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Abstract: In this paper, we propose an approach for system state identification using the DEVS 

formalism. In other words,  extensions  to  timed  models  of  classical methods  developed  in  the field  

of sequential machines  are defined. The aim of these methods is to deduce information on the states 

of a system by observing its input/output behavior. In fact,  in  this  paper,  we  are  concerned  with  the  

following  testing  problems:  determine  the  final  state  after  the  test, identify the initial state, verify 

the unknown initial state. 

A  possible  field  of  application  for  this  work  is  the  testing  of  discrete  event  control  systems  

for  which  timed considerations are generally needed. 

In this first approach, we propose extension of testing methods for a subset of DEVS models, in this 

subset, the next states  of  a  model  does  not  depend  on  the  elapsed  time  in  the  current  state.  

Finally,  we  briefly  show  some considerations about the implementation of these testing methods. 

 

1 Introduction  

In the 60s, research was done on the problem of testing finite state machines to ensure their 

correct functioning and to discover aspects of their behavior. Due to its applications in testing 

communications protocols, the fault detection problem is still studied in the field of finite state 

machines, and of some of their extensions.  

 

An important class of testing problems is state identification (pioneered in the seminal 1956 
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paper of Moore)8. An extensive theory is available on this topic for finite state machines (see 7 

for a survey and Kohavi’s book for a good exposition of the major results published in papers on 

testing problems, in the 60s4). The testing problem was and is still studied in the context of timed 

Automata1 which are used to model real-time systems with timed considerations9. 

 

Therefore, ordinary finite state machines are not powerful enough to model physical systems in 

an accurate way and,   even though timed automata are well adapted for high level specifications, 

the DEVS formalism proposed by B. Zeigler (which can be seen as a general timed extension of 

finite state machines) seems more suitable for representing accurate timed behavior of dynamics 

systems. DEVS allows building discrete timed event abstractions of dynamic systems with a 

clean simulation semantics and a clean correspondence between the real system and the basic 

concepts of the formalism (such as states, transitory states, state variables, events, etc...).  

 

In this paper, we propose an approach for system state identification using the DEVS formalism. 

In other words, we would like to deduce information on the states of the system by observing its 

input/output behavior. In fact, we are concerned with the following testing problems7: 

 

• determine the final state after the test, 

• identify the initial state, 

• verify the unknown initial state. 

 

A possible field of application for this work is the testing of discrete event control systems for 

which timed considerations are generally needed, and a discrete event abstraction of the system 
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to be controlled is also needed in order to realize accurate timed analysis by simulation of a 

coupled model, which is composed of the control system and the system to be controlled.  

 

In (Dacharry and Giambiasi 2005), a formal methodology for the design and verification of 

discrete event control systems was proposed. Within this methodology, a high-level specification 

of a control system is given by a network of timed automata, and the corresponding 

implementation is expressed by a coupled DEVS model11. This allows the formal verification of 

the conformance of components (atomic DEVS models against timed automata) and the 

conformance of the whole model. Nevertheless, due to the state explosion problem that appears 

in the verification of models that deal with a dense time base, the automatic verification of the 

conformance between the high-level and the low-level models cannot be carried out in a large 

number of real cases. Therefore, a partial automatic validation of the conformance relation 

between an implementation and its specification can be possible by generating test cases on a 

high-level specification and applying these tests to the low-level model description or to an 

implementation. This kind of test, called conformance testing, is not developed in this paper but 

the methods presented for minimization or for building some types of input sequences constitute 

a required step for conformance testing. 

 

The paper is organized as follows:  

In Section 2 we recall the existing theory, together with the tools and concepts that will be 

necessary to extend it. In Section 3, we introduce a subset of the DEVS formalism that we ta

under consideration, and we adapt and extend the existing methods, concepts and definitions to

this subset. In Section 

ke 

 

 4, we propose an extension of the first subset of models in order to enlarge
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the spectrum of models to which the theory of fault detection can be applied, and we briefly 

show some considerations about the implementation of these testing methods. Finally, we 

conclude the paper. 

2 The DEVS formalism 

The DEVS formalism allows atomic models (behavioural models) to be specified and coupled 

together to build more complex models (coupled models or structural models). These coupled 

models can themselves be used as components of larger coupled models 11, allowing hierarchical 

descriptions by means of a model-library. 

 

2.1 Atomic DEVS Models 

According to the literature on DEVS 12, the specification of a discrete event model is a structure: 

M = < X, S, Y, δint, δext, λ, ta > 

where X is the set of the external input events, S the set of the sequential (or discrete) states, Y the 

set of the output events, δint is the internal transition function that defines the state changes 

caused by internal events, δext is the external transition function that specifies the state changes 

due to external events, λ is the output function, and the function  represents the 

maximum duration or lifetime of a state, with 

{ }0:ta S +→ ℜ ∪ ∞

0
+ℜ  representing positive real numbers. Thus, for a 

given state is , ta( is ) represents the time interval during which the model will remain in the state 

is  provided that no external event occurs.  

A state is passive when its lifetime is infinite (ta( is ) = ∞) and active when the lifetime is a finite 

real positive number. Denoting Sa the subset of active states and  Sp the subset of passive states, 

we have .  a pS S = ∅∩
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12 introduces the concept of total states (s,e) of a model as: 

 

{( , ) | ,0 ( )}TS s e s S e ta s= ∈ ≤ ≤  

 

where e represents the elapsed time in state s. The concept of total state is fundamental because it 

permits one to specify a future state based on the elapsed time in the present state.  

 

A key contribution of DEVS lies in decomposing the traditional transition function into two sub-

functions—the internal transition function and the external transition function. The internal 

transition function, defined as δint : S → S, where S refers to the active (transitory) states of the 

system, permits one to capture the autonomous evolution of the model. When a model has 

entered in state s at time ti, it will transition to state s′ = δint(s) at time ti + ta(s) provided that no 

external event occurs during this period. The external transition function, defined as δext: TS x X 

→ S, reflects the evolution of the model corresponding to externally induced input events. When 

an external event x occurs and the model is in state s since the “elapsed time” e, the model will 

transition to state s′: s′ = δext (s, e, x). The elapsed time, e, is set to zero for each state transition. 

The output function, λ: S → Y, defined only for active states, is executed when the state’s 

lifetime is reached. From the simulation perspective, this needs that the output function is 

executed prior to the internal transition function.  

