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Abstract. In this paper we present a decision procedure for sets, binary
relations and partial functions. The language accepted by the decision
procedure includes untyped, hereditarily finite sets, where some of their
elements can be variables, and basically all the classic set and relational
operators used in formal languages such as B and Z. Partial functions are
encoded as binary relations which in turn are just sets of ordered pairs.
Sets are first-class entities in the language, thus they are not encoded in
lower level theories. The decision procedure exploits set unification and
set constraint solving as primitive features. The procedure is proved to be
sound, complete and terminating. A Prolog implementation is presented.

1 Introduction

Set theory is a widely accepted formalism for software specification. Used as a
modeling language (e.g. Z and B) it usually includes binary relations and partial
functions seen as sets of ordered pairs®. On the other hand, formal verification
tools, such as SMT solvers and theorem provers, support sets but usually by
encoding them in other theories (e.g. arrays or predicate calculus). These encod-
ings may lose or complicate specific semantic properties of set theory. Therefore,
we think that a decision procedure for set theory (DPST) may complement these
approaches if sets are first-class entities of the language.

The first step in defining a DPST is to precisely define the class of sets to be
dealt with. Formal set theory traditionally focuses on sets as the only entities in
the domain of discourse (pure sets). We extend this view by allowing arbitrary
non-set entities as first-class citizens of the language (hybrid sets). In particular,
our sets will allow ordered pairs as elements to accommodate binary relations.
Furthermore, we restrict our attention to unbounded finite sets. Hence, sets can
contain a finite number of elements, which can be either non-set elements—flat
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sets—or other finite sets—mnested sets. This class of sets is commonly indicated
as hereditarily finite hybrid sets.

Another aspect of the sets to be considered is whether their elements can con-
tain variables or not. For example, if z is a variable then {x} is a set that actually
represents as many different sets as values x can take. The DPST presented here
works with sets whose elements can be either constant terms, variables or com-
pound terms possibly containing variables. Furthermore, a part of any set can
be left underspecified (i.e. this part can contain any number of elements).

The third issue to be considered is the family of operators of the language.
Since we want a DPST for plain sets but also for binary relations and partial
functions, then the supported operators include all the classic set operators (such
as union, intersection, etc.) as well as widely used relational operators (such as
domain, range, relational image, etc.).

Our DPST extends the decision procedure presented in [1]. This procedure is
able to prove satisfiability of (quantifier-free) formulas of a constraint language
over the universe of hereditarily finite sets. Here we consider the extension of
this language, and its relevant decision procedure, to binary relations.

Whilst binary relations can be easily represented in the set constraint lan-
guage of [1] as sets of pairs, there are basic operations on relations that cannot
be expressed directly in this language, such as projection onto the domain/range
of a relation and relational composition. Cristid et al. [2] showed how these op-
erations can be implemented as user-defined predicates by exploiting the full
power, e.g. recursive definitions, of the general-purpose logic programming lan-
guage where the set constraint language is embedded. When binary relations
are completely specified this approach turns out to be quite satisfactory. On
the other hand, when some elements of a relation or (part of) the relation itself
are left unspecified—i.e., they are represented by variables—then this approach
presents major flaws. For example, if the predicate ran(R, A), which is intended
to hold if A is the range of the binary relation R, is implemented through re-
cursion on its first argument, then solving a goal such as ran(R,{1}), where
R is a variable, will generate infinitely many distinct solutions R = {(z1,1)},
R = {(z1,1), (z2,1)}, ..., where z; are variables. Given an unsatisfiable formula,
such as ran(R,{1}) A ran(R, {}), then the computation will loop forever.

Thus, support for binary relations must be added as new primitive features
to the base language and its solver extended accordingly. An extension of the
set constraint language of [1] to support partial functions is described in [3]. The
resulting solver, however, is incomplete: if it returns false the input formula is
surely unsatisfiable, whereas if it returns a formula in an irreducible form then
we cannot conclude that the input formula is surely satisfiable. For example, the
following formula (where dom(R, A) holds if A is the domain of R and A || B
holds if A and B are disjoint sets)*

ran(R,{1}) A ran(S, {1,2}) A dom(R, A) A dom(S,A) AR || S

4 In the rest of the paper we will use R, S, T, ... for relations; f,g,h, ... for functions;
A,B,C,... for sets; t,u,v,w,x,y, z,... for any other object.



is unsatisfiable with respect to the underlying interpretation structure, but the
solver in [3] is not able to prove this fact.

In this paper we show how the proposal in [3] can be extended and sub-
stantively improved in order to: (i) support both binary relations and partial
functions; (i7) provide a complete solver, rather than an incomplete one as in [3].

Dealing with binary relations exhibits some difficulties that are not present
in the case of partial functions. For example, the predicate dom(R, {1}) has just
one solution if R is a partial function—i.e. R = {(1, )}, x variable—, whilst it
has infinitely many solutions if R is just a binary relation. Similar difficulties
arise for the composition of binary relations. Thus, enlarging our domain of dis-
course from partial functions to general binary relations requires a few non-trivial
extensions. Completeness of the solver in [3] is strongly compromised by the pres-
ence in the final formula of irreducible predicates of the form ran(R, {...}) which
make it difficult to check satisfiability of the formula. In this paper we prove that
these predicates are expressible in terms of relational composition, hence they
can be always eliminated. This result, along with the application of a procedure
for removing all inequalities involving set variables borrowed from [1], allows the
solver to generate irreducible formulas whose satisfiability is immediately appar-
ent. The solver for the new language takes the form of a rewrite system acting
on conjunctions of positive and negative primitive predicates. The rewrite rules
reduce the syntactic complexity of these predicates and eliminate inequalities
involving sets, until a fixpoint is reached. The generated formula can be either
false or a disjunction of formulas in a simplified irreducible form, which is proved
to be equisatisfiable with the original formula. The ability to prove that formulas
in this form are surely satisfiable allows us to turn our solver into a DPST.

