition for the ∪ operator is shown in Figure 2.
Therefore, we have the following new test classes:

EnableStSP
1 == [EnableStDNF

1 | eSt = ∅ ∧ ps? = ∅]
EnableStSP

2 == [EnableStDNF
1 | eSt = ∅ ∧ ps? 6= ∅]

EnableStSP
3 == [EnableStDNF

1 | eSt 6= ∅ ∧ ps? = ∅]
EnableStSP

4 == [EnableStDNF
1 |

eSt 6= ∅ ∧ ps? 6= ∅ ∧ eSt ∩ ps? = ∅]
EnableStSP

5 ==
[EnableStDNF

1 | eSt 6= ∅ ∧ ps? 6= ∅ ∧ eSt ⊂ ps?]
EnableStSP

6 ==
[EnableStDNF

1 | eSt 6= ∅ ∧ ps? 6= ∅ ∧ ps? ⊂ eSt]
EnableStSP

7 ==
[EnableStDNF

1 | eSt 6= ∅ ∧ ps? 6= ∅ ∧ ps? = eSt]

1Also called test objectives, test specifications, test templates, test condi-
tions, etc.



3

EnableStSP
8 == [EnableStDNF

1 |
eSt 6= ∅ ∧ ps? 6= ∅ ∧ eSt ∩ ps? 6= ∅
∧ ¬ eSt ⊆ ps? ∧ ¬ ps? ⊆ eSt ∧ ps? 6= eSt]

Note that the conditions defined by the new testing tactic
are conjoined to the conditions of the parent node by schema
inclusion—EnableStDNF

1 in this case. These representations of
test classes are called testing trees.

As far as the original presentation of the TTF concerns,
the choice of testing tactics to apply to a particular operation
is a manual activity carried on by a testing engineer based
on an analysis of the coverage the resulting test classes
will give and the kind of errors they might uncover. DNF
guarantees a minimum logical coverage since all the main
functional alternatives will be exercised. However, errors in
the implementation of complex mathematical operators such
us ∪ have a low probability to be revealed by DNF since
it does not take them into account. In this case, SP is a
much better candidate since it looks a the semantics of these
operators disregarding the logical structure of the predicate.
Below we will introduce other testing tactics implemented
in Fastest, which constitute a good menu to generate test
classes for most of the Z specifications. Although the choice
of tactics was thought as a manual activity, some heuristics
can be implemented in a way that they are applied according
to the elements present in each operation—this has not been
investigated in the context of the TTF.

Usually, some of the test classes generated by the TTF are
unsatisfiable—for instance EnableStSP

5 in the running example.
Hence, Fastest implements a powerful method for detecting
them. The core of this method is a library of so called
elimination theorems, each of which represents a family of
mathematical contradictions [7]. After running the pruning
command, only EnableStSP

1 to EnableStSP
4 , EnableStDNF

2 and
EnableStDNF

3 remain. According to the TTF, at least one test
case must be derived from each surviving leaf. In this context
a test case is a tuple of constants satisfying the predicate of
a given test class. Fastest implements a satisfability algorithm
covering a significant number of the mathematical theories
included in the Z mathematical toolkit; the method uses the
ZLive component of the CZT project [17]. In this example,
Fastest produces automatically the following test cases:

EnableStTC
1 == [EnableStSP

1 |
eSt = ∅
∧ stDef = ∅ ∧ ps? = ∅]

EnableStTC
2 == [EnableStSP

2 |
eSt = ∅
∧ stDef = {(stid0, stattr0)} ∧ ps? = {stid0}]

EnableStTC
3 == [EnableStSP

3 |
eSt = {stid0} ∧ stDef = ∅ ∧ ps? = ∅]

EnableStTC
4 == [EnableStSP

4 |
eSt = {stid0}
∧ stDef = {(stid1, stattr0)} ∧ ps? = {stid1}]

EnableStTC
5 == [EnableStDNF

2 |

eSt = ∅ ∧ stDef = ∅ ∧ ps? = {stid0}]
EnableStTC

6 == [EnableStDNF
3 |

eSt = {stid0} ∧ stDef = ∅ ∧ ps? = {stid0}]

After writing the Z specification in the LATEX markup
defined in [18], the entire process is executed in Fastest via
the script depicted in Figure 3.

A. More Testing Tactics

As we have said, within the TTF exists a number of testing
tactics. In the case studies presented in this paper we have
used the following ones.

Free Types (FT) is a testing tactic useful for dealing with
variables whose type is enumerated. If x is a variable of an
enumerated type, T , FT generates test classes whose charac-
teristic predicates are of the form x = val for each val ∈ T .
In this way, the tactic guarantees that the implementation will
be exercised on all these values, which are usually part of
conditional expressions.