 

The pseudo-code of an abstract simulator for atomic models is detailed in Figure 1. This abstract 

simulator runs with a coordinator, which manages a scheduler and sends to the simulator the 

input events at the event time tn. In this way the operational behaviour or semantics of a DEVS 

  



 6

model is given by its simulator. 

 

2.2 DEVS-atomic-simulator 

The DEVS atomic simulator receives, in a chronological order, input events and internal events 

from a coordinator.   The internal events, are created by the DEVS atomic simulator when the 

model enters in an active state, the time occurrence of the internal event is tn= tl + ta(s), where tl 

is the present time (time of the transition to the considered active state). 

 

when internal event, at time t: 
y = λ(s) 
send output event (y, t) 
s =  δint(s) 
tl = t 
tn = tl + ta(s) 
e=0 
 
when receive input event x, at time t:
 
e = t – tl 
s =  δext(s, e, x) 
tl = t 
tn = tl + ta(s) 
e=0 
 
end DEVS‐atomic‐simulator 

Figure 1: Pseudo-code of a simulator for DEVS atomic models. 

 

 

2.3 Execution fragments and traces of DEVS Models 

We introduce the formal notion of executions or simulation runs of DEVS models, and their 

traces as an alternative way to formally specify the full behaviour of DEVS models 2. These 
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concepts are analogous to the ones that are commonly used for describing the behaviour of 

Timed Automata. 

 

Definition 2.1: Execution fragment of a DEVS model  

An execution fragment  of a DEVS model  D  is a finite alternating sequence 

, where: 0 1 1 2 2= n nv x v x v x vϒ …

1.  pure time passage 

Each  vi is a function from a real interval Ii = [0, ti] to the set of total states of  D , such 

that , if  then  , | <ij j I j j′ ′∀ ∈ ( ) = ( , )iv j s e ( ) = ( , )iv j s e j j′ ′+ −  

 

2.  discrete event transition 

Each xi is an input or output event, and if 1 1( , ) = ( ( ),i is e v sup I− − ( ,0) = ( ( ))i is v inf I′ , one of the 

following conditions hold: 

a.  xi ∈YD ,δ intD (s) = ′s ,  ta(s)=e, and ( ) = is xλ  

b.  xi ∈ XD ,δextD (s,e, xi ) = ′s ,  and e < ta(s). 

 

Definition 2.2: Execution of a DEVS model 

Let 
   
D = ( XM ,YM ,SM ,δM ,λM ,s0 ) be an atomic DEVS with the initial state s0. Then, an execution for  D  

is a execution fragment of  D  that begins with the initial state s0.  

We denote with , *( )execs D ( )execsω D and  the sets of finite, infinite, and all executions of ( )execs D

 D , respectively. 
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We denote last and first the functions giving the states of the first and the last state trajectories of 

an execution fragment, respectively: 

    ( )
( ) ( )( ) ( )

*:
sup ,

p

j n n j

last execs S
last s if v I s tα

→
= =

D
n

 

and, 

    ( )
( ) ( ) ( )0 0 0

*:
,

p

j j

first execs S
last s if v sα

→
= =

D  

 

Definition 2.3: Trace of a DEVS model 

 A trace of an execution fragment ϒ = v0 z1 v1 z2 v2 …zn vn  , noted trace (ϒ) , of a DEVS model  D  

is defined to be a tuple ( ), ,I Oθ θ t  such that Iθ  an Od θ are sequences consisting of pairs of the form

(zi, sup(Ii-1)) where zi is an input or and output event, of 

 

( )ϒ , respectively, and their time of 

occurrence in sorted in chronological order of occurrence. t is the total time of execution, 

defined as

( )ϒ

0 j n≤ ≤∑ (sup ( )jI ). Formally, the time of occurrence of an event ix  of  is equal to ϒ

0 <j i≤∑ ( sup ( )jI ), where jI  is the domain of jv . 

The set of all traces of a DEVS model, noted traces (D) , is defined as { trace  execs( )ϒ | ϒ ∈  (D) } .  

Remark : Note that for every DEVS model  (D) , and given a sequence of pairs of input events 

and their respective time of occurrence, θI , its total time of execution t, and an initial state, s0, 

there exists a unique execution fragment γ =  v0x1v1…xnvn, such that trace(γ) = (θI , θO, t) and 

v0(0) = (s0,0). 

 

This concept is known in the DEVS literature as determinism, and as such, all completely 

specified DEVS models are deterministic in this sense, considering that when an input event (an 

  



 9

external transition) occurs at same time that an internal transition is scheduled, we give the 

priority to the external transition. 

 

For our test purpose of timed models, we need to introduce the concepts of slow timed execution 

fragment and slow timed input trace. 

 

Definition 2.4: Slow timed execution fragment 

A  timed  execution  fragment       of  a DEVS  atomic  model ϒ = v0 z1 v1 z2 v2 …zn vn

= , , , , , ,, int extX Y S P taδ δ λ〈D 〉 is  a slow timed execution fragment if: 

 
( ) ( )with , , sup( ) ta .j j k k a jv v s e s S Iα∀ ∈ = ∧ ∈ = ks  

 
We denote as execs*slow (D) as the set of the finite slow timed execution fragments of  D . 

 

Definition 2.5: Slow timed input trace 

An input trace θ Ii  is a slow timed input trace iff : 

, * ( ) ( ) ( ,i i slow i Ii Oiexecs trace t, )α α α∃ ∈ ∧ =D θ θ . 

 

Let us notice that, since only the output events are observed when black-box testing a DEVS 

model, then in order to be sure to have a slow input trace, we must wait τ time units between two 

input events with: 

( )( )max ta | .j j as s Sτ > ∈  
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2.4 DEVS based Hierarchy formalisms 

In 3, we introduce a hierarchy of discrete event formalisms with increasing complexity, 

maintaining at the same time the clarity of concepts and cohesion in the structure. The proposed 

approach maintains cohesion and clarity by using a similar syntax in all proposed formalisms, 

and by formally specifying its semantic or operational behaviour in order to avoid an incorrect 

interpretation of the formalism. 

 

The syntax of all the proposed formalisms is based on the Discrete Event System Specification 

(DEVS) 12.  We have chosen the DEVS formalism since it incorporates a solid mathematical 

basis along with a well developed simulation infrastructure. Furthermore, it is considered to be a 

universal formalism for the modelling and the simulation of discrete event systems. 

 

The different formalisms we have proposed range from a formalism based in the widely known 

concept of sequential machines (automata), to the more expressive DEVS formalism. 

