
Under consideration for publication in Theory and Practice of Logic Programming 1

Adding Partial Functions to Constraint Logic
Programming with Sets

MAXIMILIANO CRISTIÁ

CIFASIS and UNR, Rosario, Argentina

(e-mail: cristia@cifasis-conicet.gov.ar)

GIANFRANCO ROSSI

Università degli Studi di Parma, Parma, Italy

(e-mail: gianfranco.rossi@unipr.it)

CLAUDIA FRYDMAN

Aix Marseille Univ., CNRS, ENSAM, Univ. de Toulon, LSIS UMR 7296, France
(e-mail: claudia.frydman@lsis.org)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Partial functions are common abstractions in formal specification notations such as Z,
B and Alloy. Conversely, executable programming languages usually provide little or no
support for them. In this paper we propose to add partial functions as a primitive feature
to a Constraint Logic Programming (CLP) language, namely {log}. Although partial
functions could be programmed on top of {log}, providing them as first-class citizens adds
valuable flexibility and generality to the form of set-theoretic formulas that the language
can safely deal with. In particular, the paper shows how the {log} constraint solver is
naturally extended in order to accommodate for the new primitive constraints dealing
with partial functions. Efficiency of the new version is empirically assessed by running
a number of non-trivial set-theoretical goals involving partial functions, obtained from
specifications written in Z.

KEYWORDS: CLP, {log}, set theory, partial functions

1 Introduction

Given any two sets, X and Y , a binary relation between X and Y is any subset of

the power set of X × Y , P(X × Y). Partial functions are just a particular kind of

binary relations, in which ordered pairs are restricted to verify the classical notion

of function—i.e. that each element in the domain is mapped to at most one element

in the range—, although they may be undefined for some elements in the domain—

i.e. they are partial. Binary relations are in turn just sets of ordered pairs. Then, all

relational operators (such as dom, ran, o
9, etc.) can be applied to partial functions

and all set operators can be applied to both of them. Conversely, and this feature

distinguishes partial functions from binary relations, if x is an element in the domain

2 M. Cristiá, G. Rossi and C. Frydman

of a partial function f then f(x) is defined as the element, y, in the range of f such

that (x, y) ∈ f .

The motivation for adding partial functions to specification/programming lan-

guages is primarily to enhance the language’s expressive power. In fact, partial

functions constitute a powerful and convenient data abstraction. As an example,

the relation between the key of a table and the rest of its columns is naturally

modeled as a partial function. Partial functions are common in formal specifica-

tion notations, such as Z (Spivey 1992), B (Abrial 1996) and Alloy (Jackson 2003),

which are mainly used to specify state-based systems (notice that, many concepts

or features of these systems are best represented as partial functions, not as total

functions). Usefulness of partial functions in executable programming languages is

attested by the common presence of library facilities, e.g. the map class of Java and

C++, that support at some extent the partial function abstraction. Availability of

maps, dictionaries or similar associative data structures as primitive components

of some programming languages, such as SETL (Schwartz et al. 1986) or Phyton,

also attests usefulness of the partial function abstraction.

Partial functions (or maps or, more generally, binary relations) can be added

naturally also to CLP languages with sets, as observed for instance in (Gervet 2006).

In particular, in (Cristiá et al. 2013) we have shown how partial functions can be

encoded in the CLP language with sets {log} (pronounced ‘setlog’) (Dovier et al.

2000). Specifically, partial functions can be represented in {log} as sets of pairs,

where each pair (x, y) is represented as a list of two elements [x, y]. Operations on

partial functions can be implemented by user-defined predicates in such a way to

enforce the characteristic properties of partial functions over the corresponding set

representations.

When partial functions are completely specified this approach is satisfactory, at

least from an ‘operational’ point of view. On the other hand, when some elements

of a partial function or (part of) the partial function itself are left unspecified—i.e.,

they are represented by unbound variables—then this approach presents major

flaws. For example, the predicate ran(F,{1}), which holds if {1} is the range

of the partial function F, admits infinite distinct solutions F = {[X1,1]}, F =

{[X1,1],[X2,1]}, ..., whenever F is unbound. If subsequently a failure is de-

tected, such as with the goal ran(F,{1}) & dom(F,{}), then the computation loops

forever and {log} is not able to detect the unsatisfiability.

Making the implementation of predicates over partial functions more sophisti-

cated as shown for instance in Cristiá et al. (2013) may help in solving more ef-

ficiently a larger number of cases, but does not provide a completely satisfactory

solution in the general case. In fact, there are still cases, such as that considered

above, in which there is no simple finite representation of the possibly infinite so-

lutions and this may cause the interpreter to go into infinite computations.

Most of the above mentioned problems could be solved by viewing partial func-

tions as first-class entities of the language and the operations dealing with them as

primitive constraints, for which the constraint language provides a suitable solver.