Numeric Ranges (NR) is a testing tactic that waits for
an arithmetic variable, var, and an ordered list of numbers,
n1, . . . nk, and generates the following partition: var < n1,
var = n1, n1 < var < n2, . . . , var = ni, ni < var < ni+1,
var = ni+1, . . . , var < nk, var = nk and nk < var.

With Mandatory Test Set (MTS) the user can bind a set of
constants, {v1, . . . , vn} to an expression, expr, in such a way
that, when the tactic is applied, it generates n + 1 test classes
characterized by the following predicates: expr = vi for all
i in 1 . . n, and expr 6∈ {v1, . . . , vn}. This tactic allows users
to test the implementation on specific values that they deem
important.

In Set Extension (ISE) is a tactic that applies to operations
including predicates of the form expr ∈ {expr1, . . . , exprn}.
In this case, it generates n test classes such that expr = expri,
for i in 1 . . n, are their characteristic predicates.

B. Test Oracles in the TTF

Since the TTF has several differences with other MBT
methods, we consider it necessary to explain how it deals
with test oracles. A test oracle is a means by which it is
possible to determine whether a test case has found an error
in the implementation or not. In the TTF the specification
acts as a test oracle. In effect, according to the TTF: (a)
abstract test cases must be refined into executable test cases
[19]; (b) these test cases are executed by the program under
test; (c) the output produced by the program for a given
test case is abstracted at the level of the specification (if
this is possible); and (d) both the abstract test case and its
corresponding abstract output are substituted in the schema of
the appropriate Z operation. In this way the predicate of the
operation becomes a constant predicate: if it reduces to true,
then no error was found in the implementation; otherwise the
implementation is faulty on this test case. If it is impossible
to abstract the output of the program (for example, because
it ends with “segmentation fault”), then an error was found.
Hence, in the TTF test cases do not include their oracles. In



4

loadspec enableStores.tex loads the specification; type-checks it
selop EnableSt generates test only for selected schemas
genalltt applies DNF; builds testing tree
addtactic EnableSt DNF 1 SP \cup eSt \cup ps?
genalltt applies SP; rebuilds testing tree
prunett prunes the testing tree
genalltca generates test cases for the leaves

Fig. 3. Script to produce abstract test cases.

fact, an abstract test case only defines the values for each input
variable.

C. State Invariants in the TTF
Usually Z specifications include a state invariant in the state

schema. As the reader can see, we have not included any
state invariant in Stores. We prefer writing state invariants as
follows:

StoresInv == [Stores | eSt ⊆ dom stDef ]

and then asking for a proof obligation for each operation:

Theorem EnableStPI
StoresInv ∧ EnableSt⇒ StoresInv′

When the operation is analysed by the TTF, it will generate test
cases that will test code implementing sufficient functionality
to make the program verify the state invariant, because it
implements its specification and the specification satisfies the
invariant. More formally: if operation O satisfies invariant I—
i.e. I ∧ O ⇒ I′—and we “prove” by testing that program
P implements O—i.e. P ⇒ O—, then we can prove that
P satisfies I—i.e. I ∧ P ⇒ I′. In summary, there is no
need in considering state invariants during the “Generation”
step as long as the corresponding proof obligations have been
discharged. Therefore, in Fastest we encourage to write test
invariants outside the state schema.

III. ON-BOARD FLIGHT CONTROL SOFTWARE OF A
SATELLITE LAUNCHER VEHICLE

We have written a Z model describing how the on-board
software of a satellite launcher vehicle shall control the events
sent by different sensors, called time reference events (TRE)—
the requirements were provided by researchers from Instituto
de Aeronáutica e Espaço (IAE), Brazil. These events are
used to calculate when the relative events shall be issued by
the control software. The Z model covers only those TRE
that control lift-off and thrust drop detection (three different
events). This is the smallest and simplest model reported in
this paper because it encompasses only 139 lines of Z LATEX
markup. The basic elements of the model are the following.

STATUS ::= normal | failure

TRE ::=
LiftOff
| ThrustDrop1E
| ThrustDrop2E
| ThrustDrop3E

tli e (tls e) stands for lower (upper) time bound of reference
event e. That is, TRE cannot be received at any time but within
specified time frames. Similarly, X e is the acceleration level
defined for detection of reference event e.

tli, tls,X : TRE → N

The following schema represent the state space of the
system.

OBS
now : N
ot : TRE 7→ N
sysState : STATUS
fa : N

The meaning of the state variables is as follows:
Current flight time ≈ now
Occurrence time of reference event e ≈ ot e
Current system state ≈ sysState
Current vehicle acceleration as informed by the
appropriate sensor ≈ fa

There is one set of operation schemas describing what to
do when each TRE is detected; these schemas are further
subdivided describing successful and erroneous situations. For
instance, the following schemas describe the detection of the
lift-off event (some irrelevant predicates are omitted):

DetectLiftOffOk
∆OBS; e? : TRE

e? = LiftOff
sysState = normal
e? 6∈ dom ot
now ∈ tli e? . . tls e?
X e? ≤ fa
ot′ = ot ∪ {e? 7→ now}
. . .

