
 1

System State Identification using DEVS

N. Giambiasi*, Diego Llarrull*, Maximiliano Cristiá**

* LSIS - Université Paul Cézanne - Marseille, **CIFASIS, CONICET – Rosario.

Abstract: In this paper, we propose an approach for system state identification using the DEVS

formalism. In other words, extensions to timed models of classical methods developed in the field

of sequential machines are defined. The aim of these methods is to deduce information on the states

of a system by observing its input/output behavior. In fact, in this paper, we are concerned with the

following testing problems: determine the final state after the test, identify the initial state, verify

the unknown initial state.

A possible field of application for this work is the testing of discrete event control systems

for which timed considerations are generally needed.

In this first approach, we propose extension of testing methods for a subset of DEVS models, in this

subset, the next states of a model does not depend on the elapsed time in the current state.

Finally, we briefly show some considerations about the implementation of these testing methods.

1 Introduction

In the 60s, research was done on the problem of testing finite state machines to ensure their

correct functioning and to discover aspects of their behavior. Due to its applications in testing

communications protocols, the fault detection problem is still studied in the field of finite state

machines, and of some of their extensions.

An important class of testing problems is state identification (pioneered in the seminal 1956

 2

paper of Moore)8. An extensive theory is available on this topic for finite state machines (see 7

for a survey and Kohavi’s book for a good exposition of the major results published in papers on

testing problems, in the 60s4). The testing problem was and is still studied in the context of timed

Automata1 which are used to model real-time systems with timed considerations9.

Therefore, ordinary finite state machines are not powerful enough to model physical systems in

an accurate way and, even though timed automata are well adapted for high level specifications,

the DEVS formalism proposed by B. Zeigler (which can be seen as a general timed extension of

finite state machines) seems more suitable for representing accurate timed behavior of dynamics

systems. DEVS allows building discrete timed event abstractions of dynamic systems with a

clean simulation semantics and a clean correspondence between the real system and the basic

concepts of the formalism (such as states, transitory states, state variables, events, etc...).

In this paper, we propose an approach for system state identification using the DEVS formalism.

In other words, we would like to deduce information on the states of the system by observing its

input/output behavior. In fact, we are concerned with the following testing problems7:

• determine the final state after the test,

• identify the initial state,

• verify the unknown initial state.

A possible field of application for this work is the testing of discrete event control systems for

which timed considerations are generally needed, and a discrete event abstraction of the system

 3

to be controlled is also needed in order to realize accurate timed analysis by simulation of a

coupled model, which is composed of the control system and the system to be controlled.

In (Dacharry and Giambiasi 2005), a formal methodology for the design and verification of

discrete event control systems was proposed. Within this methodology, a high-level specification

of a control system is given by a network of timed automata, and the corresponding

implementation is expressed by a coupled DEVS model11. This allows the formal verification of

the conformance of components (atomic DEVS models against timed automata) and the

conformance of the whole model. Nevertheless, due to the state explosion problem that appears

in the verification of models that deal with a dense time base, the automatic verification of the

conformance between the high-level and the low-level models cannot be carried out in a large

number of real cases. Therefore, a partial automatic validation of the conformance relation

between an implementation and its specification can be possible by generating test cases on a

high-level specification and applying these tests to the low-level model description or to an

implementation. This kind of test, called conformance testing, is not developed in this paper but

the methods presented for minimization or for building some types of input sequences constitute

a required step for conformance testing.

The paper is organized as follows:

In Section 2 we recall the existing theory, together with the tools and concepts that will be

necessary to extend it. In Section 3, we introduce a subset of the DEVS formalism that we ta

under consideration, and we adapt and extend the existing methods, concepts and definitions to

this subset. In Section

ke

 4, we propose an extension of the first subset of models in order to enlarge

 4

the spectrum of models to which the theory of fault detection can be applied, and we briefly

show some considerations about the implementation of these testing methods. Finally, we

conclude the paper.

2 The DEVS formalism

The DEVS formalism allows atomic models (behavioural models) to be specified and coupled

together to build more complex models (coupled models or structural models). These coupled

models can themselves be used as components of larger coupled models 11, allowing hierarchical

descriptions by means of a model-library.

2.1 Atomic DEVS Models

According to the literature on DEVS 12, the specification of a discrete event model is a structure:

M = < X, S, Y, δint, δext, λ, ta >

where X is the set of the external input events, S the set of the sequential (or discrete) states, Y the

set of the output events, δint is the internal transition function that defines the state changes

caused by internal events, δext is the external transition function that specifies the state changes

due to external events, λ is the output function, and the function represents the

maximum duration or lifetime of a state, with

{ }0:ta S +→ ℜ ∪ ∞

0
+ℜ representing positive real numbers. Thus, for a

given state is , ta(is) represents the time interval during which the model will remain in the state

is provided that no external event occurs.

A state is passive when its lifetime is infinite (ta(is) = ∞) and active when the lifetime is a finite

real positive number. Denoting Sa the subset of active states and Sp the subset of passive states,

we have . a pS S = ∅∩

 5

12 introduces the concept of total states (s,e) of a model as:

{(,) | ,0 ()}TS s e s S e ta s= ∈ ≤ ≤

where e represents the elapsed time in state s. The concept of total state is fundamental because it

permits one to specify a future state based on the elapsed time in the present state.

A key contribution of DEVS lies in decomposing the traditional transition function into two sub-

functions—the internal transition function and the external transition function. The internal

transition function, defined as δint : S → S, where S refers to the active (transitory) states of the

system, permits one to capture the autonomous evolution of the model. When a model has

entered in state s at time ti, it will transition to state s′ = δint(s) at time ti + ta(s) provided that no

external event occurs during this period. The external transition function, defined as δext: TS x X

→ S, reflects the evolution of the model corresponding to externally induced input events. When

an external event x occurs and the model is in state s since the “elapsed time” e, the model will

transition to state s′: s′ = δext (s, e, x). The elapsed time, e, is set to zero for each state transition.

The output function, λ: S → Y, defined only for active states, is executed when the state’s

lifetime is reached. From the simulation perspective, this needs that the output function is

executed prior to the internal transition function.

The pseudo-code of an abstract simulator for atomic models is detailed in Figure 1. This abstract

simulator runs with a coordinator, which manages a scheduler and sends to the simulator the

input events at the event time tn. In this way the operational behaviour or semantics of a DEVS

 6

model is given by its simulator.

