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Abstract. In this paper we describe the functional features and the
architecture of a tool implementing the Stocks-Carrington framework
(TTF) for model based testing (MBT). The resulting prototype, called
Fastest, makes it easy to generate test cases from Z specifications. We
not only apply the ideas of the referred framework but we also use a
technique based on finite models to find test cases, which has proved to
increase the level of automation during the whole testing process. The
paper also discusses problems and challenges that have appeared during
the development of the tool, and introduces real case studies and an
analysis of the results obtained so far.

1 Introduction

Current industrial practice in software testing is mostly manual: test template4

definition, test case derivation and the determination of success or failure are
all manual, tedious, resource consuming and error prone activities. These ac-
tivities make a poor use of software engineers’ skills, changing analytical tasks
for a repetitive manual work. Within this picture many software development
companies seldom perform a serious testing of their programs. In this paper we
introduce a tool, called Fastest [1], which automates test suite definition and
test case derivation for unit testing, by applying the Test Template Framework
(TTF) proposed by Stocks and Carrington [2–4] for model-based testing (MBT).

The main contributions of the paper are: (a) a flexible, efficient and automatic
implementation of the TTF which, as far as we have investigated, does not exist
yet; (b) the implementation of a technique to automatically derive abstract test
cases from test objectives, which was not originally proposed by Stocks and
Carrington; and (c) an analysis of the application of Fastest to two industrial-
strength case studies and other toy examples.

Since this paper is about MBT we will shortly introduce this technique, for
a deeper presentation the reader may consult [5]. In order to test a program
4 Test templates are also called test classes or test objectives; we will use all of them

as synonymous.
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P it is necessary to have a formal specification Op of it and follow the process
depicted in Fig. 1. From Op, abstract test cases (t) are derived by executing
the conceptual step named gen. Abstract test cases are abstract since they are
written in the same language than Op. Then each t is refined into a concrete
test case (x ), i.e. in a test case written in the same language than P . The
exec step represents the actual execution of P with input x , which produces
an output P(x ). This output is abstracted to the specification level when the
abs step is executed. The specification is used again to verify whether the test
has uncovered and error or not, during the final step compr . The abstract pair
(x , y) is conveniently substituted in Op: if it reduces to true then no error was
discovered, and if it reduces to false an error was found.

Fig. 1. A general description of the MBT process.

All of the steps of Fig. 1 can be mechanized to a great extent. In this article we
introduce a specific implementation of the gen step based on the TTF. It is worth
to mention that, although the Z notation is one of the most used formal notations
in industry and that the TTF is a straightforward and powerful MBT technique
for Z, there is no implementation of the Stocks and Carrington framework as
automatic as ours.

The paper is structured as follows. The next section presents a brief intro-
duction to the TTF. In Sect. 3 we show the functional and architectural features
of Fastest, while a representative example is run in Sect. 4. Section 5 presents
the results of applying Fastest to some industrial cases studies and to some toy
examples, as well. Our work is compared to similar approaches in Sect. 6. Finally,
Sect. 7 describe our conclusions and future work.
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2 The Test Template Framework

In this section we introduce MBT from the perspective of Stocks and Carrington,
without mention any particular implementation or tool. Precisely, in Sect. 3 we
introduce our implementation which also refines the framework.

Phil Stocks and David Carrington introduced in [2–4] a formal framework
to conduct model-based testing of Z specifications [6], including a rigorous and
disciplined technique for defining and structuring abstract test templates and
cases. They also proposed new testing tactics5 specifically suited to the Z nota-
tion. According to them, testing tactics are the mechanisms that must be used
to partition the input space to build a so called testing tree.

We make use of an example to explain the TTF, but we assume the reader
is fluent in the Z notation.

2.1 A Simple Pool of Sensors

The following Z model describes a simple pool of sensors which records the
highest reading of each sensor. The KMR operation6 takes as input a sensor ID,
s?, and a reading, r?, of it. If s? is a valid ID and if r? is greater than the current
reading of s?, KMR replaces the current reading for r?. If some condition does
not hold, then the operation fails and nothing is changed.

[SENSOR]
MaxReadings == [smax : SENSOR 7→ Z]

KMROk
∆MaxReadings
s? : SENSOR; r? : Z

s? ∈ dom smax
smax s? < r?
smax ′ = smax ⊕ {s? 7→ r?}

KMRE2
ΞMaxReadings
s? : SENSOR; r? : Z

s? ∈ dom smax
r? ≤ smax s?