EventOutOfTF
∆OBS; e? : TRE

sysState = normal
now 6∈ tli e? . . tls e?
sysState′ = failure
. . .



5

DetectLiftOffAccelError
∆OBS; e? : TRE

e? = LiftOff
sysState = normal
X e? > fa
sysState′ = failure
. . .

DetectLiftOffOOTF == [EventOutOfTF | e? = LiftOff ]

DetectLiftOff ==
DetectLiftOffOk
∨ DetectLiftOffAccelError ∨ DetectLiftOffOOTF

We were able to automatically generate abstract test cases
for testing the detection of all the events in different time
frames, as is shown in Table I. Column Tactics lists the
testing tactics that we applied for each operation—we omit
to mention DNF because Fastest always applies it. Columns
Leaves and Pruned show the initial number of leaves of the
testing tree and the number of leaves automatically pruned by
Fastest, respectively. Auto, Manual and Total are the number
of abstract test cases automatically generated by the tool,
those that needed manual intervention, and the sum of them,
respectively. Since a test case is tuple of constants satisfying
the predicate of the test class, there is no algorithm that
can find all of them [6]. Therefore, the user must help the
algorithm so it can generate some test cases. The Manual
column records the number of test cases that required the user
to assist the algorithm in finding a test case.

A. Rationale Behind Tactic Selection

In this section we want to explain why we applied DNF,
SP and NR to DetectLiftOff to show the rationale behind
the testing tactic selection process. Applying DNF means
to generate a test class for each of schemas that form
DetectLiftOff . This implies that at least one test case satisfying
the precondition of each schema will be generated. Since
the schemas capture right and unexpected behaviours of the
operation, DNF guarantees to test the implementation in all
these situations.

After DNF, we applied SP to the ∪ operator appearing in
the postcondition of DetectLiftOffOk—recall SP from Section
II at page 2 and Figure 2. As we explained in Section II, SP
generates test to exercise the program with different values of
ot in a way that the implementation of ot′ = ot∪{e? 7→ now}
is tested quite deeply.

By applying NR to now (the state variable measuring the
current time) Fastest generates tests for the LiftOff event
arriving at different moments with respect to the time frame
in which the event is waited—recall NR from Section II-A.
Therefore, we asked Fastest to generate test classes requiring
that now varies over these time frames. First, time frames are
defined by giving values to the axiomatic definitions, tli and
tls—the values for tli and tls were suggested by a domain

expert from IAE, but they are fictitious. Second, the NR tactic
is applied by setting the lists of numbers to the values given
in the previous step.

Below we show a typical test class and its test case.

DetectLiftOff NR 18
DetectReferenceEvent VIS

e? = LiftOff
sysState = normal
e? 6∈ dom ot
now ∈ tli e? . . tls e?
X e? ≤ fa
ot 6= ∅
ot ∩ {e? 7→ now} = ∅
1 < now < 3

DetectLiftOff NR 18 TCASE
DetectLiftOff NR 18

ot = {(ThrustDrop1E, 57)}
e? = LiftOff
sysState = normal
fa = 57
now = 2

Although more abstract test cases could have been generated
by applying more testing tactics—for example, to test the
arrival of TRE at different accelerations—, we believe the ones
obtained so far would exercise the implementation in the most
relevant ways.

IV. TWO SATELLITE COMMUNICATION PROTOCOLS

In this section we present two closely related problems
regarding the formalization of communication protocols im-
plemented in satellites developed by Instituto Nacional de
Pesquisas Espaciais (INPE) from Brazil. In a joint project
between CIFASIS, Flowgate and INPE, researches from INPE
provided the protocol requirements in Portuguese and re-
searchers from CIFASIS and Flowgate wrote the Z specifica-
tions and applied Fastest. These results were compared with
those produced by another MBT technique applied at INPE
[20]. Here we show the application of the TTF and Fastest
with greater detail.

These protocols describe the messages that two on-board
computers of a satellite can exchange during the mission.
In both cases there is a dedicated computer that communi-
cates with the On-Board Data Handling (OBDH) computer,
the satellite platform computer that processes, generates and
formats platform and payload information that is transmitted
to ground stations. Our Z specifications correspond to the soft-
ware running on each dedicated computer. These specifications
are structured as a set of Z schemas each describing what
the software must do when a particular message from OBDH
arrives, plus some schemas for internal responses to previous
messages. All the operations of these models include schemas
for the normal and erroneous situations.