Hence, the motivation for managing partial functions through constraint solving is

primarily to enhance the language effectiveness, that is the ability to compute the

Adding Partial Functions to CLP with Sets 3

satisfiability/unsatisfiability of as many as possible (complex) set-based formulas

involving partial functions. Selecting {log} as the host constraint language for this

embedding gives one the possibility to exploit its flexible and general management

of sets to represent partial functions and to provide many basic set-theoretical

operations on partial functions as primitive set constraints for free. Other more

specific operations on partial functions can be added to the language as primitive

constraints and the solver can be extended accordingly.

The main original results of this work are: (i) the identification of a small set of

operations on partial functions, to be dealt with as primitive constraints, which are

sufficient to represent all other common operations on partial functions as simple

conjunctions of these constraints; (ii) the definition of a collection of rewrite rules

to simplify conjunctions of primitive constraints; (iii) the definition of a labeling

mechanism based on the notion of finite representable domains for partial functions;

(iv) the definition of a collection of inference rules to detect possible inconsistencies

without the need to perform time-consuming labeling operations.

At our knowledge, only very few works have addressed the problem of adding par-

tial functions as primitive entities in a C(L)P setting. For instance, the Conjunto

language (Gervet 1997) provides relation variables at the language level. However,

the domain and the range of the relations are limited to ground finite sets. Map

variables where the domain and range of the mapping can be also finite set variables

are introduced in CP(Map) (Deville et al. 2005). All these proposals, however, do

not consider the more general case of partially specified partial functions—where

some elements of the domain or the range can be left unknown—which on the

contrary are essential in our proposal. Moreover, the collection of primitive con-

straints on map variables they provide is usually restricted to very few constraints,

in particular to model the function application operation.

The rest of this paper is organized as follows. In Section 2, we briefly recall the

main features of the language {log}. The new extended language with partial func-

tions is presented in Section 3, focusing on what is new with respect to {log}. In

Section 4 we describe the constraint rewriting procedures for the new constraints

and the global organization of the constraint solver. The labeling mechanism with

the introduction of pf-domains is addressed in Section 5. Section 6 introduces a

number of inference rules that allow the solver to decide satisfiability of irreducible

constraints without having to resort to pf-domains, thus improving its overall effi-

ciency. A practical assessment of the performance of the new solver is provided in

Section 7.

2 {log}

{log} is a Constraint Logic Programming (CLP) language, whose constraint do-

main is that of hereditarily finite sets—i.e., finitely nested sets that are finite at

each level of nesting. {log} allows sets to be nested and partially specified—e.g.,

set elements can contain unbound variables, and it is possible to operate with sets

that have been only partially specified. {log} provides a collection of primitive con-

4 M. Cristiá, G. Rossi and C. Frydman

straint predicates, sufficient to represent all the most commonly used set-theoretic

operations—e.g., union, intersection, difference.

The {log} language was first presented by Dovier et al. (1996). A complete con-

straint solver for the pure CLP fragment included in {log}—called CLP(SET)—is

described by Dovier et al. (2000), while its extension to incorporate intervals and

Finite Domain constraints is briefly presented by Dal Palù et al. (2003). Hereafter,

with the name CLP(SET) we will refer to this last version of our constraint lan-

guage, while {log} will refer to the whole language including CLP(SET), along

with a number of other syntactic extensions and extra-logical Prolog-like facilities.

A working implementation of {log} (actually, an interpreter written in Prolog) is

available on the web (Rossi 2008).

Sets are denoted by set terms. For example, {1, 1, 2}, {2, 1}, and {1, 2} are set

terms, all denoting the same set of two elements, 1 and 2; {X,Y |S} is a set term

denoting a partially specified set containing one or two elements, depending on

whether X is equal to Y or not, and a, possibly empty, unknown part S.

A primitive SET -constraint is defined as any literal based on the set of predicate

symbols ΠC = {=, in , un, disj,≤, size, set, integer}. Symbols in ΠC have their natural

set-theoretic interpretation. In particular, the predicate un represents the union

relation (un(r, s, t) holds if and only if t = r∪ s), while the predicate disj represents

the disjoint relation between two sets (disj(s, t) holds if and only if s ∩ t = ∅).
Most other useful set-theoretical predicates, e.g., subset and inters, can be defined

as SET -constraints, using disj and un—e.g., subset(u, v)⇔ un(u, v, v) (Dovier et al.

2000). As an example, the following formula, inters(R,S, T)∧ size(T,N)∧N =< 2,

is an admissible SET -constraint whose (informal) interpretation is: the cardinality

of R ∩ S must be not greater than 2.

CLP(SET) is endowed with a complete constraint solver, called SATSET , for

verifying the satisfiability of SET -constraints. Given a constraint C, SATSET (C)

transforms C either to false (if C is unsatisfiable) or to a finite collection {C1, . . . ,

Ck} of constraints in solved form. A constraint in solved form is guaranteed to be

satisfiable w.r.t. the underlying interpretation structure. Moreover, the disjunction

of all the constraints in solved form generated by SATSET (C) is equisatisfiable to

C in the structure. A detailed description of the constraint solver SATSET can be

found in Dovier et al. (2000).