The proposed DPST is implemented in Prolog, as part of the {log} tool
(pronounced ‘setlog’) [4].

The paper is structured as follows. In Sect. 2, we present the main features
of a set-based language extended to deal with binary relations. The DPST for
this language is described in Sect. 3, by giving the rewrite rules for the solver. In
Sect. 4 we show how our proposal can be further extended to incorporate partial
functions as well. An empirical assessment of the implementation of the DPST,
as part of the {log} tool, is presented in Sect. 5. In Sect. 6 we compare our work
with related proposals. The conclusions of this paper are in Sect. 7.

2 A Set-Based Language with Binary Relations

In this section we describe the syntax and (informal) semantics of our set-based
language, called Lz . For the sake of presentation, we consider first only the case
of binary relations. Then, in Sect. 4, we add support also for partial functions.

Syntax of the language is defined primarily by giving the signature upon
which terms and formulas of the language are built.

Definition 1 (Signature). The signature Xgr of Lgr is a quadruple (F, ¢,
IIy,V) where: F contains the constant {}, the binary function symbol {- | -}



and a set F' of user-defined constant and function symbols, including at least
the binary function symbol (-,-); o is the set of primitive predicate symbols
{=, €, un, ||, set}U{dom, ran, comp, rel}; II; is the set of user-defined predicate
symbols, where Ilc N Iy = {}; V is a denumerable set of variables.

The Ygr-terms are built using symbols in F and V. The (uninterpreted)
symbol (-,-) is used to construct ordered pairs: (¢,u), where ¢t and u are XYpg-
terms, represents the pair with components ¢ and u. {} and {- | -} are interpreted
symbols, used to construct sets: {} represents the empty set; {¢ | A} represents
the set composed of the elements of the set A plus the element ¢, i.e. {t} U A.
Terms built using {} and {- | -} are called set terms.

Definition 2 (Set terms). A set term is a Xpg-term of the form {} or {t | A}
where t is any term built over VU F and A is a variable in V or a set term.

We use the notation {t1,to,...,t, | A} as a shorthand for {¢; | {t2 | --- {tn |
A}---}} and the notation {¢1,ta,...,t,} as a shorthand for {t1,ts,...,t, | {}}.
Observe that one can write terms representing sets which are nested at any
level. Also, observe that the Lzr language is in fact parametric with respect
to a constraint domain based on the set of function symbols F’ and the set of
predicate symbols Ily; this should allow us to easily accommodate for sets of
elements of any type, e.g. sets of integers.

Ezample 1. The following terms are all set terms (assume that 1,2,3 € F'):
{1, 2}, denoting a set composed of two elements, 1 and 2; {z, {{},{1}},{1,2,3}},
denoting a set containing nested sets; {z,y | A}, where z, y and A are variables,
denoting a partially specified set containing one or two elements, depending on
whether x is equal to y or not, and a, possibly empty, unknown part A.

Binary relations are just sets of ordered pairs. Therefore, Lz does not in-
troduce any special symbol to represent binary relations, since they can be con-
veniently represented as sets.

Definition 3 (Binary relations). Let z;, y;, i = 1,...,n, be Xpgr-terms. A
set term R represents a binary relation if R has one of the following forms: {},

or {(351,3/1), (1'23 y2)7 cee (xrwyn)}’ or {(1'1, yl)v (:C27y2)a R (Inayn) ‘ S}: and S
is either a variable or a set term representing a binary relation.

Forcing a set R to represent a binary relation will be obtained at run-time
by including the predicate rel(R).

Definition 4 (BR-constraints). Let t,u be Xggr-terms, A, B,C be variables
or set terms, R, S, T be variables or set terms representing binary relations. A

BR-constraint is an atomic predicate of one of the following forms:t =u, t € A,
un(A, B,C), A || B, set(t), dom(R, A), ran(R, A), comp(R,S,T), rel(A).

When useful, we will refer to a BR-constraint based on a predicate sym-
bol p simply as a p-constraint. The interpretation of symbols in Y is given



according to the interpretation structure Apr = (S, (-)¥), where S is the inter-
pretation domain and (-)¢ is its associated interpretation function. In particular,
the predicate symbols in 1o are interpreted as in their intuitive meaning. Let
a denote the interpretation of the symbol a;, i.e. (a)S. Then: t =5 @ (equality)
iff £ is identical to @ in S; £ €5 A (membership) iff there exists an element in A
identical to  in S; un®(A, B, C) (union) iff C =% AU B; A ||° B (disjointness)
iff AnB =S {}; dom®(R,A) (domain) iff A =5 dom R; ranS(R, A) (range)
iff A =S ranR; comp®(R,S,T) (relational composition) iff T =5 R g § =°
{(z,2) : Fy((z,y) €5 RA(y,2) €5 8)}; setS(t) iff T is a set; rel®(f) iff £ is a
binary relation (notice that rel implies set).