2.2 DEVS-atomic-simulator

The DEVS atomic simulator receives, in a chronological order, input events and internal events

from a coordinator. The internal events, are created by the DEVS atomic simulator when the

model enters in an active state, the time occurrence of the internal event is tn= tl + ta(s), where tl

is the present time (time of the transition to the considered active state).

when internal event, at time t:
y = λ(s)
send output event (y, t)
s = δint(s)
tl = t
tn = tl + ta(s)
e=0

when receive input event x, at time t:

e = t – tl
s = δext(s, e, x)
tl = t
tn = tl + ta(s)
e=0

end DEVS‐atomic‐simulator

Figure 1: Pseudo-code of a simulator for DEVS atomic models.

2.3 Execution fragments and traces of DEVS Models

We introduce the formal notion of executions or simulation runs of DEVS models, and their

traces as an alternative way to formally specify the full behaviour of DEVS models 2. These

 7

concepts are analogous to the ones that are commonly used for describing the behaviour of

Timed Automata.

Definition 2.1: Execution fragment of a DEVS model

An execution fragment of a DEVS model D is a finite alternating sequence

, where: 0 1 1 2 2= n nv x v x v x vϒ …

1. pure time passage

Each vi is a function from a real interval Ii = [0, ti] to the set of total states of D , such

that , if then , | <ij j I j j′ ′∀ ∈ () = (,)iv j s e () = (,)iv j s e j j′ ′+ −

2. discrete event transition

Each xi is an input or output event, and if 1 1(,) = ((),i is e v sup I− − (,0) = (())i is v inf I′ , one of the

following conditions hold:

a. xi ∈YD ,δ intD (s) = ′s , ta(s)=e, and () = is xλ

b. xi ∈ XD ,δextD (s,e, xi) = ′s , and e < ta(s).

Definition 2.2: Execution of a DEVS model

Let

D = (XM ,YM ,SM ,δM ,λM ,s0) be an atomic DEVS with the initial state s0. Then, an execution for D

is a execution fragment of D that begins with the initial state s0.

We denote with , *()execs D ()execsω D and the sets of finite, infinite, and all executions of ()execs D

 D , respectively.

 8

We denote last and first the functions giving the states of the first and the last state trajectories of

an execution fragment, respectively:

 ()
() ()() ()

*:
sup ,

p

j n n j

last execs S
last s if v I s tα

→
= =

D
n

and,

 ()
() () ()0 0 0

*:
,

p

j j

first execs S
last s if v sα

→
= =

D

Definition 2.3: Trace of a DEVS model

 A trace of an execution fragment ϒ = v0 z1 v1 z2 v2 …zn vn , noted trace (ϒ) , of a DEVS model D

is defined to be a tuple (), ,I Oθ θ t such that Iθ an Od θ are sequences consisting of pairs of the form

(zi, sup(Ii-1)) where zi is an input or and output event, of

()ϒ , respectively, and their time of

occurrence in sorted in chronological order of occurrence. t is the total time of execution,

defined as

()ϒ

0 j n≤ ≤∑ (sup ()jI). Formally, the time of occurrence of an event ix of is equal to ϒ

0 <j i≤∑ (sup ()jI), where jI is the domain of jv .

The set of all traces of a DEVS model, noted traces (D) , is defined as { trace execs()ϒ | ϒ ∈ (D) } .

Remark : Note that for every DEVS model (D) , and given a sequence of pairs of input events

and their respective time of occurrence, θI , its total time of execution t, and an initial state, s0,

there exists a unique execution fragment γ = v0x1v1…xnvn, such that trace(γ) = (θI , θO, t) and

v0(0) = (s0,0).

This concept is known in the DEVS literature as determinism, and as such, all completely

specified DEVS models are deterministic in this sense, considering that when an input event (an

 9

external transition) occurs at same time that an internal transition is scheduled, we give the

priority to the external transition.

For our test purpose of timed models, we need to introduce the concepts of slow timed execution

fragment and slow timed input trace.

Definition 2.4: Slow timed execution fragment

A timed execution fragment of a DEVS atomic model ϒ = v0 z1 v1 z2 v2 …zn vn

= , , , , , ,, int extX Y S P taδ δ λ〈D 〉 is a slow timed execution fragment if:

() ()with , , sup() ta .j j k k a jv v s e s S Iα∀ ∈ = ∧ ∈ = ks

We denote as execs*slow (D) as the set of the finite slow timed execution fragments of D .

Definition 2.5: Slow timed input trace

An input trace θ Ii is a slow timed input trace iff :

, * () () (,i i slow i Ii Oiexecs trace t,)α α α∃ ∈ ∧ =D θ θ .

Let us notice that, since only the output events are observed when black-box testing a DEVS

model, then in order to be sure to have a slow input trace, we must wait τ time units between two

input events with:

()()max ta | .j j as s Sτ > ∈

 10

2.4 DEVS based Hierarchy formalisms

In 3, we introduce a hierarchy of discrete event formalisms with increasing complexity,

maintaining at the same time the clarity of concepts and cohesion in the structure. The proposed

approach maintains cohesion and clarity by using a similar syntax in all proposed formalisms,

and by formally specifying its semantic or operational behaviour in order to avoid an incorrect

interpretation of the formalism.

The syntax of all the proposed formalisms is based on the Discrete Event System Specification

(DEVS) 12. We have chosen the DEVS formalism since it incorporates a solid mathematical

basis along with a well developed simulation infrastructure. Furthermore, it is considered to be a

universal formalism for the modelling and the simulation of discrete event systems.

The different formalisms we have proposed range from a formalism based in the widely known

concept of sequential machines (automata), to the more expressive DEVS formalism.

For our current purpose we recall, in the following, the two first formalisms the two first

formalisms of the hierarchy on which we have adapted testing methods initially proposed for

Mealy machines.

2.5 Formalism hierarchy

The first and less expressive formalism we consider is an untimed discrete event formalism (only

the occurrence order of events is taken into account).

 11

Definition 2.6: Untimed.DEVS (U.DEVS)

An atomic U.DEVS model is defined as a structure D = (X ,Y , S ,δext ,δ int ,λ) where:

• X: finite set of input events,

• Y: finite set of output events,

• S: finite set of states,

• δint: internal transition function int(:)S Sδ → ,

• δext: external transition function)(:ext S X Sδ × → ,

• λ : output function (:)S Yλ → .

In an U.DEVS model, as in classical DEVS, the set of states is partitioned in two sets, Sa and Sp

called active and passive state sets respectively, S = Sa ∪ Sp.