KMRE1 == [ΞMaxReadings; s? : SENSOR | s? 6∈ dom smax ]
KMR == KMROk ∨ KMRE1 ∨ KMRE2

2.2 Testing Tactics, Test Classes and Testing Trees

The TTF starts by defining, for each Z operation, the input space (IS ) and the
valid input space (VIS ). The IS is the set defined by all of the possible values of
the input and state variables of the operation. For instance, the IS of KMR is:

5 Here we preferred testing tactic instead of the original term testing strategy because
we believe the former has a narrow scope than the last.

6 KMR stands for KeepMaxReadings.
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IS == [smax : SENSOR 7→ Z; s? : SENSOR; r? : Z]

In turn, the VIS is the subset of IS for which the operation is defined. The
VIS of KMR is equal to its IS since the operation is total. More formally, the
VIS of an operation Op can be defined as follows:

VISOp == [ISOp | pre Op]

Stocks and Carrington suggest to divide the VIS into equivalence classes,
called test classes, by applying one or more testing tactics. The test classes ob-
tained in this way can be further subdivided into more test classes by applying
other testing tactics. This procedure can continue until either the engineer con-
siders that the test classes are reasonable small or there is a reasonable number
or each of the functional alternatives is covered by only one test class. Within
the TTF all these test classes are represented as a testing tree as shown in Fig.
3. The authors indicate that it is convenient for the testing tactics to produce a
mathematical partition of either the VIS or a test class. In this way, test classes
are indeed equivalence classes in the sense that if the program fails for a par-
ticular element it should fail for any other element of the class. Test cases are
taken only from the leafs of the testing as we will see shortly.

Within the TTF the authors defined a number of testing tactics that to-
gether provide a sound method for calculating tests objectives. Furthermore,
they propose that new tactics should be added for particular projects, systems,
requirements, etc. Then, any tool implementing the TTF should enable the inclu-
sion and parametrization of testing tactics. Two of the testing tactics proposed
within the TTF are the following:

– Disjunctive Normal Form (DNF). By applying this tactic the predicate of
the operation is written in DNF and the VIS or a test class is partitioned
in as many test classes as terms has the predicate. The precondition of each
term is conjoined to the predicate of the VIS or the test class being divided.

– Standard Partitions (SP). This tactic uses the mathematical operators ap-
pearing in the predicate to generate more test objectives. A standard parti-
tion is a partition of the domain of a given mathematical operator in sets
called sub-domains. In practice, standard partitions are expressed as condi-
tions that must hold of the operator’s operands. These conditions are used to
divide a test class. Figure 2 shows the standard partition for the < operator.

1. a < 0, b < 0
2. a < 0, b = 0
3. a < 0, b > 0

4. a = 0, b < 0
5. a = 0, b = 0
6. a = 0, b > 0

7. a > 0, b < 0
8. a > 0, b = 0
9. a > 0, b > 0

Fig. 2. Standard partition for a < b.
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We will apply both tactics to KMR. First we apply DNF to the VIS and
then Standard Partitions is applied to the expression smax s? < r? of KMROk .
The resulting testing tree is shown in Fig. 3. Some of the nodes of the testing
tree are shown below. It is worth to mention that the predicates of the objectives
in a given level contain the predicates of the upper level. This is the reason for
which test cases are drawn only from the leafs.

Fig. 3. Testing tree of KMR.

KMR DNF 1
smax : SENSOR 7→ Z
s? : SENSOR
r? : Z

s? ∈ dom smax
smax s? < r?

KMR SP 1
smax : SENSOR 7→ Z
s? : SENSOR
r? : Z

s? ∈ dom smax
smax s? < r?
smax s? < 0
r? < 0

KMR SP 2
smax : SENSOR 7→ Z
s? : SENSOR
r? : Z

s? ∈ dom smax
smax s? < r?
smax s? < 0
r? = 0

KMR SP 9
smax : SENSOR 7→ Z
s? : SENSOR
r? : Z

s? ∈ dom smax
smax s? < r?
smax s? > 0
r? > 0
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KMR SP 19
smax : SENSOR 7→ Z
s? : SENSOR
r? : Z

s? ∈ dom smax
r? ≤ smax s?
smax s? < 0
r? < 0

KMR SP 20
smax : SENSOR 7→ Z
s? : SENSOR
r? : Z

s? ∈ dom smax
r? ≤ smax s?
smax s? < 0
r? = 0

The second step of the TTF methodology suggest to prune the testing tree. In
effect, some test objectives are empty because they are contradictions. In these
cases it is impossible to find abstract test cases. For instance, class KMR SP 20
must be pruned, among others. Stocks and Carrington do not give a recipe on
how this can be automated. In Sect. 3.6 we give a very short description of a
technique that we are currently implementing in Fastest.