Equality between sets is regulated by the standard extensionality axiom,
which has been proved in [5] to be equivalent for hereditarily finite sets to the
following equational axioms [1]: (4b) {x | {z | A}} = {= | 4}; (C¥) {z | {y |
A}y ={y | {= | A}}. Axiom (AD) states that duplicates in a set do not matter
(Absorption property). Axiom (C¥) states that the order of elements in a set is
irrelevant ( Commutativity on the left). These two properties capture the intuitive
idea that, for instance, the set terms {1,2}, {2,1}, and {1,2,1} all denote the
same set {1,2}. Conversely, equality between non-sets is regulated by standard
equality axioms. In particular, equality between ordered pairs (i.e. terms built
using the function symbol (-, -)) calls into play standard (syntactic) unification.

The admissible formulas that our DPST can deal with are defined as follows.

Definition 5 (Lgr-formulas). A Lgr-formula is a conjunction of BR-cons-
traints and negations of the BR-constraints = and € (denoted # and ¢, respec-
tively).

Ezample 2. The following formula is an admissible Lgg-formula: 1 € AA1 ¢
BAun(A, B,C)ANC = {z}. Tts informal interpretation is: the set C' is the union
between sets A and B; A must contain 1 and B must not; and C' must be a
singleton set. Note that all variables in a Lzr-formula are intended as implicitly
existentially quantified.

A critical issue in the definition of Lzr is how “rich” the set of primitive
predicate symbols 1o must be. Minimizing the number of predicate symbols
in IIc has the advantage of simplifying the language and possibly its imple-
mentation. On the other hand, there could be other basic set operators that
cannot be expressed as Lpgr-formulas if II¢ is too small. Dovier et al. [1] proved
that {=, €, un, ||, set} is enough to define most other useful set-theoretical pred-
icates, such as C, diff and inters®. Here, we extend this result to binary re-
lations by showing that the new extended collection of primitive predicates in
YR is enough to define several relational operators widely used in formal no-
tations such as B [6] and Z [7]. Among others, these notations define: domain
anti-restriction as A 9 R = {(z,y) : (z,y) € RAy ¢ A}; relational image as
R[A] ={y : 3z((z,y) € RAx € A)}; and overriding between R, S € X < Y as
ReS=(domS<9R)US.

5 diff (A, B, C) holds iff C = A\ B; and inters(A, B,C) holds iff C = AN B.



Theorem 1. Predicates based on predicate symbols: dres (domain restriction,
<), rres (range restriction, > ), dares (domain anti-restriction, <), rares (range
anti-restriction, &), rimg (relational image, -[-]) and oplus (overriding, ®) can
be replaced by equivalent Lpr-formulas involving predicates based on C, ||, un,
diff , dom, and ran, possibly adding new fresh variables.

Proof (proofs of theorems in [8]). The following equivalences hold:

dres(A,R,S) <= un(S,T,R) A dom(S,B)AB C AANdom(T,C)NA| C
rres(A, R, S) <= un(S,T,R) Aran(S,B)AB C AANran(T,C)NA | C
dares(A, R, S) <= dres(A,R,T) A diff (R, T, S)
rares(B, R, S) <= rres(B,R,T) A diff (R, T, S)
rimg(A, R, B) <= dres(A,R,T) A ran(T, B)
oplus(R, S, T) <= dom(S, A) A dares(A, R, Q) N un(Q,S,T)

Thanks to Theorem 1, the language that our DPST can deal with is much
richer than the language described in Definition 1. In fact, all the relational
predicates mentioned in Theorem 1 can be easily made available by (automat-
ically) replacing them with the corresponding equivalent £zgr-formulas, before
calling the solver. On the other hand, the ability to express these predicates as
Lpr-formulas allows us to not consider them in the definition of the DPST for
our language and to focus our attention only on the BR-constraints.

Remark 1. Selecting an adequate collection of primitive (as opposed to user-
defined) predicates for dealing with binary relations is a non-trivial original
result of this paper. It is worth noting, however, that the proposed collection is
not the only possible choice. Proving that it is the minimal one, as well as com-
paring our choice with other possible choices, in terms of, e.g., expressive power,
completeness, effectiveness, and efficiency, is out of the scope of the present work.

3 A Decision Procedure for Sets and Binary Relations

A DPST for a subset of the language Lz which includes only primitive predi-
cates based on =, €, un, ||, and set is proposed in [1]. In particular, the proposed
procedure exploits set unification [9] to deal with equalities between set terms.

In this section we extend the DPST of [1] to Lz thus supporting binary
relations; in Sect. 4 this language and the DPST are further extended to accom-
modate for partial functions.

3.1 The Solver

The global organization of the solver for Lz, called SAT g, is shown in Algo-
rithm 1. SAT R uses three procedures: sort_infer, remove_neq and STEP.
sort_infer is used to automatically add the BR-constraints based on set and
rel to the input formula C to force variables to be sets or binary relations. The
added constraints for a variable X are deduced from the form of the terms or



constraints where X occurs. When X is expected to represent a binary rela-
tion, rel(X) is automatically added. For example, if C' contains dom(R, A) then
sort_infer(C) will add rel(R) A set(A) to C. The procedure remove_neq deals
with the elimination of #-constraints involving set variables. Its motivation and
definition will be made evident later in this section.