6

Operation Tactics Leaves Pruned Auto Manual Total
DetectLiftOff SP ∪, NR now 〈1, 3〉 46 37 8 1 9
DetectThrustDropE1 SP ∪, NR now 〈10, 15〉 46 37 8 1 9
DetectThrustDropE2 SP ∪, NR now 〈27, 30〉 46 37 6 3 9
DetectThrustDropE3 SP ∪, NR now 〈50, 56〉 46 37 6 3 9

Totals 184 141 28 8 36

TABLE I
MBT APPLIED TO THE DETECTION OF EVENTS OF A SATELLITE LAUNCHER VEHICLE.

A. EXP-OBDH Communication Protocol

In this case the dedicated computer, called EXP, performs
astrophysical experiments. This specification comprises the
following operations:

– The reception of commands from OBDH, including a
real-time requirement.

– The acquisition of scientific data sensed by the astrophys-
ical devices.

– An array of simple operations fired by commands sent
from OBDH: reset the micro controller, return the time
measured by the clock of the EXP computer, initiate and
stop data acquisition, and so on.

– A simple internal operation to interrupt the telescope
every 700 ms so it can interrupt EXP when data is
available.

– Load the memory containing experimental data with data
sent from OBDH.

– Transmission of experimental data to OBDH.
Note the combination of both reactive behaviour and com-

plex data structures; this is recurring in the rest of the cases
studies presented in this paper.

The specification comprises ten pages with 608 lines of Z
code. The state space of the model declares, among others, a
variable representing EXP’s memory area reserved for experi-
mental data. This variable, called memd, is modified when the
telescope interrupts EXP to copy scientific data and when a
memory dump is requested. We specified the first operation as
follows:

RetrieveExpDataOk
∆ExpState; ΞTime; ΞStatus; data? : seq MDATA

data? 6= 〈〉
mep + #data? ≤ 43
memd′ =

memd ⊕ {i : 1 . .#data? • mep + i 7→ data? i}
mep′ = mep + #data?
ped′ = 0
. . .

RetrieveExpDataE == [ΞExpState; data? : seq MDATA |
data? = 〈〉 ∨ 43 < mep + #data?]

RetrieveExpData ==
RetrieveExpDataOk ∨ RetrieveExpDataE

data? receives the data sent by the telescope; it must be a
non empty sequence. mep is a pointer pointing to the last used

memory cell in memd. Therefore, we include a precondition
avoiding a buffer overflow. If these preconditions are met, the
memory is updated by overwriting memd with data? starting
from mep; and mep is incremented according to the length of
data?.

After loading the model into Fastest we applied DNF and
SP to the ⊕ operator. Applying DNF warrants to test at
least the successful and the erroneous cases, one of which
includes testing for a buffer overflow. Applying SP, tests the
implementation of the copy routine with significant values of
memd, data? and mep. For instance, Fastest produces, among
others, test classes equivalent to the following:

memd = 〈〉 ∧ data? 6= 〈〉 ∧ mep = 0
#memd ≥ 2 ∧ #data? = 1 ∧ mep = 0
#memd = #data? = 1 ∧ mep = 1

These can be translated into English, respectively, as fol-
lows: ‘it is the first time the telescope sends data’; ‘the
telescope sends data after a memory dump was requested
(memd is non empty but mep points to the initial address)’;
and ‘is not the first time the telescope sends data’.

Depending on the mathematics involved in each Z operation
we tested all of them following the same criteria. Table II
summarizes the testing tactics and testing results of this case
study. The last row shows that we generated 86 abstract
test cases for the whole specification. As with the other
case studies, more could have been generated by applying
more testing tactics, but these exercises the main alternatives
described by the model.

B. SWPDC

SWPD is the software embedded into the Payload Data
Handling Computer (PDC). Although similar in conception
to the previous case study, SWPDC is much more complex
because it handles not only scientific data but also dump
data (e.g. housekeeping data), accomplishes data memory
management, implements flow control mechanisms, etc. Data
transmission is more complex since SWPDC has to keep
record of the last transmitted frame because OBDH can ask it
again if some problem during transmission was detected. This
increased complexity is reflected in the number of lines of Z
code which more than doubles that of the previous case study.