  

For our current purpose we recall, in the following, the two first formalisms the  two  first  

formalisms  of  the  hierarchy  on  which  we  have adapted testing methods initially proposed for 

Mealy machines.  

 

2.5 Formalism hierarchy 

The first and less expressive formalism we consider is an untimed discrete event formalism (only 

the occurrence order of events is taken into account). 
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Definition 2.6: Untimed.DEVS (U.DEVS) 

An atomic U.DEVS model is defined as a structure  D = ( X ,Y , S ,δext ,δ int ,λ) where: 

• X: finite set of input events, 

• Y: finite set of output events, 

• S:  finite set of states, 

• δint: internal transition function int( : )S Sδ → , 

• δext: external transition function )( :ext S X Sδ × → , 

• λ : output function ( : )S Yλ → . 

 

In an U.DEVS model, as in classical DEVS, the set of states is partitioned in two sets, Sa and Sp 

called active and passive state sets respectively, S = Sa ∪  Sp. 

Only external transitions can occur in a passive state of an U.DEVS model (as in classical 

DEVS), and only internal transitions can occur in an active state. In other words, δext is not 

defined for the active states of an U.DEVS model . 

 

Note that for U.DEVS, we consider that X, Y and S are finite sets. 

 

Interpretation: U.DEVS 

The model remains in a passive state is  until it receives an input event xj, the next state is given 

by δext( is ,xj). When the model reaches an active state is  it instantaneously transits into the next 

state defined by δint( is ) and emits the output event λ( is ). It is assumed that no input event can 
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occur in an active state.  

 

U.DEVS‐atomic‐simulator 
 
when internal event, at time t: 
if s ∉ Sa then ERROR else 
y = λ(s) 
send output event (y, t) 
s =  δint(s) 
 
when receive input event x: 
if s ∉ Sp then ERROR else 
s = δext(s, x) 
 
end U. DEVS‐atomic‐simulator 

Figure 2: Pseudo-code of a simulator for U.DEVS atomic models 

 

Remark: it should be clear that U.DEVS are very closely related to classical sequential 

machines. Therefore, in U.DEVS, the concepts of active (transitory) and passive (steady) states 

are clearly identified, which allows ‘clean’ specifications of models with transitory and steady 

states. 

 

The next formalism in the hierarchy 3, is called Simple.DEVS. This formalism introduces the 

notions of: 

• Phase,  

• Phase-lifetime.  

 

Phase is a state variable that ranges over a finite set. In fact, to each value of Phase corresponds a 

subset of the states of the model. Phase takes a finite number of values, and thus the partition of 

S defined by Phase is finite. A lifetime value is associated to each value pi of Phase. This value is 
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given by the lifetime function ta(pi), which can be any positive real number, 0 or infinite.  Phases 

with a 0 or real number lifetime value are called active phases, while the ones with an infinite 

lifetime are passive phases. Phase-lifetime is another state variable, Phase-lifetime = ta(pi) which 

equals the life time of the present value of Phase. 

 

Notice that these definitions are identical to those of classical DEVS, but for S.DEVS, the lifetime 

function depends only on the state variable Phase and not on the other state variables. In fact, 

all the states with the same value of Phase belong to the same class and this means that all the 

states of a class have the same lifetime.  

 

S.DEVS is a restricted formalism in the sense that it is not possible to model the temporal 

behaviour of any discrete event system. Its main restrictions are: 

• The lifetime of a state depends only on one particular state variable, the Phase state 

variable. 

• The output function depends only on Phase. 

 

 

Definition 2.7: Simple.DEVS (S.DEVS) 

An atomic Simple.DEVS model is defined as the structure: 

 

Shouldn’t P be a part of the following structure (in yellow) ? 

= int, , , , , ,s extX Y S taδ δ λ〈 〉D  where: 
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• X: finite set of input events, 

• Y: finite set of output events, 

• S: set of states, { } . ( ){ }i v1 vn vi 0    :, , , , | iS s s s Phase ta s V Phase P ta += = … ∈ ∧ ∈ ∧ ℜ ∪ ∞

• δint: internal transitions ( ) , int : S Sδ →

• δext: external transitions ( ) , :ext S X Sδ × →

• λ: output function , ( ): S Yλ →

• ta: lifetime function }{( )0 , ta(pi) is the lifetime associated to the value pi of 

Phase. 

:ta P +→ ℜ ∪ ∞

 

A Simple.DEVS model is completely specified, if: 

• ta is defined for all the possible values of Phase, 

• δint and λ are partial functions such that, ∀pi ∈P  with ta(pi) ≠ inf, δint(s) and λ(s) are 

defined,  

• δext                                          should be a function  defined for all states and all input events. 

 

Interpretation: Simple.DEVS 

When the model is in the state sk with the value pk of Phase, the maximum time it remains in the 

state sk is given by ta(pk). If no external event occurs, when ta(pk) time is elapsed, the model 

generates the output event λ(sk) and it changes to the state sl = δint (sk). If before this internal 

transition an external event x occurs, the system transitions to the state js  = δext (sk, x). 

 

Notice that in S.DEVS, the next state does not depend on the elapsed time in the current state. 
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In the following, for the sake of simplicity we will concentrate only on these two subsets of 

atomic DEVS models. In addition, and without loss of generality, we consider models for which 

every state is totally defined by the two state variables, that is, Phase and ta. 

 

3 Extending Mealy Machines Fault Detection Techniques To U.DEVS 

In order to make a progressive approach to the problem, we first present a procedure for 

obtaining an U.DEVS with the same behaviour than a Mealy machine. The final objective 

remains to apply to DEVS models some fault detection techniques developed on Mealy 

Machines. 

We recall that a Mealy Machine4 is formally stated as a quintuple ( , , , , )M I O S δ λ= where I, O and S 

are finite and nonempty sets of input symbols, output symbols, and states respectively, 

: S I Sδ × →  is the state transition function and : S I Oλ × →  is the output function. 

The first step in defining an U. DEVS model with the same behaviour than a given Mealy 

machine is to add an active state for every transition of the Mealy machine. Then, every state 

transition of a Mealy machine    M = ( IM ,OM , SM ,δM ,λM )  that has the form: 

/x y

i js s→ , x I∈ M , y O∈ M , is , js S∈ M  

is translated into two transitions in the corresponding U.DEVS model 

   
D =< XD ,YD , SD ,δ intD

,δextD
,λD , taD > : 

• An external transition of the form si →
x/−

si,x  becomes δextD (si,x) = si,x , 
  
si ∈SsD

, x X∈ D  and 

   
si,x ∈SaD

. 
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• An internal transition of the form 
/

,

y

i x js s
−

→   becomes ,( ) =int i k js sδ
D

, ,( ) =i ks yλ , ,i k as S∈
D

, 

y Y∈ D  and j ss S∈
D

.  