STEP applies specialized rewriting procedures to the current formula C
and returns the modified formula. Each rewriting procedure applies a few non-
deterministic rewrite rules—see next subsection—which reduce the syntactic
complexity of the BR-constraints of one kind. The execution of STEP is iterated
until a fixpoint is reached—i.e., the formula cannot be simplified any further.
Notice that STEP returns false whenever (at least) one of the procedures in it
rewrites C to false. Moreover, STEP(false) returns false.

Algorithm 1 The SAT zr solver. C' is the input formula.
C' < sort_infer(C);
repeat

C' + C;
repeat
C" « C;
C + STEP(C);
until C = C";
C + remove_neq(C)
until C = C’;
return C

When no rewrite rule applies to the considered Lgg-formula then the corre-
sponding rewriting procedure terminates immediately and the formula remains
unchanged. Since no other rewriting procedure deals with the same kind of BR-
constraints, the irreducible atomic formulas will be returned as part of the answer
computed by SAT pr. The following definition precisely characterizes the form
of the formulas returned by SAT zx.

Definition 6 (Solved form). Let C be a Lgr-formula and let X and X; be
variables and t a term. A literal ¢ of C is in solved form if it has one of the
following forms:

(i) X =t and neither t nor C'\ {c} contain X;
(1) X # t and X does not occur neither in t nor as an argument of any
predicate p(---), p € {un, dom, ran, comp}, in C;
(iii) t ¢ X and X does not occur in t;
(iv) un(X1, Xo, X3), where X1 and Xy are distinct variables, and fori=1,2,3
there are no inequalities of the form X; #t in C;
(v) X1 || X2, where X1 and Xo are distinct variables;
(vi) dom(X1,Xs), where X1 and Xo are distinct variables, and there are no
inequalities of the form X; #t,i1=1,2, in C;



(vit) ran(Xy, X2), where X1 and Xy are distinct variables, and there are no
inequalities of the form X; #1t,i=1,2, in C;
(viii) comp(Xi,t,Xs) and comp(t, X1, Xs), where t is not the empty set, and
there are no inequalities of the form X; #t,i=1,2, in C;
(iz) set(X), rel(X).

A Lgr-formula C is in solved form if it is true or if all its literals are simulta-
neously in solved form.

The solved form literals allow trivial verification of satisfiability.

Theorem 2 (Satisfiability of solved form). Any Lpg-formula in solved
form is satisfiable w.r.t. the underlying interpretation structure Agr.

Proof (sketch; proofs of theorems in [8]). Basically, the proof of this theorem uses
the fact that, given a Lggr-formula in solved form C, we are able to guarantee
the existence of a successful assignment of values to all variables of C' using
pure sets only (in particular, the empty set for all set variables), with the only
exception of the variables z occurring in terms of the form z = ¢ in C.

Notice that the result of Theorem 2 would no longer be true for predicates
based on dom, ran, and comp if we allowed the presence of literals of the form
X; #t in C. These literals are eliminated by remove_neq, which is explained in
the next subsection.

Given a Lpgr-formula C, SAT pr non-deterministically transforms C to ei-
ther false or to a finite collection of Lzr-formulas in solved form. According to
Theorem 2 a Lgr-formula in solved form is always satisfiable. Moreover, as we
will see in the next subsection, the disjunction of the formulas in solved form
generated by SAT gr preserves the set of solutions of the original formula C.
We will come back to these results in the next subsection after having presented
in more detail some of the rewrite rules used by SAT zx.

3.2 Rewriting Procedures

In what follows, we present some key rewrite rules of our DPST; the complete
list is in [4]. The rewrite rules are given as P — & where P is a BR-constraint
and & is a disjunction of BR-constraints; if ¢ has more than one disjunct then
the rule is non-deterministic. 7z denotes the set of all Xzr-terms; and 72%97%'5 the
subset of set terms. Variable names n and N (possibly with sub and superscripts)
are used to denote fresh variables. A Z {} means that term A is not the term
denoting the empty set; &, for any name z, is a shorthand for x € V.

Fig. 1 lists the rules for dealing with =-constraints, as presented in [1]. These
rules implement a set unification algorithm which embeds the equational axioms
(Ab) and (CY¢) shown above. In particular, rules (6) and (7) handle equalities
between two set terms.



If @y, t,ti,ui - Ter; A, B : TEet UV; n,m > 0, then:

T =1 — true (1)
t=i s di=tiftgV (2)
2= {to,...,tn | A} — false, if & € vars(to,...,tn) (3)
T ={to,...,tn | T} —

(4)

= {to,...,tn | N}, if & ¢ vars(to,...,tn)

& = t — substitute ¢ by & in the formula

5
if rules (3) and (4) do not apply 5)
{z| A} ={y| B} =
r=yANA=B
ve=yA{z| A} =B (6)
Ve=yANA={y|B}
VA={y| N} A{z| N} = B, if rule (7) does not apply
{to,...stm | T} = {uo,...,un | T} —
t():uj'/\{tl,...,tm‘i‘}:{’U/O,..‘7'U/j717u]‘+17...,un‘i}
\/tozuj/\{to,...,tm|X}:{uo,...,uj,1,uj+1,...,un|:'E} (7)

\/tozuj/\{t17...,tm|i}:{uO,...7un‘i'}
ViE = {to| NYA{tr, . tm | N} = {uo,. .., un | N}

Fig. 1. Rewrite rules for equality

Fig. 2 lists the rules dealing with the elimination of ran-constraints. Rule
(rVE) deals with the case in which the range of R is {z1,...,z, | B}, n > 1.
The result of repeatedly applying this rule is that R is rewritten as follows:

(By x {z1}U---UB, x {z,})) UQ

where By, ..., B, are new fresh variables, and ran @ = B. Rule (ro) deals with
the case in which the range is a singleton set and removes the ran-constraint by
replacing it with an equivalent conjunction of comp and #-constraints.