SWPDC includes four memory pages which are relevant
to the formal model. These pages are of 32 Kb each. On
the other hand, some requirements define the size of the data
frames that are transmitted back and forth between PDC and
OBDH—1,111 and 1,116 bytes. The model we have written



7

Operation Tactics Leaves Pruned Auto Manual Total
CommandFinish 2 0 2 0 2
CommandStart 2 0 2 0 2
CommandType FT type? 28 18 10 0 10
InitDataAcq 4 0 4 0 4
LoadParam FT p? 13 0 13 0 13
MemoryDump 3 0 3 0 3
MemoryLoad SP ⊕ 21 4 15 2 17
Reconfig FT nmode? 4 0 4 0 4
ResetMicro 3 0 3 0 3
RetrieveEData SP ⊕ 10 2 8 0 8
SendClock 3 0 3 0 3
StopDataAcq 4 0 4 0 4
TransData SP C 14 1 9 4 13

Totals 111 25 80 6 86

TABLE II
MBT APPLIED TO THE EXP-OBDH COMMUNICATION PROTOCOL.

includes a detailed description of memory management and
data transmission, which needs references to these constants.
Then, some abstract test cases would need to take into account
these constants. For instance, there would be abstract test cases
to test whether overflowing each memory page is possible or
not. This, in turn, would require to write a list of, say, 32,767
elements representing the current state of one of those memory
pages. Since this is very difficult to accomplish automatically
and even manually, we changed these constants for smaller
numbers. It remains a challenge to automatize the generation
of such large constants values.

As Table III shows, the results are rather similar to those
of the previous case study. To generate test cases for the
most complex operation, TransmitData, we applied SP to two
different expressions and then we applied NR, again, to two
different variables to consider possible buffer overflows. As
can be seen the initial number of test classes generated for
this operation is quite high, but many of them are pruned
since the operation has a number of restrictions. One of
these restrictions makes it necessary to add new elimination
theorems to detect contradictions coming from total functions.
For example, the following elimination theorem codifies a
contradiction only valid for total functions:

ETheorem T1 [f : X → Y; a : X; b : Y]
dom f ∩ dom{a 7→ b} = ∅

This elimination theorem prunes test classes generated by
applying SP to an expression of the form f ⊕ {x 7→ y} where
f is a total function, since one of the partitions defined by SP
for R⊕ G is:

R 6= ∅,G 6= ∅, dom R ∩ dom G = ∅;

V. MBT OF THE ECSS-E-70-41A STANDARD

We have developed a Z specification of a significant portion
of the ECSS-E-70-41A Aerospace Standard [16]. This is the
largest model we have written so far, including complex
Z concepts. It posed a number of theoretical and practical
challenges, that are the subject of current efforts for improving
the TTF and Fastest. In this section we report on the MBT

activities we were able to do with this model and succinctly
describe some of the problems we faced.

A. A Complex Specification

We have formalized the minimum capability sets of the
following services2:

– Telecommand verification service: Telecommand Acceptance
Report Success (1,1); Telecommand Acceptance Report Failure
(1,2).

– Housekeeping and diagnostic data reporting service: House-
keeping Parameter Report (3,25); Define New Housekeeping
Parameter Report (3,1); Clear Housekeeping Parameter Report
Definitions (3,3); Enable Housekeeping Parameter Report Gen-
eration (3,5); Disable Housekeeping Parameter Report Genera-
tion (3,6).

– Memory management service: Load Memory using Absolute
Addresses (AA) (6,2); Dump Memory using AA (6,5); Memory
Dump using AA Report (6,6).

– On-board monitoring service: Enable Monitoring of Parameters
(12,1); Disable Monitoring of Parameters (12,2); Check Tran-
sition Report (12,12).

– On-board storage and retrieval: Enable Storage in Packet Stores
(15,1); Disable Storage in Packet Stores (15,2); Packet Store
Contents Report (15,8); Downlink Packet Store Contents for
Time Period (15,9).

As the list shows, we have formalized 17 service subtypes
for 6 of the 16 services described in the standard. We chose
the services on the basis of their functional impact or richness,
their independence from specific missions and the potential
complexity of their implementations. For instance, since the
functionality of the “Test service” is mostly mission-specific,
the “Device command distribution service” is a low-level
service with very limited functionality, and the “Function
management service” is a rather simple function-call dispatch-
ing service, we decided not to formalize them. Although
we decided to exclude some services, others may be good
candidates to be included in the model.

The specification has 2,011 lines of Z LATEX markup in a
74 pages document; including 25 state variables with 16 of a

2The ordered pairs are the standard identifiers for services in [16]. The first
component identifies the service type and the second the service subtype; we
will use them to shorten the presentation.