Finally, the engineer has to choose at least one element for each of the re-
maining leafs of the testing tree. These are the abstract test cases. Here, we can
see one of the main benefits of the TTF: the model, the test classes and the test
cases are all expressed in the same notation. For example the following schema
boxes represent abstract test cases of the corresponding test objectives. Note
that the method naturally provides traceability between objectives and abstract
test cases by using schema inclusion. Note that within the TTF a test case is a
sort of assignment of constant values to state and input variables, rather than
a sequence of operations leading to the desired state, as is suggested by other
approaches [7–9].

KMR SP 1 TCASE
KMR SP 1

r? = − 1
smax = {(sensor0,− 2)}
s? = sensor0

KMR SP 2 TCASE
KMR SP 2

r? = 0
smax = {(sensor0,− 1)}
s? = sensor0

KMR SP 6 TCASE
KMR SP 6

r? = 1
smax = {(sensor0, 0)}
s? = sensor0

KMR SP 9 TCASE
KMR SP 9

r? = 2
smax = {(sensor0, 1)}
s? = sensor0

Although the TTF suggests that the selection of abstract test cases from
test classes is a rather easy task, the authors do not give any clue on how to
automate this step. In Sect. 3.7 we give such method.
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3 Fastest: an Implementation of the TTF

The goal of this section is to describe both the functional and architectural
features of Fastest. Also we show some design and implementation details that
we believe contribute to the development of MBT tools. Since the Community
Z Tools framework [10, 11] is a key component of Fastest we show how it was
integrated into our tool.

3.1 Conceptual Description

As shown in Fig. 4, Fastest receives a Z specification in LATEX format using
the CZT package. The Z specification must verify the ISO standard [12]. The
specification is transformed into an internal representation more amenable to
parsing and static analysis. Then, the user has to enter a list of the operations
to test as well as the tactics to apply to each of them. In a third step Fastest
generates the testing tree of each operation. After the trees are generated, the
user can browse them and their test classes, and he can prune any node. Once the
user is done with pruning, he can instruct Fastest to find one abstract test case
for each leaf in all the test trees. Although the method to find abstract test cases
has proved to be quite automatic, it is worth to say that it does not guarantee
to find abstract test cases for all test objectives, as we will see in a following
subsection. The user can export all the results –test classes and abstract test
cases– in LATEX format.

Fig. 4. Fastest’s testing process. The dotted line divides the steps reported in this
paper from those not included here.
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3.2 The Architecture of Fastest

Fastest was envisioned as a client-server application [13]. The main reason for
thinking in a distributed system came from the realization that calculating ab-
stract test cases from test objectives in large projects could be a hard computing
problem, but highly parallelizable as well –we will come back to this point in
Sect. 3.7. Then, we thought in an scalable application using the idle computer
power present in a corporate network. On the other side, since testing a large
application is usually carried on by a group of testers, a client-server architecture
allows the team to work concurrently from different workstations by running a
client process per tester. However, in such a large project there is shared infor-
mation –such as the definition or parametrization of some testing tactics, test
cases already calculated, theorems that help to prune testing trees, etc.– that all
the clients and servers should be able to access. Hence, a typical Fastest instal-
lation has a data server that is know to all other processes, some client processes
and a number of testing servers.

The client is organized following the Implicit Invocation architectural style
[14]. The main architectural invariant of this style is that the components that
announce events do not know which other components will react to them. A
consequence of this property is the possibility to add, remove and change com-
ponents without affecting the other [15]. For instance, it would be quite easy
to add a component that is called whenever a new test case is calculated, that
stores it on disc or that refines it to a given programming language.

The client has a simple text-based user interface from which the user can
issued commands and read their output. All the components of this architecture
were implemented as Java programs.