Only external transitions can occur in a passive state of an U.DEVS model (as in classical

DEVS), and only internal transitions can occur in an active state. In other words, δext is not

defined for the active states of an U.DEVS model .

Note that for U.DEVS, we consider that X, Y and S are finite sets.

Interpretation: U.DEVS

The model remains in a passive state is until it receives an input event xj, the next state is given

by δext(is ,xj). When the model reaches an active state is it instantaneously transits into the next

state defined by δint(is) and emits the output event λ(is). It is assumed that no input event can

 12

occur in an active state.

U.DEVS‐atomic‐simulator

when internal event, at time t:
if s ∉ Sa then ERROR else
y = λ(s)
send output event (y, t)
s = δint(s)

when receive input event x:
if s ∉ Sp then ERROR else
s = δext(s, x)

end U. DEVS‐atomic‐simulator

Figure 2: Pseudo-code of a simulator for U.DEVS atomic models

Remark: it should be clear that U.DEVS are very closely related to classical sequential

machines. Therefore, in U.DEVS, the concepts of active (transitory) and passive (steady) states

are clearly identified, which allows ‘clean’ specifications of models with transitory and steady

states.

The next formalism in the hierarchy 3, is called Simple.DEVS. This formalism introduces the

notions of:

• Phase,

• Phase-lifetime.

Phase is a state variable that ranges over a finite set. In fact, to each value of Phase corresponds a

subset of the states of the model. Phase takes a finite number of values, and thus the partition of

S defined by Phase is finite. A lifetime value is associated to each value pi of Phase. This value is

 13

given by the lifetime function ta(pi), which can be any positive real number, 0 or infinite. Phases

with a 0 or real number lifetime value are called active phases, while the ones with an infinite

lifetime are passive phases. Phase-lifetime is another state variable, Phase-lifetime = ta(pi) which

equals the life time of the present value of Phase.

Notice that these definitions are identical to those of classical DEVS, but for S.DEVS, the lifetime

function depends only on the state variable Phase and not on the other state variables. In fact,

all the states with the same value of Phase belong to the same class and this means that all the

states of a class have the same lifetime.

S.DEVS is a restricted formalism in the sense that it is not possible to model the temporal

behaviour of any discrete event system. Its main restrictions are:

• The lifetime of a state depends only on one particular state variable, the Phase state

variable.

• The output function depends only on Phase.

Definition 2.7: Simple.DEVS (S.DEVS)

An atomic Simple.DEVS model is defined as the structure:

Shouldn’t P be a part of the following structure (in yellow) ?

= int, , , , , ,s extX Y S taδ δ λ〈 〉D where:

 14

• X: finite set of input events,

• Y: finite set of output events,

• S: set of states, { } . (){ }i v1 vn vi 0 :, , , , | iS s s s Phase ta s V Phase P ta += = … ∈ ∧ ∈ ∧ ℜ ∪ ∞

• δint: internal transitions () , int : S Sδ →

• δext: external transitions () , :ext S X Sδ × →

• λ: output function , (): S Yλ →

• ta: lifetime function }{()0 , ta(pi) is the lifetime associated to the value pi of

Phase.

:ta P +→ ℜ ∪ ∞

A Simple.DEVS model is completely specified, if:

• ta is defined for all the possible values of Phase,

• δint and λ are partial functions such that, ∀pi ∈P with ta(pi) ≠ inf, δint(s) and λ(s) are

defined,

• δext should be a function defined for all states and all input events.

Interpretation: Simple.DEVS

When the model is in the state sk with the value pk of Phase, the maximum time it remains in the

state sk is given by ta(pk). If no external event occurs, when ta(pk) time is elapsed, the model

generates the output event λ(sk) and it changes to the state sl = δint (sk). If before this internal

transition an external event x occurs, the system transitions to the state js = δext (sk, x).

Notice that in S.DEVS, the next state does not depend on the elapsed time in the current state.

 15

In the following, for the sake of simplicity we will concentrate only on these two subsets of

atomic DEVS models. In addition, and without loss of generality, we consider models for which

every state is totally defined by the two state variables, that is, Phase and ta.

3 Extending Mealy Machines Fault Detection Techniques To U.DEVS

In order to make a progressive approach to the problem, we first present a procedure for

obtaining an U.DEVS with the same behaviour than a Mealy machine. The final objective

remains to apply to DEVS models some fault detection techniques developed on Mealy

Machines.

We recall that a Mealy Machine4 is formally stated as a quintuple (, , , ,)M I O S δ λ= where I, O and S

are finite and nonempty sets of input symbols, output symbols, and states respectively,

: S I Sδ × → is the state transition function and : S I Oλ × → is the output function.

The first step in defining an U. DEVS model with the same behaviour than a given Mealy

machine is to add an active state for every transition of the Mealy machine. Then, every state

transition of a Mealy machine M = (IM ,OM , SM ,δM ,λM) that has the form:

/x y

i js s→ , x I∈ M , y O∈ M , is , js S∈ M

is translated into two transitions in the corresponding U.DEVS model

D =< XD ,YD , SD ,δ intD

,δextD
,λD , taD > :

• An external transition of the form si →
x/−

si,x becomes δextD (si,x) = si,x ,

si ∈SsD

, x X∈ D and

si,x ∈SaD

.

 16

• An internal transition of the form
/

,

y

i x js s
−

→ becomes ,() =int i k js sδ
D

, ,() =i ks yλ , ,i k as S∈
D

,

y Y∈ D and j ss S∈
D

.

An U.DEVS

D =< XD ,YD , SD ,δ intD

,δextD
,λD , taD > and a Mealy machine M = (IM ,OM , SM ,δM ,λM) have

the same behaviour if:

1. both models have the same input and output event sets, IM = XD ∧ OM = YD ,

2. the set of passive states of D is equal to the set of all states of M :

SM = SpD

3. for each possible transition

δM(si , x) = sj of M there exist two transitions in D :

δextD(si,x) = si,x and ,() =int i x js sδ
D

.

4. for each possible output event y I∈ M such that (,) =is x yλM it is required an analogous

output event in D

λM (si,x) = y ⇔ λD (si,x) = y .

Definition 3.1: An Untimed.DEVS is a bipartite DEVS iff:

 a, (,)i p i ext i i k ks S x X s x s s Sδ∀ ∈ ∧ ∀ ∈ = ⇒ ∈ .

 p, ()k a int k i is S s s s Sδ∀ ∈ = ⇒ ∈ .

For Untimed Bipartite DEVS (U.B.DEVS), we introduce the concept of a passive transition

function, noted δpass.