8

Operation Tactics Leaves Pruned Auto Manual Total
ChangeOperationMode FT m? 5 0 5 0 5
CmdAccept 3 0 3 0 3
ExecuteProgram 5 0 5 0 5
GetMemoryDumpReady ISE p? ∈ {0, . . . , 7} 13 0 13 0 13
LoadMemory SP ⊕ 94 62 17 7 24
ReceiveHardwareSignal FT s? 9 0 9 0 9
ModSoftParam SP ⊕ 31 18 13 0 13
ReinitDataAcquisition 4 0 4 0 4
ResendsAnswer 3 0 3 0 3
SendClock 3 0 3 0 3
StopDataAcquisition 4 0 4 0 4
TransmitData SP ⊕ (2) 73 54 14 5 19

NR sdwp ia
VerifyOperationMode 5 0 5 0 5

Totals 252 134 97 12 109

TABLE III
MBT APPLIED TO THE SOFTWARE EMBEDDED INTO THE PDC.

relational type, of which 6 are higher-order functions and 3
are defined by referencing schema types. This should give an
idea of the actual complexity of the model3. For instance, the
following state variable:

hSampVal :
SID 7→

(PARAMNAME 7→ (TIME 7→ PARAMVALUE))

is used to record the sampling of different housekeeping
parameters at different times, according to the definition of
different report definitions; while:

hRepDef : SID 7→ HRepDef

records the report definitions themselves, where HRepDef is
a schema type having 6 fields (not counted within the state
variables), 3 of which are partial functions.

Since many state variables are unrelated to each other, we
factorized out the model state schema in one schema per
service. The formalization of each subtype is essentially a Z
operation which in turn may comprise several schemas. In
this way, schemas formalizing a subtype of a given service
only access and modify the state schema corresponding to
that service. The specification of any subtype comprises both
the normal and erroneous conditions.

Another issue contributing to the complexity of the model
is that it contains 28 axiomatic definitions. Some of these
are even more complex than the one shown in Figure 4,
which formalizes the notion of a parameter consistently failing
a low-limit check as required by the on-board monitoring
service—note that consistFailedLowL also references another
complex axiomatic definition, lastRepVal. This is our first
model featuring axiomatic definitions of such complexity.

B. Deriving Test Classes and Beyond

Although our ECSS-E-70-41A formalization includes Z
features not covered by the TTF and not yet implemented

3As a matter of comparison, the Tokeneer specification has only 46 lines
more, and it is widely recognized as a full-fledged, industrial-strength formal
specification [21].

by Fastest (see Section V-C), we were able to use it to
produce some interesting results, as described in the following
subsections.

1) Generating Test Classes for the ECSS-E-70-41A Stan-
dard.: The most significant result we were able to obtain
regarding this model is a set of 256 test conditions for some
of the services, as shown in Table IV4. These test classes can
be used to guide the functional testing of any implementation.
It would be possible to generate many more test conditions
and test cases by applying more tactics, or by developing
improvements to the TTF and Fastest (see Section V-C). For
instance, we applied tactics mostly to generate test classes
for those schemas specifying the successful execution of an
operation, as we did in the example of Section II. Therefore,
one way of generating more test classes would be by applying
testing tactics to the schemas representing errors.

Test classes for (3,1) include those derived for a promoted
operation that does the hard work of saving the new report
definition (NewHRepDefOk). In (15,1) we have included test
classes derived for the internal operation that is responsible
for saving the packets in the packet stores (SavePackets).

The services that were most affected by the limitations of
the TTF and Fastest are (3,25), (6,2), (6,6), (12,1), (12,2),
(12,12), (15,1) and (15,9). They use language expressions that
we cannot currently consider to partition their VIS and that
are likely to have complex implementations. Particularly, for
(3,25) we were unable to generate test classes since it uses
many Z features not yet covered by our methodology. Another
example is SavePackets since the specification of this operation
is based essentially on let expressions which made Fastest to
produce an incomplete DNF calculation.

2) A Case Study Using the Formal Model.: INVAP is a
satellite developer from Argentina that wanted to assess an
MBT method and decide whether it would be useful as a
replacement for their manual process. They routinely base
their developments on the ECSS standards suite. We therefore
proposed using our ECSS-E-70-41A formalization and Fastest

4Here column Leaves is the number of test classes after pruning.



9

consistFailedLowL : P((TIME 7→ PARAMVALUE)× PARAMVALUE × CheckDef )

∀ h : TIME 7→ PARAMVALUE; v : PARAMVALUE; d : CheckDef •
(h, v, d) ∈ consistFailedLowL⇔ max(ran(lastRepVal h v d.rep)) < d.low

Fig. 4. The formalization of ECSS-E-70-41A includes some axiomatic definitions more complex that the one presented here.

Op/Srv Tactics Leaves Op/Srv Tactics Leaves
(1,1) & (1,2) 4 (6,6) 2

(3,1) SP ∪ (2), ∩, 6∈ 38 (12,1) SP ⊕ 5
(3,3) SP −C (2), \ 75 (12,2) SP ⊕ 5
(3,5) SP ∪ (2) 28 (12,12) 2
(3,6) SP \, ndres 22 (15,1) SP ⊕ 15
(3,25) – (15,2) SP ⊕ 12
(6,2) SP #, MTS sa?, len? 16 (15,8) 3
(6,5) SP #, MTS sa?, len? 16 (15,9) SP ∈ (4) 12

TABLE IV
TEST CLASSES DERIVED FOR ECSS-E-70-41A’S SERVICES.

to generate abstract test cases for some typical subtypes,
namely, (1,1), (1,2), (6,5), (6,6), (12,1) and (12,2). As part of
the case study, they also needed an English description of each
test case, which are used as evidence for external validators.
INVAP had already derived test cases for the agreed services
but we did not know them in advance, and, at the same time,
we had written the model some time before. However, we had
to modify it slightly to be able to generate test cases, and
not only test classes. Modifications involved performing some
schema expansions that Fastest is not able to do so far.