3.3 The CZT Framework

The Community Z Tools (CZT) project [10, 11] is an open source Java framework
created in 2003 with the goal of building a toolkit for the Z notation or its
dialects. These tools include editors, parsers, type-checkers and so on, to work
with Z specifications written in LATEX, Unicode or XML. The following CZT
services have been used in Fastest:

– CZT Parser and the Annotated Ayntax Trees (AST)
– CZT Type-checker
– CZT ZLive specification animator

Although we were greatly benefited from all these services, perhaps the most
important was ZLive. The ZLive project provides an evaluator of Z expressions
and predicates. In other words, ZLive takes a Z model and values for the input
and state variables and calculates the values of the output and next state vari-
ables –it is worth to mention that ZLive does not cover the whole Z notation yet.
We used this facility to calculate test cases from test templates as is described
in Sect. 3.7.
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3.4 Testing Tactics in Fastest

As we have said early, the first step of the TTF is to apply some testing tactics
to each operation of the Z model. Fastest features a user command (addtactic)
that allows the user to build the list of tactics to be applied to each operation,
by entering the name of an operation, the testing tactic name and a few more
parameters depending on the tactic –for more details on the syntax of user com-
mands go to Sect. 4. The current version implements DNF, Standard Partitions
and a new tactic proposed by us called Free Types (FT). This tactic works on
variables of a free (enumerated) type, partitioning the VIS or the test class in
as many classes as elements has the type. More formally, if the VIS of a given
operation declares v : T where T ::= V1 | . . . | Vn , then the class is partitioned
in n templates where each of them has a predicate of the form v = Vi . This
tactic is useful since enumerated types usually codify specific states, operational
modes, etc. Hence, by applying it there will be at least one test case for each of
those situations.

Since Standard Partitions is a general tactic that can be applied to a number
of mathematical operators, Fastest has a configuration file where the user can
define, modify or read partitions for all the operators he or she needs. Figure 5
shows a typical standard partition for the ∩ operator. As the reader may note,
the user writes the standard partitions in a simple and intuitive LATEX-based
language. In this way Fastest implements one important feature of the TTF.

Another important aspect of Fastest is a key design decision that allows
users to add new tactics. The only thing a user has to do is to program a class
implementing the Tactic interface. This class has methods to configure and
apply testing tactics.

\cap : operator(S,T);

S = \{\}, T = \{\};

S = \{\}, T \neq \{\};

S \neq \{\}, T = \{\};

S \neq \{\}, T \neq \{\}, S \cap T = \{\};

S \neq \{\}, T \neq \{\}, S \subset T;

S \neq \{\}, T \neq \{\}, T \subset S;

S \neq \{\}, T \neq \{\}, T = S;

S \neq \{\}, T \neq \{\}, (S \cap T) \neq \{\},

\lnot(S \subseteq T), \lnot (T \subseteq S), T \neq S;

end operator;

Fig. 5. Fastest’s standard partition for S ∩ T .

3.5 Fastest’s Automatic Generation of Testing Trees

Once the engineer has entered the list of testing tactics for each operation, the
only thing he or she has to do to build the testing tress is to run command
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genalltt. In other words, the sole manual work for the engineer, up to this
point, is to enter the names of the tactics an other simple parameters: Fastest
reads the definition of each testing tactic and builds automatically each node of
each testing tree by manipulating the Z text.

3.6 Pruning Testing Trees in Fastest

Applying one tactic after another usually yield many empty test classes that
is advisable to prune from the tree. Besides, the engineer might want to prune
some nodes to reduce the number of test to run for various reasons. Then, a tool
implementing the TTF should feature a way to automatically prune testing trees
as well as some manual way. Fastest current version implements only manual
pruning.

Automatic pruning involves some automatic way of finding contradictions.
Although in general this is an unsolvable problem, we have envisioned a light-
weight method –that is being implemented– that rests on the peculiarities of
the problem within the TTF. We think that a full description of the method
deserves its own paper, so here we just give some tips. First, we assume that test
class predicates are conjunctions of atomic predicates. Second, Fastest would be
delivered with a list of so called elimination theorems, which are parametrized
conjunctions of atomic predicates that yield a contradiction –for instance f =
∅ ∧ dom f 6= ∅, where the name and type of f are parameters. Third, we let
the user to extend the list with his own theorems. Fourth, Fastest applies all the
elimination theorems for each test class, which means to seek the contradictory
predicates inside the test class’ predicate. Hence, if some class is a contradiction
but Fastest fails to prune it, the user can add an elimination theorem that will
prune similar test classes in future projects.