 17

Definition 3.2: The passive transition function of an U.B.DEVS is defined as

follows: ,i i px X s S∀ ∈ ∈ ,

δ pass(si ,xi) = δ int (δext (si ,xi)) = sj ∈Sp .

Analogously, we also introduce the concept of a passive output function, noted λpass.

Definition 3.3: the passive output function of an U.B.DEVS is defined as follows:

,

∀xi ∈ X ,si ∈Sp

(,) ((,))pass i i ext i i is x s x y Yλ λ δ= = ∈

3.1 Minimality - State Equivalence

The definition and properties presented in 4 for Mealy Machines can be easily extended to

U.B.DEVS, by considering the following theorem:

Theorem 3.1: To every U.B.DEVS model corresponds a Mealy Machine with the same

behaviour and vice-versa.

Proof: it is straightforward to prove that, by considering only the passive transition and output

functions of an U.B.DEVS, the existence of active states in this model is concealed. Thus, the

model externally appears to have the same set of states than its corresponding Mealy machine.

Then, each pair of values [(,), (,)]pass i i pass i is x sδ λ x corresponds to the pair [(,), (,)]i i i is x s xδ λ of a

Mealy Machine, which is equivalent to say that they have the same behaviour.

 18

In Figure 3, we give an example of a state graph of a Mealy Machine (Figure 3a) and of the state

graph of its corresponding U.B.DEVS (Figure 3b).

Figure 3: Mealy machine and its corresponding U.B.DEVS.

In order to apply testing methods from Mealy Machines to U.B.DEVS, we need first to define

the basic concepts of distinguishable states, state equivalence and state minimization for

U.B.DEVS.

Definition 3.4: Distinguishable passive states

 Two passive states is and js of an U.B.DEVS model D are distinguishable if and only if there

exist at least two execution fragments α and β of D with () = (,)I Oα α
α θ θtraces ,

() = (,I Oβ β
)β θ θtraces where:

first (α)= si, first (β) = js

=I Iα β
θ θ and . θOα

≠ θOβ

Then, Iα
θ (= Iβ

θ) is called a distinguishing sequence of the pair (,)i js s .

 19

 If the shortest distinguishing sequence of the pair (si, sj) has a length k, then, si and sj are said to

be k-distinguishable.

Definition 3.5: k-equivalence of states

 Two passive states is and js of an U.B.DEVS model D are k-equivalent if and only if they are

not k-distinguishable.

Definition 3.6: State equivalence

 Two passive states is and js of an U.B.DEVS model D are equivalent if and only if they are k-

equivalent . ∀k ∈`

Definition 3.7: Equivalence of U.B.DEVS

 Two U.M.DEVS models and are equivalent if and only if, for every state in , there is a

corresponding equivalent state in , and vice-versa.

1D 2D

2D

1D

Definition 3.8: Minimal U.B.DEVS

An U.B.DEVS model is minimal (reduced) if and only if no two states in it are equivalent.

The concept of minimality is important in the field of fault detection techniques due to the fact

that most results are obtained under the hypothesis of minimality. We recall that the

minimization procedure is applied under the hypothesis that the machine under consideration is

completely specified, that is to say, for every state, there is a transition specified for every input

 20

event.

The minimization procedure detailed in 4 can be applied to completely specified U.B.DEVS

models if only the passive states, the passive transition function δpass and the passive output

function λpass are considered. Whenever two equivalent passive states are found, it is necessary to

remove not only one of these states, but also every active state to which such state can transition.

Then, every transition that reaches a state that has been deleted has to be redirected to its

equivalent state.

Extending the result from Mealy machines we can say that every U.B.DEVS model D

corresponds a minimal U.B.DEVS which is equivalent to *D D and is unique up to

isomorphism, provided D is completely specified (the external transition function is defined for

all possible input events).

The existence of a minimal form for every completely specified U.B.DEVS model ensures that

fault detection techniques defined for Mealy machines can be applied to U.B.DEVS models,

after finding its minimal or reduced form.

Example: Let us consider the state graph of an U.B.DEVS (Figure 4a), its passive transition table

(table with the passive transition function and the passive output function) is represented in

(Figure 4b):

 21

Figure 4: An U.B.DEVS model (a) with its associated transition table (b). Resulting

minimal U.B.DEVS model (c) after the deletion of s2 (which is equivalent to s3), s2,a and s2,b ,

and the resulting transition table (d).

 22

By applying the minimization procedure given in 4, we obtain the minimal U.B.DEVS model by

replacing each equivalent class of states by one state. In this example, the states s2 and s3 are

equivalent, replacing these two states by s3, we obtain, for this U.B.DEVS model, the state graph

and the transition table of Figure 4c and Figure 4d.

3.2 Experiments on U.B.DEVS models

In a testing problem, we consider an implementation (seen as a black-box) of an U.B.DEVS

about which we would like to deduce some information by observing its input/output behaviour.

An input event sequence is applied to the system and the output sequence is observed in order to

infer the needed information. The input sequence can be preset if it is fixed ahead of time, or can

be adaptive if the next input event depends on the previously observed outputs.

We will proceed by adapting several concepts such as first distinguishing, homing and

synchronizing sequences the basic definitions of distinguishing, homing and synchronizing

sequences, in the following, we propose the definitions of experiments adapted to U.B.DEVS

from those of Mealy Machines4.

In the following, we denote with execsI k (D) the set of finite executions of D with the same input

trace . θ I
k

Definition 3.9: Distinguishing sequence

 23

Let us consider two execution fragments α and β of an U.B.DEVS D with () = (,)I Oα α
α θ θtraces ,

 such that: () = (,)I Oβ β
β θ θtraces

first (α)= si, first (β) = js

and =I Iα β
θ θ

Then, Iα
θ (= Iβ

θ) is called a distinguishing sequence of the pair iff (si , s j)

O Oα β
θ θ≠ .

 If the shortest distinguishing sequence of the pair (si, sj) has a length k, then, si and sj are said to

be k-distinguishable.

The aim of a homing sequence is to determine the final state of a system observing its outputs.

The homing sequence problem was completely solved for sequential machines4.

I changed this definition because it can happen that output traces are equal for two different

execution fragments (see the example in Figure 5), but in that case the final state is the same for

both executions (if the output traces are different, the final states can be different, but it is not

always the case). Please see if you agree with this definition.