Fig. 3 lists three of the six rules for dom-constraints. As can be seen they
are symmetric to those of ran-constraints, as are also the rules not shown here.
It is worth noting that the last two rules in Figures 2 and 3 are crucial to prove
satisfiability of the solved form (i.e. Theorem 2).

The rules in Fig. 4 deal with comp-constraints. In these rules, un(A, B, C, D)
is a shorthand for un(A, B, N) A un(N,C, D). Rules (¢ V) and (cV7T) are based



IFRA:T5SUV; A#{}; 2,y : Ter then:

ran(R,R) — R = {} (rl)
ran(R,{}) = R = {} (r{})
ran({}, A) - A= {} (r{}"
ran({(z,y) | R}, A) = A= {y | Ni} A ran(R, N1) (r¥)
ran(R, {y | B}) = un(N1, N2, R) A ran(Nu, {y}) A ran(N2, A) (rvh)
ran(R, {y})} = comp(R, {(y.y)}, R) A R # {} (ro)
Fig. 2. Rewrite rules for ran-constraints
If R,A,B:Tget UV; B#{}; z,y: Ter then:
dom({(z,y) | R}, A) = A= {x [ N1} A dom(R, N1) (dp)
dom(R,{x | B}) — un(N1, N2, R) A dom(Nu,{z}) A dom(Na, B) (dVvF)
dom(R, {x})} = comp({(z,2)}, R, R) AR # {} (do)

Fig. 3. Rewrite rules for dom-constraints




on the following equality:
(QUR)s(SUT)=(QsS)U(QsT)U(RsS)U(R3T)

Intuitively, this equality states that the composition of two “big” relations can
be computed by computing the union of the composition of “smaller” relations.

IfQ,R,S,T:TEUV; ti,ui, x, 2 : Ter; h*k > 1 then:

comp({},5,T) = T ={} (cR{})
comp(R, {}7T) —-T= {} (CS{})
comp(R, S, {}) — ran(R, N1), dom(S, N2), N1 || N2 (cT{})

comp(R, S,{(z,2) | Q}) —
R={(z,n) | Ni} NS ={(n,z) | N2}
A comp({(z,n)}, N2, N3) A comp(N1,{(n,2)}, N4)
A comp(N1, N2, N5) A un(Ns, Ny, N5, {(z, 2) | Q})

comp({(z,u)}, {(t,2)},T) —
u=tANT={(x,2)} Vu#tAT ={}

comp({(x1,t1),... (zn,tn) | R}, {(u1, 1), ... (un,2zx) | S},T) —

h k
/\ /\ Comp({(i'i,ti)}a {(uj7 Zj)}vNU)

i=1j=1
h
A /\ comp({(x:,t:)}, S, NY)

i=1
k

N /\ comp(R,{(Uj,Zj)},NJR)

j=1
A comp(R, S,NRS)
Aun(Ni,..., N, N¥, ..., Ni NE O NG NS T)

Fig. 4. Rewrite rules for comp-constraints

Some of the rewrite rules for dom and comp-constraints are the extensions to
binary relations of simpler rules presented in [3] that are correct only for partial
functions (see Fig. 8). In particular, BR-constraints of the form dom(R, A),
where R is a variable and A is a not-empty set, dealt with by rule (dVR), can be
easily rewritten to a finite conjunction of equalities when R represents a partial



function. Conversely, this is no longer true if R represents a binary relation. In
fact, if A is for instance the set {1}, R admits an infinite number of distinct
solutions: R = {(1,y1)}, R={(1,y1), (1, y2)} A y1 # y2, etc.

The remaining primitive constraint of Lzg is rel. The rewrite rules for pro-
cessing this constraint are listed in Fig. 5. As can be seen, they are straightfor-
ward. Rule (+» }) states the obvious fact that the empty set is a binary relation;
whereas rule (< ) recursively checks that each element in R is an ordered pair.

If R: 7};;7? UV; t: Ter then:
rel({}) — true («{})
rel({t | R}) — t = (n1,n2) A rel(R) (< P)

Fig. 5. Rewrite rules for rel-constraints

The Lpr-formula returned by repeatedly applying the rewrite rules (i.e., the
result of executing the inner loop of Algorithm 1) is not necessarily a formula
in solved form (see Def. 6). Hence, it is not guaranteed to be satisfiable. For
example, the Lzr-formula

un(A,B,C)NA || C ANdom(R, A) AR # {}

cannot be further rewritten by any of the rewrite rules considered above. Nev-
ertheless, it is clearly unsatisfiable (the only solution for un(A, B,C)A A || C is
A= {} ANC = {}, whereas A = {} is not a solution for dom(R, A) A R # {}).