Example 1
Let C be {1, 2 |X} = {1 |Y } ∧ 2 nin X. Then SATSET (C) returns, one by one,

the following three answers, each of which is a constraint in solved form: Y =

{2 |X} ∧ 2 nin X ∧ set(X); X = {1 |N} ∧ Y = {2 |N} ∧ set(N) ∧ 2 nin N ; and

Y = {1, 2 |X} ∧ 2 nin X ∧ set(X) (where N is a new variable).

3 The extended language CLP(PF)

The constraint domain SET is extended so as to incorporate partial functions.

The new constraint domain and the related language are called PF and CLP(PF),

respectively. Since PF includes SET as a special case we will simply highlight what

is new in PF with respect to SET .

Adding Partial Functions to CLP with Sets 5

As concerns syntax, our choice is to not introduce any special symbol to represent

partial functions, since they can be easily represented as sets. Partial functions are

just a particular kind of sets. Forcing a set to represent a partial function will be

obtained at run-time by using suitable constraints on its elements.

Definition 1

We say that a set term r represents a partial function if r has one of the forms:

{} or {[x1, t1], [x2, t2], . . . , [xn, tn]} or {[x1, t1], [x2, t2], . . . , [xn, tn] | s}, and xi, ti,

i = 1, . . . , n, are terms, s is a set term representing a partial function, and the

constraints xi 6= xj , xi 6∈ dom s, hold for all i, j = 1, . . . , n, i 6= j.

A critical issue in the definition of PF is the choice of which operations over

partial functions should be primitive—i.e., part of ΠC—and which, on the con-

trary, should be programmed using the language itself. Minimizing the number of

predicate symbols in ΠC has the advantage of reducing the number of different

kinds of constraints to be dealt with and, hopefully, simplifying the language and

its implementation. On the other hand, having to implement such operations on top

of the language may lead to efficiency and effectiveness problems, similar to those

encountered with the implementation of partial functions using {log} discussed in

Section 1.

Our choice is to extend the set ΠC of constraint predicate symbols with the

following four predicate symbols:

dom, ran, comp, pfun

The intuitive interpretation of these predicate symbols is: dom(r, a) (resp. ran(r, a))

holds iff a is the domain (resp., range) of the partial function r; comp(r, s, t) holds

iff the partial function t is the composition of the partial functions r and s, i.e.

t = {[x, z] : ∃y([x, y] ∈ r ∧ [y, z] ∈ s)}; pfun(r) holds iff r is a partial function.

Atomic predicates based on these symbols are the only primitive constraints that

CLP(PF) offers to deal with partial functions (let us simply call these constraints

PF-constraints). A (general) (SET ,PF)-constraint is just a conjunction of primi-

tive constraints built using the enlarged ΠC , i.e. {=, in , un, disj,≤, size, set, integer}∪
{dom, ran, comp, pfun}.

The following theorem ensures that the primitive constraints are sufficient to de-

fine most of the common operations on partial functions as (SET ,PF)-constraints.

Complete proofs of this and the remaining theorems are available on-line at http://

people.math.unipr.it/gianfranco.rossi/SETLOG/setlogpf_proofs.pdf. Many

of these theorems were formally proved using the Z/EVES proof assistant (Saaltink

1997).

Theorem 1

Literals based on predicate symbols: dres (domain restriction), rres (range restric-

tion), ndres (domain anti-restriction), nrres (range anti-restriction), rimg (relational

image), oplus (overriding) and id (identity) can be replaced by equivalent conjunc-

tions of literals based on =, un, disj, dom, ran and comp.

6 M. Cristiá, G. Rossi and C. Frydman

Proof (sketch)

The following equivalences hold:

ndres(a, r, s) ⇔ dres(a, r, b) ∧ diff(r, b, s)

nrres(b, r, s) ⇔ rres(b, r, a) ∧ diff(r, a, s)

dres(a, r, s) ⇔ dom(r, dr) ∧ dom(s, ds) ∧ inters(a, dr, ds) ∧ subset(s, r)

rres(b, r, s) ⇔ un(s, t, r) ∧ ran(s, rs) ∧ ran(r, rr)

∧ inters(b, rr, rs) ∧ ran(t, rt) ∧ disj(rs, rt)

rimg(b, r, s) ⇔ dres(b, r, rb) ∧ ran(rb, s)

oplus(r, s, t) ⇔ un(rs, s, t) ∧ ndres(ds, r, rs) ∧ dom(s, ds)

id(a, r) ⇔ dom(r, a) ∧ ran(r, a) ∧ comp(r, r, r)

Other common operations on partial functions can be defined in the same way.

For example, the application of a partial function r to an element x can be easily

defined in terms of primitive constraints as follows: apply(r, x, y) is true if and only

if [x, y] in r holds.

The ability to express operations on partial functions as (SET ,PF)-constraints

as stated in Theorem 1 allows us to not consider these operations in the definition

of the constraint solver for CLP(PF) and to focus our attention only on the four

primitive constraints based on pfun, dom, ran and comp.

It is worth noting that the proposed subset of primitive predicate symbols is not

the only possible choice. Roughly speaking, it is motivated by observing that: since

a function is a tuple of the form (dom, law, ran), then choosing dom and ran seems

a rather natural choice; the law can be given as membership predicates (i.e. apply)

which is already part of the primitive constraints; pfun is easy to justify since it

is necessary to state which sets are partial functions; finally, comp is justified by

observing that it is hardly definable in terms of the other primitive constraints.