For manual pruning, Fastest provides three commands (prunebelow, prunefrom
and unprune) that allow the engineer to prune subtrees and restore them in case
of mistake. See Sect. 4 for more details.

3.7 Finding Abstract Test Cases with Finite Models

We have based our method for calculating abstract test cases from test objectives
on the following:

Conjecture. For most of the predicates appearing in real specifications,
a small finite model will suffice to find an element verifying that predi-
cate; and if there is no element verifying the predicate, it is because the
predicate is a contradiction.

Then, the method consists in building a finite model for each test class by cal-
culating the Cartesian product between a very small finite set of values for each
variable in the VIS . Fastest then evaluates –using ZLive– the class’ predicate on
each element of the model. Although this method might appear inefficient and
is certainly inelegant, it has proved to be quite accurate as we show in Sect. 5.
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In part the efficiency has been achieved by exploiting the highly parallelizable
nature of the problem. In effect, Fastest asks each testing server to calculate a
test case of a particular test class. Then, the time to find abstract test cases
decrease proportionally with the number of available testing servers. This paral-
lelization is so efficient because each calculation is completely independent from
each other; synchronization is only needed when testing servers communicate a
result to a client.

Then, every time Fastest asks a testing server to find an abstract test case
from a given test class, it can happen one and only one of the following:

– Some element in the finite model satisfies the class’ predicate, then we have
the desired test case.

– There is no element in the finite model satisfying the predicate because the
it is a contradiction –and was no pruned in the previous step.

– There is no element in the finite model satisfying the predicate, but the
predicate is not a contradiction. In this case Fastest let the user to sug-
gest a new finite model or part of it for the conflicting class (see command
setfinitemodel in Sect. 4).

The key point here is what finite sets Fastest considers for each variable in
the test class. By applying the first versions of the tool to some real case studies
we were able to define a set of heuristics that make it possible to find a very
high number of test cases, while minimizing the number of evaluations. These
heuristics are the following:

– The finite sets for types N or Z are built from the numerical constants
appearing in the predicate –if there are no such constants then we take
{0, 1, 2} and {−1, 0, 1}, respectively.

– The finite sets for enumerated types are the types themselves.
– The finite sets for basic types are built by generating three constant names

of each type. For example, if CHAR is a basic type, we assume the existence
of char1, char2, char3 : CHAR, and then we take {char1, char2, char3} as
the finite set for any variable of type CHAR. We think of them as being
three different constant elements.

– If a variable declared in the VIS does not appear in the predicate of a
test class, then the finite set for that variable is any singleton –since the
value of such a variable has no influence whatsoever on the evaluation of the
predicate.

– If the predicate of a test class contains an atomic predicate of the form
var = VAL where var is a variable declared in the VIS and VAL is a constant
value, then the finite set for var is just {VAL} –since it will be impossible
to satisfy the predicate with any other value.

– The finite sets for types such as seq X , X 7→ Y , and so on, are built induc-
tively from the finite sets considered for the more basic types.

The current version of Fastest does not cover the whole Z notation yet –in
part because ZLives neither does. Hence, the Z models can only have variables of
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the following types: basic types, enumerated types, N, Z, set extensions, ranges,
power sets, Cartesian products, binary relations, total functions, partial func-
tions, sequences or any valid combination of them. For instance, Fastest does
not yet support variables of schema types, A→→ B , A � B , A �→ B , P1 A and
N1. Axiomatic definitions are not supported neither. Although these are obvious
limitations they do not impeded us to apply Fastest to real world examples as
shown in Sect. 5.

4 Running an Example

In this section we use Fastest to run the example shown in Sect. 2. We will refer
to some Z schema defined in that section.

Fastest is run from a command window with the following command:

java -jar fastest.jar

Assuming the specification is stored in a file called sensors.tex it is loaded
with:

loadspec sensors.tex

Before generating a testing tree the user needs to select one or more opera-
tions to test. In our example we select KMR.

selop KMR

Now it is time to apply the testing tactics. Fastest applies DNF by default.
Standard Partitions is applied to the expression smax s? < r? present in schema
KMROk with:

addtactic KMR SP < smax~s? < r?

Test trees are generated with the command genalltt, which needs no pa-
rameters. Now the engineer can either prune the tree or calculate abstract
test cases. Assume he or she wants to prune the tree. Since all the descen-
dants of KMR DNF 2 contain an undefined expression –smax s? because s? 6∈
dom smax– they can be pruned manually by issuing:

prunebelow KMR_DNF_2

while individual empty test classes can be pruned with prunefrom, as follows:

prunefrom KMR_SP_4

The testing tree resulting after pruning all the empty test classes is shown
in Fig. 6, which was generated with command showtt.