In order to guarantee that SAT gr returns either false or Lggr-formulas in
solved form, we still need to remove all inequalities of the form X # ¢, where
X is a variable, occurring as an argument of BR-constraints based on either
un, dom, ran, or comp. This is performed (see Algorithm 1) by executing the
procedure remove_neq, which applies the rewrite rules described by the generic
rule scheme of Fig. 6. Basically, these rules exploit extensionality to state that
nonequal sets can be distinguished by asserting that a fresh element belongs to
one but not to the other.

As an example, the Lgr-formula un(A, B,C) A A # D is rewritten to either
un(A,B,C)An € AAn ¢ D or un(A,B,C)An ¢ AAn € D. Notice that, in the
special case in which ¢ is the empty set, the second disjunct of rule (E#) is surely
false, and the rule comes down to simply add the BR-constraint n € X (i.e. X =
{n | A}) to C. Thus, for example, given the Lgg-formula comp(R, {(y,y)}, R) A
R # {}, the application of rule (E#) replaces R # {} with R = {t | S} which
will lead to solve the BR-constraint comp({t | S}, {(y,v)},{t | S}).

Termination of SATgr is stated by the following theorem.



Let P be p(Xi,...,Xn), p € {un,dom, ran, comp}, n = 2,3; let X be X;, i =
1,2, 3; let ¢t be a term

PANX#t— (PAneXAng¢t)V(PAnetAn¢ X) (E#)

Fig. 6. Rule scheme for #-constraint elimination rules

Theorem 3 (Termination). The SATpr procedure can be implemented in
such a way it terminates for every input Lgg-formula C.

Termination of SAT g and the finiteness of the number of non-deterministic
choices generated during its computation guarantee the finiteness of the number
of Lpr-formulas non-deterministically returned by SAT ggr. Therefore, SATzr
applied to a Lgr-formula C' always terminates, returning either false or a (finite)
collection of Lgr-formulas in solved form.

The following theorem ensures that the collection of Lzg-formulas in solved
form generated by SAT gr preserves the set of solutions of the input formula.

Theorem 4 (Equisatisfiability). Let C be a Lgr-formula and C1,Cs,...,Cy,
be the collection of Lgr-formulas in solved form returned by SATpr(C). Then
C1VCyV---VC, is equisatisfiable to C, that is, every possible solution® of C' is
a solution of one of the Lrgr-formulas returned by SAT pr(C) and, vice versa,
every solution of one of these formulas is a solution for C'.

Thanks to Theorems 2, 3 and 4 we can conclude that, given a Lpr-formula
C, C is satisfiable with respect to the intended interpretation structure if and
only if there is a non-deterministic choice in SATgr(C) that returns a Lpg-
formula in solved form—i.e. different from false. Hence, SAT g is a decision
procedure for testing satisfiability of Lzr-formulas.

4 A Decision Procedure for Partial Functions

A binary relation is a partial function if and only if no two ordered pairs share
the same first component. Hence, the definition of a set term representing a
binary relation (Def. 3) can be adapted to partial functions as follows:

Definition 7 (Partial functions). Let z;, y;, ¢ = 1,...,n, be Xgr-terms.
A set term [ represents a partial function if f has one of the forms: {}, or
{(331, y1)7 (x2,y2), R (xnvyn)}) or {(xlvyl)a (332,312)7 ) (l‘n, yn) ‘ 9}7 and g 1s
either a variable or a set term representing a partial function, and the constraints
x; # x4, ©; € domg, hold for alli,j =1,...,n, 1 # j.

5 More precisely, each solution of C' expanded to the variables occurring in C; but not
in C, so to account for the possible fresh variables introduced into C;.



The addition of partial functions is a substantive extension of the language
Lpr since distinguishing the relations that are partial functions cannot be
achieved without an additional primitive predicate. Thus we add the symbol
pfun to IIc, with the obvious meaning: pfun(t) holds iff ¢ is a partial function
(notice that pfun implies rel). Users should add a pfun-constraint for those sets
they want to represent partial functions. The rewrite rules for pfun-constraints
are listed in Fig. 7. As can be seen, rules (++{}) and (-++}) are similar to those
of Fig. 5 for rel-constraints, but (-»¥) clearly imposes the notion of function.

If f: 7—557%5 UV;t: Ter then:
pfun({}) — true (+{})
pfun({t | f}) = t = (n1,n2) A dom(f, N) An1 & N A pfun(f) (-»X)

Fig. 7. Rewrite rules for pfun-constraints

The new language is called Lpr; the formulas that can be expressed in this
language are the Lpr-formulas extended with pfun atoms. Given that partial
functions are binary relations all the set and relational operators can be applied
to them. In turn, function application (apply) and the identity function over a
given set (id) can be replaced as we did in Theorem 1 due to:

Theorem 5. The following equivalences hold:

apply(f, z,y) < (x,y) € f A pfun(f)
id(A, f) < dom(f, A) A ran(f, A) A comp(f, f, f) A pfun(f)

At the theoretical level, the same rewrite rules can be applied for relations
and partial functions. From a practical point of view, however, it is convenient
to introduce a few new rewrite rules which are specifically devoted to deal with
partial functions. These rules are automatically applied in place of the corre-
sponding ones for binary relations whenever the solver detects that the terms
involved in the BR-constraint at hand are constrained to be partial functions
through pfun-constrains. The overall organization of the solver, however, remains
unchanged (see Algorithm 1). All the rewrite rules specialized for partial func-
tions can be found in [4]. As an example, rule (8) of Fig. 8 replaces (dV) and
(do) of Fig. 3; and rule (9) replaces rule (¢ ¥) of Fig. 4. It is evident that using
the specialized rules allows the rewriting process to be sensibly simplified, hence,
in general, to obtain better performance for the solver.