However, proving that this subset of primitive constraints is the minimal one, as

well as comparing our choice with other possible choices, in terms of, e.g., expressive

power, completeness, effectiveness, and efficiency, is out of the scope of the present

work.

4 Constraint Rewriting Procedures

For each primitive constraint symbol π ∈ ΠC , we develop a constraint rewriting

procedure specifically devoted to process that type of constraint. Basically, each

procedure repeatedly applies to the input constraint C a collection of rewrite rules

for π until either C becomes false or no rule for π applies to C. At any moment, C

represents the constraint store managed by the solver.

The rewrite rules have the following general form

pre-conditions

{C1, . . . , Cn} → {C ′
1, . . . , C

′
m}

where Ci and C ′
i are primitive (SET ,PF)-constraints and pre-conditions are (pos-

sibly empty) boolean conditions on the terms occurring in C1, . . . , Cn. In order to

apply the rule, all pre-conditions need to be satisfied. {C1, . . . , Cn} → {C ′
1, . . . , C

′
m}

Adding Partial Functions to CLP with Sets 7

r ∈ V
{dom(r, r)} → {r = ∅}

empty(a)

{dom(r, a)} → {r = ∅}

empty(r)

{dom(r, a)} → {a = ∅}

r = {[x, y]|rr} ¬empty(a)

{dom(r, a)} → {a = {x|rs}, [x, y] nin rr, dom(rr, rs)}

r ∈ V a = {x|rs}
{dom(r, a)} → {r = {[x, y]|rr}, x nin rs, dom(rr, rs)}

Fig. 1. Rewrite rules for dom.

empty(q) ¬empty(r) ¬empty(s)

{comp(r, s, q)} → {ran(r, rr), dom(s, ds), disj(rr, ds)}

q = {[x, z]|rq} ¬empty(r) ¬empty(s)

{comp(r, s, q)} → {r = {[x, y]|rr},
s = {[y, z]|rs}, [x, z] nin rq, [y, z] nin rs, comp(rr, s, rq)}

q ∈ V r = {[x, y]|rr} ¬empty(s) s /∈ V
{comp(r, s, q)} → {s = {[y, z]|rs},

q = {[x, z]|rq}, [x, y] nin rr, [y, z] nin rs, comp(rr, s, rq)}
or

{comp(r, s, q)} → {dom(s, ds), y nin ds, [x, y] nin rr,
comp(rr, s, q)}

Fig. 2. Rewrite rules for comp.

(n, m ≥ 0) represents the changes in the constraint store caused by the rule appli-

cation.

Some rewrite rules for dealing with single PF-constraints are shown in Figures

1 and 2; all of them can be found in the online appendix (Appendix A). Rewrite

rules for all other primitive constraints can be found elsewhere (Dovier et al. 2000;

Dal Palù et al. 2003).

The global organization of the solver for the new language—called SATPF—is

shown in Algorithm 1. It makes use of two procedures: infer and STEP. infer is used

to automatically add the constraints set, integer, and pfun to the constraint C to

force arguments of primitive constraints to be of the proper type. For example,

if C contains the constraint dom(r, a) then infer(C) will add to C the constraint

pfun(r)∧ set(a). The procedure STEP is the core part of SATPF : it applies special-

ized constraint rewriting procedures to the current constraint C and returns the

modified constraint. The execution of STEP is iterated until a fixpoint is reached—

i.e., the constraint cannot be simplified any further. Notice that STEP returns

8 M. Cristiá, G. Rossi and C. Frydman

false whenever (at least) one of the procedures in it rewrites C to false. Moreover,

STEP(false) returns false.

Algorithm 1 The CLP(PF) Constraint Solver

procedure SATPF (C)

C ← infer(C)

repeat

C ′ ← C;

C ← STEP(C);

until C = C ′;

return C

end procedure

When no rewrite rule applies to the considered PF-constraint then the cor-

responding rewriting procedure terminates immediately and the constraint store

remains unchanged. Since no other rewriting procedure deals with the same kind

of constraints, the irreducible constraints will be returned as part of the constraint

computed by SATPF . Precisely, if X and Xi are variables and t is a term (either a

variable or not), the following PF-constraints are dealt with as irreducible:

1. dom(X1, X2), where X1 and X2 are distinct variables;

2. ran(X, t), where t is distinct from X and t is not the empty set;

3. comp(X1, t,X3) or comp(t,X2, X3), where t is not the empty set;

4. pfun(X) and there are no constraints of the form integer(X) in C.

Roughly speaking, the irreducible constraints are these because we are not able to

rewrite them to finite conjunctions of primitive (SET ,PF)-constraints. In partic-

ular, solving the constraint ran(X, t), where t is a set term not denoting the empty

set, would amount to solve the formula ∀x(x ∈ X ⇔ ∃y, z(x = [y, z]∧ z ∈ t)) which

is not expressible as a finite conjunction of primitive (SET ,PF)-constraints. Notice

that, conversely, the case dom(X, t), where t is a set term (e.g. dom(X, {1})), can be

easily rewritten to a finite conjunction of primitive constraints since the cardinality

of X is necessarily that of t; hence this constraint is not dealt with as irreducible.