Abstract test case generation is initiated by genalltca, without any param-
eters. After some time, the engineer can see that Fastest found an abstract test
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KMR_VIS

!______KMR_DNF_1

| !______KMR_SP_1

| !______KMR_SP_2

| !______KMR_SP_3

| !______KMR_SP_6

| !______KMR_SP_9

|

!______KMR_DNF_2

|

!______KMR_DNF_3

!______KMR_SP_19

!______KMR_SP_22

!______KMR_SP_23

!______KMR_SP_25

!______KMR_SP_26

!______KMR_SP_27

Fig. 6. Testing tree for KMR after pruning all the empty nodes.

case for all test objectives except for KMR SP 1 and KMR SP 9. The reason
is that while Fastest will choose in this case the set {−1, 0, 1} as the finite set
for Z, their predicates can only be satisfied by considering either two strictly
positive or negative numbers. Hence, the user must help Fastest to find the right
finite models. The commands are as follows:

setfinitemodel KMR_SP_1 -fm "\num == \{-1, -2\}"
setfinitemodel KMR_SP_9 -fm "\num == 1 \upto 2"

By running genalltca again Fastest will find abstract test cases for those two
leafs.

As the reader can see, Fastest features an interesting level of automation.
To date, the most human-time consuming task is pruning the testing tree, but
automatic pruning will be included in the next version as we explained in Sect.
3.6.

5 Empirical Assessment

We do not assess MBT against other forms of testing, nor the relative suitability
of the TTF because it has been done elsewhere [5, 16]. However, we think it is
worth to mention that Fastest is the only one tool providing an implementation
of the TTF were most of its steps are automatic, and that is one of the few tools
for MBT for the Z notation [5] –see Sect. 6. Rather, what we want is to assess
Fastest with respect to its ability to find abstract test cases from tests objectives.
In particular we are interested in two measurements: (a) the percentage of non-
empty test classes for which Fastest automatically finds an abstract test case;
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and (b) the computing time necessary to calculate (a). Since testing trees are
build almost instantaneously, we did not pay attention to this step.

Here we report the results of applying Fastest to two real-world, industrial-
strength systems from the aerospace sector, and to five toy examples borrowed
from the Z and MBT literature, and proposed by us as well. Tables 1 and 2
summarize the results of these experiments; note that both tables are related by
column N◦. In Sect. 5.1 we briefly describe each case study.

Table 1 gives an idea of the complexity of the models being “tested”. LOZC
stands for lines of Z code (in LATEX format); State indicates the number of state
variables in each model; and Operations gives the number of Z operations in
each model. The last column shows the testing tactics that we have applied in
the experiments. SISE is a tactic proposed by us that consist in partitioning an
objective which contains a precondition of the form v ∈ {e1, . . . , en}, where v
is a variable and e1, . . . , en are expressions, in n new objectives each of which
contains, also, a predicate of the form v = ei . We applied at most two tactics to
all operations in all experiments, except in one operation of the Scheduler case
study, where three tactics were applied.

N◦ Case study Real/Toy LOZC State Operations Tactics

1 SWPDC Real 1,238 18 17 DNF, SP, SISE, FT

2 Plavis Real 608 13 13 DNF, SP, FT

3 Scheduler Toy 240 3 10 DNF, SP

4 Security class Toy 172 4 7 DNF, SP

5 Savings accounts Toy 171 1 5 DNF, SP

6 Lift Toy 152 6 3 DNF

7 Symbol table Toy 78 1 3 DNF, SP

Table 1. Summary of the case studies (part one).

Table 2 gives an idea of the complexity of testing. Classes is the total number
of test objectives right after applying the tactics, some of which were manually
pruned, as is indicated in the third column, either because they are empty test
classes or because they will not contribute significantly to test the target ap-
plication. After pruning remains the Possible test objectives. Columns Auto,
Manual, Time and Ratio are the most important for us. The first two of these
indicates the number of test cases derived automatically and manually, respec-
tively –by manually we mean that the engineer had to issue a setfinitemodel
command to help Fastest to find a test case in a given test class. Percentages are
with respect to column Possible because we want to assess the effectiveness of
our method for finding abstract test cases from test classes. As the reader can
observe, our conjecture (Sect. 3.7) was true even in the real-world experiments.
In our opinion this implies some uniformity in specifications: although Z is a
general purpose notation, users tend to specify using the same kind of predi-
cates. Otherwise, a so simple heuristic could not have yield so high percentages.
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It was quite surprising for us that this simple heuristic have been useful for
specifications of systems of such diverse domains (see Sect. 5.1).