In contrast to [3], we assume here that the BR-constraints of the form
ran(R, {y | B}) are always eliminated by using rules (rV) and (ro), and that
the #-constraint elimination rules (Fig. 6) are always applied. Thus, the defini-
tion of solved form formula is the same given for binary relations, except for the



If f,9,h, A:TEet UV;x, 2 : Tsr then:

dom(f,{z | A}) Apfun(f) = f ={(z,n) | N} A dom(N, A) A pfun(f) ~ (8)
comp(f,, (2 2) | 1)) = o
f= {($7n) | Nl} NG = {(nvz) | NQ} A Comp(Nhgvh)

Fig. 8. Specialized rewrite rules for dom and comp dealing with partial functions

addition of the BR-constraint pfun(X), X variable. This is enough to guarantee
that the result of Theorem 2 holds for partial functions as well. Moreover, since
pfun is the only new predicate symbol, the termination of the decision procedure
is not modified. Also the formulation of Theorem 4 remains unchanged. Thus
the SAT R solver can be used as a decision procedure also for L£p z-formulas.

5 Empirical Assessment

This section presents the results of an empirical evaluation of the SAT g solver.
SATpr is implemented in Prolog as part of {log} version 4.9.1-20. The empirical
evaluation consists in running {log} on more than 2,400 formulas including sets,
partial functions, binary relations and some of their operators. The objectives of
this evaluation are: a) to asses the efficiency and effectiveness of {log} in solving
set-based formulas; and b) to compare these results with previous versions of
{log} to determine if the decision of including a decision procedure for binary
relations and partial functions as part of its kernel was indeed good.

Around 2,000 of the Lgr-formulas to evaluate {log} have been generated
from 10 different Z specifications, some of which are formalizations of real re-
quirements and, in general, they cover a wide range of applications—totalizing
around 3,000 lines of Z code. We consider that they are a representative sample.

In relation to item a) mentioned above, we want to know: (i) how many
satisfiable and unsatisfiable formulas are found by {log} in a reasonable time;
and (i4) how long it takes to process all the formulas.

Experiments were performed on a 4 core Intel Core™ i5-2410M CPU at
2.30GHz with 4 Gb of main memory, running Linux Ubuntu 12.04 (Precise
Pangolin) 32-bit with kernel 3.2.0-95-generic-pae. {log} 4.9.1-20 over SWI-Prolog
7.2.3 for 1386 was used during the experiments. A 10 seconds timeout was set
as the maximum time that {log} can spend to give an answer for each goal (i.e.
formula to be proved).

Table 1 displays the results of the experiments. The left-hand side of the table
shows the results of running a previous version of {log} (i.e. 4.8.2-2, which does
not implement a decision procedure for Lzg), while the right-hand side shows
the results with the current version. The meaning of the columns is as follows:



GoALS, number of goals processed during the experiment; S, number of goals
detected as satisfiable (in less than 10 seconds); U, number of goals detected as
unsatisfiable (in less than 10 seconds); A, percentage of goals for which {log}
gives a meaningful answer; T, time spent by {log} during the entire execution
(in seconds).

4.8.2-2 4.9.1-20

7, SPECIFICATION GoALs S U A T S U A T

SWPDC 196 99 26 64% 1,402 99 45 73% 711
Plavis 232 151 33 79% 510 156 28 79% 582
Scheduler 205 38 161 9% 125 39 165 99% 108
Security class 36 20 14 94% 31 20 16 100% 14
Bank (1) 100 25 75 100% 28 25 75 100% 44
Bank (3) 104 52 49 9% 64 52 52 100% 46
Lift 17 17 0 100% 6 17 0 100% 6
Launcher vehicle 1,206 23 1,183 100% 370 23 1,183 100% 558
Symbol table 27 11 16 100% 9 11 16 100% 9
Array of sensors 16 8 8 100% 5 8 8 100% 5
TOTALS 2,139 444 1,565 2,552 450 1,588 2,084
BINARY RELATIONS 300 223 60 94% 954

Table 1. Summary of empirical assessment

As can be seen, {log} 4.9.1-20 outperforms 4.8.2-2 in the number of goals for
which {log} gives a meaningful answer (either sat or unsat), although it performs
faster for some experiments and slower for others. However, the total time spent
by the new version in processing all the goals is lower (around 20%) than the
total time spent by the previous version. Note that 4.9.1-20 hits 100% of right
answers in all but three sets of goals while 4.8.2 does it only in 5.