 

An U.DEVS 
   
D =< XD ,YD , SD ,δ intD

,δextD
,λD , taD >  and a Mealy machine  M = ( IM ,OM , SM ,δM ,λM )  have 

the same behaviour if: 

1. both models have the same input and output event sets,  IM = XD ∧ OM = YD ,  

2.  the set of passive states of  D  is equal to the set of all states of M : 
   
SM = SpD

 

3. for each possible transition
   
δM(si , x) = sj  of M there exist two transitions in  D  : 

δextD(si,x) = si,x and ,( ) =int i x js sδ
D

. 

4. for each possible output event y I∈ M  such that ( , ) =is x yλM  it is required an analogous 

output event in  D  

λM (si,x) = y ⇔ λD (si,x ) = y . 

 

 

Definition 3.1: An Untimed.DEVS is a bipartite DEVS iff: 

 a, ( , )i p i ext i i k ks S x X s x s s Sδ∀ ∈ ∧ ∀ ∈ = ⇒ ∈ . 

 p, ( )k a int k i is S s s s Sδ∀ ∈ = ⇒ ∈ . 

 

For Untimed Bipartite DEVS (U.B.DEVS), we introduce the concept of a passive transition 

function, noted δpass. 
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Definition 3.2: The passive transition function of an U.B.DEVS is defined as 

follows: ,i i px X s S∀ ∈ ∈ , 

  
δ pass(si ,xi ) = δ int (δext (si ,xi )) = sj ∈Sp . 

 

 

Analogously, we also introduce the concept of a passive output function, noted λpass. 

Definition 3.3: the passive output function of an U.B.DEVS is defined as follows: 

, 
  
∀xi ∈ X ,si ∈Sp

( , ) ( ( , ))pass i i ext i i is x s x y Yλ λ δ= = ∈  

 

3.1 Minimality - State Equivalence  

The definition and properties presented in 4 for Mealy Machines can be easily extended to 

U.B.DEVS, by considering the following theorem:  

 

Theorem 3.1: To every U.B.DEVS model corresponds a Mealy Machine with the same 

behaviour and vice-versa. 

Proof: it is straightforward to prove that, by considering only the passive transition and output 

functions of an U.B.DEVS, the existence of active states in this model is concealed. Thus, the 

model externally appears to have the same set of states than its corresponding Mealy machine. 

Then, each pair of values [ ( , ), ( , )]pass i i pass i is x sδ λ x  corresponds to the pair [ ( , ), ( , )]i i i is x s xδ λ of a 

Mealy Machine, which is equivalent to say that they have the same behaviour. 
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In Figure 3, we give an example of a state graph of a Mealy Machine (Figure 3a) and of the state 

graph of its corresponding U.B.DEVS (Figure 3b). 

 

 

Figure 3: Mealy machine and its corresponding U.B.DEVS. 
 

In order to apply testing methods from Mealy Machines to U.B.DEVS, we need first to define 

the basic concepts of distinguishable states, state equivalence and state minimization for 

U.B.DEVS.  

 

Definition 3.4: Distinguishable passive states  

 Two passive states is  and js  of an U.B.DEVS model  D  are distinguishable if and only if there 

exist at least two execution fragments α  and β  of  D  with ( ) = ( , )I Oα α
α θ θtraces ,  

( ) = ( ,I Oβ β
)β θ θtraces  where: 

first (α)= si, first (β) = js  

=I Iα β
θ θ  and . θOα

≠ θOβ

Then, Iα
θ  ( = Iβ

θ ) is called a distinguishing sequence of the pair ( , )i js s . 
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 If the shortest distinguishing sequence of the pair (si, sj) has a length k, then, si and sj are said to 

be k-distinguishable.  

 

Definition 3.5: k-equivalence of states 

 Two passive states is  and js  of an U.B.DEVS model  D  are k-equivalent if and only if they are 

not k-distinguishable.  

 

Definition 3.6: State equivalence 

 Two passive states is  and js  of an U.B.DEVS model  D  are equivalent if and only if they are k-

equivalent .   ∀k ∈`

 

Definition 3.7: Equivalence of U.B.DEVS 

 Two U.M.DEVS models   and  are equivalent if and only if, for every state in , there is a 

corresponding equivalent state in , and vice-versa.  

1D 2D

2D

1D

 

Definition 3.8: Minimal U.B.DEVS 

An U.B.DEVS model is minimal (reduced) if and only if no two states in it are equivalent.  

 

The concept of minimality is important in the field of fault detection techniques due to the fact 

that most results are obtained under the hypothesis of minimality. We recall that the 

minimization procedure is applied under the hypothesis that the machine under consideration is 

completely specified, that is to say, for every state, there is a transition specified for every input 
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event.  

The minimization procedure detailed in 4 can be applied to completely specified  U.B.DEVS 

models if only the passive states, the passive transition function δpass and the passive output 

function λpass are considered. Whenever two equivalent passive states are found, it is necessary to 

remove not only one of these states, but also every active state to which such state can transition. 

Then, every transition that reaches a state that has been deleted has to be redirected to its 

equivalent state.  

Extending  the result from  Mealy  machines  we  can  say  that  every  U.B.DEVS  model  D  

corresponds  a minimal U.B.DEVS  which  is  equivalent to *D  D   and is unique up to 

isomorphism, provided  D   is completely specified (the external transition function is defined for 

all possible input events). 

The existence of a minimal form for every completely specified U.B.DEVS model ensures that 

fault detection techniques defined for Mealy machines can be applied to U.B.DEVS models, 

after finding its minimal or reduced form.  

Example: Let us consider the state graph of an U.B.DEVS (Figure 4a), its passive transition table 

(table with the passive transition function and the passive output function) is represented in 

(Figure 4b): 
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Figure 4: An U.B.DEVS model (a) with its associated transition table (b). Resulting 

minimal U.B.DEVS model (c) after the deletion of s2 (which is equivalent to s3), s2,a and s2,b , 

and the resulting transition table (d). 
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By applying the minimization procedure given in 4, we obtain the minimal U.B.DEVS model by 

replacing each equivalent class of states by one state. In this example, the states s2 and s3 are 

equivalent, replacing these two states by s3, we obtain, for this U.B.DEVS model, the state graph 

and the transition table of Figure 4c and Figure 4d. 