Definition 3.10: Homing sequence

An input trace of an execution fragment is a homing sequence iff , θ I
k α i

k , (k k

i j Ikexecs Dα α∀ ∈)

with

() () () (,

0, ,k k k j

j Itrace wα θ θ=,
0, ,k k k i

i Itrace wα θ θ=), , only one of the following conditions occurs:

 24

1. , ,

0 0

k i k jθ θ≠ .ç

2. () ()klast α . , ,

0 0

k i k j k

i jlastθ θ α= ∧ =

It should be clear that only reduced U.B.DEVS have homing sequences, since equivalent states

cannot be distinguished. Every reduced U.B.DEVS has a homing sequence.

A synchronizing sequence gives the same final state, regardless of the initial state.

 I changed this definition because the quantifiers were incorrectly ordered.

Definition 3.11: Synchronizing sequence

An input trace of an execution fragment is a synchronizing sequence iff: θ I
k α i

k

! ()k k
l p l i i Ik ().s S s last execs Dα α∃ ∈ = ∀ ∈i

Having defined the kinds of sequences that are necessary for our test purposes, we can now

introduce the different types of test experiments on an U.B.DEVS.

Definition 3.12: Preset Experiment

A preset experiment for an U.B.DEVS is any input event sequence π of the form where x1 x2 …xn

= 1..ix X i∈ ∀D n . The sequence of output events (the output trace) that D generates in response to

π is the result of the experiment.

Definition 3.13: Adaptive Experiment

 25

 An adaptive experiment for an U.B.DEVS model D is any input event sequence 1 2= nx x xπ …

where = 1..ix X i∈ ∀D n provided that there exists a function

 :f Seq ()XD ×YD → XD

such that 0 1= 2.. | = (,.., ,)i i ii n y Y x f x x y− i∀ • ∃ ∈ 〈 〉D .

In other words, the value of the input event of an adaptive experiment π depends on all the

previous input events and on an (unspecified) output event. The sequence of output events (the

output trace) that

thi

 D generates in response to π is the result of the experiment.

Since there are many possible definitions for f, in order to clearly identify those functions which

are of interest for our purposes, we define the concept of a valid adaptive experiment.

Definition 3.14: Valid Adaptive Experiment

 A valid adaptive experiment is an adaptive experiment which the adaptive function

f verifies the following property:

π = x1 x2 … xn

 x1 = f (〈x0 〉, y0) ⇔ y0 = λD (δextD (s0 , x0))

 xi = f (〈x0 ,.., xi−1〉, yi−1) ⇔ yi−1 = λD (δextD (f (〈x0 ,.., xi−2 〉, yi−2), xi−1)) = 2..i n∀

In this way, the value of the input event of π depends on all the previous input events and the

last output event the model has generated. This is equal to saying that the input event depends

on all the output events that the U.B.DEVS model has generated so far.

thi

thi

 26

Definition 3.15: Distinguishing, Homing, Synchronizing Experiment

A valid experiment is distinguishing, homing or synchronizing if the input sequence is

distinguishing, homing or synchronizing respectively.

3.3 Sequence Finding

In order to perform a homing experiment on an U.B.DEVS model, the procedure described in 4

can be applied considering only the passive states.

Theorem 3.2: A preset homing sequence, whose length is at most , exists for every

minimal U.B.DEVS model

21(n −)

 D , where n is the number of passive states in D 4.

As an example, we give in Figure 5 an U.B.DEVS model and the homing sequence obtained by

the procedure4 considering only the passive states of the model.

 27

Figure 5: An U.B.DEVS model (a) with its homing tree, associated transition table, a

homing sequence (π) for it (b).

Distinguishing and synchronizing sequences can be obtained by the methods presented in 4. It is

straightforward to prove that all the properties and theorems are valid for U.B.DEVS models

considering only the passive transition function and the passive output function. In particular, the

following result is valid also for U.B.DEVS models:

Theorem 3.3: If there exists a synchronizing sequence for an U.B.DEVS model D that has n

passive states, then its length is at most . 2(1) /n n− 2

Proof: See 4, p. 458.

The following result sums up the preceding discussion:

 28

Theorem 3.4: Let 1 2= .. nx x xπ 〈 〉 be either a synchronizing, homing, preset distinguishing or

adaptive distinguishing sequence for a Mealy Machine M. Then the sequence π is, respectively,

either a synchronizing, homing, preset distinguishing or adaptive distinguishing sequence for the

U.B.DEVS model D obtained from M.

Up to this point, we have shown it is possible to define concepts within U.B.DEVS theory

that are equivalent to concepts from Mealy Machines. In the following section we extend all

these results to timed models, considering the Simple-DEVS subset of DEVS models.

4 Simple Bipartite DEVS (S.B.DEVS)

It should be evident that Untimed.DEVS represents a tiny subset of the systems than can be

modelled using the DEVS formalism. Then, we need to expand this subset in order to apply fault

detection techniques to a wider range of DEVS models. In this first approach, the models

considered are Simple.DEVS models (see Definition 2.7):

Definition 4.1: Simple Bipartite DEVS (S.B.DEVS)

 A Simple.DEVS model is a S.B.DEVS if and only if

•

SD = SaD ∪ SpD where

SaD ∩ SpD = ∅ .

• :ext p aS X Sδ × →D D D

•

δ intD : SaD → SpD

• λD : SaD → YD

• taD : SD → ℜ0
+ ∪{∞} where

 29

-

∀si ∈SpD • taD (si) = ∞ and

- 0() ,j a js S ta s k k +∀ ∈ • = ∈ℜD D .

S.B.DEVS models constitute a subset of the set of Simple.DEVS models, having the following

restrictions:

• two consecutive states cannot belong to the same class, the next states of a passive
state are active and vice-versa:

si ∈ Sa , δint(si) = sk ⇒ sk ∈ Sp and si ∈ Sp , ∀xi ∈ X, δext(si, xi) = sk ⇒ sk ∈ Sa

• no external event can occur in an active state :

∀si ∈ Sa, δext is undefined.

Remark: In fact, the “no external event can occur in an active state” hypothesis is the classical

hypothesis used in the field of sequential machines: “no input event can occur during a

transitory state”.