For all other primitive (SET ,PF)-constraints, SATPF uses the rewriting rules of

CLP(SET) and the irreducible form constraints it returns are all SET -constraints

in solved form (cf. Sect. 2 and Dovier et al. (2000)). Observe that, a constraint

composed of only solved form literals is proved to be always satisfiable.

Example 2

Constraint rewriting.

• dom({[a, 1], [b, 2], [c, 1]}, D) is rewritten to D = {a, b, c}
• dom({[a, 1]}, {b}) is rewritten to false

• comp({[1, b]}, B, {[1, a]}) is rewritten to B = {[b, a]|BR} ∧ [b, a] nin BR ∧
pfun(BR) ∧ dom(BR,D) ∧ b nin D ∧ set(D)

• inters({X}, {1}, D) ∧ dom(R,D) ∧ ran(R, ∅) is rewritten to D = ∅ ∧ R =

∅ ∧X neq 1

Adding Partial Functions to CLP with Sets 9

• apply(F,X, Y) ∧ dom(F,D) ∧X nin D is rewritten to false.

Note that with the implementation of dom and ran as user-defined {log} predi-

cates (see Cristiá et al. (2013)) the last goal would loop forever.

The SATPF procedure is proved to be always terminating.

Theorem 2 (Termination)

The SATPF procedure terminates for every input constraint C.

The termination of SATPF and the finiteness of the number of non-deterministic

choices generated during its computation guarantee the finiteness of the number of

constraints non-deterministically returned by SATPF . Therefore, SATPF applied

to a constraint C always terminates, returning either false or a (finite) disjunction

of (SET ,PF)-constraints in a simplified form. The following theorem proves that

the collection of constraints in irreducible form generated by SATPF preserves the

set of solutions of the input constraint, hence, it is correct.

Theorem 3 (Equisatisfiability)

Let C be a constraint, C1, . . . , Cn be the constraints obtained from SATPF (C), σ be

a valuation of C and C1∨. . .∨Cn, expanded to the new variables possibly introduced

into C1, . . . , Cn by the rewrite procedures, and APF be the interpretation structure

associated with the constraint domain PF . Then, APF |= σ(C) if and only if

APF |= σ(C1 ∨ . . . ∨ Cn).

If at least one of the constraints Ci returned by SATPF (C) contains only prim-

itive SET -constraints then, according to Dovier et al. (2000), Ci is in solved form

and it is surely satisfiable. Therefore, in this case, thanks to Theorems 2 and 3, we

can conclude that the original constraint C is surely satisfiable.

Unfortunately, this is not always the case, as discussed in the next section.

5 pf-domains

Differently from CLP(SET), the simplified constraint returned by SATPF is not

guaranteed to be satisfiable.

Example 3

The following (SET ,PF)-constraint

dom(R,D) ∧R neq ∅ ∧ un(D,Y, Z) ∧ disj(D,Z)

is an irreducible constraint but it is clearly unsatisfiable (the only possible solution

for un(D,Y, Z) ∧ disj(D,Z) is D = ∅, but D = ∅ if and only if R = ∅).

Thus, differently from CLP(SET), the ability to produce a collection of con-

straints in an irreducible form from the input constraint C cannot be used to

decide the satisfiability of C. As many concrete solvers, e.g. the CLP(FD) solvers,

SATPF is an incomplete solver. Thus, if it returns false the input constraint is

surely unsatisfiable, whereas if it returns a constraint in irreducible form then we

cannot conclude that the input constraint is surely satisfiable.

10 M. Cristiá, G. Rossi and C. Frydman

In order to obtain a complete solver, we provide a way to associate a finitely

representable domain to each partial function variable and to force these variables

to get values from their associated domains, i.e. to perform labeling on them. This is

obtained by defining a new primitive constraint pfun, of arity 2, with the following

interpretation: pfun(r, n) holds if and only if r ∈ X 7→ Y ∧ n ∈ N ∧ |r| ≤ n.

The solutions of pfun(r, n) are all the partial functions r with cardinality less

than or equal to n. The ability to represent domains and ranges of partial functions

as partially specified sets, i.e. sets containing unbound variables as their elements,

allows us to provide a finite representation for the (possibly infinite) set of all

solutions of pfun(r, n). For example, the set of solutions for pfun(r, 2), where r is

a variable, can be represented by the following equisatisfiable disjunction of three

primitive constraints: r = ∅ ∨ r = {[X,Y]} ∨ r = {[X1, Y1], [X2, Y2]} ∧X1 neq X2.

We will call the set of partial functions represented by these constraints the pf-

domain of the pf-variable r. pf-domains represent in general infinite sets but they

are finitely representable in our language.