 

3.2 Experiments on U.B.DEVS models 

In a testing problem, we consider an implementation (seen as a black-box) of an U.B.DEVS 

about which we would like to deduce some information by observing its input/output behaviour. 

An input event sequence is applied to the system and the output sequence is observed in order to 

infer the needed information. The input sequence can be preset if it is fixed ahead of time, or can 

be adaptive if the next input event depends on the previously observed outputs.  

 

We will proceed by adapting several concepts such as first distinguishing, homing and 

synchronizing sequences the basic definitions of distinguishing, homing and synchronizing 

sequences, in the following, we propose the definitions of  experiments adapted to U.B.DEVS 

from those of Mealy Machines4. 

 

In the following, we denote with    execsI k (D)  the set of finite executions of  D  with the same input 

trace . θ I
k

 

 

Definition 3.9: Distinguishing sequence 
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Let us consider two execution fragments α  and β  of an U.B.DEVS  D  with ( ) = ( , )I Oα α
α θ θtraces , 

 such that: ( ) = ( , )I Oβ β
β θ θtraces

first (α)= si, first (β) = js  

and =I Iα β
θ θ   

Then, Iα
θ  ( = Iβ

θ ) is called a distinguishing sequence of the pair  iff  (si , s j )

O Oα β
θ θ≠ . 

 

 If the shortest distinguishing sequence of the pair (si, sj) has a length k, then, si and sj are said to 

be k-distinguishable.  

 

The aim of a homing sequence is to determine the final state of a system observing its outputs. 

The homing sequence problem was completely solved for sequential machines4. 

 

I changed this definition because it can happen that output traces are equal for two different 

execution fragments (see the example in Figure 5), but in that case the final state is the same for 

both executions (if the output traces are different, the final states can be different, but it is not 

always the case). Please see if you agree with this definition. 

Definition 3.10: Homing sequence 

An input trace of an execution fragment  is a homing sequence iff , θ I
k α i

k , (k k

i j Ikexecs Dα α∀ ∈ )

with 

( ) ( ) ( ) ( ,

0, ,k k k j

j Itrace wα θ θ=,
0, ,k k k i

i Itrace wα θ θ= ), , only one of the following conditions occurs: 
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1. , ,

0 0

k i k jθ θ≠ .ç 

2. ( ) ( )klast α . , ,

0 0

k i k j k

i jlastθ θ α= ∧ =

 

It should be clear that only reduced U.B.DEVS have homing sequences, since equivalent states 

cannot be distinguished. Every reduced U.B.DEVS has a homing sequence. 

A synchronizing sequence gives the same final state, regardless of the initial state. 

 

 I changed this definition because the quantifiers were incorrectly ordered. 

Definition 3.11: Synchronizing sequence 

An input trace of an execution fragment  is a synchronizing sequence iff: θ I
k α i

k

! ( )k k
l p l i i Ik ( ).s S s last execs Dα α∃ ∈ = ∀ ∈i  

 

Having defined the kinds of sequences that are necessary for our test purposes, we can now 

introduce the different types of test experiments on an U.B.DEVS. 

 

Definition 3.12: Preset Experiment 

A preset experiment for an U.B.DEVS is any input event sequence π  of the form where    x1 x2 …xn

= 1..ix X i∈ ∀D n . The sequence of output events (the output trace) that  D  generates in response to 

π is the result of the experiment.  

 

Definition 3.13: Adaptive Experiment 
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  An adaptive experiment for an U.B.DEVS model  D  is any input event sequence 1 2= nx x xπ …  

where = 1..ix X i∈ ∀D n  provided that there exists a function 

 

 :f   Seq ( )XD   ×YD → XD   

such that  0 1= 2.. | = ( ,.., , )i i ii n y Y x f x x y− i∀ • ∃ ∈ 〈 〉D . 

 

In other words, the value of the  input event of an adaptive experiment π depends on all the 

previous input events and on an (unspecified) output event. The sequence of output events (the 

output trace) that 

thi

 D  generates in response to π is the result of the experiment.  

Since there are many possible definitions for f, in order to clearly identify those functions which 

are of interest for our purposes, we define the concept of a valid adaptive experiment. 

 

Definition 3.14: Valid Adaptive Experiment 

 A valid adaptive experiment     is an adaptive experiment which the adaptive function 

f verifies the following property:  

π = x1 x2 … xn

   x1 = f (〈x0 〉, y0 ) ⇔ y0 = λD (δextD (s0 , x0 ))  

   xi = f (〈x0 ,.., xi−1〉, yi−1) ⇔ yi−1 = λD (δextD ( f (〈x0 ,.., xi−2 〉, yi−2 ), xi−1))   = 2..i n∀

 

In this way, the value of the  input event of π depends on all the previous input events and the 

last output event the model has generated. This is equal to saying that the  input event depends 

on all the output events that the U.B.DEVS model has generated so far.  

thi

thi

 

  



 26

 

Definition 3.15: Distinguishing, Homing, Synchronizing Experiment   

A valid experiment is distinguishing, homing or synchronizing if the input sequence is 

distinguishing, homing or synchronizing respectively. 

 

3.3 Sequence Finding 

In order to perform a homing experiment on an U.B.DEVS model, the procedure described in 4 

can be applied considering only the passive states.  

 

Theorem 3.2: A preset homing sequence, whose length is at most , exists for every 

minimal U.B.DEVS model 

21( n − )

 D  , where n is the number of passive states in  D  4. 

 

As an example, we give in Figure 5 an U.B.DEVS model and the homing sequence obtained by 

the procedure4 considering only the passive states of the model. 
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Figure 5: An U.B.DEVS model (a) with its homing tree, associated transition table, a 

homing sequence (π) for it (b). 

 

Distinguishing and synchronizing sequences can be obtained by the methods presented in 4. It is 

straightforward to prove that all the properties and theorems are valid for U.B.DEVS models 

considering only the passive transition function and the passive output function. In particular, the 

following result is valid also for U.B.DEVS models:  

 

Theorem 3.3: If there exists a synchronizing sequence for an U.B.DEVS model  D  that has n 

passive states, then its length is at most . 2( 1) /n n− 2

Proof: See 4, p. 458.  