Table V shows a summary of the results of the case study.
By applying the TTF and Fastest, we were able to generate
roughly the same test cases derived manually by the company.
Also, by borrowing a rather simple template-based method
from the natural language generation community [22], we
were able to semi-automatically translate the Z test cases into
English as requested by the company [23]. Clearly, this is a
surplus of the MBT approach, as formal test cases can serve
more purposes than those generated manually. The company
was satisfied with these results, although they would like to
have the expected output of each test case, as they regard test
cases as (provided input, expected output) pairs. The TTF, on
the other hand, gives a final answer in terms of the presence
or absence of an error in the implementation, rather than
including outputs in test cases.

C. Challenges and Open Issues

As we have said, this model posed a number of challenges,
mostly due to the inclusion of complex Z concepts. These
concepts were not originally addressed by the TTF and are
consequently not supported by Fastest. Therefore, the first step
would be to extend the TTF, so that a possible implementation
can be foreseen. The issues we will focus on are the following:

– Lack of tactics to deal with λ expressions and set
comprehensions. This is, nevertheless, rather easy to deal
with because in Z any λ expression can be written as a

set comprehension and these, in turn, are essentially first
order predicates. The TTF is well equipped to work with
predicates.

– Lack of tactics to work with higher order functions. It
would be interesting to develop tactics to partition higher
order functions. Although a higher order function is a
function, they have some peculiarities that should be
explored.

– Schema types. Schema types are strongly related to
hierarchical specifications where low-level operations are
promoted to higher level state machines. In our opinion
hierarchical specifications are tightly related to integra-
tion testing due to the clear mapping between low and
high level operations and low and high service layers of
the implementation. This, in turn, implies to study how
to use MBT for integration testing.

– Support for variable hiding, let expressions, and quan-
tifications need to be improved.

– Poor support for axiomatic definitions. Actually the TTF
does not say anything about this important Z feature.
However, Fastest includes a limited support. We treat
them as model parameters that need to be bound to a con-
stant value before test cases are derived. This is a good
approach, for instance, for configuration variables. On the
other hand, binding a value to, say, consistFailedLowL
(shown above) might be unnecessary. In this case, the
variable is equivalent to a predicate that can be replaced
whenever it is referenced. We need to study a more
general solution for this issue.

– Generics. Fastest does not support generic definitions,
generic schemas, and the like, but: (a) some of them are
used mostly to extend the notation rather than to write
specifications; and (b) some testing tactics can be applied
to their “uses” instead to their definitions.

Our current efforts are oriented towards solving these and
other minor issues, both in their theoretical and practical



10

Operation Tactics Leaves Pruned Auto Manual Total
TelecmdAccept 4 0 4 0 4
DumpMemoryAbsAdd SP ≤ 32 18 7 7 14
MemoryDumpAbsAdd SP � 15 4 9 2 11
EnableMonitParam SP ⊕, FT srv 250 172 50 28 78
DisableMonitParam SP ⊕, FT srv 250 172 50 28 78

Totals 551 366 120 65 185

TABLE V
TEST CASES DERIVED FOR SOME ECSS-E-70-41A’S SERVICES.

aspects.

VI. CONCLUSIONS

We have applied a particular MBT theory with tool support
to four case studies from the aerospace domain. They range
from rather simple models of aerospace systems to a highly
complex formalization of an aerospace standard. Our first con-
clusion is that the Z formal notation is adequate to formalize
aerospace software, where reactive behaviour and complex
data structures are combined to form nontrivial infinite-state
machines. From this kind of models, the TTF permits to
generate detailed test cases by applying simple testing tactics
that easily consider all the functional alternatives codified in
the model, thus guaranteeing a very good coverage of the im-
plementation. By applying Fastest, a faithful implementation
of the TTF, we were able to automatically generate dozens
of test cases, turning the testing process into analytical work
rather than a tedious manual task.

ACKNOWLEDGMENTS.

We would like to thank the following people and institutions
for their support in writing this paper. Miriam Alves from
IAE, Valdivino Alexandre from INPE, Flowgate Consulting,
REVVIS, INVAP and LSIS.

REFERENCES

[1] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2006.