Definition 4.2: Distinguishing sequence

 Two passive states is and js of a S.B.DEVS model D are distinguishable if and only if there

exists at least two execution fragments
0 1 1 2 2

=
n n

v x v x v x vα α α α α α αα … and
0 1 1 2 2

=
n n

v x v x v x vβ β β β β β ββ …

of D with trace(α) = (,I O ,)tαα α
θ θ , trace(β) = (, ,)I O tββ β

θ θ
0α where ta ()()v e = (,is)is

0
e Iα∀ ∈ ,

0
() = (,jv e sβ ta ())js

0
e Iβ∀ ∈ , =I Iα β

θ θ and ()O Oα β
θ θ≠ . The timed sequence Iα

θ (and Iβ
θ) is called a

distinguishing sequence of the pair (,)jis s . If there exists for pair (,i)js s a distinguishing sequence

of length k, then the states in (,i)js s are said to be k-distinguishable.

 30

As we did for the U.B.DEVS models, we introduce the concepts of passive transition function,

noted δpass, and passive output function, noted λpass for S.B.DEVS.

Definition 4.3: Passive Transition Function

The passive transition function of S.B.DEVS is defined as follows:

,i i px X s S∀ ∈ ∈ , int int(,) (((,)), (()))pass ext i i isi xi s x ta sδ δ δ δ=

Definition 4.4: Passive Output Function

The passive output function of an U.B.DEVS is defined as follows:

,i i px X s S∀ ∈ ∈ , (,) ((,))pass i i ext i i is x s x yλ λ δ Y= = ∈

4.1 Minimization procedure for S.B.DEVS models

A state transition table with the passive transition function can be used to represent a S.B.DEVS

model, in this case, by adding the value of the lifetime of the next active state (Figure 6).

 31

State x = a x = b

S1 s2, 5, v s3, 6, u

S2 s4, 5, u s4, 3, v

S3 s4, 5, u s4, 3, v

S4 s4, 3, v s4, 3, u

Figure 6: A S.B.DEVS model with its associated transition table.

The minimization procedure defined in 4 is extended in order to take into account the value of

ta(si,x) (lifetime of the active state following a passive state si that received the input event x).

In the first step of this procedure, the set of passive states is partitioned in such a way that each

class contains 1-equivalent passive states. We recall that two passive states si and sj are 1-

equivalent iff for every input event they produce the same output event at the same time,

formally:

 32

(), () () () () () 1k i l j k l k l i js Successor s s Successor s s s ta s ta s s and s are equivalentλ λ∀ ∈ ∃ ∈ • = ∧ = ⇒ −

In the example of Figure 6, the first partition of the state set according to the output values and

the lifetime of the considered active states, is:

P1 = {(s1), (s4), (s2, s3)}.

Notice that s1 and s4 are not in the same class because the lifetime of their next actives states are

different, then the timestamps of the corresponding output events are different. These two states

cannot be distinguished by the values of the output events but by the occurrence times of these

events. On the other hand, s2 and s3 are 1-equivalent.

By building the second partition (formed by 2-equivalent states), we conclude that s2 and s3 are

2-equivalent, since both transition to s4 after the first input event (and after its corresponding

output event). Moreover, since every input event in s4 triggers a loop, s2 and s3 are k-

equivalent . Then, we conclude that s2 and s3 are two equivalent states, then we can choose

s3 to represent the equivalence class.

3k∀ ≥

Figure 7 gives the reduced form of the S.B.DEVS example.

Figure 7: Resulting minimal S.B.DEVS model.

 33

4.2 Fault detection techniques on S.B.DEVS models

In order to respect the hypothesis that no external event can occur in an active state, all the input

traces considered are slow timed input traces.

The definitions of homing and synchronizing sequences must be extended taking into account

the timed aspects of the formalism.

In the following, we denote with execsI k (D) the set of slow timed and finite executions of D with

the same timed input trace . θ I
k

Definition 4.5 : Homing sequence
A timed input trace of a slow timed execution fragment is a homing θ I

k α i
k = vi0ei0vi1ei1......einvin

sequence iff , with , (Ikexecs Dα α)k k

i j∀ ∈ () ()k i w,

0, ,k k

i Itrace α θ θ= , () (),

0,k k

j Itrace α θ θ= ,k j w , only one of

the following conditions occurs:

3. , ,

0 0

k i k jθ θ≠ .

4. () ()klast α . , ,

0 0

k i k j k

i jlastθ θ α= ∧ =

Definition 4.6: Synchronizing sequence
A timed input trace of a slow execution fragment is a synchronizing θ I

k α i
k = vi0ei0vi1ei1......einvin

sequence iff:

! | (,0) (()) (k
l p l in in i Ik)s S s v Inf I execs Dα∃ ∈ = ∀ ∈ .

 34

4.3 Experiments on S.B.DEVS models

The definition of a preset experiment (PX for short) for S.B.DEVS models is adapted for

handling the timed aspects of such models. We introduce the concept of a timed relative input

trace in order to refer not to the absolute time of each event, but to its relative time with respect

to the previous input event. That is, given a timed input trace θ I = 〈(x0 , t0),(x1, t1),…, (xn , tn)〉 , we refer

not to , but to rel(), where the function rel is defined as follows: θ I θ I

rel 0 0 1 1((,), (,), , (,))n nx t x t x t〈 〉… 0 1 1 0 1= (,0), (,), , (,)n n nx x t t x t t −〈 − −… 〉

It is easy to show that rel is bijective, so so it is equivalent to talk about either or . θ I rel(θ I)

I need to insist on this definition (it was in rev. 7 but not in rev. 8) because in all the following

sections, w is the waiting time after the last input event. As a consequence, we either have to

change all the rest of the text, figures and tables so as to give w the same meaning (for example,

in section 4.4, the sequence should be (28 3), .π instead of (9 1), .π), or change this definition.

Please inform me to change the figures, should you choose w to mean the length of the

experiment.

Definition 4.7: Preset Experiment

A preset experiment for a S.B.DEVS model D is any pair (),I wθ where θ I ∈(XD × ℜ0
+)* is a timed

input trace of the form 0 0(,),.., (,)n nx t x t〈 〉 w and 0
+∈ℜ is the time during which the experiment must

go on after the last event in the input trace. The output trace that D generates in response to

 θ I after l units of time is the result of the experiment, and l is the length of the experiment, where

0

n

i
i

l t
=

= +∑ w .

 35

It is straightforward to see that not all sequences that belong to can be applied to a

given S.B.DEVS model. The subset of sequences that will be accepted constitute valid

experiments.

*
0(X +×ℜD)

Definition 4.8: Valid Preset Experiment

A valid preset experiment for a S.B.DEVS model D is any pair (),I wθ , where θ I ∈(XD × ℜ0
+)* is a

slow timed input trace and { }D= () | aw t max ta s s S> ∈ .