The following result sums up the preceding discussion:  
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Theorem 3.4: Let 1 2= .. nx x xπ 〈 〉  be either a synchronizing, homing, preset distinguishing or 

adaptive distinguishing sequence for a Mealy Machine M. Then the sequence π is, respectively, 

either a synchronizing, homing, preset distinguishing or adaptive distinguishing sequence for the 

U.B.DEVS model  D  obtained from M.  

 

Up to this point, we have shown it  is  possible  to  define  concepts  within  U.B.DEVS  theory  

that  are  equivalent  to concepts  from  Mealy  Machines.  In the following section we extend all 

these results to timed models, considering the Simple-DEVS subset of DEVS models. 

 

4 Simple Bipartite DEVS (S.B.DEVS) 

It should be evident that Untimed.DEVS represents a tiny subset of the systems than can be 

modelled using the DEVS formalism. Then, we need to expand this subset in order to apply fault 

detection techniques to a wider range of DEVS models. In this first approach, the models 

considered are Simple.DEVS models (see Definition 2.7): 

 

Definition 4.1: Simple Bipartite DEVS (S.B.DEVS) 

  A Simple.DEVS model is a S.B.DEVS if and only if 

• 
   
SD = SaD ∪ SpD  where 

   
SaD ∩ SpD = ∅ . 

• :ext p aS X Sδ × →D D D  

• 
   
δ intD : SaD → SpD  

•    λD : SaD → YD  

•    taD : SD → ℜ0
+ ∪{∞} where  
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- 
   
∀si ∈SpD • taD (si ) = ∞ and 

- 0( ) ,j a js S ta s k k +∀ ∈ • = ∈ℜD D . 

 

S.B.DEVS models constitute a subset of the set of Simple.DEVS models, having the following 

restrictions: 

• two consecutive states cannot belong to the same class, the next states of a passive 
state are active and vice-versa: 

si ∈ Sa ,  δint(si) = sk ⇒ sk ∈ Sp and si ∈ Sp , ∀xi ∈ X, δext(si, xi) = sk ⇒ sk ∈ Sa 

• no external event can occur in an active state : 

∀si ∈ Sa, δext is undefined. 
 

Remark: In fact, the “no external event can occur in an active state” hypothesis is the classical 

hypothesis used in the field of sequential machines: “no input event can occur during a 

transitory state”. 

 

Definition 4.2: Distinguishing sequence 

 Two passive states is  and js  of a S.B.DEVS model  D  are distinguishable if and only if there 

exists at least two execution fragments 
0 1 1 2 2

=
n n

v x v x v x vα α α α α α αα …  and 
0 1 1 2 2

=
n n

v x v x v x vβ β β β β β ββ …  

of   D  with trace(α) = ( ,I O , )tαα α
θ θ , trace(β) = ( , , )I O tββ β

θ θ
0α where ta ( )( )v e = ( ,is )is

0
e Iα∀ ∈ , 

0
( ) = ( ,jv e sβ ta ( ))js

0
e Iβ∀ ∈ , =I Iα β

θ θ  and ( )O Oα β
θ θ≠ .  The timed sequence Iα

θ  (and Iβ
θ ) is called a 

distinguishing sequence of the pair ( , )jis s . If there exists for pair ( ,i )js s a distinguishing sequence 

of length k, then the states in ( ,i )js s are said to be k-distinguishable.  
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As we did for the U.B.DEVS models, we introduce the concepts of passive transition function, 

noted δpass, and passive output function, noted λpass for S.B.DEVS. 

 

Definition 4.3: Passive Transition Function 

The passive transition function of S.B.DEVS is defined as follows:  

,i i px X s S∀ ∈ ∈ ,  int int( , ) ( ( ( , )), ( ( )))pass ext i i isi xi s x ta sδ δ δ δ=

 

Definition 4.4: Passive Output Function 

The passive output function of an U.B.DEVS is defined as follows: 

,i i px X s S∀ ∈ ∈ , ( , ) ( ( , ))pass i i ext i i is x s x yλ λ δ Y= = ∈  

 

4.1 Minimization procedure for S.B.DEVS models 

A state transition table with the passive transition function can be used to represent a S.B.DEVS 

model, in this case, by adding the value of the lifetime of the next active state (Figure 6). 
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State x = a x = b 

S1 s2, 5, v s3, 6, u

S2 s4, 5, u s4, 3, v

S3 s4, 5, u s4, 3, v

S4 s4, 3, v s4, 3, u

 

Figure 6: A S.B.DEVS model with its associated transition table. 
 

The minimization procedure defined in 4 is extended in order to take into account the value of 

ta(si,x) (lifetime of the active state following a passive state si that received the input  event x).  

In the first step of this procedure, the set of passive states is partitioned in such a way that each 

class contains 1-equivalent passive states. We recall that two passive states si and sj are 1-

equivalent iff for every input event they produce the same output event at the same time, 

formally: 
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( ), ( ) ( ) ( ) ( ) ( ) 1k i l j k l k l i js Successor s s Successor s s s ta s ta s s and s are equivalentλ λ∀ ∈ ∃ ∈ • = ∧ = ⇒ −  

In the example of Figure 6, the first partition of the state set according to the output values and 

the lifetime of the considered active states, is: 

P1 = {(s1), (s4), (s2, s3)}. 

Notice that s1 and s4 are not in the same class because the lifetime of their next actives states are 

different, then the timestamps of the corresponding output events are different. These two states 

cannot be distinguished by the values of the output events but by the occurrence times of these 

events. On the other hand, s2 and s3 are 1-equivalent. 

 

By building the second partition (formed by 2-equivalent states), we conclude that s2 and s3 are 

2-equivalent, since both transition to s4 after the first input event (and after its corresponding 

output event). Moreover, since every input event in s4 triggers a loop, s2 and s3 are k-

equivalent . Then, we conclude that s2 and s3 are two equivalent states, then we can choose 

s3 to represent the equivalence class. 

3k∀ ≥

Figure 7 gives the reduced form of the S.B.DEVS example. 

 

Figure 7: Resulting minimal S.B.DEVS model. 
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4.2 Fault detection techniques on S.B.DEVS models 

In order to respect the hypothesis that no external event can occur in an active state, all the input 

traces considered are slow timed input traces. 

The definitions of homing and synchronizing sequences must be extended taking into account 

the timed aspects of the formalism. 