[2] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen,
A. J. H. Simons, S. Vilkomir, M. R. Woodward, and H. Zedan, “Using
formal specifications to support testing,” ACM Comput. Surv., vol. 41,
no. 2, pp. 1–76, 2009.

[3] P. Stocks and D. Carrington, “A Framework for Specification-Based
Testing,” IEEE Transactions on Software Engineering, vol. 22, no. 11,
pp. 777–793, Nov. 1996.

[4] P. Stocks, “Applying formal methods to software testing,” Ph.D. dis-
sertation, Department of Computer Science, University of Queensland,
1993.

[5] I. MacColl and D. Carrington, “Extending the Test Template Frame-
work,” in Proceedings of the Third Northern Formal Methods Workshop,
Ilkely, UK, 1998.

[6] M. Cristiá and P. Rodrı́guez Monetti, “Implementing and applying the
Stocks-Carrington framework for model-based testing,” in ICFEM, ser.
Lecture Notes in Computer Science, K. Breitman and A. Cavalcanti,
Eds., vol. 5885. Springer, 2009, pp. 167–185.

[7] M. Cristiá, P. Albertengo, and P. Rodrı́guez Monetti, “Pruning testing
trees in the Test Template Framework by detecting mathematical contra-
dictions,” in SEFM, J. L. Fiadeiro and S. Gnesi, Eds. IEEE Computer
Society, 2010, pp. 268–277.

[8] M. Cristiá, P. Albertengo, and P. Rodrı́guez Monetti, “Fastest: a model-
based testing tool for the Z notation,” in PTD-SEFM, F. Mazzanti and
G. Trentani, Eds. Consiglio Nazionale della Ricerche, Pisa, Italy, 2010,
pp. 3–8.

[9] The Eclipse Foundation. Eclipse. [Online]. Available: http://www.
eclipse.org/

[10] T. Hupponen, K. Karlsson, J. Laitinen, O. Ojala, A. Pirinen,
E. Seuranen, and L. Takkinen. TeXlipse. [Online]. Available:
http://texlipse.sourceforge.net/

[11] CZT. CZT Eclipse Plugin. [Online]. Available: http://www.cs.waikato.
ac.nz/∼marku/czt/eclipse.html

[12] M. Cristiá, P. Rodrı́guez Monetti, and P. Albertengo, “The Fastest
1.3.6 User’s Guide,” Flowgate Consulting, Tech. Rep., 2010. [Online].
Available: http://www.flowgate.net/pdf/userGuide.pdf

[13] Maximiliano Cristiá. Fastest. [Online]. Available: http://www.fceia.unr.
edu.ar/∼mcristia

[14] J. M. Spivey, The Z notation: a reference manual. Hertfordshire, UK,
UK: Prentice Hall International (UK) Ltd., 1992.

[15] B. Potter, D. Till, and J. Sinclair, An introduction to formal specification
and Z. Prentice Hall PTR Upper Saddle River, NJ, USA, 1996.

[16] ECSS, “Space Engineering – Ground Systems and Operations: Teleme-
try and Telecommand Packet Utilization,” European Space Agency,
Tech. Rep. ECSS-E-70-41A, 2003.

[17] P. Malik and M. Utting, “CZT: A framework for Z tools,” in ZB,
ser. Lecture Notes in Computer Science, H. Treharne, S. King, M. C.
Henson, and S. A. Schneider, Eds., vol. 3455. Springer, 2005, pp.
65–84.

[18] ISO, “Information Technology – Z Formal Specification Notation –
Syntax, Type System and Semantics,” International Organization for
Standardization, Tech. Rep. ISO/IEC 13568, 2002.

[19] M. Cristiá, D. Hollmann, P. Albertengo, C. Frydman, and P. Rodrı́guez
Monetti, “A language for test case refinement in the Test Template
Framework,” in ICFEM, 2011, p. to appear.

[20] M. Cristiá, V. Santiago, and N. Vijaykumar, “On comparing and com-
plementing two MBT approaches,” in LATW, F. Vargas and E. Cota,
Eds. IEEE Computer Society, 2010, pp. 1–6.

[21] J. Barnes, R. Chapman, R. Johnson, J. Widmaier, D. Cooper, and
B. Everett, “Engineering the Tokeneer enclave protection software,” in
Proceedings of the IEEE International Symposium on Secure Software
Engineering. IEEE, 2006.

[22] E. Reiter and R. Dale, Building Natural Language Generation Systems.
Cambridge, UK: Cambridge University Press, 2000.

[23] M. Cristiá and B. Plüss, “Generating natural language descriptions of
z test cases,” in INLG, J. D. Kelleher, B. M. Namee, I. van der Sluis,
A. Belz, A. Gatt, and A. Koller, Eds. The Association for Computer
Linguistics, 2010.