¿From an operational point of view, solving pfun(r, n), with n a constant natural

number, non-deterministically computes, one after the other, all the n+ 1 possible

assignments for r. Therefore, solving pfun(r, n) allows us to perform a sort of la-

beling over the pf-variable r. Note that, differently from pfun(r), pfun(r, n) has no

irreducible form. If r is an unbound variable (n is required to be a constant num-

ber), then solving pfun(r, n) always generates an equality for r, along with possible

inequality constraints over the elements in the domain of r.

The labeling process involved in pfun/2 constraints do not compromise termi-

nation of the procedure SATPF since the set of possible values to be assigned to

partial function variables through labeling is anyway finite. Moreover, assuming

our domain of discourse is limited to finite partial functions, it is straightforward

to see that the rewriting rules for pfun/2 preserve the set of solutions of the input

constraint. Thus we can immediately extend to pfun/2 constraints the results of

Theorems 2 and 3.

Solving pfun/2 constraints allows pf-variables to always get a value, although it

can be a non-ground value. This is enough, however, to guarantee that all PF-

constraints are completely eliminated at the end of the computation.

Lemma 1

Let C be an input constraint and V1, . . . , Vn all the pf-variables occurring in C. If

C contains pfun(V1, k1)∧· · ·∧pfun(Vn, kn), k1, . . . , kn ∈ N, then SATPF (C) returns

either false or a disjunction of SET -constraints in solved form.

Remembering that SET -constraints in solved form are always satisfiable, Lemma

1 guarantees that, if the input constraint C contains pfun/2 constraints for all the

pf-variables occurring in it and SATPF (C) does not terminate with false, then the

disjunction of constraints returned by SATPF (C) is surely satisfiable. Since SATPF
is proved to preserve the set of solutions of C (cf. Theorem 3), then we can conclude

that in this case C is satisfiable.

Hence, by properly exploiting pfun/2 constraints, we get a complete solver. This

means that, once k1, . . . , kn are fixed, our solver can detect all cases in which the

Adding Partial Functions to CLP with Sets 11

input constraint is unsatisfiable, as well as all cases in which the input constraint

is satisfiable and, in these cases, it can generate all viable solutions.

Example 4

The following constraints are rewritten to either false or to a solved form constraint,

whereas they are left unchanged if no pf-domain is specified.

• dom(R,D) ∧ D neq ∅ ∧ un(D,Y, Z) ∧ disj(D,Z) ∧ pfun(R, 5) is rewritten to

false

• ran(X, {1})∧un(X,Y, Z)∧pfun(X, 5) is rewritten to the solved form constraint

(first solution): X = {[A, 1]} ∧ Z = {[A, 1]|Y } ∧ set(Y).

6 Improving constraint solving

¿From a more practical point of view, having to perform labeling for pf-variables

may cause unacceptable execution time in some cases. For example, the constraint

dom(R,D1) ∧ dom(R,D2) ∧D1 neq D2 ∧ pfun(R, k)

is proved to be unsatisfiable, but only for relatively small values of k.

To alleviate this problem, we introduce a number of new rewrite rules—hereafter

simply called inference rules—that allow new constraints to be inferred from the ir-

reducible constraints. The presence of these additional constraints allows the solver

to deduce possible unsatisfiability of the given constraint without having to resort

to any labeling process, thus improving the overall efficiency of constraint solving

in many cases.

The inference rules are applied by calling function infer rules just after the iter-

ation of STEP ends finding a fixpoint (see Algorithm 1). infer rules(C) applies all

possible inference rules to all possible primitive constraints in C. After the rules

have been applied, possibly modifying C, the STEP loop is repeated from the begin-

ning. Only when both STEP and infer rules do not modify C, then the new global

constraint solving procedure—called SAT ′
PF—ends.

Some of the inference rules used by SAT ′
PF are shown in Figure 3; all of them

can be found in the online appendix (Appendix A). Each inference rule captures

some property of the primitive operators for partial functions, possibly relating

these operators with other general operators, such as inequality (constraint neq)

and set cardinality (constraint size). All rules take into account one or two primitive

constraints at a time and add new primitive constraints to the constraint store.

Example 5

The following constraints are all proved to be unsatisfiable using SAT ′
PF (see the

applied rules in Figure 3):

dom(X,D1) ∧ dom(X,D2) ∧D1 neq D2 (rule (1))

ran(X,RX) ∧RX neq ∅ ∧ disj(X,Z) ∧ un(X,Y, Z) (rule (2))

dom(X,DX) ∧ size(X,N) ∧ size(DX,M) ∧N neq M (rule (3))

comp({[a, 1]}, Y, Z) ∧ dom(Z,DZ) ∧ a nin DZ ∧ Z neq ∅ (rule (4))

un(X,Y, Z) ∧ dom(X,D) ∧ dom(Y,D) ∧ dom(Z,DZ) ∧D neq DZ (rule (5))

12 M. Cristiá, G. Rossi and C. Frydman

{dom(r, a), dom(r, b)} → {dom(r, a), a = b} (1)

a ∈ V
{ran(r, a), r neq ∅} → {ran(r, a), r neq ∅, a neq ∅} (2)

{dom(r, a)} → {dom(r, a), size(r, n), size(a, n)} (3)

{comp(r, s, q)} → {comp(r, s, q),
dom(q, a), dom(r, b), subset(a, b)}

(4)

{un(r, s, q), pfun(q)} → {un(r, s, q), pfun(q),
dom(r, dr), dom(s, ds), dom(q, dq),
un(dr, ds, dq)}

(5)

Fig. 3. Some inference rules.