In the following, we denote with    execsI k (D)  the set of slow timed and finite executions of   D  with 

the same timed input trace . θ I
k

 

Definition 4.5 : Homing sequence 
A timed input trace of a slow timed execution fragment  is a homing θ I

k α i
k = vi0ei0vi1ei1......einvin

sequence iff , with , (Ikexecs Dα α )k k

i j∀ ∈ ( ) ( )k i w,

0, ,k k

i Itrace α θ θ= , ( ) ( ),

0,k k

j Itrace α θ θ= ,k j w , only one of 

the following conditions occurs: 

 

3. , ,

0 0

k i k jθ θ≠ . 

4. ( ) ( )klast α . , ,

0 0

k i k j k

i jlastθ θ α= ∧ =

 

 

Definition 4.6: Synchronizing sequence 
A timed input trace of a slow execution fragment  is a synchronizing θ I

k α i
k = vi0ei0vi1ei1......einvin

sequence iff: 

! | ( ,0) ( ( )) (k
l p l in in i Ik )s S s v Inf I execs Dα∃ ∈ = ∀ ∈ . 
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4.3 Experiments on S.B.DEVS models 

The definition of a preset experiment (PX for short) for S.B.DEVS models is adapted for 

handling the timed aspects of such models. We introduce the concept of a timed relative input 

trace in order to refer not to the absolute time of each event, but to its relative time with respect 

to the previous input event. That is, given a timed input trace θ I = 〈(x0 , t0 ),(x1, t1),…, (xn , tn )〉 , we refer 

not to  , but to rel( ), where the function rel is defined as follows:  θ I θ I

rel 0 0 1 1( ( , ), ( , ), , ( , ) )n nx t x t x t〈 〉…  0 1 1 0 1= ( ,0), ( , ), , ( , )n n nx x t t x t t −〈 − −… 〉  

It is easy to show that rel is bijective, so so it is equivalent to talk about either  or   . θ I rel(θ I )

 

I need to insist on this definition (it was in rev. 7 but not in rev. 8) because in all the following 

sections, w is the waiting time after the last input event. As a consequence, we either have to 

change all the rest of the text, figures and tables so as to give w the same meaning (for example, 

in section 4.4, the sequence should be ( 28 3), .π instead of ( 9 1), .π ), or change this definition. 

Please inform me to change the figures, should you choose w to mean the length of the 

experiment. 

Definition 4.7: Preset Experiment 

A preset experiment for a S.B.DEVS model  D  is any pair ( ),I wθ  where  θ I ∈( XD × ℜ0
+ )*  is a timed 

input trace of the form 0 0( , ),.., ( , )n nx t x t〈 〉 w and 0
+∈ℜ  is the time during which the experiment must 

go on after the last event in the input trace. The output trace that  D  generates in response to 

 θ I  after l units of time is the result of the experiment, and l is the length of the experiment, where 

0

n

i
i

l t
=

= +∑ w . 
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It is straightforward to see that not all sequences that belong to  can be applied to a 

given S.B.DEVS model. The subset of sequences that will be accepted constitute valid 

experiments. 

*
0(X +×ℜD )

 

Definition 4.8: Valid Preset Experiment 

A valid preset experiment for a S.B.DEVS model  D  is any pair ( ),I wθ , where    θ I ∈( XD × ℜ0
+ )*  is a 

slow timed input trace and { }D= ( ) | aw t max ta s s S> ∈ . 

 

Definition 4.9: Adaptive Experiment 

An adaptive experiment for a S.B.DEVS model  D  is any pair ( ),I wθ  , where    θ I ∈( XD × ℜ0
+ )*  is a 

slow timed relative input sequence  of the form 0 0, ),.., ( ,n n( )x t x t〈 〉  and 0w +∈ℜ , provided that there 

exists a function 

:f Seq ( )XD Y X× →D D  

such that  0 1= 2.. | = ( ,.., , )i i ii n y Y x f x x y−∀ • ∃ ∈ 〈 〉D i

 

That is to say that the value of the  input event in  depends on all the previous input events 

and on an (unspecified) output event. The sequence of output events (the output trace) generated 

by 

thi θ I

 D  in response to   is the result of the experiment.  θ I

Since there are many possible definitions for f, in order to clearly identify those functions which 

are of interest for our test purposes, we define the concept of a valid adaptive experiment: 

 

Definition 4.10: Valid Adaptive Experiment 
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  An adaptive experiment ( ),I wθ  for a S.B.DEVS model  D  is a valid experiment iff   is slow on θ I

 D , ,  and the function f of this experiment satisfies the following 

property:  

{ ( ) |a ai i
w max ta s s S≥ D }

0

a∈ D

 1 0 0 0 0= ( , ) = ( , )passx f x y y s xλ〈 〉 ⇔  

0 1 1 1 0 2 2= ( ,.., , ) = ( ( ,.., , ) ),i i i i pass i i i 1x f x x y y f x x y xλ− − − − − −〈 〉 ⇔ 〈 〉   = 2..i n∀

 

In other words the value of the  input event in depends on all the previous input events and 

the last output event the model has generated. This is equal to saying that the  input event 

depends on all the output events that the S.B.DEVS model has generated so far.  

thi θ I

thi

 

Definition 4.11: Distinguishing, Homing, Synchronizing Experiments on S.B.DEVS models 

A valid experiment ( ),I wθ  on a S.B.DEVS model  D  is distinguishing, homing or synchronizing 

iff  is a distinguishing, homing or synchronizing sequence for θ I  D , respectively. 

 

4.4 Sequence Finding 

In order to perform a homing experiment on a S.B.DEVS model, the procedure described in 4 can 

be utilized in a straightforward way, by considering the passive transition function and the 

concept of slow timed execution fragments. 

For a minimal S.B.DEVS, a preset homing sequence is built, without timing considerations, 

using the passive transition function. Then, to each input event kx  of this untimed sequence we 

provide a relative time stamp  such that kt { }S D= ( ) |kt t max ta s s> a∈  in order to obtain a slow timed 
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relative input trace. Finally, choosing a waiting time w such that , the pair w t> ( ),I wθ  defines a 

valid preset experiment.  

Example: Let us consider the S.B.DEVS represented in Figure 8. Using the method presented in 

4 we obtain the following untimed homing sequence: 0 1 0, , . Notice that ; 

a possible timed relative homing sequence for this S.B.DEVS is then: 

{ }) | at m s S∈ =D= (ax ta s 9

)( ) ( ) (0 0  1  10  0  9 2, , , , , .t t tπ = = = = , and ( 9 1), .π  is a valid experiment for this model.  