Definition 4.9: Adaptive Experiment

An adaptive experiment for a S.B.DEVS model D is any pair (),I wθ , where θ I ∈(XD × ℜ0
+)* is a

slow timed relative input sequence of the form 0 0,),.., (,n n()x t x t〈 〉 and 0w +∈ℜ , provided that there

exists a function

:f Seq ()XD Y X× →D D

such that 0 1= 2.. | = (,.., ,)i i ii n y Y x f x x y−∀ • ∃ ∈ 〈 〉D i

That is to say that the value of the input event in depends on all the previous input events

and on an (unspecified) output event. The sequence of output events (the output trace) generated

by

thi θ I

 D in response to is the result of the experiment. θ I

Since there are many possible definitions for f, in order to clearly identify those functions which

are of interest for our test purposes, we define the concept of a valid adaptive experiment:

Definition 4.10: Valid Adaptive Experiment

 36

 An adaptive experiment (),I wθ for a S.B.DEVS model D is a valid experiment iff is slow on θ I

 D , , and the function f of this experiment satisfies the following

property:

{ () |a ai i
w max ta s s S≥ D }

0

a∈ D

 1 0 0 0 0= (,) = (,)passx f x y y s xλ〈 〉 ⇔

0 1 1 1 0 2 2= (,.., ,) = ((,.., ,)),i i i i pass i i i 1x f x x y y f x x y xλ− − − − − −〈 〉 ⇔ 〈 〉 = 2..i n∀

In other words the value of the input event in depends on all the previous input events and

the last output event the model has generated. This is equal to saying that the input event

depends on all the output events that the S.B.DEVS model has generated so far.

thi θ I

thi

Definition 4.11: Distinguishing, Homing, Synchronizing Experiments on S.B.DEVS models

A valid experiment (),I wθ on a S.B.DEVS model D is distinguishing, homing or synchronizing

iff is a distinguishing, homing or synchronizing sequence for θ I D , respectively.

4.4 Sequence Finding

In order to perform a homing experiment on a S.B.DEVS model, the procedure described in 4 can

be utilized in a straightforward way, by considering the passive transition function and the

concept of slow timed execution fragments.

For a minimal S.B.DEVS, a preset homing sequence is built, without timing considerations,

using the passive transition function. Then, to each input event kx of this untimed sequence we

provide a relative time stamp such that kt { }S D= () |kt t max ta s s> a∈ in order to obtain a slow timed

 37

relative input trace. Finally, choosing a waiting time w such that , the pair w t> (),I wθ defines a

valid preset experiment.

Example: Let us consider the S.B.DEVS represented in Figure 8. Using the method presented in

4 we obtain the following untimed homing sequence: 0 1 0, , . Notice that ;

a possible timed relative homing sequence for this S.B.DEVS is then:

{ }) | at m s S∈ =D= (ax ta s 9

)() () (0 0 1 10 0 9 2, , , , , .t t tπ = = = = , and (9 1), .π is a valid experiment for this model.

Figure 8: S.B.DEVS model (a) with its homing tree, associated transition table, and one

possible homing sequence (π) for it (b).

Theorem 4.1: A preset homing sequence, whose length is at most , exists for every
minimal S.B.DEVS model

2(1n −)

 D , where n is the number of passive states in D .

 38

Given the previous considerations on the timed nature of sequences, both distinguishing and

synchronizing sequences can be obtained using the methods and algorithms described in 4, and

afterwards adjoining the time stamps to the events as we did with homing experiments. It is

straightforward to prove that all the properties and theorems in 4 are valid for S.B.DEVS models.

In particular, the following result is valid:

Theorem 4.2: If there exists a synchronizing sequence for a S.B.DEVS model D that has n

passive states, then its length is at most . 2(1) / 2n n−

Proof: See 4, p. 458.

The following result sums up the preceding discussion:

Theorem 4.3: Let 1 2= .. nx x xπ 〈

,)n n

〉 be either a synchronizing, homing, preset distinguishing or

adaptive distinguishing sequence for a Mealy Machine M. Then the sequence

1 1 2 2= (,) (,)..(x t x t x tυ 〈 〉 obtained from π is, respectively, either a synchronizing, homing, preset

distinguishing or adaptive distinguishing sequence for the S.B.DEVS model D with the same

input-output behaviour than M, if max=t { }()| < , = 1..a ita p p S t i n∈ ∀D D .

4.5 Testing procedure

4.6 Now, we need to define a testing procedure to test U.B.DEVS and S.B.DEVS models. For the

first type of models the procedure is straightforward since the inputting process is

 39

independent of time.

For S.B.DEVS models, the testing procedure can be formally represented by a tester5,6,10. For

the sake of constancy, we choose to specify the tester by a DEVS model. The implementation of

the S.B.DEVS under test receives the test input sequence from the tester output tester at specific

times. The general scheme of the coupling between a tester and the model under test is given in

Figure 9.

Figure 9: Coupling scheme of a S.B.DEVS model and a valid tester for it.

The tester for a given PX is defined as follows:

Definition 4.12: DEVS tester model for preset experiments

Given a PX (),wπ where 0 0 1 1= (,), (,), , (,)n nx t x t x tπ … , its associated tester is the DEVS model

T =< X

T
,Y

T
,

ext
T

, λ
T

,S
T

,δ
int

T

,δ ta
T

> , with:

• XT = {Reset} (Event that restores the tester to its initial state)

• 0 1 = , , , nY x x x…T

• ST = s0 , s1,…, sn ∪ sSTOP

•

δextT

(si ,e, x) = s0 (Restores the tester to its initial state)

 40

•

δ intT

(si) = si+1 if i < n
sSTOP if i = n ∨ si = sSTOP

⎧
⎨
⎩

• P
0 if 0

() = if 1
if

..i i i STO

i STOP

i
ta s t i n s s

s s

=⎧⎪ = ∧ ≠⎨
∞ =⎪⎩

T

•

λT (si) = xi if si ≠ sSTOP

0 if si = sSTOP (This case never happens as taT (sSTOP) = ∞)
⎧
⎨
⎩

Example: the tester that implements the experiment (π = (a,0)(b,2)(c,1), w = 4) is represented by

the state graph in Figure 10:

Figure 10: Tester for the preset experiment (PX) (π = (a,0)(b,2)(c,1), w = 4).

If we take into account the fact that after the tester sends the output event , the S.B.DEVS

model under test will transition up to the passive state

ix

1is + , then it is assured that the S.B.DEVS

model will remain in the same state until the tester issues the output event 1ix + in case it exists.