As the formulas considered in these experiments seldom use binary relations,
we have also developed a set of 300 formulas specially tailored to evaluate the
rewrite rules for binary relations. In order to perform an evaluation as objec-
tive as possible, we took as base formulas the standard partitions proposed by
the Test Template Framework (TTF) [10] for the relational operators of the Z
notation. The standard partitions of the TTF are used in test case generation
applications to generate test cases to exercise the implementation of the corre-
sponding operators. Due to space limits, we can only show the net results of
these experiments in the last row of Table 1. A comparison with version 4.8.2-2
is not possible as this version does not implement rules for binary relations. As
can be seen, {log} 4.9.1-20 solves 94% of the goals that fire the rewrite rules
for binary relations. A detailed description of these experiments and the related
results can be downloaded from [4].

The experimental results show that completing the solver for binary relations
and partial functions has been beneficial also from a practical point of view.



6 Discussion and Similar Approaches

The decidability issue for logic languages involving set operators and, possibly,
relational operators, has been addressed both in the so-called Computable Set
Theory (CST) field ([11] is a general survey), and in other more collateral fields
such as Description Logics (see e.g. [12]). Work in CST has identified increasingly
larger classes of computable formulas of suitable sub-theories of Zermelo-Fraenkel
set theory for which satisfiability is decidable. It is of particular relevance to the
DPST presented here, the work by Cantone et al. [13,14], where they demon-
strate that there is a decision procedure for a language similar to Lgg. Further
extensions of the classes of computable formulas have been also considered, e.g.
[15,16]. Hence, the decidability result presented in this paper is for the most
part not new, although Lzx is not exactly the same language studied by other
authors (e.g. the comp-constraint is not considered by others, at our knowl-
edge). However, all the mentioned related works are mainly concerned with the
decidability result in itself; no, or very little, concern is devoted to computing
solutions and to providing an effective implementation of these results.

A number of proposals have been developed in the context of constraint
programmang that consider more restricted forms of set constraints but equipped
with more efficient constraint solving techniques, e.g. [17-19]. However, the core
language considered here [1] allows more general forms of sets to be dealt with:
in particular, elements can be of any type, possibly other sets, and possibly
unknown (e.g., {x,{a,1}}). This has proved crucial to support the extensions
described in this paper, where sets of pairs are naturally used to represent binary
relations and partial functions.

Regarding the more specific problem of dealing with relations or partial func-
tions, only very few works have addressed this problem in the context of con-
straint programming. For instance, the Conjunto language [18] provides relation
variables where the domain and the range are limited to completely specified
finite sets. Map variables where the domain and range of the mapping can be
also finite set variables are introduced in CP(Map) [20]. All these proposals,
however, do not consider the more general case of partially specified relations—
where some elements of the domain or the range can be left unknown—which, on
the contrary, are essential in our proposal. Moreover, the collection of primitive
constraints on relation/map variables they provide is usually quite restricted.

The problem of deciding the satisfiability of formulas involving sets has also
been approached by the formal verification community. Proof assistants [21-23]
normally encode (typed) sets as predicates or as functions from a type onto the
Boolean type. In this way, set operators are expressed in logical terms and thus a
set formula becomes a quantified predicate. Theorem provers also support (total)
functions, usually, as a primitive type [21,22]. In this context, functions are not
expressed in terms of set theory. Theorems provers normally include extensive
theorem libraries that are used by proving strategies.

Besides, SMT solvers provide support for sets by encoding them into other
theories such as arrays or uninterpreted functions. As far as we know there is no
SMT solver providing a decision procedure for sets, binary relations and partial



functions where all of them are first-class entities. Kroning et al. [24] recognized
the need of a solver for finite sets. This solver would be included in SMT solvers
and would provide a SMT-LIB compatible interface. De Moura and Bjgrner [25]
show how some set operators can be defined over a very general theory of ar-
rays. Proof assistants usually interact with SMT solvers. In particular, there are
works showing how set theories supported by proof assistants can be encoded in
different automated provers [26,27]. In some of these approaches, set formulas
are flatten to the set membership level [26]. The Alloy analyzer [28] can find so-
lutions to formulas involving binary relations but only if they are bound to finite
domains. In fact, this tool transforms the formula into a SAT problem where all
possible relations are represented. We believe that the approach presented here
would be complementary to these other works since it takes full advantage of
the semantics of sets, as described by a suitable set theory.

7 Conclusions

In this paper we have shown how to extend the decision procedure for hered-
itarily finite sets presented in [1] by adding to it binary relations and partial
functions as first-class citizens of the language. Since binary relations and par-
tial functions can be viewed as sets, all facilities for set manipulation offered in
[1] are immediately available to manipulate relations and partial functions as
well. We have added to the language a (limited) number of new primitive con-
straints, specifically devoted to deal with relations and partial functions and we
have provided sound, complete and terminating rewriting procedures for them.
We have also shown that basically all the classic set and relational operators
widely used in formal notations such as B and Z are easily added to the base
language by defining them as admissible formulas of the language itself. The
resulting solver—implemented in Prolog—can be used as an effective decision
procedure for sets, binary relations and partial functions.

Investigating the integration of our decision procedure into mainstream SMT
solvers, such as CVC4, is a main goal of our future research. In this regard, the
fact that Lgr is parametric with respect to an arbitrary set of function and
predicate symbols should allow us to easily combine our language with other
existing theories. In particular, following the approach given in [29], we plan
to extend our language and its relevant decision procedure to allow sets to be
combined with integers in the presence of a cardinality operator, as proposed for
instance in [30] and [31]. Another line of investigation is to extend the DPST as
to allow for the definition of functions as intentional sets.
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