 

Figure 8: S.B.DEVS model (a) with its homing tree, associated transition table, and one 

possible homing sequence (π) for it (b). 

Theorem 4.1: A preset homing sequence, whose length is at most , exists for every 
minimal S.B.DEVS model  

2( 1n − )

 D  , where n is the number of passive states in   D  .  
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Given the previous considerations on the timed nature of sequences, both distinguishing and 

synchronizing sequences can be obtained using the methods and algorithms described in 4, and 

afterwards adjoining the time stamps to the events as we did with homing experiments. It is 

straightforward to prove that all the properties and theorems in 4 are valid for S.B.DEVS models. 

In particular, the following result is valid:  

 

Theorem 4.2: If there exists a synchronizing sequence for a S.B.DEVS model  D  that has n 

passive states, then its length is at most . 2( 1) / 2n n−

Proof: See 4, p. 458.  

 

The following result sums up the preceding discussion:  

 

Theorem 4.3: Let 1 2= .. nx x xπ 〈

, )n n

〉  be either a synchronizing, homing, preset distinguishing or 

adaptive distinguishing sequence for a Mealy Machine M. Then the sequence 

1 1 2 2= ( , ) ( , )..(x t x t x tυ 〈 〉  obtained from π is, respectively, either a synchronizing, homing, preset 

distinguishing or adaptive distinguishing sequence for the S.B.DEVS model  D  with the same 

input-output behaviour than M, if  max=t { }( )| < , = 1..a ita p p S t i n∈ ∀D D . 

 

4.5 Testing procedure 

4.6 Now, we need to define a testing procedure to test U.B.DEVS and S.B.DEVS models. For the 

first type of models the procedure is straightforward since the inputting process is 
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independent of time. 

For S.B.DEVS  models, the testing procedure can be formally represented by a tester5,6,10. For 

the sake of constancy, we choose to specify the tester by a DEVS model.  The implementation of 

the S.B.DEVS under test receives the test input sequence from the tester output tester at specific 

times. The general scheme of the coupling between a tester and the model under test is given in 

Figure 9. 

 

Figure 9: Coupling scheme of a S.B.DEVS model and a valid tester for it. 

 

The tester for a given PX is defined as follows: 

Definition 4.12: DEVS tester model for preset experiments 

Given a PX ( ),wπ  where 0 0 1 1= ( , ), ( , ), , ( , )n nx t x t x tπ … , its associated  tester is the DEVS model 

   
T =< X

T
,Y

T
,

ext
T

, λ
T

,S
T

,δ
int

T

,δ ta
T

> , with: 

•    XT = {Reset}  (Event that restores the tester to its initial state) 

•  0 1  = , , , nY x x x…T

•     ST = s0 , s1,…, sn ∪ sSTOP  

• 
   
δextT

(si ,e, x) = s0  (Restores the tester to its initial state) 
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• 
   
δ intT

(si ) = si+1 if i < n
sSTOP if i = n ∨ si = sSTOP

⎧
⎨
⎩

  

• P  
0 if 0

( ) = if 1
if

..i i i STO

i STOP

i
ta s t i n s s

s s

=⎧⎪ = ∧ ≠⎨
∞ =⎪⎩

T

•  
   
λT (si ) = xi if si ≠ sSTOP

0 if si = sSTOP (This case never happens as taT (sSTOP ) = ∞)
⎧
⎨
⎩

 

 

Example: the tester that implements the experiment (π = (a,0)(b,2)(c,1), w = 4) is represented by 

the state graph in Figure 10: 

 

Figure 10: Tester for the preset experiment (PX)  (π = (a,0)(b,2)(c,1), w = 4). 

 

If we take into account the fact that after the tester sends the output event , the S.B.DEVS 

model under test will transition up to the passive state 

ix

1is + , then it is assured that the S.B.DEVS 

model will remain in the same state until the tester issues the output event 1ix +  in case it exists.  

 

Example: In order to implement a valid adaptive experiment for a S.B.DEVS model, the basic 
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idea is to define a tester which represents the decision tree associated with the adaptive 

experiment, which is an extended version of the one given in (4, p.461) taking into account the 

elapsed time in the states. In the tester, it is required to have one active state for each output 

event that the experiment will issue. Additionally, each of these states will receive an external 

event that represents the response of the model under test. That is, it will be able to receive any 

of the possible output events that the S.B.DEVS model will generate (in order to do this, the 

output of the tested model needs to be connected to the tester’s input). Depending on the value of 

the received event, the tester will transition to one of the active states that represent the 

consequential uncertainties. Finally, all the leaf nodes have to be represented as passive states 

which only accept the RESET event in order to reinitialize the experiment. For a complete 

specification of the tester, all unacceptable behaviour of the tested model (that is, if the tested 

model outputs an unexpected event or an expected event at an unexpected time) must force the 

tester to transition to an error state. We omit this state in the following example so as to make it 

easier to read, but it should be always added in the final specification. The following figure 

shows a concrete example of an adaptive tester: 
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Figure 11: Sample adaptive distinguishing experiment and corresponding DEVS tester 

model for the S.B.DEVS model in Figure 7. 

 

5 Conclusions And Future Work 

The definitions and methods presented in this paper allow for a proper identification of the states 

in useful subsets of DEVS models. All the states of a Mealy machine are steady states; we have 

introduced Untimed.DEVS to allow a clean specification of transitory states in untimed models, 

since they represent those models which can be properly specified in Mealy machines, and thus 

providing a clear way to port Mealy machines to a timed formalism such as DEVS. Additionally, 

U.B.DEVS models represent the smallest useful subset of timed models whose states can be 

properly identified and fault checked. This subset constitutes the first step towards a formal 

theory of fault detection techniques for the more general DEVS models. 

Aside from the definition of the before mentioned subsets, the importance of formally defining 

the concepts of distinguishing, homing and synchronizing sequences lies in the possibility to 

check random sequences for a given DEVS model in order to determine whether they belong to 
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any of the three relevant categories. A method to obtain such sequences could then be designed 

so as to provide a mechanical, automatic means to find relevant sequences of timed input events.

The process of obtaining new sequences can be also automated since it is straightforward to find 

the highest value of the time advance function ta in a model, and then design the proper tester for 

every possible slow timed input sequence that the model accepts. This ensures the plausibility to 

automate a stage of the conformance testing procedure. 

Future work involves expanding the U.B.DEVS subset, p

 

ossibly up to clearly stating the 

well as 
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