Example: In order to implement a valid adaptive experiment for a S.B.DEVS model, the basic

 41

idea is to define a tester which represents the decision tree associated with the adaptive

experiment, which is an extended version of the one given in (4, p.461) taking into account the

elapsed time in the states. In the tester, it is required to have one active state for each output

event that the experiment will issue. Additionally, each of these states will receive an external

event that represents the response of the model under test. That is, it will be able to receive any

of the possible output events that the S.B.DEVS model will generate (in order to do this, the

output of the tested model needs to be connected to the tester’s input). Depending on the value of

the received event, the tester will transition to one of the active states that represent the

consequential uncertainties. Finally, all the leaf nodes have to be represented as passive states

which only accept the RESET event in order to reinitialize the experiment. For a complete

specification of the tester, all unacceptable behaviour of the tested model (that is, if the tested

model outputs an unexpected event or an expected event at an unexpected time) must force the

tester to transition to an error state. We omit this state in the following example so as to make it

easier to read, but it should be always added in the final specification. The following figure

shows a concrete example of an adaptive tester:

 42

Figure 11: Sample adaptive distinguishing experiment and corresponding DEVS tester

model for the S.B.DEVS model in Figure 7.

5 Conclusions And Future Work

The definitions and methods presented in this paper allow for a proper identification of the states

in useful subsets of DEVS models. All the states of a Mealy machine are steady states; we have

introduced Untimed.DEVS to allow a clean specification of transitory states in untimed models,

since they represent those models which can be properly specified in Mealy machines, and thus

providing a clear way to port Mealy machines to a timed formalism such as DEVS. Additionally,

U.B.DEVS models represent the smallest useful subset of timed models whose states can be

properly identified and fault checked. This subset constitutes the first step towards a formal

theory of fault detection techniques for the more general DEVS models.

Aside from the definition of the before mentioned subsets, the importance of formally defining

the concepts of distinguishing, homing and synchronizing sequences lies in the possibility to

check random sequences for a given DEVS model in order to determine whether they belong to

 43

any of the three relevant categories. A method to obtain such sequences could then be designed

so as to provide a mechanical, automatic means to find relevant sequences of timed input events.

The process of obtaining new sequences can be also automated since it is straightforward to find

the highest value of the time advance function ta in a model, and then design the proper tester for

every possible slow timed input sequence that the model accepts. This ensures the plausibility to

automate a stage of the conformance testing procedure.

Future work involves expanding the U.B.DEVS subset, p

ossibly up to clearly stating the

well as

6 References

 1. Alur, Rajeev and Dill, David, Theoretical Computer Science 126(2), 183 (1994).
Ref Type: Journal

ry and N.Giambiasi, Formal Verification with Timed Automata and DEVS
Models: a case study, Rosario, Argentina, 2005).

 3. H.P.Da chy of formalisms, 2007).

d W.
Hamming and Edward A. Feigenbaum (McGraw-Hill Higher Education, 1980).

 5. M.Kric ,
(Springer, 2005).

 6. Krichen, Moez and Tripakis, Stavros, Verimag, 2005.

Testing Finite State Machines - A
Survey, 1996).

 8. E.Moo periments on Sequential Machines,(Princeton U., 1956).

omputer
Science 254(1--2), (2001).

Ref Type: Journal

broadest subset of DEVS models that can be fault checked with traditional techniques, as

targeting the problem of fault detection in coupled DEVS models.

 2. H.P.Dachar

charry and N.Giambiasi, DEVS based timed hierar

 4. Z.Kohavi, Switching and Finite Automata Theory: Computer Science Series, Richar

hen and S.Tripakis, State identification problems for timed automata, LNCS

 7. D.Lee and M.Yannakakis, Principles and Methods of

re, Gedanken Ex

 9. Springintveld, Jan, Vaandrager, Frits, and D'Argenio, Pedro R., Theoretical C

44

 12. B.P.Zeigler, H.Praehofer, and T.G.Kim, Theory of Modeling and Simulation, Second

7 Contents

System State Identification using DEVS .. 1
on ... 1

2 The DEVS formalism ... 4
2.1 Atomic DEVS Models ... 4

2.3
2.4

3

4.4

5
6
7 .. 44

 10. Tripakis, Stavros and Yovine, Sergio, Formal Methods in System Design 18(1),
(2001).

Ref Type: Journal

 11. B.P.Zeigler and H.Praehofer, Theory of Modeling and Simulation,(Academic Press,
2000).

Edition,(Academic Press, 2000).

1 Introducti

2.2 DEVS-atomic-simulator ... 6
 Execution fragments and traces of DEVS Models ... 6
 DEVS based Hierarchy formalisms ... 10

2.5 Formalism hierarchy .. 10
Extending Mealy Machines Fault Detection Techniques To U.DEVS 15

3.1 Minimality - State Equivalence .. 17
3.2 Experiments on U.B.DEVS models ... 22
3.3 Sequence Finding ... 26

4 Simple Bipartite DEVS (S.B.DEVS) .. 28
4.1 Minimization procedure for S.B.DEVS models ... 30
4.2 Fault detection techniques on S.B.DEVS models .. 33
4.3 Experiments on S.B.DEVS models .. 34

 Sequence Finding ... 36
4.5 Testing procedure ... 38
4.6 Now, we need to define a testing procedure to test U.B.DEVS and S.B.DEVS models.
For the first type of models the procedure is straightforward since the inputting process is
independent of time. .. 38

Conclusions And Future Work ... 42
References ... 43
Contents ..

	1 Introduction
	2 The DEVS formalism
	2.1 Atomic DEVS Models
	2.2 DEVS-atomic-simulator
	2.3 Execution fragments and traces of DEVS Models
	2.4 DEVS based Hierarchy formalisms
	2.5 Formalism hierarchy

	3 Extending Mealy Machines Fault Detection Techniques To U.DEVS
	3.1 Minimality - State Equivalence
	3.2 Experiments on U.B.DEVS models
	3.3 Sequence Finding

	4 Simple Bipartite DEVS (S.B.DEVS)
	4.1 Minimization procedure for S.B.DEVS models
	4.2 Fault detection techniques on S.B.DEVS models
	4.3 Experiments on S.B.DEVS models
	4.4 Sequence Finding
	4.5 Testing procedure
	4.6 Now, we need to define a testing procedure to test U.B.DEVS and S.B.DEVS models. For the first type of models the procedure is straightforward since the inputting process is independent of time.

	5 Conclusions And Future Work
	6 References
	7 Contents