Before analyzing the last two columns of Table 2, it is necessary to give some
details about the platform used for performing the experiments. All the experi-
ments were conducted over the same hardware and software: an Intel Centrino
Duo of 1.66 GHz with 1 Gb of main memory, running Linux Ubuntu 8.04 with
kernel 2.6.24-24-generic and Java SE Runtime Environment (build 1.6.0 14-b08).
Fastest was run in application mode –i.e. not in client-server mode–, what did
not make use of parallelization, except for the concurrency that the Intel chip and
the Linux kernel can provide. The last two columns show the total computing
time (in minutes) necessary to find one test case for all Possible test objectives,
and the computing time per test case, respectively. In our opinion, the amount
of time is reasonable perhaps with the exception of experiment 2. The difference
between both experiments may come from the fact that experiment 2 was the
first real-world problem were Fastest was used. Now we know that by giving a
few simple setfinitemodel commands, we could lower the time to the order of
experiment 1. In fact, in experiment 1, we issued some setfinitemodel com-
mands with the intention to reduce the time, and not because Fastest could not
find the tests for itself.

N◦ Classes Pruned Possible Auto (%) Manual (%) Time Ratio

1 225 123 112 91 (81.25%) 21 (18.75%) 158:00’ 1:24’

2 232 128 117 104 (88.88%) 13 (11.11%) 1,111:00’ 9:30’

3 213 174 29 28 (96.55%) 1 (3.44%) 3:00’ 0:06’

4 36 16 20 20 (100%) 0 (0%) 0:20’ 0:01’

5 97 74 23 23 (100%) 0 (0%) 4:50’ 0:12’

6 17 1 16 16 (100%) 0 (0%) 7:30’ 0:28’

7 18 10 10 10 (100%) 0 (0%) 0:10’ 0:01’

Averages 95.24% 4.76% 1:40’

Table 2. Summary of the case studies (part two).

In spite of the good results we got so far, there is a key issue that we need to
solve –in fact we are doing it as we write this article. The problem is how and how
efficient can empty test classes be automatically pruned from testing trees. This
point is important because, as the reader can see, there is a number of empty
test classes in all the experiments. In all these case studies we analyzed one by
one all the classes for which Fastest failed to find an abstract test case, just to
find that close to 100% were actually empty –by the way, this fact supports the
second part of our conjecture (Sect. 3.7). If most of the empty test classes cannot
be pruned automatically, then Fastest either will require a non trivial amount
of human effort, or the engineer could skip some test cases.
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5.1 Description of the Case Studies

In this section we give a brief informal description of each case study.

SWPDC Is a simplified version of the communication protocol between two
computers of a Brazilian satellite. The protocol roughly follows the directives
of the ESA standard ECSS-E-70-41A. This model has operations to load a
program in the memory of one of the computers, to transmit a data between
the computers, to interact with some hardware devices, to dump the memory,
and so on.

Plavis Is a simpler version of SWPDC.
Scheduler This model was borrowed from [5]. Basically, we translated the B

model described in that book into Z.
Security class A security class is an computer security concept that belongs

to mandatory access control [17]. A security class is composed of an element
–called security level– that belongs to a totally ordered set and a set of
elements –called categories– of other type. Then, there are operations to
consult the security level or the set of categories, to change either one, etc.

Savings accounts This is a typical example of a Z model. A bank has many
savings accounts where money can be deposited and withdrawn, the balance
can be checked, a new account can be created and an existing account can
be closed.

Lift This model was borrowed from [18].
Symbol table This model was borrowed from [2].

6 Related Work

In this section we compare Fastest with other similar tools. Clearly, TinMan
[19, 20] is an obligated reference since is the implementation of the TTF by its
own authors. However, TinMan is not as automatic as Fastest because: (a) the
engineer has to enter by hand the predicates of the derived test classes, and (b)
he or she has to enter by hand the values of the constants for the abstract test
cases. In other words, as far as we understood, all the calculation is the engineer’s
responsibility while TinMan assist him or her in managing the specification, test
objectives and abstract test cases. Although management of hundreds of test
cases is a real problem, the automatic features of Fastest (a) avoids human
error, and (b) saves human effort for the analytical work.