The same constraints of Example 5 but using SATPF , that is without applying

any inference rule, are simply treated as irreducible. On the other hand, adding

constraints pfun/2 to perform labeling on pf-variables would allow SATPF to detect

the unsatisfiability for all these constraints, but only when the specified partial

function cardinalities are relatively small the response times would be practically

acceptable.

Termination of the improved constraint solver is stated by the following theorem.

Theorem 4 (Termination of SAT ′
PF)

The SAT ′
PF procedure can be implemented in such a way that it terminates for

every input constraint C.

Soundness of the extended solver SAT ′
PF comes from soundness of SATPF and

from the following theorem, which ensures that the added constraints do not modify

the set of solutions of the original constraint.

Theorem 5 (Equisatisfiability of inference rules)

Let S be a constraint and S′ be the constraint obtained from the inference rules.

Then S′ is equisatisfiable to S with respect to the interpretation structure APF .

SAT ′
PF is still not a complete solver unless pfun/2 is used for all pf-variables. As

a counterexample, consider the following constraint

ran(X, {1}) ∧ ran(Y, {1, 2}) ∧ dom(X,D) ∧ dom(Y,D) ∧ disj(X,Y).

This constraint is unsatisfiable with respect to APF , but SAT ′
PF is not able to

prove this fact (it simply leaves the constraint unchanged).

New inference rules could be added to the solver to detect further properties

of the partial function domain, thus avoiding as much as possible the need for

pfun/2 constraints. However, finding a collection of inference rules that guarantees

to obtain a complete solver, regardless of the presence of pfun/2 constraints, seems

Adding Partial Functions to CLP with Sets 13

to be a difficult task. Moreover, checking the constraint store to detect applicable

inference rules may be quite costly in general. Thus, the solution we adopted is

based on finding a tradeoff between efficiency and completeness, as usual in many

concrete constraint solvers. Only those properties that require relatively small effort

to be checked are taken into account by the solver. For all cases not covered by the

inference rules, however, solver’s completeness is obtained by exploiting pf-domains

and pfun/2 constraints. Further empirical assessment of the solver may lead to

review the current choices and provide additional inference rules in future releases.

7 Empirical Assessment

In this section we present how the new version of {log} (i.e. 4.8.2-2) improves its

efficiency and effectiveness when solving formulas including partial functions and

their operators. To do so we have generated more than 2,000 goals, some of which

include partial functions and the related operators. These goals have been used to

evaluate {log} 4.8.0 as a test case generator for Fastest, a model-based testing

tool (Cristiá et al. 2013). Besides, these goals have been generated by Fastest from

10 different Z specifications, some of which are formalizations of real requirements

and, in general, they cover a wide range of applications—totalizing around 3,000

lines of Z code. These goals not only include partial functions, but also sets (in

particular intentional sets), integer and relational constraints. Thus, we consider

that they are a representative sample.

In this assessment, we want to know: (i) how many satisfiable and unsatisfiable

goals are found by {log}; (ii) how long it takes to process all the goals; (iii) how

{log} performs in each task compared with version 4.8.0 (which do not include

partial functions as primitive constraints).

Experiments were run on a 4 core Intel CoreTM i5-2410M CPU at 2.30GHz with

4 Gb of main memory, running Linux Ubuntu 12.04 (Precise Pangolin) 32-bit with

kernel 3.2.0-80-generic-pae. {log} 4.8.0 and 4.8.2-2 over SWI-Prolog 6.6.6 for i386

were used during the experiments. A 10 seconds timeout was set as the maximum

time that {log} can spend to give an answer for a goal.

Table 1 displays the results of the experiments. The meaning of the columns

is as follows: Z Spec, Z specification; Goals, number of goals processed during

the experiment; S, number of satisfiable goals detected as satisfiable; U, number

of goals detected as unsatisfiable; A, percentage of goals for which {log} gives a

meaningful answer (i.e. A = 100(S + U)/Goals); T, time spent by {log} during

the entire execution.

As can be seen, {log} 4.8.2-2 outperforms 4.8.0 in almost all sets of goals. In

effect, in all sets but two (SWPDC and Sec. class) 4.8.2-2 gives more right answers

and in less time than 4.8.0. Note that 4.8.2-2 hits 100% of right answers in 5 sets of

goals while 4.8.0 does it only in 2. Also note the impressive time reduction in, for

example, Launcher. Given that giving more right answers in less time is the best

behavior, we can define QI, for quality index, as QI = b100 ∗ A/Tc. Then, the

higher the QI the better. {log} 4.8.2-2 has higher or equal QI than 4.8.0 in all but

one set of goals.

14 M. Cristiá, G. Rossi and C. Frydman

Table 1. Summary of empirical assessment

Z Spec Goals 4.8.0 4.8.2-2

S U A T S U A T

SWPDC 196 97 26 63% 1,238 99 26 64% 1,402
Plavis 232 151 36 81% 510 151 33 79% 510
Scheduler 205 27 85 55% 945 38 161 97% 125
Sec. class 36 20 16 100% 11 20 14 94% 31
Bank (1) 100 23 39 62% 388 25 75 100% 28
Bank (3) 104 50 35 82% 211 52 49 97% 64
Lift 17 17 0 100% 6 17 0 100% 6
Launcher 1,206 0 1,093 91% 1,334 23 1,183 100% 370
Symb. table 27 11 10 78% 68 11 16 100% 9
Sensors 16 7 3 63% 54 8 8 100% 5

Totals 2,139 403 1,343 – 4,769 444 1,565 – 2,552

In summary, the experimental results show that adding constraints for partial

functions as {log}’s primitive constraints greatly improves its efficiency and effec-

tiveness as a constraint solver for a very general theory of sets.

8 Conclusions

In this paper we have shown how to integrate partial functions as first-class citizens

into the CLP language with sets {log}. Since partial functions can be viewed as sets,

they are embedded quite smoothly into {log}, and all facilities for set manipulation

offered by {log} are immediately available to manipulate partial functions as well.

We have added to the language a very limited number of new primitive constraints,

specifically devoted to deal with partial functions and we have provided sound and

terminating rewriting procedures for them. The resulting constraint solver either

terminates with false or with a disjunction of simplified constraints which the solver

cannot further simplify (i.e., irreducible constraints). We have identified conditions

under which the ability to generate such a disjunction guarantees the satisfiability

of the input constraint. Moreover, we have defined a number of inference rules that

allow the solver to detect, in many cases, unsatisfiability even in the more general

situations (e.g. without requiring to specify an upper bound for the cardinality of

partial functions).

For the future, there are two main correlated lines of work: (i) identifying more

precisely the class of irreducible constraints which are guaranteed to be satisfiable;

so far this class is restricted to irreducible constraints not containing pf-constraints,

but it is likely to be enlarged to include pf-constraints as well, at least of some spe-

cific form (e.g., those which contain only unbound variables, thus excluding for

instance the irreducible constraints of the form ran(X, {. . . })) (ii) defining new in-

ference rules that allow further “hidden” properties of irreducible constraints to be

made explicit, in order to make constraint solving more and more “precise”; that

Adding Partial Functions to CLP with Sets 15

is, on the one hand, to allow the solver to detect more and more unsatisfiable con-

straints and, on the other hand, to allow the class of irreducible constraints whose

satisfiability can be decided without the need to perform any labeling operation to

be enlarged as much as possible.

References

Abrial, J.-R. 1996. The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York, NY, USA.

Cristiá, M., Rossi, G., and Frydman, C. S. 2013. {log} as a test case generator for the
Test Template Framework. In SEFM, R. M. Hierons, M. G. Merayo, and M. Bravetti,
Eds. Lecture Notes in Computer Science, vol. 8137. Springer, 229–243.

Dal Palù, A., Dovier, A., Pontelli, E., and Rossi, G. 2003. Integrating finite domain
constraints and CLP with sets. In PPDP. ACM, 219–229.

Deville, Y., Dooms, G., Zampelli, S., and Dupont, P. 2005. CP(graph+map) for ap-
proximate graph matching. In 1st International Workshop on Constraint Programming
Beyond Finite Integer Domains. 31–47.

Dovier, A., Omodeo, E. G., Pontelli, E., and Rossi, G. 1996. A language for pro-
gramming in logic with finite sets. J. Log. Program. 28, 1, 1–44.

Dovier, A., Piazza, C., Pontelli, E., and Rossi, G. 2000. Sets and constraint logic
programming. ACM Trans. Program. Lang. Syst. 22, 5, 861–931.

Gervet, C. 1997. Interval propagation to reason about sets: Definition and implementa-
tion of a practical language. Constraints 1, 3, 191–244.

Gervet, C. 2006. Handbook of Constraint Programming. Elsevier, Chapter Constraints
over Structured Domains, 605–638.

Jackson, D. 2003. Alloy: A logical modelling language. In ZB 2003: Formal Specification
and Development in Z and B, Third International Conference of B and Z Users, Turku,
Finland, June 4-6, 2003, Proceedings, D. Bert, J. P. Bowen, S. King, and M. A. Waldén,
Eds. Lecture Notes in Computer Science, vol. 2651. Springer, 1.

Rossi, G. 2008. {log}. http://people.math.unipr.it/gianfranco.rossi/setlog.

Home.html. last access: May 2015.

Saaltink, M. 1997. The Z/EVES mathematical toolkit version 2.2 for Z/EVES version
1.5. Tech. rep., ORA Canada.

Schwartz, J. T., Dewar, R. B. K., Dubinsky, E., and Schonberg, E. 1986. Pro-
gramming with Sets - An Introduction to SETL. Texts and Monographs in Computer
Science. Springer.

Spivey, J. M. 1992. The Z notation: a reference manual. Prentice Hall International
(UK) Ltd., Hertfordshire, UK, UK.