Confimiq launched in 2002 a tool called Conformiq Test Generator (CTQ)
[21] which calculates and executes test cases from UML Statechars models. CQT
was surpassed by a another tool by Conformiq named Qtronic. While CQT
needed both a model of the environment of the system and a model of the
system itself, Qtronic only needs a model of the system. Besides, Qtronic sup-
ports concurrent, multi-thread or non-deterministic models and time restrictions.
Smartesting’s Test Designer [22] is another tool that works with UML models.
Test Designer also provides facilities for simulation. Two tools from IBM’s Tele-
logic, Telelogic Statemate & Telelogic Rhapsody [23], also work from UML and
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Statechart models. All these tools have many advantages with respect to Fastest,
basically because they are the result of many years of development, but they have
a non-trivial disadvantage. Statecharts are not particularly well suited to model
data intensive systems and, strictly speaking, UML models are not formal, while
Z has proved to be a very good formal notation for the specification of that
kind of systems. In fact, every Statecharts model can be translated into a Z
specification.

UniTESK Lab. is part of the Institute for System Programming of the Rus-
sian Academy of Sciences. This laboratory has developed a couple of similar
MBT tools named CTESK and JavaTESK. These tools use models written in ex-
tensions of the C and Java programming languages developed also at UniTESK.
As far as we understand both tools are aimed at system testing and not partic-
ularly for unit testing. ModelJUnit is an extension of JUnit that supports MBT
based on FSM written in Java [24]. An obvious limitation of these tools is their
dependency on programming languages, but it also can be their strength since
programmers might find it easier to write models in languages similar to the
ones they routinely work with.

Rave [25] uses tabular models derived from the work done by David L. Parnas
at the U.S Naval Research Laboratory. T-VEC, the company which developed
Rave, also advertises T-VEC Tester [26] which uses Simulink and Stateflow mod-
els. Reactis [27], from Reactive Systems, also uses Simulink and Stateflow models
from which it generates test cases.

In the open source community we found a Java implementation of MBT
called org.tigrismbt. This tool generates sequences of tests from FSM written as
graphs in graphml format.

LTG/B from LEIRIOS (now Smartesting) [5] shares some similarities with
Fastest. This tool uses B models –which are similar to Z models– [28] and is
based on the symbolic animation of formal specifications and two test generation
strategies: analysis of cause-effect and analysis of boundaries. One difference with
Fastest is that LTG/B generates sequences of operations that put the system
in the desired state, rather than giving the values of state variables to put the
system in that state, as the TTF suggests.

For an up-to-date list of MBT tools consult [29].
As this survey shows there are no implementations of MBT tools for the

Z formal notation as automatic as Fastest. This situation combined with the
relative widespread of the Z formal notation in industry and the advantages of
the TTF, led us to implement the framework to provide such a tool to the Z
community.

7 Conclusions and Future Work

We presented a tool, called Fastest, that automates the generation of unit tests
from Z models based on the Stocks-Carrington framework for model-based test-
ing. A simple method is proposed to find abstract test cases from test objectives
and an empirical analysis based on seven models from different domains is also
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shown. The architecture of the tool was briefly introduced and a toy example
was executed. We think that the architecture presents some interesting features
such as the possibility of distributing the calculation of test cases, the way by
means of which new testing tactics can be added and the existing ones can be
configured, the integration with the CZT project, etc. It is worth to mention
that Fastest is still a prototype that needs to be extended in many ways.

As the empirical study shows, we can conclude that, an apparently rough
method to calculate abstract test cases, based on a practical conjecture about
the form of real-world specifications, proved to be very accurate and reasonable
efficient and, combined with the architecture, scalable as well. On the other
side, the direct implementation of the TTF framework made it possible to take
advantage of all its interesting properties.

However, among others, we need to improve on automatic pruning of test
trees to dramatically reduce the amount of human effort during the testing
process. We also sketched our ideas on this regard. Also, more testing tactics
proposed within the TTF, such as specification mutation and sub-domain prop-
agation, have to be implemented. The user interface prays for an improvement.
Finally, it will be necessary to support the whole Z notation, but this is tied, to
some extent, to the improvement of CZT’s ZLive animator.
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